Prostacyclin and Its Receptors

Helen Wise and Robert L. Jones

Prostacyclin and Its Receptors

This page intentionally left blank.

Prostacyclin and Its Receptors

Helen Wise

and

Robert L. Jones

The Chinese University of Hong Kong Hong Kong SAR, China

eBook ISBN: 0-306-46822-0 Print ISBN: 0-306-46308-3

©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at:	http://www.kluweronline.com
and Kluwer's eBookstore at:	http://www.ebooks.kluweronline.com

Preface

The 1970's were dramatic times for prostanoid research, with the discovery of prostacyclin and the elucidation of the mode of action of aspirin by Sir John Vane and his colleagues. As the most potent endogenous antiplatelet agent, prostacyclin received much attention, and the race was on to develop nonhypotensive analogues for thrombosis therapy. Promising leads were invariably confounded by the possibility of species differences in prostacyclin (IP-) receptors, and then a molecular biology revolution occurred in the early 1990's. Shuh Narumiya and his colleagues presented us with a full hand of cloned prostanoid receptors, and the exact identity of prostacyclin receptors in blood vessels and platelets finally became clear. Nevertheless, interest in the biology of prostacyclin remained high, but was focused more on its excitatory actions. Could prostacyclin exert some of the pro-inflammatory actions, for example enhancement of pain sensation, traditionally associated with prostaglandin E₂? The demonstration of IPreceptors on central and peripheral neurones, the existence of two neuronal IP-receptor subtypes with quite different agonist specificities, and the reduction of pain sensation in the IP-receptor gene-knockout mouse has triggered a new wave of prostanoid research. In addition, the development of much-needed IP-receptor antagonists may turn out to be more than rumours. This monograph has been prepared to put all of these data into context and to set the scene for progress into the next millenium.

Helen Wise

Robert L. Jones

This page intentionally left blank.

Acknowledgments

We wish to thank industrial colleagues who over the years have supported our research with generous gifts of prostanoids, and in particular Professor Helmut Vorbrüggen of Schering AG and Dr. Nick Meanwell of Bristol-Myers Squibb. RLJ is also appreciative of the camaraderie of Drs. Norrie Wilson and Roma Armstrong, who were involved in the development of the EP analogue series at the University of Edinburgh. The excellent assistance of Mrs. Joresa Ng in the preparation of the manuscript and the patience of Dr. John Rudd in all-things-Macintosh are gratefully acknowledged. Finally, we should like to thank the following publishers for giving permission to use their copyright material: American Society for Biochemistry and Molecular Biology, Birkhäuser, Blackwell Science Ltd, Elsevier Science Ltd, Kluwer Academic / Plenum Publishers, Lippincott Williams & Wilkins, Macmillan Magazines Ltd, Macmillan Press Ltd, and Prous Science. This page intentionally left blank.

Contents

Chapter 1	An introduction to prostacyclin and its receptors	1
Chapter 2	The development of prostacyclin analogues	29
Chapter 3	Nonprostanoid prostacyclin mimetics	59
Chapter 4	Isolation, cloning and characterisation of IP-receptors	79
Chapter 5	IP-receptors on platelets	109
Chapter 6	IP-receptors in the vasculature	137
Chapter 7	IP-receptors on neutrophils	189
Chapter 8	IP-receptors on monocytes/macrophages	215
	and lymphocytes	
Chapter 9	IP-receptors on sensory neurones	243
Chapter 10	IP-receptors in the enteric nervous system	271
Chapter 11	IP-receptors in the central nervous system	285

Index

305

This page intentionally left blank.

Chapter 1

An introduction to prostacyclin and its receptors

1. INTRODUCTION

The platelet inhibitory and hypotensive actions of prostacyclin are by now so well established that it is surprising to find that prostacyclin was actually the last member of the primary (2-series) prostanoid family to be identified. By coincidence, the prostacyclin (IP-) receptor was also the last of the prostanoid family of receptors to be cloned.

Interest in prostacyclin as an antithrombotic agent has resulted in an intensive search for more clinically useful IP agonists, with high chemical and metabolic stability, and selectivity of action on platelets. As a result of these studies, a large amount of structure-activity relationship data is available, which we have attempted to summarise in Chapter 2 (prostacyclin analogues) and in Chapter 3 (nonprostanoid prostacyclin mimetics). The ready availability of human platelets for screening potential IP agonists, and the variable choice of agonists used by different groups, has perhaps limited a thorough assessment of the existence of species-specific IP-receptors. Therefore, we have attempted to redress the balance by closely examining the data on the cloned human, mouse and rat IP-receptors (Chapter 4), and compared this with twenty year's worth of platelet aggregation studies (Chapter 5). Despite such a wealth of knowledge on prostacyclin and its platelet receptors, we are constantly hampered in our interpretation of data by the lack of IP-receptor antagonists. So we caution the reader to bear this in mind, and would encourage a re-examination of our conclusions when IP antagonists become available.

The hypotensive property of prostacyclin is generally considered a drawback to the use of IP agonists as antithrombotic drugs. However, there are conditions (e.g. pulmonary hypertension) where its vasodilator action contributes to the therapeutic effect. Prostacyclin can also claim to belong to the family of endothelium-derived relaxing factors (EDRFs), of which nitric oxide (NO) is probably the most well known. As an EDRF, prostacyclin may therefore have an important role in controlling blood flow. These aspects are discussed in Chapter 6.

Aside from the cardiovascular properties of prostacyclin, its other functions are less well established. As an inflammatory mediator, the role of prostacyclin has long been overshadowed by that of prostaglandin E2 (PGE₂), yet both prostanoids are produced at sites of inflammation, and both have unique profiles of activity. Prostacyclin as an inhibitor of the activity of a range of inflammatory cells will be discussed in Chapters 7 and 8, where it will become clear that the source of cells being studies (e.g. elicited or nonelicited) has a crucial influence on their responsiveness to IP agonists. We would also like to draw the reader's attention to the role of prostacyclin in sensory neurones (Chapter 9), and to present evidence showing that IP-receptors have an important role to play in nociception, as least as important as PGE receptors.

Of most recent interest is the role of IP-receptors in other neuronal systems and the possible existence of IP-receptor subtypes. This information may be found in Chapter 10, where we present evidence for the presence of IP-receptors on enteric neurones and in Chapter 11, where we look at IP-receptors in the central nervous system.

Throughout this monograph, we have tried to consider the potential therapeutic application of drugs acting on IP-receptors, but the topics cannot be considered exclusive, they simply represent the best studied areas to date. Because prostacyclin is just one member of an important family of products derived from arachidonic acid (the eicosanoids), and because many of the other members are mentioned throughout this monograph, we would like to set the scene by outlining the metabolic pathways for eicosanoids, the properties of prostanoid receptors, and how certain anti-inflammatory drugs interfere with eicosanoid systems.

2. EICOSANOID BIOSYNTHESIS

The 20-carbon polyunsaturated fatty acid arachidonic acid has two quite different functions in the body. As a component of cell membrane phospholipids, its *cis* double bonds disorder the hydrophobic core of the membrane, thus influencing fluidity, permeability and the behaviour of

embedded proteins.¹ However, following release from internal membranes by phospholipase A_2 (PLA₂), arachidonic acid can enter several oxidation pathways to yield a diverse range of products, some of which have important physiological and pathological roles (Fig. 1 and 2). These products are termed eicosanoids to indicate the presence of a 20-carbon backbone (Greek *eicosi* = 20); related products derived from 0.6 fatty acids other than arachidonate and from some ω and ω fatty acids also belong to the eicosanoid family.

Two types of oxygenase enzyme are responsible for the initial steps in eicosanoid pathways, lipoxygenases (LOXs) and cytochrome P-450 monooxygenases. The basic lipoxygenase reaction involves stereospecific attack of an hydroperoxy radical on a methylene-interrupted diene unit (-CH=CH-CH₂-CH=CH-) in the fatty acid substrate. By attacking one end of one of the three diene units present in arachidonic acid (Fig. 1, inset) individual LOXs produce unique products. P-450 mono-oxygenases on the other hand appear to show less specificity, producing a range of epoxides of arachidonic acid (Fig. 2), as well as its 20-hydroxy derivative.²

2.1 PGHS or COX pathway

The prostaglandin H synthase (PGHS) or cyclo-oxygenase (COX) pathway, which generates the prostanoids (Fig. 1), was first reported in 1964 by two independent research teams led by Bergström & Samuelsson at the Karolinska Institute in Sweden³ and by van Dorp & Nugteren at the Unilever Research Laboratories in Holland.⁴ They were able to isolate and identify PGE_2 from homogenates of sheep seminal vesicles incubated with arachidonic acid. The choice of seminal vesicles stemmed from observations made some 30 years earlier that smooth muscle contractile and relaxant activities attributable to acidic lipids were present in extracts of male reproductive tissues.⁵⁻⁸

Prostaglandin H synthase contains both COX and 15-hydroperoxidase activities. The COX site essentially catalyses two consecutive lipoxygenase

reactions; the first occurs at C11 to give 11(R)-<u>hydroperoxy-eicosatetraenoic</u> acid (11-HPETE).^{9,10} The second is more complex, involving insertion of an hydroperoxy group at C15 and generation of an endoperoxide ring system. The product PGG₂ is reduced at the 15-hydroperoxidase site to PGH₂. In general, the terms PGHS and COX are used loosely to describe the enzyme system that forms prostaglandin endoperoxides.

The 9,11-peroxide bond in PGH_2 is chemically labile and spontaneous isomerisation readily occurs to give PGD_2 and PGE_2 . However, specific synthase enzymes also generate PGD_2 and PGE_2 and two further isomers prostacyclin and thromboxane A_2 (TXA₂). The defined stereochemistry of

 PGH_2 (with oxygens below the plane of the cyclopentane ring, 8α /12 β side-chains, and S-configuration at C15) is passed on to these primary prostanoids (see Chapter 2 for further stereochemical information). Both prostacyclin and TXA₂ are rapidly hydrolysed under physiological conditions with loss of biological activity ($t_{4} = 3$ and 0.5 min respectively). Enzymatic reduction of the 9,11-peroxide bond of PGH₂ yields the fifth primary prostanoid PGF₂, which may also be formed from PGD₂ or PGE₂.¹¹

2.2 Leukotriene pathway

A smooth muscle contractile substance is released from guinea-pig lungs by cobra venom (a source of PLA₂)¹² and by anaphylactic challenge.¹³⁻¹⁵ The identity of this "slow-reacting substance of anaphylaxis" (SRS-A) remained elusive for many years until the discovery of the leukotrienes by Samuelsson's group. It was shown that a 5-lipoxygenase (5-LOX) first converts arachidonic acid into 5(S)-HPETE and then abstracts water to generate leukotriene A4 (LTA4) (Fig. 2).¹⁶⁻¹⁸ At this point the pathway splits. LTA₄ hydrolase generates the 5,12-dihydroxy compound LTB₄¹⁹ which has polymorphonuclear leukocytes.²⁰ chemotactic activity for potent Alternatively, LTC₄ synthase catalyses the opening of the epoxide ring by the SH group of glutathione (y-Glu-Cys-Gly) to yield LTC4;²¹ metabolism of the glutathione unit yields LTD₄ and LTE₄. These three peptidoleukotrienes activate specific leukotriene (CysLT) receptors to elicit contraction of intestinal and bronchial smooth muscle, thus accounting for the bioactivity of SRS-A.

The leukotriene pathway is well developed in white cell populations, including neutrophils, eosinophils and pulmonary alveolar macrophages, and there is good evidence for a role for peptidoleukotrienes in the bronchoconstriction of human asthma.²²⁻²⁵ Recently, several CysLT antagonists, (e.g. zafirlukast²⁶ and a 5-LOX inhibitor zileuton²⁷ have been approved as anti-asthma drugs.²⁸

Whether COX, leukotriene or other arachidonate products are formed within a cell would be expected to depend on the relative levels of active oxygenases present. However, more subtle mechanisms such as "substrate channelling" may have a significant influence. Consecutive enzymes in a pathway may be located in or directed to internal membranes in such a way that the product of the first enzyme feeds directly into the catalytic site of the second. This will increase the substrate concentration of the primary product, and also protect unstable primary products from chemical reaction in the surrounding aqueous phase. Substrate channelling appears to be particularly important in leukotriene biosynthesis.²⁹ During cell activation,

 PLA_2 and 5-LOX are translocated to the nuclear envelope and adjacent endoplasmic reticulum, where they are anchored by an integral membrane protein, 5-LOX-activating protein or FLAP.³⁰ In this way, the utilisation of both arachidonic acid and 5-HPETE is maximised. Compounds such as the indole MK-886 inhibit 5-LOX activity by binding to FLAP, whereas zileuton directly inhibits 5-LOX.³¹

2.3 12-LOX and 15-LOX pathways

Arachidonic acid is converted to 12(S)-HPETE by the 12-LOX of human³² and cow³³ platelets; a leukocyte-type of 12-LOX also exists.³⁴ Isomerisation (either enzymatic or non-enzymatic) then yields two epoxy-hydroxy derivatives named hepoxilins A₃ and B₃.³⁵⁻³⁷ Epoxide hydrolase activity then creates the corresponding trihydroxy acids, trioxilins A₃ and B₃. Hepoxilin A₃ can induce hyperpolarisation of neurones and potentiate glucose-induced insulin secretion³⁴ and there is evidence for specific binding sites on human neutrophils.³⁸

The 15-LOX pathway from arachidonic acid first yields 15(S)-HPETE,³⁹ while further reactions generate trihydroxy acids known as lipoxins (LXs), which characteristically possess four conjugated double bonds. Lipoxins can also be generated by 12-LOX action on LTA₄. It has been suggested that LTA₄ released by polymorphonuclear leukocytes may proceed either to the classical leukotrienes or to lipoxins by interaction with 12-LOX in neighbouring platelets (an example of transcellular biosynthesis).⁴⁰ LXA₄ and LXB₄ exhibit endothelium-dependent vasodilator activity⁴¹ (see Chapter 6) and also release prostacyclin from human umbilical endothelial cells.⁴²

The elucidation of these eicosanoid pathways has been described in greater detail by Smith & Borgeat,⁴³ and information on individual enzymes may be found in the 1995 monograph "Molecular Biology of the Arachidonate Cascade".⁴⁴ Many of the eicosanoids exhibit high chemical reactivity and establishing their structures has presented considerable challenges to the biological chemist. Advances in chromatographic techniques and in the spectrometric analysis of microgram amounts of organic compounds over the past 30 years have been crucial to success in this area, and the skilful use of combined gas chromatography - mass spectrometry deserves special mention.⁴⁵

Figure 1. Activation of cytosolic phospholipase A_2 (cPLA₂) to release arachidonic acid and subsequent metabolism by the cyclo-oxygenase (COX) pathway to prostanoids. The brackets against the structures of PGE₂ and PGF_{2a} indicate that their α and ω -chains are identical to those in PGH₂. The open arrow indicates nuclear expression of cPLA₂. The inset shows the potential positions of lipoxygenase attack on arachidonic acid.

Figure 2. Metabolism of arachidonic acid by 5-, 12- and 15-lipoxygenase pathways and by cytochrome P-450 mono-oxygenase pathway. The latter enzyme system can oxygenate each of the double bonds in arachidonic acid to yield four epoxy-eicosatrienoic acids (5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET) each with two stereoisomers.

3. DISCOVERY OF PROSTACYCLIN

At this point it is rewarding to consider how prostacyclin was actually discovered, since the simplicity of the methods used contrasts sharply with the complexities of the chemical investigations just described. Over a number of years, a research team led by Sir John Vane at the Royal College of Surgeons of London had perfected the cascade superfusion technique for detecting and quantifying biologically-active substances released from organs perfused with either a Ringer solution or blood.^{46,47} The essence of the technique is that a substance in the effluent from an organ generates a distinctive response pattern as its passes over two or three isolated smooth muscle preparations arranged vertically above one another (Fig. 3).

Figure 3. Generation of PGX (subsequently called prostacyclin) from PGG_2 or PGH_2 by microsomes from rabbit aorta. The upper panel shows isotonic contractions of superfused rabbit aorta and rat colon. The lower panel shows light transmission responses of human platelet-rich plasma; the aggregating agent is arachidonic acid (AA). Redrawn from Moncada et al.,⁴⁸ with permission.

Judicious choice of preparations allows more than one agent to be detected simultaneously, and also increases the chance of detecting a new endogenous agent. In addition, the "instantaneity" of the method⁴⁹ allows the detection of unstable substances, which would be unlikely to survive an extraction procedure. Receptor antagonists can also be included in the superfusion fluid to annul the actions of particular agents.

Using the cascade superfusion method, Piper & Vane⁴⁶ demonstrated the release of an unstable "rabbit-aorta contracting substance" (RCS) from isolated guinea-pig lungs during anaphylaxis. Further experiments by Gryglewski & Vane^{50,51} indicated that the contractile activity of RCS was similar to that of PGG₂ and PGH₂. However, the biological half-lives of RCS (< 2 min) and PGG₂/PGH₂ (~ 5 min) were different. This and other findings stimulated Samuelsson to search for another unstable contractile agent (see Moncada et al.⁴⁷). Through a brilliant piece of chemical detective work, TXA₂ was identified from the incubation of PGG₂/PGH₂ with washed human platelets.⁵²

Vane's group soon showed however that not all artery strips responded to prostaglandin endoperoxides and TXA₂ in the same way.⁵³ On superfused rabbit coeliac and mesenteric arteries, TXA₂ was always contractile, whereas the endoperoxides induced transient contraction followed by relaxation. It was also found that incubation of either PGG₂ or PGH₂ with rabbit aorta microsomes caused contractile activity on rabbit aorta to disappear rapidly, without a corresponding increase in PGE_2 - or $PGF_{2\alpha}$ --like activity on the rat colon (Fig. 3, upper panel).⁴⁸ In the absence of microsomes, the activity of PGG_2 and PGH_2 decayed much more slowly and PGE_2 and $PGF_{2\alpha}$ -were detected. The aortic microsomal activity appeared enzymatic in nature since short-term incubation of PGG2 with boiled microsomes did not affect its contractile activity. The formation of a novel prostaglandin endoperoxide metabolite seemed likely. Conclusive evidence for this came from a different bioassay system involving addition of small quantities of a PGH₂/aortic microsome incubation mixture to human platelet-rich plasma prior to challenge with arachidonic acid (Fig. 3, lower panel). The aggregation response to arachidonate was delayed and with increasing dosage abolished. The new agent, which was called PGX, was a more potent inhibitor of platelet aggregation than either PGD₂ or PGE₁, and could be distinguished from the former by its instability. It was suggested that the generation of PGX by blood vessels could account for their inherent ability to resist platelet adhesion. The structure of PGX was elucidated in collaboration with chemists at the Upjohn Company, and the name prostacyclin was applied.54

Figure 4. Conversion of PGH₂ to TXA₂ by thromboxane synthase (left reaction scheme) and to prostacyclin by prostacyclin synthase (right reaction scheme). $R_1 = -(CH_2)_3$ -COOH, $R_2 =$ complete prostaniod ω - chain. Modified from Tanabe & Ullrich,⁵⁵ with permission.

Although TXA₂ and prostacyclin often have diametrically opposite biological actions, they are derived from PGH₂ by similar P-450 monooxygenase mechanisms^{55,56} In the primary step, the ferric atom of thromboxane synthase co-ordinates with the C9-oxygen of PGH₂ to generate a C11-oxygen radical (Fig. 4, left pathway); prostacyclin synthase on the other hand co-ordinates with the C 11-oxygen of PGH₂ to generate a C9-oxygen radical (right pathway). Subsequent steps involve rearrangement to a carbon radical, formation of a positively-charged carbon centre, and stabilisation to give the product. In the prostacyclin synthase mechanism, the C9-oxygen radical attacks the 5,6-double bond, and in the final step a new double bond is formed with a geometry that gives prostacyclin its unique shape (see Chapter 2). Prostacyclin synthase is inhibited by 15-HPETE (IC₅₀ = 1.4 μ M), whereas 12-HPETE is inactive (zero inhibition at 300 μ M).⁵⁷

4. PROSTANOID RECEPTOR CHARACTERISATION

As early as the mid-1960's, PGE_1 , PGE_2 and $PGF_{1\alpha}$ had been shown to have distinctive pharmacological profiles, explicable in terms of interactions with different receptors.⁵⁸ There was however some reluctance to talk about prostaglandin receptors. Many pharmacologists doubted that prostaglandins acted on cell surface receptors in the same way that other smooth muscleactive agonists such as acetylcholine and catecholamines did. Physicochemical mechanisms were thought to be more likely, and jibes such as "which of your hair-oils are you testing today?" are well remembered. These attitudes were to change over the next 15 years.

In the 1970's, binding experiments with tritium-labelled PGE₁, PGE₂ and PGF established the existence of stereospecific, saturable binding sites in many tissues.⁵⁹ Over the same period, researchers in several laboratories used the classical pharmacological approach of comparing the potency rankings of natural agonists and selective mimetics to distinguish different prostanoid receptors. In the main, isolated smooth muscle preparations were used, although platelet aggregation experiments also yielded important information. These studies culminated in the proposal in 1982 by Coleman and colleagues at the Glaxo Research Laboratories of a receptor classification scheme in which there are 5 types of prostanoid receptors.⁶⁰ These are denoted as DP, EP, FP, IP and TP, indicating the greater potency (by at least 10-fold) on specific preparations of each of the primary prostanoids, PGD₂, PGE₂, PGF _{2α}, PGI₂ and TXA₂ (Fig. 5). Receptor

subtypes were designated by subscript numerals, and have been best characterised for the EP-receptor.

Molecular biological studies have confirmed the pharmacological classification and also provided a more definitive picture. In 1989, the purification of the TP-receptor present in human platelets was reported⁶¹ and in 1991 its cDNA was cloned.⁶² The TP-receptor was identified as a member of the G-protein-coupled rhodopsin-type receptor superfamily, characterised by seven relatively lipophilic polypeptide domains spanning the plasma membrane. Subsequently, other prostanoid receptors and their subtypes were cloned and shown to belong to the rhodopsin superfamily.⁶³ The technique of amino acid sequence comparison has been used to infer the phylogeny of the prostanoid receptors and to explain their known preferences for particular second messenger systems (Fig. 5).^{64,65}

Figure 5. Correlation of the proposed evolution and current classification scheme of prostanoid receptors. The lower portion of the figure shows a phylogenetic tree based on amino acid sequence comparisons; second messenger systems are shown in italics. The upper portion shows the pharmacological classification scheme based on agonist potency ranking and antagonist studies.

It is suggested that the ancestral prostanoid receptor responded to PGE₂ generated in the COX pathway, and that the second messenger system was adenylate cyclase. One branch of the phylogenetic tree contained a receptor that activated adenylate cyclase via G_s, and further branching gave rise to two of the four EP-receptor subtypes, EP_2 and EP_4 , and to DP- and IPreceptors; their respective natural ligands all show potent smooth muscle relaxant activity. Interestingly, a single amino acid change in the seventh transmembrane domain of the EP_2 -receptor results in a selective gain in function for the IP agonist iloprost.⁶⁶ The other main prostanoid branch involved inhibition of adenylate cyclase via G_1 ; the EP₃-receptor retained this link, while EP1, FP and TP-receptors graduated to a new second messenger system, Gq/phospholipase C. The natural ligands for the latter three receptors are all potent contractile agents on smooth muscle. EP₃-receptors show the greatest diversity of biological action and this may be partly due to the existence of isoforms that differ in the structure of their cytosolic carboxyl termini.⁶⁷ The isoforms, which arise by alternative splicing during RNA transcription, couple to other G-proteins/second messenger systems besides G/adenylate cyclase, and show different rates of desensitisation and levels of constitutive activity.68-70

The Receptor and Ion Channel Nomenclature Supplement accompanying the January 1999 issue of Trends in Pharmacological Sciences (TIPS) contains a revised version of the prostanoid receptor classification scheme and also provides an up-to date list of agonists and antagonists suitable for studying prostanoid receptors. Some of the important pharmacological findings relating to each prostanoid receptor type are described below and summarised in Figures 6-8.

4.1 DP-receptors

Early studies showed that both PGD₂ and prostacyclin elevated cyclic AMP levels in human platelets and both agents inhibited aggregation. However, PGD₂ was very much less potent than prostacyclin on rat platelets, indicating the presence of a DP-receptor in the human platelet only.⁷¹⁻⁷⁵ A cyclohexyl unit in the**\omega**-terminus is well accommodated by the DP-receptor, as shown by the high potency of the selective DP-receptor agonist ZK 110841 .^{76,77} The same moiety is also present in the high affinity DP-receptor antagonist BW A868C,⁷⁸ which was developed from BW 245C, another selective DP agonist with an hydantoin ring system.⁷⁹ DP-receptor subtypes probably exist,⁸⁰⁻⁸² but no formal subdivision has yet been proposed.

Figure 6. Ligands and characteristics of DP- and FP-receptors.

4.2 EP-receptors

PGE2 has by far the largest variety of biological actions. Initially two receptor subtypes, EP1 and EP2, were proposed, mainly to account for contractile and relaxant effects respectively on smooth muscle preparations. The action of PGE_2 at the EP_1 -receptor is blocked competitively by SC 19220, a dibenzoxazepine synthesised in the laboratories of G.D. Searle and investigated well before the emergence of the current classification scheme.^{83,84} The PGE analogue sulprostone was identified as a selective EP₁ agonist, but its effects on chick ileum (contraction) and guinea-pig vas deferens (inhibition of transmitter release) were not blocked by SC 19220; in addition, the potent EP₂ agonist misoprostol was also highly active on the these two preparations. It became clear that another EP-receptor (EP_3) was necessary to account for the discrepancies.⁸⁵ 17-Phenyl- w-trinor PGE₂ and sulprostone show some selectivity for EP₁- and EP₃-receptors respectively (Fig. 7).⁸⁶ However, any characterisation study should include SC 46275, the only highly selective EP_3 agonist reported to date.⁸⁷ Finally, the EP_2 receptor was diversified into EP_2 and EP_4 subtypes: butaprost and AH 13205 are selective agonists for EP2-receptors but are only moderately potent, and there are no selective agonists for EP₄-receptors.⁸⁸

Returning to EP-receptor antagonists, potency within the Searle dibenzoxazepine series has been increased,⁸⁹ and a xanthone carboxylic acid AH 6809 has found use as a moderately potent EP₁ antagonist,^{85,90} although it blocks DP- and EP2-receptors as well.^{64,91} The potent TP antagonist AH 23848 is also a weak antagonist at EP4-receptors.^{88,92} Overall, however, we do not possess an arsenal of potent and subtype-specific EP antagonists, which is surprising given the great strides made in antagonist development for other G-protein-coupled receptors over the past 30 years.

4.3 FP-receptors

The finding that PGF_{2α} vas involved in controlling oestrus cycle length in the guinea-pig and sheep through regression of the corpus luteum suggested a possible contraceptive use in woman.^{93,94} This stimulated much research into metabolically-stable PGF analogues with reduced contractile (EP) activity on smooth muscle. One of the agents developed, 16-*m*trifluoromethylphenoxy- ω -tetranor PGF_{2α} ICI 81008, fluprostenol),⁹⁵ has been adopted as a selective FP agonist for receptor characterisation studies. It is somewhat more selective than the corresponding 16-*m*-chlorophenoxy analogue (ICI 80996, cloprostenol) and much more selective than the 16-*p*fluorophenoxy analogue (ICI 79939), which is a potent EP1 and TP agonist.⁹⁶

4.4 IP-receptors

Information on IP-receptors is found throughout the monograph and particularly in Chapters 4 and 5. Suffice to say at this point that the major group of IP receptor agonists is the "carbacyclins", in which the ring oxygen in prostacyclin is replaced with a methylene group. Iloprost,⁹⁸ which exhibits the high potency of prostacyclin as an inhibitor of platelet aggregation and a vasodilator,⁹⁹ has been studied the most. However, it has the disadvantage of having potent agonist activity at EP₁-receptors and to a lesser extent at EP₃-receptors. At present, cicaprost (Fig. 8) is the most selective IP agonist available.

IP-receptors can be activated by a group of carboxylic acids with either a 1,1 -diphenylmethyl or a 1,2-diphenylethyl a-terminus. Since they show little structural similarity to prostacyclin, they have been called nonprostanoid prostacyclin mimetics (see Chapter 3).

4.5 TP-receptors

Both PGH₂ and TXA₂ are potent agonists at TP-receptors, inducing platelet aggregation, bronchoconstriction and vasoconstriction. U-46619, a chemically-stable analogue of PGH₂¹⁰¹ is usually employed as a selective TP agonist,¹⁰² although the thromboxane analogue STA₂ (Chapter 2, Fig. 12) has also been used.¹⁰³

All-carbon ring analogues of TXA₂ and PGH₂ are partial agonists at TP-receptors and this has been the starting point for the development of TP antagonists such as EP 169 (see Chapter 3, Fig. 21).^{104,105} However, quite a diverse range of molecules afford thromboxane block and the area has been reviewed by Hall⁶² and Armstrong & Wilson.¹⁰⁶

5.

NONSTEROIDAL AND STEROIDAL ANTI-**INFLAMMATORY DRUGS**

One of the greatest boosts to prostanoid research was the discovery in 1971 by Vane and colleagues 107,108 and by Smith & Willis 109 that the nonsteroidal anti-inflammatory drugs (NSAIDs or aspirin-like drugs) inhibit Thus the therapeutic efficacy of the NSAIDs could be largely COX.110 explained by reduction of the biosynthesis of pro-inflammatory prostanoids. Traditionally, PGE₂ has been considered as the prime mediator through its ability to dilate arterioles and enhance plasma exudation and pain.¹¹¹ However, in Chapter 9 (sensory neurones) we explore the possibility that in many situations prostacyclin rather than PGE_2 may serve this function.

The biosynthesis of prostanoids in inflamed tissue can be activated by several inflammatory mediators. For example, bradykinin, plateletactivating factor (PAF) and interleukin-1 act on cell surface receptors to elevate intracellular Ca2+, which in turn activates PLA2 (Fig. 1). The 85kD Ca²⁺-sensitive cytosolic form, cPLA₂, acting on the endoplasmic reticulum and nuclear envelope, is thought to be most important.¹¹² 112 cPLA₂ can also be activated by the phosphorylating activity of MAP kinase, especially in the presence of Ca^{2+,113} The link between the cell surface receptor (e.g. PAFreceptor) and MAP kinase may be either a G_0 /PLCB/protein kinase C or a G_1 /MEK kinase/MAP kinase kinase system.^{112,114,115} Cytokines (IL-1 and TNF_n) and mitogens (macrophage colony-stimulating factor, M-CSF) can also enhance eicosanoid biosynthesis by increasing the nuclear expression of cPLA₂ and COX.

The importance of COX expression has become clearer of late with the demonstration that cells can produce two isozymes of COX, termed COX-1 and COX-2. In general, COX-I is a constitutive enzyme responsible for producing prostanoids that serve a physiological function, whereas COX-2 is an inducible form producing prostanoids that contribute to pathological processes. ¹¹⁶⁻¹²⁰ Investigation of well-established NSAIDs showed that aspirin, indomethacin and piroxicam have a degree of COX-1 selectivity, whereas flurbiprofen, naproxen and diclofenac have a degree of COX-2 selectivity. ^{121,122} Over the same period, the chemical development of NSAIDs within the pharmaceutical industry was dramatically reactivated for the purpose of identifying more selective COX-2 inhibitors. One such agent, meloxicam, was recently introduced into clinical practice, and appears to show less gastro-intestinal side-effects than previously used agents.¹²³

Aspirin, the oldest of the NSAIDs, has a therapeutic use not shared by its companions. At low-to-moderate oral doses $(0.3 - 3 \text{ mg kg}^{-1} \text{ day}^{-1})$,¹²⁴ it reduces myocardial infarction in at-risk-patients. ^{125,126} The rationale for this convenient, cheap and relatively safe therapy involves the high sensitivity of COX in human platelets to irreversible inhibition by aspirin. Following absorption from the intestine, aspirin acetylates COX in platelets present in the hepatic portal circulation, thus preventing the generation of PGH_2 and TXA_2 when these platelets reach thrombogenic sites in pulmonary and systemic vascular beds. However, dilution with systemic blood coupled with extensive metabolism means that plasma levels of aspirin in pulmonary and systemic beds remain low; prostacyclin biosynthesis by blood vessels and the consequent vasodilatation and suppression of platelet aggregation are therefore not compromised. The success of low-to-moderate dose aspirin therapy has meant that the clinical application of TP antagonists in cardiovascular disease has been less than anticipated.

Steroidal anti-inflammatory drugs, such as hydrocortisone, prednisolone and dexamethasone, also impinge on eicosanoid pathways. Firstly, they can suppress expression of COX-2 in inflamed tissues.¹²⁷ Secondly, they can induce expression of lipocortin, a polypeptide with PLA₂ inhibitory properties.¹²⁸⁻¹³⁰ These actions contribute to their powerful anti-inflammatory effects by decreasing the production of COX- and 5-LOX-derived mediators, as well as PAF.

REFERENCES

- Cullis PR, Hope MJ. "Physical properties and functional roles of lipids in membranes." In *Biochemistry of Lipids and Membranes*, Vance DE, Vance JE, eds. CA: Benjamin/Cummings Publishing Co. 1985;25-72.
- Schwartzman ML, McGiff JC. Renal cytochrome P450. J Lipid Mediators Cell Signal 1995;12:229-242.
- Bergström S, Danielsson H, Samuelsson B. The enzymatic formation of prostaglandin E₂ from arachidonic acid. Biochim Biophys Acta 1964;90:207-210.
- van Dorp DA, Beerthius RK, Nugteren DH. The biosynthesis of prostaglandins. Biochim Biophys Acta 1964;90:204-207.
- Goldblatt MW. A depressor of substance in seminal plasma. J Soc Chemistry Industry 1935;52:1056-1057.
- 6. Goldblatt MW. Properties of human seminal plasma. J Physiol Lond 1935;84:208-218.
- 7. von Euler US. A depressor substance in the vesicular gland. J Physiol Lond 1935;84:21P.
- 8. von Euler US. On the specific vasodilating and smooth muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin). J Physiol Lond 1936;88:213-234.
- 9. Hamberg M, Samuelsson B. Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J Biol Chem 1967;242:5344-5354.

- Hamberg M, Samuelsson B. On the mechanisms of the biosynthesis of prostaglandins E₁ and F_{1α}. J Biol Chem 1967;242:5336-5343.
- Urade Y, Watanabe K, Hayaishi O. Prostaglandin D, E, and F synthases. J Lipid Mediators Cell Signal 1995;12:257-273.
- Feldberg W, Kellaway CH. Liberation of histamine and formation of lysolethicin-like substances by cobra venom. J Physiol Lond 1938;94:187-226.
- 13. Kellaway CH, Trethewie ER. The liberation of a slow-reacting smooth musclestimulating substance in anaphylaxis. Quart J Exp Physiol 1940;30:121-145.
- Brocklehurst WE. Occurrence of an unidentified substance during anaphylactic shock in cavy lung. J Physiol Lond 1953;120:16P-17P.
- Orange Rp, Austen KF. Slow-reacting substance of anaphylaxis. Adv Immunol 1969;10:105-144.
- Shimizu T, Radmårk O, Samuelsson B. Enzyme with dual lipoxygenase activities catalyses leukotriene A₄ synthesis from arachidonic acid. Proc Natl Acad Sci USA 1984;81:689-693.
- Shimizu T, Izumi T, Seyama Y. Characterisation of leukotriene A₄ synthase from murine mast cells: Evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci USA 1986;83:4175-4179.
- Ueda N, Kaneko S, Yoshimoto T et al. Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem 1986;261:7982-7988.
- Radmårk O, Shimizu T, Jornvall H et al. Leukotriene hydrolase in human leukocytes. J Biol Chem 1984;259:12339-12345.
- Ford-Hutchinson AW. Leukotriene B₄ in inflammation. Crit Rev Immunol 1990;10: 1– 12.
- 21. Murphy RC, Hammarström S, Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 1979;76:4275-4279.
- 22. Dahlén SE, Hedqvist P, Samuelsson B. Leukotrienes are potent constrictors of human bronchi. Nature 1981;288:484-486.
- 23. Griffin M, Weiss JW, Leitch AG et al. Effect of leukotriene D on the airways in asthma. New Eng J Med 1983;308:436-439.
- 24. Davidson AB, Lee TH, Scanlon PD. Bronchoconstrictor effects of leukotriene E_4 in normal and asthmatic individuals. Am Rev Resp Dis 1987;135:333-337.
- 25. Taylor GW, Taylor I, Black P et al. Urinary leukotriene E_4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet 1989;i:584-588.
- 26. Adkins JC, Brogden RN. Zafirlukast. A review of its pharmacology and therapeutic potential in the management of asthma. Drugs 1998;55:121-144.
- 27. Israel JP, Rubin P, Kemp JP et al. The effects of inhibition of 5-lipoxygenase by Zileuton in mild to moderate asthma. Annals Int Med 1993;119:1059-1066.
- Wenzel SE. New approaches to anti-inflammatory therapy for asthma. Am J Med 1998;104:287-300.

- Ford-Hutchinson AW, Jakobssen PJ. "Enzymes involved in the production of leukotrienes and related molecules." In *Leukotrienes. New Concepts and Targets for Therapy*, Rodger I, Botting J, Dahlén SE, eds. London: Kluwer Academic Publishers, 1998;25-34.
- 30. Miller DK, Gillard JW, Vickers PJ et al. Identification and isolation of a membrane protein necessary for leukotriene synthesis. Nature 1990;343:278-281.
- Vickers PJ. 5-Lipoxygenase-activating protein (FLAP). J Lipid Mediators Cell Signal 1995;12:185-194.
- 32. Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 1974;71:3400-3404.
- 33. Nugteren DH. Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 1975;380:299-307.
- Yoshimoto T, Yamamoto S. Arachidonate 12-lipoxygenase. J Lipid Mediators Cell Signal 1995;12:195-212.
- 35. Walker IC, Jones RL, Kerry PJ et al. An epoxy-hydroxy product from arachidonate. Adv Prostaglandin Thromboxane Res 1980;6:107-109.
- Pace-Asciak CR, Mizuno K, Yamamoto S. The enzymatic conversion of arachidonic acid into 8,11,12-trihydroxyeicosatrienoic acid. Biochim Biophys Acta 1982;712:142-145.
- Pace-Asciak CR, Reynaud D, Demin P. Mechanistic aspects of hepoxilin biosynthesis. J Lipid Mediators Cell Signal 1995;12:307-311.
- 38. Pace-Asciak CR. Hepoxilins: a review on their cellular actions. Biochim Biophys Acta 1994;121**5**:1-8.
- Kuhn H, Thiele BJ. Arachidonate 15-lipoxygenase. J Lipid Mediators Cell Signal 1995;12:157-170.
- Serhan CN. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim Biophys Acta 1994;1212:1-25.
- Lefer AM, Stahl GL, Lefer DJ et al. Lipoxins A₄ and B₄: comparison of eicosanoids having bronchoconstrictor and vasodilator actions but lacking platelet aggregatory activity. Proc Natl Acad Sci USA 1988;85:8340-8344.
- 42. Brezinski ME, Gimbrone MA, Nicolaou KC. Lipoxins stimulate prostacyclin generation by human endothelial cells. FEBS Lett 1989;245:167-172.
- Smith WL, Borgeat P. "The eicosanoids: prostaglandins, thromboxanes, leukotrienes, and hydroxy-eicosaenoic acids." In *Biochemistry ofLipids and Membranes*, Vance DE, Vance JE, eds. CA: Benjamin/Cummings Publishing Co. 1985;325-360.
- 44. Yamamoto S, Smith WL. "Molecular biology of the arachidonate cascade." In *Journal* of *Lipid Mediators Cell Signalling*, Amsterdam: Elsevier, 1995;1-454.
- 45. Bergström S, Ryhage R, Samuelsson B et al. The structure of prostaglandin E, F₁ and F₂. Acta Chem Scand 1962;16:501-502.
- 46. Piper PJ, Vane JR. Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature 1969;223:29-35.

- Moncada S, Ferreira SH, Vane JR. Bioassay of prostaglandins and biologically active substances derived from arachidonic acid. Adv Prostaglandin Thromboxane Leukot Res 1978;5:211-236.
- Moncada S, Gryglewski R, Bunting S et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits aggregation. Nature 1976;263:663-665.
- 49. Vane JR. A sensitive method for the bioassay of 5-hydroxytryptamine. Br J Pharmacol 1997;120(Suppl):140-147.
- 50. Gryglewski ,R, Vane JR. The generation from arachidonic acid of rabbit aorta contracting substance (RCS) by a microsomal enzyme preparation which also generates prostaglandins Br J Pharmacol 1972;46:449-457.
- Gryglewski R, Vane JR. The release of prostaglandins and rabbit aorta contracting substance (RCS) from rabbit spleen and its antagonism by anti-inflammatory drugs. Br J Pharmacol 1972;45:37-47.
- Hamberg M, Svensson J, Samuelsson B. Novel transformations of prostaglandin endoperoxides: formation of thromboxanes. Adv Prostaglandin Thromboxane Leukot Res 1976;1:19-27.
- 53. Bunting S, Gryglewski R, Moncada S. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 1976;12:897-913.
- Johnson RA, Morton DR, Kinner JH. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 1976;12:915-928.
- Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediators Cell Signal 1995;12:243-255.
- Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A₂ biosynthesis. J Biol Chem 1989;264:141-150.
- 57. Gryglewski R, Bunting S, Moncada S et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 1976;12:685-712.
- Horton EW, Main IHM. A comparison of the biological activities of four prostaglandins. Br J Pharmacol 1963;21:182-189.
- 59. Robertson PR. Characterisation and regulation of prostaglandin and leukotriene receptors: an overview. Prostaglandins 1986;31:395-411.
- Kennedy I, Coleman RA, Humphrey PPA et al. Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins 1982;24:667-689.
- 61. Ushikubi F, Nakajima M, Hirata M et al. Purification of the thromboxane A_2 / prostaglandin H₂ receptor from human blood platelets. J Biol Chem 1989;264:16496-16501.
- 62. Hirata M, Hayashi Y, Ushikubi F et al. Cloning and expression of cDNA for human thromboxane A₂ receptor. Nature 1991;349:617-620.
- 63. Ushikubi F, Hirata M, Narumiya S. Molecular biology of prostanoid receptors; an overview. J Lipid Mediators Cell Signal 1995;12:343-359.

- Regan JW, Bailey TJ, Pepperl DJ et al. Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP₂ subtype. Mol Pharmacol 1994;46:213-220.
- 65. Toh H, Ichikawa A, Narumiya S. Molecular evolution of receptors for eicosanoids. FEBS Lett 1995;361:17-21.
- Kedzie KM, Donello JE, Krauss HA et al. A single amino-acid substitution in the EP₂ prostaglandin receptor confers responsiveness to prostacyclin analogs. Mol Pharmacol 1998;54:584-590.
- Namba T, Sugimoto Y, Negishi M et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP₃ determines G-protein specificity. Nature 1993;365:166-170.
- 68. Negishi M, Sugimoto Y, Irie A et al. Two isoforms of prostaglandin E receptor EP₃ subtype: different COOH-terminal domains determine sensitivity to agonist-induced desensitization. J Biol Chem 1993;268:9517-9521.
- An S, Yang J, So SW et al. Isoforms of the EP₃ subtype of human prostaglandin E₂ receptor transduce both intracellular calcium and cAMP signals. Biochemistry 1994;33:14496-14502.
- 70. Jin J, Mao GF, Ashby B. Constitutive activity of human prostaglandin E receptor EP₃ isoforms. Br J Pharmacol 1997;121:317-323.
- Smith JB, Silver MJ, Ingerman CM et al. Prostaglandin D₂ inhibits the aggregation of human platelets. Thromb Res 1974;5:291-299.
- 72. Gorman RR, Bunting S, Miller OV. Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 1977;13:377-388.
- 73. Schafer AI, Cooper B, O'Hara D et al. Identification of platelet receptors for PGI₂ and PGD₂. J Biol Chem 1979;254:2914-2917.
- 74. Siegl AM, Smith JB, Silver MJ. Specific binding sites for prostaglandin D₂ on human platelets. Biochem Biophys Res Commun 1979;90:291-296.
- Whittle BJ, Moncada S, Vane JR. Comparison of the effects of prostacyclin (PGI₂), prostaglandin E₁ and D₂ on platelet aggregation in different species. Prostaglandins 1978;16:373-388.
- 76. Thierauch KH, Stürzebecher CS, Schillinger E et al. Stable 9β or 11α -halogen-15cyclohexyl-prostaglandins with high affinity to the PGD₂ receptor. Prostaglandins 1988;35:853-868.
- 77. Ito S, Okuda E, Sugama K. Evaluation of ZK 110841 and AH 6809, an agonist and an antagonist of prostaglandin DP-receptors on human platelets, with a PGD₂-responsive cell line from bovine embryonic trachea. Br J Pharmacol 1990;99:13-14.
- Giles H, Leff P, Bolofo M et al. The classification of prostaglandin DP-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br J Pharmacol 1989;96:291-300.
- Town MH, Casals-Stenzel J, Schillinger E. Pharmacological and cardiovascular properties of a hydantoin derivative, BW 245C, with high affinity and selectivity for PGD₂ receptors. Prostaglandins 1983;25:13-28.

- Jones RL. Definition of prostaglandin-sensitive arterial constrictor systems. Acta Biol Med Germ 1976;37:837-844.
- Narumiya S, Toda N. Different responsiveness of prostaglandin D₂-sensitive systems to prostaglandin D₂ and its analogues. Br J Pharmacol 1985;85:367-375.
- Rangachari PK, Betti PA, Prior ET et al. Effects of a selective DP receptor agonist (BW 245C) and antagonist (BW A868C) on the canine colonic epithelium: an argument for a different DP receptor? J Pharmacol Exp Ther 1995;275:611-617.
- Sanner JH. Antagonism of prostaglandin E₂ by 1-acetyl-2-(8-chloro-10,11-dihydrobenz (b,f) (1,4)-oxazepine-10-carboxyl) hydrazine (SC 19220). Arch Int Pharmacodyn 1969;180:46-56.
- Sanner JH, Substances that inhibit the actions of prostaglandins. Arch Int Med 1974;133:133-146,
- Coleman RA, Kennedy I, Sheldrick RLG. New evidence with selective agonists for the subclassification of PGE₂-sensitive receptors. Adv Prostaglandin Thromboxane Leukot Res 1987;17A:467-470.
- Lawrence RA, Jones RL, Wilson NH. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on guinea-pig ileum. Br J Pharmacol 1992;105:271-278.
- 87. Savage MA, Moummi C, Karabatsos PJ et al. SC-46275: a potent and highly selective agonist at the EP₃ receptor. Prostaglandins Leukot Essent Fatty Acids 1993;49:939-943.
- 88. Coleman RA, Grix SP, Head SA et al. A novel inhibitory prostanoid receptor in piglet saphenous vein. Prostaglandins 1994;47:151-168.
- Hallinin EA, Hagen TJ, Husa RK et al. N-Substituted dibenzoxazepines as analgesic PGE₂ antagonists. J Med Chem 1993;36:3293-3299.
- Coleman RA, Denyer LH, Sheldrick RLG. The influence of protein binding on the potency of the prostanoid EP₁-receptor blocking drug AH6809. Br J Pharmacol 1985;86:203P.
- 91. Keery RJ, Lumley P. AH 6809, a prostaglandin DP-receptor blocking drug on human platelets. Br J Pharmacol 1988;94:745-754.
- 92. Milne SA, Armstrong RA, Woodward DR. Comparison of the EP receptor subtypes mediating relaxation of the rabbit jugular and pig saphenous veins. Prostaglandins 1995;49:225-237.
- 93. Horton EW, Poyser NL. Uterine luteolytic hormone: A physiological role for $PGF_{2\alpha}$ Physiol Rev 1976;56:595-651.
- Poyser NL. The control of prostaglandin production by the endometrium in relation to luteolysis and menstruation. Prostaglandins Leukot Essent Fatty Acids 1995;53:147-195.
- 95. Crossley NS. The synthesis and biological activity of potent selective luteolytic prostaglandins. Prostaglandins 1975;10:5-18.
- 96. Jones RL, Marr CG. Actions of 16-aryloxy analogues of prostaglandin $F_{2\alpha}$ on preparations responsive to prostaglandin endoperoxides. Br J Pharmacol 1977;61:694-696.
- 97. Wise H. Activation of the prostaglandin EP₄-receptor subtype is highly coupled to inhibition of *N*-formyl-methionyl-leucyl-phenylalanine-stimulated rat neutrophil aggregation. Prostaglandins Leukot Essent Fatty Acids 1998;58:77-84.
- Skuballa W, Radüchel B, Vorbrüggen H. "Chemistry of stable prostacyclin analogues." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;17-24.
- Schrör K, Darius H, Matzky R et al. The anti-platelet and cardiovascular actions of a new carbacyclin derivative (ZK 36374) - equipotent to PGI₂ in vitro. Naunyn-Schmeid Arch Pharmacol 1981;316:252-256.
- 100. Dong YJ, Jones RL, Wilson NH. Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol 1986;87:97-107.
- 101. Morton DR, Bundy GL, Nishizawa EE. "Five-membered ring-modified prostacyclin analogues." In *Prostacyclin*, Vane JR, Bergström S, eds. New York: Raven Press, 1979;31-41.
- 102. Coleman RA, Humphrey PPA, Kennedy I et al. Comparison of the actions of U-46619, a stable prostaglandin H_2 analogue, with those of prostaglandin H_2 and thromboxane A_2 on some isolated smooth muscle preparations. Br J Pharmacol 1981;73:773-778.
- 103. Toda N, Nakajima M, Okamura T et al. Interactions of thromboxane A₂ analogs and prostaglandins in isolated dog arteries. J Cardiovasc Pharmacol 1986;8:818-825.
- 104. Jones RL, Peesapati V, Wilson NH. Antagonism of the thromboxane-sensitive contractile systems of the rabbit aorta, dog saphenous vein and guinea-pig trachea. Br J Pharmacol 1982;76:423-438.
- 105. Tymkewycz PM, Jones RL, Wilson NH et al. Heterogeneity of thromboxane A₂ (TP-) receptors: evidence from antagonist but not agonist potency measurements. Br J Pharmacol 1991;102:607-614.
- 106.Armstrong RA, Wilson NH. Aspects of the thromboxane receptor system. Gen Pharmacol 1995;26:463-472.
- 107. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 1971;231:232-235.
- 108. Ferreira SH, Moncada S, Vane JR. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nature 1971;231:237-239.
- 109. Smith JB, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nature New Biol 1971;231:235-237.
- 110. Flower RJ. Drugs that inhibit prostaglandin biosynthesis. Pharmacol Rev 1974;26:33-67.
- 111. Williams TJ, Peck MJ. Role of prostaglandin-mediated vasodilatation in inflammation. Nature 1977;270:530-532.
- 112. Clarke JD, Schievella AR, Nalefski EA et al. Cytosolic phospholipase A₂. J Lipid Mediators Cell Signal 1995;12:83-117.
- Lin LLM, Wartman M, Lin AY et al. cPLA₂ is phosphorylated and activated by MAP kinase. Cell 1992;70:269-278.

- 114. Mori M, Bito H, Sakanaka C et al. Activation of mitogen-activated protein kinase and arachidonate release via two G protein-coupled receptors expressed in the rat hippocampus. Annals New York Acad Sci 1994;744:107-125.
- 115. Izumi T, Takano T, Bito H et al. Platelet-activating factor receptor. J Lipid Mediators Cell Signal 1995;12:429-442.
- 116. Fu JY, Masferrer JL, Seibert K et al. The induction and suppression of prostaglandin H₂ synthase (cyclooxygenase) in human monocytes. J Biol Chem 1990;265:16737-16740.
- 117. Xie W, Chipman JG, Robertson DL et al. Expression of mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991;88:2692-2696.
- 118. O'Banion MK, Sadowski HB, Winn V et al. A serum and glucocorticoid-regulated 4kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem 1991;266:23261-23267.
- 119. Sirois J, Richards JS. Purification and characterisation of a novel distinct isoform of prostaglandin endoperoxide synthase induced by human chorionic gonadotrophin in granulosa cells of rat preovulatory follicles. J Biol Chem 1992;267:6382-6388.
- Seibert K, Masferrer J, Zhang Y et al. Mediation of inflammation by cyclooxygenase-2. Agents Actions 1995;46(Suppl):41-50.
- 121. Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential sensitivity to non-steroidal anti-inflammatory drugs. Semin Neprol 1995;15:179-194.
- 122. Vane JR, Botting RM. Mechanism of action of anti-inflammatory drugs. Scand J Rheumatol 1996;102(Suppl):9-21.
- 123. Fenn GC, Morant SV. Safety of meloxicam: a global analysis of clinical trials. Br J Rheumatol 1996;35(Suppl 1):68-77.
- 124. Patrono C, Roth GJ. Aspirin in ischemic cerebrovascular disease. How strong is the case for a different dosing regimen? Stroke 1996;27:585-587.
- 125. Fuster V, Cohen M, Halperin J. Aspirin in the prevention of coronary disease. New Eng J Med 1989;321:183-184.
- 126. Goldstein RE, Andrews M, Hall WJ et al. Marked reduction in long-term cardiac deaths with aspirin after a coronary event. Multicenter Myocardial Ischemia Research Group. J Am Coll Cardiol 1996;28:326-330.
- 127. Mitchell JA, Belvisi MG, Akarasereenont P et al. Induction of cyclo-oxygenase-2 by cytokines in human pulmonary endothelial cells: regulation by dexamethasone. Br J Pharmacol 1994; 113:1008-1014.
- 128. Blackwell GJ, Carnuccio R, Di Rosa M et al. Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 1980; 287: 147-149.
- 129. Wallner BP, Mattaliano RJ, Hession C et al. Cloning and expression of human lipocortin, a phospholipase A₂ inhibitor with potent antiinflammatory activity. Nature 1986; 320:77-81.
- Flower RJ, Rothwell NJ. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 1994; 15:71-76.

This page intentionally left blank.

Chapter 2

The development of prostacyclin analogues

1. INTRODUCTION

Since the discovery of prostacyclin in 1976, hundreds of its analogues have been synthesised and biologically evaluated. The reasons for this are three-fold. Firstly, prostacyclin's biological half-life of a few minutes is only advantageous in certain clinical situations. For example, when prostacyclin is used in an extracorporeal circuit to reduce platelet consumption (see Chapter 5), spill-over into the systemic circulation does not result in serious hypotension. For most therapeutic purposes however, a longer action has been considered desirable and drug development programs have led to many chemically and metabolically stable analogues.1-5 Secondly, there have been numerous attempts to alter the biological specificity of prostacyclin, particularly to maintain its platelet inhibitory potency while reducing its vasodilator potency. Thirdly, there has been the intellectual challenge of the chemistry itself how can one elegantly construct a synthon related to the bicyclic ring of prostacyclin (Fig. 9), which also allows the α - and ω -chain structures to be easily modified?

We shall discuss some of these strategies in this chapter, and also describe the prostacyclin-like activities of other prostanoids, including PGE_1 and its analogues, and certain analogues of PGH_2/TXA_2 . In addition, we will attempt to explain what this large amount of information tells us about the receptor-active conformation(s) of prostacyclin.

In many cases, information on the biological activities of the prostacyclin analogues shown in Figures 10 - 18 is meagre, often consisting of a few lines at the end of a chemical paper. In assessing the relative potencies of these analogues, it may be assumed that prostacyclin has IC_{50} values of about 2,4 and 10 nM as an inhibitor of ADP-induced aggregation in human, rat and rabbit platelet-rich plasmas (PRP) respectively.

2. NOMENCLATURE OF PROSTACYCLIN ANALOGUES

The unique fused ring structure of prostacyclin can create difficulties in naming analogues simply and correctly. It is often convenient to use trivial names, such as iloprost and taprostene, as well as drug company codes such as RS-93427. However, more information can be conveyed by using PGI₂ as the stem name and indicating the positions of structural changes based on α carboxyl = 1 and terminal ω -methyl = 20. This method works well for simple changes, such as introduction of a methyl group at C15 (15-methyl PGI₂) or conversion of the 13,14-double bond to a triple bond (13,14didehydro PGI₂), and we have attempted to use it whenever possible. An alternative stem is prostanoic acid, a "template molecule" in which the chains attached to the cyclopentane ring at C8 and C12 havea and β orientations (down and up relative to the picture plane in Fig. respectively, as in all prostanoids produced by the cyclo-oxygenase (COX) pathway. However, both these systems become cumbersome when the bicyclic ring is radically altered (see Fig. 12) and it may be more economical to use the IUPAC name; examples for the commonly encountered prostacyclin analogues may be found in Martindale's Extra Pharmacopoeia.

It is worth mentioning a few more points about structure and nomenclature here.

- (a) The configuration of a chiral centre in a prostacyclin analogue can often be specified by the α/β method (e.g. 7β -fluoro PGI₂, Fig. 11). However, where ambiguity could arise the absolute system of Cahn, Ingold and Prelog is preferred. An important example is the configuration at C15 in the ω -chain (Fig. 9). All mammalian *natural* prostanoids have the 15S (as opposed to the 15R) configuration and this configuration usually confers the greater bioactivity and also susceptibility to oxidation by 15hydroxy-prostaglandin dehydrogenase (15-PGDH) (Fig. 15).
- (b) Replacement of the oxygen atom in the furan ring of prostacyclin by a methylene group gives carbacyclin (6a-carba PGI₂ or 6(9)-methano PGI₂), the archetype of an important series of analogues called the carbacyclins.
- (c) The geometry of the 5,6-double bond in prostacyclin analogues cannot be unambiguously described by the simple *cis/trans* system. Again we must resort to the atomic number priority rules of the Cahn-Ingold-

Prelog system (Fig. 9). Examination of the groups attached to C5 and C6 in prostacyclin shows that the 4-carbon ranks over the 5-hydrogen and the 6a-oxygen ranks over the 7-carbon respectively. Thus the higher ranking atoms are on the same side (German: *_usammen*) of the double bond giving a Z designation. The corresponding designation for the 13,14-trans-double bond is E, since the higher ranking atoms are on opposite sides (*entgegen*) of the double bond.

Figure 9. Structure and nomenclature of prostacyclin.

3. CHEMICALLY STABLE PROSTACYCLIN ANALOGUES

3.1 Acid-instability of prostacyclin

The loss of prostacyclin's biological activity in physiological salt solutions ($t_{1/2} = 5 \text{ min}$ at pH 7.4) is due to hydrolysis of its vinyl ether unit (Fig. 10).⁶ The product, 6-oxo PGF 1_a(preferred name to 6-keto PGF_{1a} can readily interconvert between its cyclic hemiacetal and open-chain oxo forms.⁷ As with other vinyl ethers, the rate-limiting step for hydrolysis is

protonation of the *pi*-bond and increasing acidity increases the hydrolysis rate of prostacyclin.⁸ Prostacyclin is unusually unstable for a vinyl ether, its t_{4} for acid-catalysed hydrolysis being about six-fold less than that of the model compound 2-methylenetetrahydrofuran (exocyclic double bond). Cho & Allen⁸ attributed this difference to release of strain within the bicyclooctane ring system upon protonation at C5. However, during synthesis of 13,14-didehydro PGI₂, it was observed that the methyl ester derivative was much more acid-stable than the free acid, and this led to the suggestion that hydrolysis was facilitated by transfer of a proton from the molecule's own carboxylic acid group (Fig. 10).9 Correspondingly, the halflives of the free acid and methyl ester of prostacyclin are 1.7 and 112 min respectively at pH 6.0.¹⁰ Further support for intramolecular proton transfer derives from the greater acid stability of PGI₂ dimethylamide, which has no ability. compared to the corresponding protonating decarboxydimethylaminomethyl derivative, which in its quaternary ammonium form can deliver a proton to the double bond (Fig. 10).¹¹

Figure 10. Hydrolysis of prostacyclin due to acid instability of its vinyl ether unit. In the inset, the quaternary ammonium C1-analogue (left) can also internally deliver a proton to the 5,64-double bond and consequently undergoes fairly rapid hydrolysis, whereas the other two C1-analogues are not proton donors and show enhanced stability. The bracket indicates a lower ring and ω -chain identical to prostacyclin.

In the original characterisation studies, prostacyclin was generated enzymatically by incubation of PGH_2 with pig aorta microsomes and then isolated as the methyl ester; the ester is stable on silica gel thin-layer chromatography, and also on Florisil column chromatography provided that the eluting solvent contains a trace of triethylamine base.⁶ In the vast majority of studies, prostacyclin generation in tissues has been estimated by measuring 6-oxo $PGF_{1\alpha}$ by radio-immunoassay. More rigorous identification of 6-oxo $PGF_{1\alpha}$ can be achieved by gas chromatography-mass spectrometry after methyl ester formation, oximation of the 6-oxo group, and protection of the three hydroxyls as trimethylsilyl ethers.^{12,13}

Ensuring the stability of aqueous stock solutions of prostacyclin is important in biological studies and a common procedure is to dissolve the sodium salt of prostacyclin in 50 mM Tris-HC1 (pH 9.0) buffer, store in aliquots at -20°C, and then dilute a thawed aliquot with ice-cold saline immediately before use. On vascular smooth muscle preparations, prostacyclin's relaxant action is observed to wane over 10 - 20 min, and its biological half-life is estimated to be about 3 - 4 min.¹⁴ Clearly, its potency may be underestimated in isolated tissue preparations, particularly in thick preparations where diffusion into the interior of the tissue is slow. In contrast, the half-life of prostacyclin is extended in blood or plasma¹⁵ probably due to binding within an alkaline micro-environment of the albumen molecule produced by basic amino acids such as lysine, arginine and histidine.¹⁶

3.2 Stabilisation of the vinyl ether unit

The C1-modified prostacyclin analogues shown in Figure 10 have only minimal biological activity and other ways of increasing the acid stability of the vinyl ether unit (without replacing the 6a-oxygen) have been sought.

The first involves reducing the electron density of the double bond of the vinyl ether so that it is less likely to accept a proton. Substitution of either one or two electron-withdrawing fluorine atoms on or adjacent to the vinyl ether achieves remarkable increases in stability as shown in Figure 11 (upper section).¹⁷⁻¹⁹ The potent prostacyclin mimetic 13,14-didehydro-10,10-difluoro PGI₂ is of interest since its *gem*-difluoro unit is situated some distance from the 5,6-double bond.²⁰ Conjugation of the double bond of the vinyl ether with an oxo or cyano group also enhances acid stability by spreading the charge distribution as well as rendering the 5,6-double bond less electronegative (Fig. 1 1, lower section). 7-Oxo PGI₂ retains much of the potency of PGI₂ as both an inhibitor of human platelet aggregation and a relaxant of bovine coronary artery.²¹ In contrast, 4-oxo PGI₂ methyl ester is about 400 times less potent than PGI₂ methyl ester as an inhibitor of rabbit

platelet aggregation.²² The 5-cyano analogue nileprost has only weak IP agonist potency;²³ however the IP-receptor can certainly accommodate the cyano-vinyl ether unit as shown by the 50-fold greater potency of the 18,19-triple bond analogue of nileprost as an inhibitor of ADP-induced aggregation in human PRP.²⁴

Figure 11. Prostacyclin analogues in which the vinyl ether has been stabilised to acid attack by introduction of an electron-withdrawing group and/or conjugation with another unsaturated group. The vertical bracket indicates an $\mathbf{\omega}$ -chain identical to that in prostacyclin. IC₅₀ values refer to inhibition of ADP-induced aggregation in platelet-rich plasma (PRP) and relaxation of PGF_{2a}-induced tone for rabbit mesenteric artery (PGI₂ IC₅₀ 3.3 nM).

The second stabilisation method involves transformation of the vinyl ether into a phenyl ether. An example is beraprost (Fig. 12, upper right), a moderately potent IP agonist.^{25,26}

The third method involves restricting the mobility of the carboxyl group so that it cannot protonate the 5,6-double bond. This has been achieved in the 1,5-interphenylene series (Fig. 13), where a benzene ring conjugates to both the carboxyl and vinyl ether units. The *meta* (SE 54) and *para* (SE 58) interphenylene analogues of 15-methyl PGI2 are highly stable, whereas in complete contrast the *ortho* analogue (SE 59) is highly unstable since its geometry favours internal protonation of the vinyl ether (Fig. 13).¹

Figure 12. Conversion of the vinyl ether to an aromatic ether to create stable prostacyclin analogues. A curved arrow indicates the movement of the 4-atom due to homologation at C7 and a straight arrow the corresponding adjustment of the 1-carboxylate position due to shortening of the α -chain. The bracket indicates an ω -chain identical to that of prostacyclin.

3.3 The carbacyclins

Replacement of the vinyl ether oxygen with less electronegative atoms has provided a large selection of stable analogues, many of which are highly potent IP agonists. For example, substitution with sulphur gives 6a-thia PGI₂ (Fig. 14, middle left) ($t_{\frac{1}{2}} > 3h$ at neutral pH and 25°C), which is 2 - 5 times less potent than prostacyclin as an inhibitor of aggregation in human PRP.²⁷

By far the greatest number of prostacyclin analogues are carbacyclins, in which a methylene group has been substituted for the 6a-oxygen, so affording complete chemical stability.² 6a-Carba PGI₂ or carbacyclin (Fig. 14, lower left) is about 10 times less potent than prostacyclin.²⁸⁻³² Iloprost and cicaprost (Fig. 15) are other potent carbacyclins that have been used as standard IP agonists in many pharmacological studies.

Moving the 5,6-double bond of carbacyclin into the 6,7-position in the ring system maintains the planarity at C6 and obviates the need to separate 5E/5Z geometric isomers during synthesis. However, both the 6a-carba and 6a-thia analogues (Fig. 14, centre) show only weak IP agonist activity.^{33,34}

This is not the case when the double bond is switched to the 6(6a)-position in the ring. 6a-Carba- $\Delta^{6(6a)}$ PGI₁ or isocarbacyclin is a potent IP agonist (Fig. 14, lower right)³⁵ and the prototype for a large series of isocarbacyclins, some of which may distinguish IP-receptor subtypes (see Section 6.2). For valency reasons, 6a-thia isocarbacyclin cannot exist, but the 6a-aza (Fig. 14, middle right)³⁶ and 6a-aza-5-thia (upper right)³⁷ analogues of isocarbacyclin are also potent IP agonists.

Figure 13. Chemically stable 1,5-*m*-interphenylene prostacyclin analogues, with the exception of the ortho-substituted analogue. The importance of the correct orientation of the I-carboxyl group for high IP₁ agonist potency is also shown. IC₅₀ values refer to inhibition of arachidonic acid-induced platelet aggregation; >464,000 nM signifies no effect. The bracket indicates an**\omega-**chain identical to that of SE 54.

4. METABOLICALLY STABLE PROSTACYCLIN ANALOGUES

Like other natural prostanoids, prostacyclin is metabolised (to a large extent sequentially) in the following ways: 15-oxidation/13, 14-reduction, β -oxidation of the α -chain and ω -oxidation (Fig. 15).³⁸⁻⁴⁰ When vinyl ether

hydrolysis is included, the end-metabolites are highly water soluble dihydroxy-dicarboxylates. The metabolism of prostacyclin has been reviewed by Granström & Kumlin.⁴¹

Figure 14. Prostacyclin analogues in which the 6a-oxygen has been replaced by sulphur, nitrogen or carbon to enhance acid-stability. On the left, the double bond is exocyclic to the ring, in the centre it occupies the 6,7-position and on the right the 6(6a)-position in the ring. The bracket indicates an ω -chain identical to that of prostacyclin. Potency values refer to inhibition of ADP-induced aggregation in platelet-rich plasma.

Initially 6-oxo PGF_{α} was assumed to be the initial substrate for 15-PGDH based on the low chemical stability of prostacyclin. However, in vitro, prostacyclin is at least as good a substrate as PGE₂ for monkey lung 15-PGDH,³⁹ as good as PGF_{α} and PGF_{α} for human placenta 15-PGDH,¹ and a much better substrate than 6-oxo PGF_{1α} in both systems. More direct evidence stems from the elegant studies of Sun & colleagues,³⁹ in which the metabolism of prostacyclin and 6-oxo PGF_{1α} specifically labelled with

tritium at 15 β was studied in conscious rats. 15-PGDH attack on these prostanoids releases tritium, which can be measured in the urine as tritiated water. The authors concluded that "a portion of the administered prostacyclin is oxidised by 15-PGDH before the hydrolysis to 6-oxo PGF₁_{α}. The remainder which is not oxidised within the short life-span of prostacyclin under physiological conditions was converted to 6-oxo PGF₁_{α}, which was then further oxidised by 15-PGDH, but at a reduced reaction rate".

Figure 15. The insert shows the metabolism of prostacyclin by (A) 15-hydroxy-prostaglandin dehydrogenase $/\Delta$ ¹³-prostaglandin reductase, (B) β -oxidation and (C) ω -oxidation, coupled with vinyl ether hydrolysis, to give a major urinary metabolite. The three analogues on the right were designed to be both chemically and metabolically stable.

The lung is a major site for deactivation of blood-borne PGE_2 and $PGF_{2\alpha}$ by 15-PGDH,⁴¹ but not for prostacyclin since it is not taken into lung cells by their active uptake process(es).⁴²⁻⁴⁴ However, other tissues, including blood vessel wall and kidney, are able to oxidise the 15-hydroxyl of prostacyclin.^{39,45}

Figure 15 shows three prostacyclin analogues, iloprost,⁴⁶ cicaprost^{47,48} and taprostene,⁴⁹ that are resistant to 15-PGDH attack and have extended durations of action in vivo. Alkylation at C16 creates analogues that are very poor substrates for human 15-PGDH. Thus the major metabolites of iloprost retain the 15-hydroxyl,⁵⁰ and whereas 1,5-m-interphenylene PGI₂ was rapidly oxidised, its 16-ethyl and 15-cyclohexylω-pentanor (taprostene) derivatives had reaction velocities close to zero.¹

β-Oxidation is the primary route of metabolic inactivation for iloprost, with loss of 4 carbon units leading to a mixture of 6α- and 6β-carboxy metabolites (C6 becomes a new chiral centre).⁵⁰ In cicaprost this route is blocked by substitution of an oxygen atom at C3, resulting in a 4-fold slower systemic clearance in man.⁴⁸ Similarly, the benzoate moiety of taprostene is resistant toβ--oxidation.

In addition to the 20-carboxy metabolite of prostacyclin shown in Figure 15, the corresponding 19- and 20-hydroxy metabolites were also found in urine.³⁸ These ω -oxidations are reduced in analogues containing either a ω -cyclohexyl group or an 18,19-triple bond, although a 17-hydroxy- α -tetranor metabolite of iloprost was tentatively identified.⁵⁰

5. RECEPTOR-ACTIVE CONFORMATIONS OF PROSTACYCLIN

5.1 The extended conformation of prostacyclin

In prostacyclin, the closed or semi-closed hairpin conformation attainable by the other natural prostanoids is not possible due to the Z-configuration of the 5,6-double bond. Coupled with this, the bicyclic ring of prostacyclin has greater rigidity than the single cyclopentane ring of other prostaglandins. Thus the molecular modelling fraternity felt that predicting the conformations in which prostacyclin and its analogues combine with the IPreceptor would stand a better chance of success than, for example, the conformation of PGE₂ bound to an EP-receptor.

Essentially, the modelling process involves (a) determining which groups in the prostacyclin molecule are likely to bond to the IP-receptor using structure-activity data, (b) computing the minimum energy conformations for a small selection of structurally rigid and potent prostacyclin analogues, and (c) deciding which of the more stable conformers have the greatest overlap of important bonding groups. Using biological potency data for about 50 prostacyclin analogues, the group led by Tsai & Wu^{3,51} concluded that the 1-carboxyl and 11- and 15hydroxyls of prostacyclin are important groups for binding to the IPreceptor, while the ring structure and 5,6- and 13,14-double bonds are a framework for maintaining a unique spatial orientation of these groups. They then proposed the receptor-bound prostacyclin conformer depicted in Figure 16, in which the α -chain is extended away from the ω -chain rather than at right-angles (the L-shaped conformation).

Figure 16. Receptor-bound conformations of prostacyclin and 1,5-m-interphenylene PGI₂ by Tsai et al.⁵¹ The 1,5-m-interphenylene group restricts the orientation of the carboxyl group relative to the 11- and 15-hydroxyls. The inset shows the effect of flipping the C1 1-envelope of the C4-Cl6 fragment of carbacyclin on the relative positions of C4 and the 11- and 15-oxygen atoms.

Two aspects were studied in detail: the conformation of the flexible portion of the a-chain and the spatial relationship between the 11- and 15-hydroxyls. With respect to the former, modelling of 1,5-*m*-interphenylene PGI₂ played a critical role, since its carboxyl carbon can follow only one circular orbit arising from rotation of the C4-C5 bond, as shown in Figure 16.⁵² It was concluded that the prostacyclin molecule binds with its C3 atom orientated upwards, and looking along the C1-C20 axis in a space-filling model one sees a compact structure with the 1-carboxyl and 11- and 15-hydroxyls roughly in line.

The relative positions of the 11- and 15-hydroxyls is to a large extent determined by the conformation of the cyclopentane ring. As shown for the carbacyclin fragment in Figure 16, an upward flip of the C 1 1-envelope of the cyclopentane ring brings both the 11-OH and the ω -chain fragment into approximately the same plane as the ring (pseudo-equatorial orientations), whereas with the C 11 -envelope deflected downwards, the 11 -OH and the ω -chain fragment are orientated below and above the ring plane (pseudo-axial) respectively. Tsai & Wu strongly favoured the C11-envelope-down conformation, in which the 11-OH is further from the 15-OH, but nearer to C4 (the first fixed carbon proceeding from the 1-carboxyl). During the computation, it also became apparent that for good overlap to occur the 15-hydroxyl must point downwards as shown in Figure 16.

5.2 Support for the active conformation of prostacyclin from structure - activity relationships

To what extent does the available biological potency data support the proposals of Tsai & Wu on the receptor-active conformations of prostacyclin, particularly the extended structure shown in Figure 16? Firstly, in the 1,5-interphenylene series (Fig. 13),¹ both the *para* analogue (SE 58) and the one-carbon homologated *meta* analogue (SE 67) are inactive, and clearly cannot position their carboxyl groups to coincide with that of the moderately potent *meta* analogue (SE 54).

Secondly, contraction (nor) or expansion (homo) of either ring in the bicyclooctane system will tend to swing the 1-carboxylate away from its preferred position for binding to the IP-receptor, resulting in loss of potency. An example of this is found in relatives of beraprost, where expansion of the furan ring on the C7 side produces an inactive carboxylate movement can be counteracted by shortening the α -chain by one carbon unit, giving potent prostacyclin (lower centre) and carboxyclin (lower right) analogue.⁵⁴

Further examples of this approach are shown in Figure 17. In 6a-homo PGI_2 (upper right), expansion of the furan ring on the 6a-oxygen side

dramatically swings the molecule into a more L-shaped conformation; this analogue has minimal IP agonist potency.55 The corresponding 6b-homo PGI₂ (methyl ester), in which the methylene group is introduced between the 6a-oxygen and the 9-carbon, is also inactive.⁵⁶ Deletion of the 6b-oxygen to form a 4-membered ring, as in 5Z-6a-nor PGI₂, swings the α chain in the opposite direction, producing a very weak IP agonist. However, transposing the normal length α chain to the opposite side of the 5,6-double bond to give 5E-6a-nor PGI₂ (lower left) reorientates the carboxyl group and produces a 10-fold increase in potency.⁵⁷ This is an exception to the rule of the naturally-configured C5 geometric isomer having the greater biological potency. For example, natural 5E-carbacyclin is 64 times more potent than its 5Z isomer.⁵⁸ Finally, in RS-93427 (lower right) we have the complexity offuran ring contraction / cyclopentane ring expansion (bicyclo[4.2.0]octane system) and one-carbon truncation of the α -chain combining to produce a moderately potent IP agonist.⁵⁹

Figure 17. Binding of the 1-carboxylate and 11- and 15-hydroxyl groups of ring-expanded and ring-contracted prostacyclin analogues to postulated binding domains of the IP₁-receptor. A curved arrow indicates the movement of the 4-atom (as in prostacyclin) due to ring expansion/contraction and a straight arrow the corresponding adjustment of the carboxylate position due to either shortening of the α -chain or inversion of the double bond geometry. The 1-carboxylate in the energetically less stable twist-boat conformation of 6a-homo PGI₂ does approach closer to its binding domain.

5.3 Role of the vinyl ether oxygen

The high potencies of iloprost and cicaprost (Fig. 15) indicate that the 6aoxygen is not essential for IP agonist potency. But does the finding that carbacyclin is about 10 times less potent than prostacyclin imply that the 6aoxygen makes a specific contribution to binding to the IP-receptor? Not necessarily, since the geometry of the two molecules is subtly different. For the C4-Cl6 fragments of carbacyclin shown in Figure 16, there is general agreement for a plane of symmetry roughly in the plane of the paper and passing through C6 and C11. However, in the vinyl ether of prostacyclin, the planarity of the 5,6-double bond is extended over the 6a-oxygen and this introduces asymmetry into the bicyclic ring. Beierbeck et al.,60 have C7-envelope-up/C 12-envelope-down proposed а conformation for prostacyclin, while E. Eckle (Schering AG, personal communication) suggests that a CS-envelope-down/C 12-envelope-down conformation is appropriate (MM3 force-field program). Thus, the different bicyclic ring conformations of prostacyclin and carbacyclin could alter the relative positions of the 1-carboxyl and 11- and 15-hydroxyl groups, so accounting for the observed difference in potency without the need for a specific interaction of the 6a-oxygen with the IP-receptor.

6. VARIATIONS IN -CHAIN STRUCTURE

6.1 The iloprost ω- terminus

Many routes to synthetic prostanoids are designed for the ω -chain to be added last, this being the most economical way to examine the effect of varying ω -chain structure on biological activity. Modification of the somewhat bland *n*-pentyl terminus has dramatic effects on IP agonist potency. Introduction of two methyl groups at C16 in both prostacyclin⁶¹ and 6a-aza-5-thia isocarbacyclin37 reduces potency considerably and there are further reductions when an 18-oxa or 19-oxa group is also present.⁶² The two methyls create a bulky *t*-butyl structure at C16, which may not allow the 15-hydroxyl to interact correctly with its binding domain on the IP-receptor. In contrast, dimethyl substitution at either C17 or C18, which involves less crowding of the 15-hydroxyl, results in retention of potent IP agonist activity.⁶¹

Introduction of both a single methyl group at C16 (which creates a chiral centre) and a triple bond at C18 has been a popular strategy for producing potent and metabolically stable IP agonists. Thus, beraprost (Fig. 12) is

about 18-fold more potent than it *n*-pentyl relative.²⁵ Iloprost (Fig. 15), perhaps the most widely studied prostacyclin analogue, also has a 16methyl-1 8,19-tetradehydro w-terminus, and has been used as the 16R/16S epimeric mixture in almost all investigations. Skuballa & Vorbrüggen63 synthesised both isomers and showed that the 16S epimer (C16 configuration identical to cicaprost in Fig. 15) was five times more potent on human platelets than the 16R epimer. Later, Tsai et al.64 separated the epimers by reversed-phase HPLC and found that the 16S isomer was 20 times more potent than the 16R epimer on human platelets. They also analysed the kinetics of the binding of both isomers to human platelet membranes and showed that the association rate for the 16S isomer was much faster than that for the 16R isomer under identical conditions. Tsai & Wu have suggested that (since the encounter frequencies of the isomers with the IP-receptor are likely to be similar; authors' addition) the observed difference in rates of binding is likely to be steric in nature; an incorrect orientation of the approaching 16R epimer would drastically reduce the fraction of successful collisions with the IP-receptor. It should be remembered that [3H]-ioprost used in receptor binding studies is also a 16R/16S epimeric mixture.

6.2 C15-epimers and IP-receptor subtypes

15-O-Methyl prostacyclin has very weak inhibitory activity on human platelets (Fig. 18),⁶⁵ demonstrating the importance of the 15-hydroxyl for high IP agonist potency. In addition, the 15-hydroxyl must be part of a 15S chiral centre. Inversion of this natural stereochemistry reduces IP agonist potency (e.g. 33-fold for carbacyclin, Fig. 18),⁶⁶ and this is also the usual trend for agonist action at other prostanoid receptors.

Recently, the existence of an IP-receptor that is activated well by both 15R and 15S prostacyclin analogues, and even more surprisingly by analogues lacking any C15 substituent, has been demonstrated in certain areas of the rat brain (e.g. thalamus).⁶⁷⁻⁶⁹ This receptor has been called an IP₂ subtype to distinguish it from IP₁-receptors present in platelets and blood vessels, and in other areas of the rat brain (e.g. nucleus tractus solitarius, NTS). The crucial ligands in these studies are derivatives of isocarbacyclin in which the *n*-butyl $\boldsymbol{\omega}$ -terminus is replaced by a *m*-tolyl group (Fig. 18). The 15S and 15R epimers of 16-*m*-tolyl isocarbacyclin (15s-TIC and 15R-TIC) were comparable competitors for [3H]-isocarbacyclin binding in thalamus tissue sections, whereas 115R-TIC was a much poorer competitor in NTS sections. 15R-TIC is also a weak inhibitor of human platelet aggregation.⁶⁸ 15-Deoxy TIC appears to be the most selective ligand for the

 $IP_2\text{-}receptor,$ having $IC_{\scriptscriptstyle 50}$ values of 3 and 1000 nM in the thalamus and NTS binding assays respectively.

A similar lack of biological stereoselectivity at C15 has been reported only once previously; the DP-receptor that induces systemic vasoconstriction in the sheep is potently activated by both the 15R and 15S epimers of PGD₂ and also by several C15-modified analogues, such as 15-O-methyl PGD₂ and 13,14-dihydro-15-oxo PGD₂ and its 15-ethylene ketal derivative.⁷⁰ PGD₂ (natural 15S) is the only one of these PGD analogues that activates the classical DP-receptor on human platelets. Thus it would be of interest to determine whether the corresponding prostacyclin / isocarbacyclin analogues activate the IP₂-receptor.

We must be careful however not to overgeneralise in our structureactivity relationships. The 15S/15R potency ratio on human platelets varies from 14 for 20-methyl-benzindene prostacyclin⁵³ to >2000 for 13,14dihydro-13-thia PGI₂.⁷¹ Moreover, potency losses range from 1.4 to >2000fold on substitution of a 15-C-methyl group into different 15S prostacyclin analogues.^{1,71}

Figure 18. Potencies of the C15-epimers of carbacyclin and 16-*m*-tolyl isocarbacyclin (TIC) for the classical IP₁-receptor (e.g. in human platelets) and the newly discovered IP₂-receptor in rat brain.

7. OTHER PROSTANOIDS AS IP AGONISTS

7.1 PGE analogues

The potent anti-aggregatory activity of PGE₁ was reported in 1967, well before the discovery of prostacyclin and IP-receptors.⁷² Indeed, in 1971 van Dorp⁷³ reported the inhibitory activity on human platelets of a number of α -chain-modified PGEs, including 5-*trans* PGE₂, prepared by incubating the corresponding polyunsaturated fatty acids with the COX/PGE isomerase system of sheep vesicular glands. It is now clear that PGE₁ acts as an IP agonist and that PGE₁ and 5-*trans* PGE₂ are able to mimic prostacyclin more effectively than PGE₂, since the 5,6-cis bond in PGE₂ tends to swing the 1-carboxylate away from its binding domain (Fig. 19). 6-Oxo PGE₁ (Fig. 19), which may arise naturally due to oxidation of 6-oxo PGF_{1α},⁷⁴ has IP agonist potency approaching that of prostacyclin^{75,76} and is discussed in more detail in Chapter 6.

Figure 19. IP agonist potencies of prostaglandin E analogues differing in structure at C5/C6 Docking to the proposed binding domains of the IP-receptor is also shown. The bracket indicates an ω -chain identical to that of PGE₁.

More potent PGE_1 analogues have been developed with antithrombotic use in mind. ONO 1206 (limaprost; Opalmon) is a 17,20-dimethyl analogue with S-configuration at C17 and is 39 times more potent than PGE_1 on human platelets.⁷⁷ TFC-6 12 is 17,20-dimethyl-7-thia PGE_1 , but in this case the C17 configuration is R. It has 6.4 times greater inhibitory potency than PGE_1 on human PRP, and in contrast to PGE_1 is orally active in the guineapig.⁷⁸

7.2 TXA₂ analogues

The platelet aggregatory and vasoconstrictor actions of TXA₂ are mimicked by prostanoids with a 7-oxa-bicyclo[2.2.1] heptane ring system. The highest potency is found when the ring oxygen is located on the α -face of the molecule and the side-chains have the natural 8α , 12β configuration (see SQ 26655 in Fig. 20, inset). 79,80 However, when the chiral centres at C8 and C12 are both inverted, a switch to weak prostacyclin-like activity is seen.⁸¹ Figure 20 attempts to show how such a molecule fits the Tsai & Wu model for the receptor-active conformation of prostacyclin. The effects on IP agonist potency of modifying the ω -chain in the 8 β , 12 α series are interesting. Of particular note are the slight loss of IP potency on saturating the 5,6-double bond, which is opposite to that found in the PGE series, and a much more marked loss of IP potency upon saturation of the 13,14-double bond. Presumably the 13,14-double bond is important for orientating the ring ether oxygen and the 15-hydroxyl for effective interaction with the 11and 15-hydroxyl binding sites on the IP-receptor. In contrast to the prostacyclin series (e.g. iloprost), a 16-methyl-1 8,19-tetradehydro ω-terminus results in low IP agonist potency. The compound with the highest IP agonist activity is the 1 5-cyclohexyl-ω-pentanor analogue, which as the pure enantiomer (SQ 27986, Fig. 20) is about 50 times more potent than its parent (n-pentyl) enantiomer.⁸¹ It would be of interest to test SQ 27968 on the IP²-receptor found in rat brain.

The TXA₂ analogue STA₂ (Fig. 20, inset) is a potent full TP agonist on smooth muscle preparations.^{80,82,83} On human washed platelet suspensions it induced irreversible aggregation at concentrations around 100 nM, whereas at higher concentrations only large reversible aggregation waves were seen.⁸⁰ When TP-receptors were blocked by a high concentration of the TP antagonist EP 092, STA₂ (100 - 2700 nM) partially inhibited aggregation elicited by platelet-activating factor (PAF). Under similar conditions, another TP agonist U-46619 (up to 3000 nM) did not affect PAF-induced aggregation. In CHO cells, STA₂ (1 - 10 μ M) displaced [³H]-iloprost binding to the stably expressed human IP-receptor.⁸⁴ Thus it appears that STA₂ may weakly activate the human IP₁-receptor as well as potently activating TP-receptors. The use of such an agonist to characterise a truly competitive TP antagonist may result in a noncompetitive profile if the preparation contains functionally-opposed TP- and IP-receptors.

Figure 20. 7-0xa-bicyclo[2.2.1] heptane prostanoids showing IP agonist activity. The IC₅₀ values for prostacyclin were 10 nM for ADP and 2 nM for arachidonate; a high value for the equi-effective molar ratio indicates low agonist potency. Data from Haslanger et al.⁸¹

8. SPECIFICITY OF PROSTACYCLIN ANALOGUES

8.1 **DP-receptors**

The human platelet has DP-receptors on its cell surface linked to adenylate cyclase. It is thus possible that some of the platelet inhibitory actions of the prostacyclin analogues discussed so far are due (at least in part) to activation of DP-receptors. One way to resolve this problem is to determine whether a specific DP antagonist, such as BW A868C ($pA_2 = 9.26$ on human washed platelets, Chapter 1, Section 4.1),⁸⁵ shifts the log-concentration-response curve for the prostacyclin analogue to the right. In the case of RS-93427 (Fig. 17), exposure to 1 μ M BW A868C resulted in a dose ratio of 3.4; the curve for PGD₂ was shifted much further to the right (dose ratio = 68), whereas that for PGE₁ was unchanged.⁸⁶ BW A868C also produced small but statistically significant reductions in the amounts of cyclic AMP generated by the lower concentrations (3.2 - 32 nM), but not the higher concentrations (100 - 10,000 nM) of RS-93427. These findings are consistent with activation of both IP- and DP-receptors by RS-93427 over a similar concentration range.

RS-93520 is a diastereoisomer of RS-93427 in which the 15S configuration is retained whilst the four chiral centres associated with the ring system are inverted. This analogue is about half as potent on human PRP as RS-93427 and its log concentration-response curve is shifted far to the right by 1 μ M BW A868C (dose ratio = 40).⁸⁶ Its log concentration-response curve for elevation of cyclic AMP is distinctly biphasic and the more sensitive portion is shifted well to the right (dose ratio ~ 100) by BW A868C. These findings are consistent with moderate agonist potency of RS-93520 at DP-receptors coupled with low agonist potency at Preceptors.

8.2 EP-receptors

The first real indication that prostacyclin analogues might activate EPreceptors came from the studies of Dong & Jones,^{87,88} who showed that iloprost (called ZK 36374 at that time) and isocarbacyclin were moderately potent contractile agents on bullock iris sphincter, guinea-pig trachea (spirally-cut) and rat stomach fundus pre arations. Two PGE receptor antagonists, SC 19220 and SC 25191,⁸⁹ later characterised as EP₁ antagonists, blocked responses to the prostacyclin analogues and 16,16dimethyl PGE₂ to a similar extent. In contrast to iloprost and isocarbacyclin, cicaprost (ZK 96480) showed little EP_1 agonist activity and was therefore recommended as the preferred standard IP agonist in prostanoid receptor characterisation studies.⁸⁸

Iloprost appeared to behave as a partial agonist at the EP₁-receptor on the previously mentioned smooth muscle preparations, opposing three contractions induced by PGE₂, 16,16-dimethyl PGE₂ and prostacyclin, but not contractions induced by U-466 19 or carbachol.87,88 However, in later experiments using ring preparations of guinea-pig trachea, which were more sensitive to EP₁ agonists, iloprost behaved as a potent full agonist (Table 1).^{90,91} Other potent full agonists included carbacyclin and 17S, 20-dimethyl (TEI-9063),⁹² whereas isocarbacyclin taprostene, benzodioxane prostacyclin93 and cicaprost had minimal EP_1 activity (Table 1). Isocarbacyclin, along with PGE1 and PGE2, showed a bell-shaped doseresponse curve on the trachea, probably due to activation of both contractile EP_1 and relaxant EP_2 -receptors.⁸⁸ Relaxation of the guinea-pig trachea by high concentrations (>2.4 μ M) of beraprost has also been reported.⁹⁴ Experiments with the mouse cloned EP1-receptor expressed in CHO cells have shown that the abilities of 17-phenyl- ω -trinor PGE₂, sulprostone and iloprost to compete for [³H]-PGE₂ binding parallel their EP₁ agonist potencies on isolated smooth muscle preparations (Table 1).95,96

The only prostacyclin analogue reported to show potent EP₃ agonist activity is TEI-3356. The major structural change in this isocarbacyclin analogue is the transfer of the 15-hydroxyl to the 16-position; the PGE₁ analogue misoprostol, which is a potent EP_2/EP_3 agonist⁹⁷ has an identical ω chain. TEI-3356 competed for $[^{3}H]$ -PGE₂ binding to mouse cloned EP₃receptors expressed in CHO cells with an affinity equal to sulprostone, one of the most potent EP3 agonists;98 the affinities of TEI-3356 for cloned mouse EP₁-, EP₂- and IP-receptors were much lower. Forskolin-induced cyclic AMP formation in the CHO cells was also inhibited to the same extent by sulprostone and TEI-3356 (IC₅₀ \sim 1.01nM), consistent with negative coupling of the EP₃-receptor to adenvlate cvclase. On the field-stimulated guinea-pig vas deferens, the archetypal EP3 preparation, TEI-3356 (1 - 100 nM) mimicked the inhibitory action of sulprostone on twitch tension and [³H]-noradrenaline overflow, but was about 50 times less potent.⁹⁹ Three other prostacyclin analogues, iloprost, carbacyclin and cicaprost also showed evidence of EP₃ agonist activity on the vas deferens, with cicaprost being the weakest (Table 1). However, activation of IP-receptors in this preparation leads to enhancement of twitch responses, which opposes the EP₃ inhibition, and as a result, accurate relative potencies for EP₃ agonism could not be obtained. Iloprost, carbacyclin and isocarbacyclin show moderate binding affinities for mouse EP₃-receptors, with cicaprost being somewhat weaker (Table 1).^{96,100} thus complimenting the guinea-pig vas deferens data.

Both EP₂- and EP₄-receptors induce relaxation of vascular smooth muscle, but little is known of their interactions with prostacyclin analogues in functional assays. On mouse cloned EP₂-receptors, iloprost, carbacyclin, isocarbacyclin and cicaprost competed poorly for [³H]-PGE₂ binding (K_i 1600, 1600, 1000, 1300 nM respectively, PGE₂ 12 nM) and a similar picture was found for iloprost and carbacyclin on the mouse cloned EP₄-receptor (K_i 2300 nM, PGE₂ 1.9 nM).⁹⁶ 7,7-Difluoro-16S,20-dimethy1-18,19-tetra-dehydro prostacyclin (AFP-07), although a weak competitor for mouse cloned EP₁, EP₂ and EP₃-receptors, had a K_i of about 10 nM for the corresponding EP₄-receptor.¹⁹

Prostanoid	Equi-effective molar ratios			
	Guinea-pig trachea (EP ₁	Mouse cloned EP ₁ -receptor	Guinea-pig vas deferens (EP3)	Mouse cloned EP ₃ -receptor
17-Phenyl-ω-	1.0	1.0	54	6.2
trinor PGE ₂	$(EC_{50} = 2.2 \text{ nM})$	$(K_i = 14 \text{ nM})$		
Sulprostone	3.2	1.5	1.0	1.0
			$(IC_{50} = 0.2 \text{ nM})$	$(K_i = 0.6 \text{ nM})$
PGE ₂	bell-shaped*	1.4	7.2	1.4
TEI-9063	1.8			
Iloprost	2.7	2.1	(50 nM)†	37
Carbacyclin	13.5		(30 nM)†	52
Isocarbacyclin	bell-shaped*			52
TEI-3356	72		48	
Prostacyclin	160			
Taprostene	>400			
Benzodioxane prostacyclin	>400		(30 nM)†	
Cicaprost	>400		(300 nM)†	280

Table 1. Potencies of PGE and prostacyclin analogues on EP₁- and EP₃-receptor preparations

17-Phenyl - ω - trinor PGE₂ is a standard EP₁ agonist and sulprostone is a standard EP₃ agonist. Guinea-pig trachea: contractile activity; data from Lawrence et al.,⁹⁰ Jones et al.⁹¹ and R.L. Jones, unpublished observations; *EP₁ contraction overcome by EP₂ relaxation. Guinea-pig vas deferens: inhibition of field stimulation responses;^{90,91} tEP₃ inhibitory action seen at this and higher concentrations, but potency ratio not calculated due to opposing IP agonist action. Mouse EP₁- and EP₃-receptors: competition for [³H]-PGE₂ binding.⁹⁶

8.3 TP-receptors

Finally, we come to the potential activation of TP-receptors by prostacyclin analogues. Isocarbacyclin at concentrations of 1 - 10 μ M produced transient contractions of monkey mesenteric, renal, cerebral, coronary and popliteal arteries, which were inhibited by the TP antagonist S 145.¹⁰¹ U-46619 produced contraction at nanomolar concentrations, but it

was difficult to determine the relative TP potency of isocarbacyclin due to its concomitant IP relaxant action.

The 6α and 6β epimers of 16-phenoxy- ω -tetranor PGI₁ stimulate rather than inhibit aggregation of human platelets.¹⁰² The direct aggregation seen with the 6a isomer may be due to activation of TP-receptors since 16phenoxy (and 16-*p*-halophenoxy) substitution increases TP agonist potency in a range of prostanoid structures. In contrast, the 6β isomer potentiated aggregation (aggregating agent not specified); this may involve a different mechanism since 16-phenoxy PGE analogues such as sulprostone enhance reversible aggregation waves induced by ADP or U-46619 by activating EP₃-receptors.¹⁰⁵

9. CONCLUDING REMARKS

Many more prostacyclin analogues than discussed here have been synthesised and examined biologically, but what has been written so far illustrates the importance of the correct spatial orientation of the 1-carboxyl and 11- and 15-hydroxyls for high agonist potency at IP-receptors. With the continuous development of more powerful computing methods and the emergence of data on single-point mutated and chimeric IP-receptors (see Chapter 4), the time is approaching when more sophisticated molecular modelling may reveal the atomic interactions that lead to activation of IPreceptors.

From a pharmacological standpoint, there is still a need for more potent and selective IP agonists to characterise IP-receptors. So far, cicaprost clearly outshines other analogues in relation to the classical IP₁-receptor, but with the inevitable (and welcome) emergence of competitive IP-receptor antagonists it may fall short of the ideal. In addition, the identification of agonists besides TIC analogues that preferentially activate the newlydiscovered IP₂-receptor in the rat brain is essential. Cicaprost is almost inactive on this receptor and it is possible that we should be looking for quite different types of molecules than have been developed so far.

REFERENCES

- 1. Flohé L, Böhlke H, Frankus E et al. Designing prostacyclin analogues. Arzneim-Forsch/Drug Res 1983;33:1240-1248.
- 2. Aristoff PA. Synthesis of prostacyclin analogs. Adv Prostaglandin Thromboxane Leukot Res 1985;14:309-392.

- Tsai AL, Wu KK. Structure-activity relationship between prostacyclin and its platelet receptor. Eicosanoids 1989;2:131-143.
- Buchmann B, Klar U, Rehwinkel H et al. "Prostaglandins analogues and mimetics." In *Therapeutic Applications of Prostaglandins*, Vane JR, O'Grady J, eds. London: Edward Arnold, 1993;49-73.
- 5. Collins PW, Djuric SW. Synthesis of therapeutically useful prostaglandin and prostacyclin analogs. Chem Rev 1993;93:1533-1564.
- 6. Johnson RA, Morton DR, Kinner JH et al. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 1976;12:915-928.
- Johnson RA, Lincoln FH, Nidy EG et al. Synthesis and characterization of prostacyclin, 6-ketoprostaglandin F_{1a}, prostaglandin I₁ and prostaglandin I₃. J Am Chem Soc 1978;100:7690-7705.
- Cho MJ, Allen MA. Chemical stability of prostacyclin (PGI₂) in aqueous solution. Prostaglandins 1978;15:943-954.
- 9. Fried J, Barton J. Synthesis of 13,14-dehydro prostacyclin methyl ester: a potent inhibitor ofplatelet aggregation. Proc Natl Acad Sci USA 1977;74:2199-2203.
- Chiang Y, Kresge AJ, Cho M. Acid-catalyzed hydrolysis of prostacyclin; origin of the unusual lability. J Chem Soc Chem Commun 1979;129-130.
- Andersen NH, Hartzell CJ, De B. Chemistry and structure of cyclo-oxygenase-derived eicosanoids: a historical perspective. Adv Prostaglandin Thromboxane Leukot Res 1985;14:1-43.
- Pace-Asciak CR, Nashat M. Mechanistic studies on the biosynthesis of 6ketoprostaglandin F_{1α}. Biochim Biophys Acta 1977;487:495-507.
- 13. Fenwick L, Jones RL, Naylor B et al. Production of prostaglandins by the pseudopregnant rat uterus, *in vitro*, and the effect of tamoxifen with the identification of 6-keto-prostaglandin $F_{1\alpha}$ as a major product. Br J Pharmacol 1977;59:191-199.
- Moncada S, Gryglewski R, Bunting S et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits aggregation. Nature 1976;263663-665.
- 15. Pedersen A. Dipyridamole and platelet aggregation. Lancet 1978;ii:270.
- Wynalda M, Fitzparick F. Albumen stabilizes prostaglandin I₂. Prostaglandins 1980;20:853-861.
- 17. Bannai K, Toru T, Oba T et al. Synthesis of chemically stable prostacyclin analogues, Tetrahedron Lett 1983;39:3807-3819.
- Djuric SW, Garland RB, Nysted LN et al. Synthesis of 5-fluoroprostacyclin. J Org Chem 1987;52:978-990.
- Chang CS, Negishi M, Nakano T et al. 7,7-Difluoroprostacyclin derivative, AFP-07, a highly selective and potent agonist for the prostacyclin receptor. Prostaglandins 1997;53:83-90.
- Fried J, Mitra DK, Najarajan M et al. 10,10-Difluoro-13-dehydroprostacyclin: a chemically and metabolically stabilized potent prostacyclin. J Med Chem 1980;23:234-237.

- 21. Kovács J, Simonidesz V, Tömösközi I et al. A new stable prostacyclin mimic, 7-oxoprostaglandin I₂. J Med Chem 1982;25:105-107.
- 22. Galambos G, Simonidesz V, Ivanics J et al. Synthesis of stable prostacyclin analogues. Tetrahedron Lett 1983;24:1281-1284.
- Darius H, Thomsen T, Schrör K. Cardiovascular actions *in vitro* and cardioprotective effects *in vivo* of nileprost, a mixed type PGI₂ / PGE₂ agonist. J Cardiovasc Pharmacol 1987;10:144-152.
- 24. Skuballa W, Radüchel B, Vorbrüggen H. Synthesis of prostacyclin analogues stabilized by acceptor substituents at the 5-position. Tetrahedron Lett 1988;29:4285-4288.
- 25. Ohno K, Nagase H, Matsumoto K et al. Stereoselective synthesis of 5,6,7-trinor-4,8inter-*m*-phenylene-PGI2 derivatives and their inhibitory activities to human platelet aggregation. Adv Prostaglandin Thromboxane Leukot Res 1985;15:279-281,
- Kato R, Uji Y, Matsumoto K. Phase I study of beraprost sodium (TRK-100), a prostacyclin derivative - repeated oral administration study for 10 days. Jpn J Clin Pharmacol Ther 1989;20:529-539.
- 27. Nicolaou KC, Barnette WE, Magolda RL. Organoselenium-based synthesis of sulfurcontaining prostacyclins. J Am Chem Soc 1981;103:3486-3497.
- 28. Dembinska-Kiec A, Rücker W, Schönhöfer PS et al. Prostacyclin analogs: antiaggregatory potency and enhancement of cAMP levels in human platelet-rich plasma. Thromb Haemostas 1979;42:1340-1343.
- 29. Adaikan PG, Karim SMM, Lau LC. Platelet and other effects of carboprostacyclin a stable prostacyclin analogue. Prostagland Med 1980;5:307-320.
- Aiken JW, Shebuski RJ. Comparison in anaesthetized dogs of the antiaggregatory and hemodynamic effects of prostacyclin and a chemically stable prostacyclin analog, 6acarba-PGI2(carbacyclin). Prostaglandins 1980;19:629-643.
- 31. Morita A, Mori M, Hasegawa K et al. Anti-platelet aggregating and disaggregating activities of 6,9-methano PGI₂. Life Sci 1980;27:695-701.
- 32. Whittle BJR, Moncada S, Whiting F et al. Carbacyclin potent stable prostacyclin analogue for inhibition ofplatelet aggregation. Prostaglandins 1980;19:605-627.
- Shibasaki M, Iseki K, Ikegami S. Total synthesis of the carbon analog of Δ⁶-PGI₁. Tetrahedron Lett 1980;21:169-172.
- 34. Yokomori H, Torisawa Y, Shibasaki M et al. A novel synthesis of the sulfur analog of Δ^6 -PGI₁. Heterocycles 1982;18:251-254.
- 35. Shibasaki M, TorisawaY, Ikegami S. Synthesis of 9(0)-methano- $\Delta^{6(9\alpha)}$ -PGI1: the highly potent carbon analog of prostacyclin. Tetrahedron Lett 1983;24:3493-3496.
- Bundy GL, Baldwin JM. The synthesis of nitrogen-containing prostacyclin analogs. Tetrahedron Lett 1978;1371-1374.
- 37. Bartmann W, Beck G, Knolle J et al. Synthesis of stable prostacyclin analogues. Adv Prostaglandin Thromboxane Leukot Res 1983;11:287-292.
- 38. Sun FF, Taylor BM. Metabolism of prostacyclin in rat. Biochem J 1978;17:4096-4101.
- Sun FF, Taylor BM, McGuire JC et al. "Metabolic disposition of prostacyclin." In Prostacyclin, Vane JR, Bergström S, eds. New York: Raven Press, 1979;119-131.

- 40. Rosenkrantz B, Fischer C, Weimer KE et al. Metabolism of prostacyclin and 6-ketoprostaglandin $F_{1\alpha}$ in man. J Biol Chem 1980;255:10194-10198.
- Granström E, Kumlin M. "Metabolism of prostaglandins and lipoxygenase products: relevance for eicosanoid assay." In *Prostaglandins and Related Substances: A Practical Approach,* Benedetto C, McDonald-Gibson RG, Nigam S et al., eds. Oxford: IRL Press, 1987;5-27.
- 42. Armstrong JM, Lattimer N, Moncada S et al. Comparison of the vasodepressor effects of prostacyclin and 6-oxo-prostaglandin $F_{1\alpha}$ with those of prostaglandin E_2 in rat and rabbits. Br J Pharmacol 1978;62:105-109.
- 43. Dusting GJ, Moncada S, Vane JR. Recirculation of prostacyclin (PGI₂) in the dog. Br J Pharmacol 1978;64:315-320.
- Waldman HM, Alter I, Kot PA et al. Effect of lung transit on systemic depressor responses to arachidonic acid and prostacyclin in dogs. J Pharmacol Exp Ther 1978;204:289-293.
- 45. Roberts LJ, Brash AR, Oates JA. Metabolic fate of thromboxane A₂ and prostacyclin. Adv Prostaglandin Thromboxane Leukot Res 1982;10:211-225.
- 46. Krause W, Krais T. Pharmacokinetics and pharmacodynamics of the prostacyclin analogue iloprost in man. Eur J Clin Pharmacol 1986;30:61-68.
- 47. Hildebrand M. Studies on the pharmacokinetics of ZK 96480, a novel PGI₂-mimetic in rat and cynomolgus monkey. Prostaglandins 1986;32:425-438.
- Hildebrand M, Staks T, Nieuweboer B. Pharmacokinetics and pharmacodynamics of cicaprost in healthy volunteers after oral administration of 5 to 20 μg. Eur J Clin Pharmacol 1990;39:149-153.
- 49. Schneider J, Friderichs E, Kögel B et al. Taprostene sodium. Cardiovasc Drug Rev 1993;4:479-500.
- 50. Krause W, Hümpel M, Hoyer GA. Biotransformation of stable prostacyclin analogue, iloprost, in the rat. Drug Metab Dispos 1984;12:645-651.
- Tsai AL, Strobel-Jager E, Wu KK. Conformation of receptor-associated PGI₂: An investigation by molecular modelling. Computer-aided Molecular Design 1991;5:135-148.
- 52. Stezowski JJ, Flohé L, Böhlke H. The crystal structure of CG 4305, a biologically active analogue with exceptional chemical and metabolic stability. J Chem Soc Chem Commun 1983;1315-1316.
- AristoffPA, Harrison AW, Aiken JW et al. Synthesis and structure-activity relationships of novel stable prostacyclin analogs. Adv Prostaglandin Thromboxane Leukot Res 1983;11:267-274.
- Aristoff PA, Harrison AW, Huber AM. Synthesis of benzopyran prostaglandins, potent stable prostacyclin analogs, via an intramolecular Mitsunobu reaction. Tetrahedron Lett 1984;25:3955-3958.
- Ohuchida S, Hashimoto S, Wakatsuka H et al. Synthesis and biological activities of some prostacyclin analogues. Adv Prostaglandin Thromboxane Leukot Res 1980;6:337-340.

- 56. Skuballa W. Synthesis of 6,9-homo-prostacyclin: a stable prostacyclin analogue. Tetrahedron Lett 1980;21:3261-3264.
- Lopp MI, Miüraus AI, Parve OV et al. Synthesis and antiaggregation activity of prostacyclin analogs. I. Bicyclo[3.2.0]heptane analogs. Bioorg Khim 1988;14:222-231.
- 58. Whittle BJR, Moncada S. Platelet actions of stable carbocyclic analogues of prostacyclin. Circulation 1985;72:1219-1225.
- 59. Kluge AF, Kertesz DJ, O-Yang C et al. Potent prostacyclin analogues based on the bicyclo[4.2.0]octane ring system. J Org Chem 1987;52:2860-2868.
- 60. Beierbeck H, Kotovyvh, Sugiura M. The conformation of prostacyclin and related prostaglandins. Can J Chem 1985;63:1143-1149.
- Andersen NH, Imamoto S, Subramanian N et al. Molecular basis for prostaglandin potency. III. Tests of the significance of the "hairpain conformation" in biorecognition phenomena. Prostaglandins 1981;22:841-856.
- 62. Schölkens BA, Bartmann W, Beck G et al. Vasodilatation and inhibition of platelet aggregation by prostacyclins with modified **w**-side chain. Prostagland Med 1979;3:7-22.
- Skuballa W, Vorbrüggen H. Synthesis of ciloprost* (ZK 36374): a chemically stable and biologically potent prostacyclin analog. Adv Prostaglandin Thromboxane Leukot Res 1983;11:299-305.
- 64. Tsai AL, Vijjeswarapu H, Wu KK. Interaction between platelet receptor and iloprost isomers. Biochim Biophys Acta 1988;942:220-226.
- 65. Andersen NH, Subramanian N, De B et al. Methyl ethers of prostaglandins $F_{2\alpha}$ and I_2 . Prostaglandins 1981;6:345-357.
- Morton DR, Bundy GL, Nishizawa EE. "Five-membered ring-modified prostacyclin analogues." In *Prostacyclin*, Vane JR, Bergström S, eds. New York: Raven Press, 1979;31-41.
- 67. Takechi H, Matsumura K, Watanabe Y et al. A novel subtype of the prostacyclin receptor expressed in the central nervous sytem. J Biol Chem 1996;271:5901-5906.
- Suzuki M, Kato K, Noyori R et al. 15R-16-(*m*-tolyl)-17,18,19,20-tetranorisocarbacyclin: a stable ligand with high affinity and selectivity for a prostacyclin receptor in the central nervous system. Angew Chem Int Ed Engl 1996;35:334-336.
- 69. Suzuki M, Kato K, Watanabe Y et al. 15-Deoxy-16-(*m* -tolyl)-17,18,19,20tetraisocarbacyclin: a simple TIC derivative with potent anti-apoptotic activity for neuronal cells. Chem Commun 1999;(4):307-308.
- Jones RL. Definition of prostaglandin-sensitive arterial constrictor systems. Acta Biol Med Germ 1976;37:837-844.
- Novák L, Aszódi J, Stadler I et al. Synthesis of 13-oxa- and 13-thiaprostacyclins: biologically potent analogs of prostacyclin. Adv Prostaglandin Thromboxane Leukot Res 1983;11:275-280.
- Kloeze, J. "Influence of prostaglandins on platelet adhesiveness and platelet aggregation." In *Nobel Symposium 2, Prostaglandins*, Bergström S, Samuelsson B, eds. Stockholm: Almqvist & Wiksell, 1967:241-252.

- 73. Van Dorp DA. Recent developments in the biosynthesis and the analysis of prostaglandins. Annals New York Acad Sci 1971;180:181-199.
- 74. Wong PY, Lee WH, Chao PH et al. Metabolism of prostacyclin by 9hydroxyprostaglandin dehydrogenase in human platelets. Formation of a potent inhibitor of platelet aggregation and enzyme purification. J Biol Chem 1980;255:9021-9024.
- 75. Wong PY, McGiff JC, Sun FF et al. 6-Keto-prostaglandin E₁ inhibits the aggregation of human platelets. Eur J Pharmacol 1979;60:245-248.
- Adaikan PG, Tai MY, Lau LC et al. A comparison of some pharmacological actions of prostaglandin E₁, 6-oxo-PGE₁ and PGI₂. Prostaglandins 1984;27:505-516.
- Adaikan PG, Karim SMM. Some pharmacological effects of 17(S)methyl
 ω-homotrans-Δ²-PGE₁ (ONO 1206). Prostagland Med 1981;6:449-458.
- Motoyama Y, Sakata Y, Seki J et al. The effects of TFC-612, a 7-thia prostaglandin E₁ derivative, on platelet function. Thromb Haemostas 1991;62:471-480.
- Sprague PW, Heikes JE, Gougoutas JZ et al. Synthesis and *in vitro* pharmacology of 7oxabicyclo[2.2.1]heptane analogues of thromboxane A₂/PGH₂. J Med Chem 1985;28:1580-1590.
- Tymkewycz PM, Jones RL, Wilson NH et al. Heterogeneity of thromboxane (TP-) receptors: evidence from antagonist but not agonist potency measurements. Br J Pharmacol 1991;102:607-614.
- 81. Haslanger MF, Sprague PW, Snitman D et al. Novel 7-oxabicyclo[2.2.1] heptane prostacyclin agonists. Adv Prostaglandin Thromboxane Leukot Res 1983;11:293-297.
- Mais DE, Saussy DL, Chaikhouni A et al. Pharmacologic characterisation of human and canine thromboxane A₂/prostaglandin H₂ receptors in platelets and blood vessels: evidence for different receptors. J Pharmacol Exp Ther 1985;233:418-424.
- Toda N, Nakajima M, Okamura T et al. Interactions of thromboxane A₂ analogs and prostaglandins in isolated dog arteries. J Cardiovasc Pharmacol 1986;8:818-825.
- Katsuyama M, Sugimoto Y, Namba T et al. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 1994;344:74-78.
- Giles H, Leff P, Bolofo M et al. The classification of PGD₂-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br J Pharmacol 1989;96:291-300.
- Alvarez R, Eglen RM, Chang LFK et al. Stimulation of prostaglandin D₂ receptors on human platelets by analogs of prostacyclin. Prostaglandins 1991;42:105-119.
- 87. Dong YJ, Jones RL. Effects of prostaglandins and thromboxane analogues on bullock and dog iris sphincter preparations. Br J Pharmacol 1982;76:149-155.
- Dong YJ, Jones RL, Wilson NH. Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol 1986;87:97-107.
- 89. Sanner JH, Mueller RA, Schulze RH. Structure-activity relationships of some dibenzoxazepine derivatives as prostaglandin antagonists. Adv Biosci 1973;9:139-148.
- Lawrence RA, Jones RL, Wilson NH. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on guinea-pig ileum. Br J Pharmacol 1992;105:271-278.

- 91. Jones RL, Qian YM, Wise H et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol 1997;29:525-535.
- Negishi M, Hashimoto H, Yatsunami K et al. TEI-9063, a stable and highly specific prostacyclin analogue for the prostacyclin receptor in mastocytoma P-815 cells. Prostaglandins 1991;42:225-237.
- 93. Mori S, Takechi S. Synthesis of benzodioxane prostacyclin analogue. Heterocycles 1990;31:1189-1193.
- Murata T, Murai T, Kanai T et al. General pharmacology of beraprost sodium. 2nd communication: effect on the autonomic, cardiovascular and gastrointestinal systems, and other effects. Drug Res 1989;39:867-876.
- 95. Watabe A, Sugimoto Y, Honda A et al. Cloning and expression of cDNA for a mouse EP₁ subtype of prostaglandin E receptor. J Biol Chem 1993;268:20175-20178.
- 96. Kiriyama M, Ushikubi F, Kobayashi T et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997;122:217-224.
- Coleman RA, Kennedy I, Humphrey PPA et al. "Prostanoids and their receptors." In Comprehensive Medicinal Chemistry, Hansch C, Sammes PG, Taylor JB, eds. Oxford: Pergamon Press, 1990;642-714.
- 98. Negishi M, Harazono A, Sugimoto Y et al. TEI-3356, a highly selective agonist for the prostaglandin EP₃ receptor. Prostaglandins 1994;48:275-283.
- Tam SFF, Chan KM, Bourreau JP et al. The mechanisms of enhancement and inhibition of field stimulation responses of guinea-pig vas deferens by prostacyclin analogues. Br J Pharmacol 1997;121:1413-1421.
- 100. Sugimoto Y, Namba T, Honda A et al. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP₃ subtype. J Biol Chem 1992;267:6463-6466.
- 101. Kawai Y, Ohhashi T. Effects of isocarbacyclin, a stable prostacyclin analogue, on monkey isolated cerebral and peripheral arteries. Br J Pharmacol 1994;112:635-639.
- 102. Johnson RA, Lincoln FH, Smith HW et al. "Biological effects of stable prostacyclin analogs." In *Prostacyclin*, Vane JR, Bergström S, eds. New York: Raven Press, 1983;17-29.
- 103. Jones RL, Marr CG. Actions of 16-aryloxy analogues of prostaglandin $F_{2\alpha}$ on preparations responsive to prostaglandin endoperoxides. Br J Pharmacol 1977;61:694-696.
- 104. Jones RL, Wilson NH, Lawrence RA. EP 171: a high affinity thromboxane A₂-mimetic, the actions of which are slowly reversed by receptor blockade. Br J Pharmacol 1989;96:875-887.
- 105. Matthews JS, Jones RL. Potentiation of aggregation and inhibition of adenylate cyclase in human platelets by prostaglandin E analogues. Br J Pharmacol 1993;108:363-369.

Chapter 3

Nonprostanoid prostacyclin mimetics

1. INTRODUCTION

Pharmacologists have always been intrigued by a compound that mimicks the action of a natural transmitter or hormone, but has a dissimilar chemical structure. Examples include morphine acting as an opioid receptor agonist and bromocriptine acting as a dopamine D_2 agonist.^{1,2} In the prostanoid field, there exists a series of diarylalkanoic acids that activate IP-receptors whilst showing little structural resemblance to prostacyclin, apart from a carboxylic acid group and a similar molecular size. They have been termed nonprostanoid prostacyclin mimetics. Their development by groups at Edinburgh University and the Bristol-Myers Squibb and ONO pharmaceutical companies, together with their biological properties, are the subject of this chapter.

In the figures, the unfilled arrows represent development sequences for the nonprostanoid prostacyclin mimetics, and biological activities adjacent to chemical structures relate to inhibition of adenosine diphosphate (ADP)induced aggregation in human platelet-rich plasma (PRP). The nonprostanoids are much more lipophilic than prostacyclin analogues such as iloprost and cicaprost, and this means that they show greater binding to plasma proteins. As a consequence, inhibitory potencies obtained in PRP may be considerably underestimated.

2. EMERGENCE OF THE NONPROSTANOID PROSTACYCLIN MIMETICS

2.1 PGH₂ analogues with modified ω -chains

The labile endoperoxide ring system in PGH_2 can be stabilised by replacement of its 9a-oxygen by carbon.³ The product 11,9-epoxymethano PGH_2 (U-46619) is a specific and potent full agonist for thromboxane (TP-) receptors (Chapter 1, Fig. 8). However, replacement of both ring oxygens by carbon, as in 9,11-ethano PGH_2 and 9,11-etheno PGH_2 (Fig. 21), results in partial agonism at TP-receptors.⁴

Figure 21, Early steps in the evolution of nonprostanoid prostacyclin mimetics. Modification of the $\boldsymbol{\omega}$ -chain of 9,1 1-etheno PGH₂ (upper left) led to the TP antagonist EP 003 and then to more potent antagonists such as EP 169. However, the introduction of a diphenylmethoxime unit as in EP 157 led to prostacyclin-like activity.

The above findings led N.H. Wilson and R.L. Jones in the Pharmacology Department of Edinburgh University to make a series of 13-imino (-CH=N-R) analogues of 9,11 -etheno PGH₂, in which the structure of the ω -chain was radically different to that of a natural prostanoid. The objective was to obtain a specific TP-receptor antagonist, and indeed one of the first compounds synthesised, the *p*-fluorobenzyloxime EP 003 (Fig. 2 1), showed

60

weak blocking activity. It inhibited aggregation of human platelets induced by U-46619 in a surmountable manner, without affecting primary wave responses to other agonists such as ADP and platelet-activating factor (PAF). Introduction of other imino groups, such as acylhydrazones and semicarbazones, yielded more potent TP-receptor antagonists (e.g. EP 045)⁵ and after some chemical fine-tuning high affinity specific blockers were obtained (e.g. EP 169, Fig. 21).⁶

Early in the Edinburgh research programme, it was observed that a diphenylmethoxime ω -chain (present in EP 035, Fig. 29) conferred an inhibitory profile quite different to that of the benzyloxime analogue EP 003. EP 035 inhibited aggregation responses induced by all aggregating agents tested, including U-46619, ADP, PAF, adrenaline and collagen. A modest increase in inhibitory potency was achieved by introducing an 8-membered bicyclic ring system as in EP 157 (Fig. 21).⁷ The inhibitory actions of EP 035 and EP 157 were reminiscent of an agent that activates adenylate cyclase in the human platelet, such as prostacyclin or PGD₂, rather than a TP-receptor antagonist. The evidence for mimicry of prostacyclin is summarised below.

2.2 Evidence for activation of platelet IP-receptors by EP 035 and EP 157

The actions of EP 035 and EP 157 were compared with those of prostacyclin (or one of its stable analogues) and PGD_2 on human platelets in functional, second messenger and ligand binding experiments.⁷

- (a) *Aggregation studies:* In human PRP, all of the agents could completely suppress aggregation induced by high concentrations of U-46619, ADP and PAF. The adenylate cyclase inhibitor SQ 22536 partially reversed the inhibitions, whereas it did not affect block of U-46619 aggregation by the specific TP-receptor antagonist EP 045. Complete inhibition of adenylate cyclase is difficult to achieve with SQ 22536, perhaps due to negative co-operativity.⁸ Inhibition of aggregation by PGI₂, EP 035 and EP 157 was also unaffected or slightly enhanced by the DP-receptor antagonist AH 6809 (Chapter 1, Fig. 7), whereas PGD₂-induced inhibition was blocked.
- (b) Adenylate cyclase studies: Iloprost, EP 035 and EP 157 markedly increased cyclic AMP levels in PRP. Adenylate cyclase activity in platelet homogenates, measured by the $[^{32}P]$ -ATP method, was also elevated by EP 035 and EP 157, achieving the same V_{max} as the prostacyclin analogues.
- (c) *Binding studies:* Iloprost, carbacyclin, EP 035 and EP 157 competed for [³H]-iloprost binding to human platelet membranes.
The potency ranking for all three types of measurement was iloprost > carbacyclin > EP 157 > EP 035. The experimental findings were consistent with EP 035 and EP 157 binding to IP-receptors, but not DP-receptors on human platelets, with consequent activation of adenylate cyclase and inhibition of platelet aggregation.⁷

2.3 From octimibate to BMY 42393

In 1990, octimibate (Fig. 22) was reported to be an inhibitor of human platelet aggregation in vitro, and studies similar to those described for EP 035 and EP 157 established it as an IP-receptor agonist.^{9,10} Octimibate was one of a series of compounds being investigated at Bristol-Myers Squibb for cholesterol lowering activity through inhibition of HMG-CoA reductase. Since octimibate is devoid of a ring system typical of the prostanoids, the term ftonprostanoid prostacyclin mimetic" was coined (see 1994 review by Meanwell et al¹¹).

Figure 22. Octimibate, as the first true nonprostanoid prostacyclin mimetic, leading to BMY 42393. The lower structures show that the nature of the heterocycle in BMY 42393 can vary considerably without greatly changing IP agonist potency.

Octimibate has three phenyl groups attached to adjacent positions of an imidazole ring. However, it soon became obvious that only two phenyls, which must be adjacent, are required on the heterocycle for IP agonist activity and this led to the development of BMY 42393 (Fig. 22).¹² There exists a clear structural similarity between EP 035 / EP 157 and octimibate / BMY 42393, and although the former are strictly prostanoids, it is more convenient for discussion to include these EP analogues under the heading of nonprostanoid prostacyclin mimetics.

2.4 The ONO hydronaphthalene series

The third avenue to nonprostanoid prostacyclin mimetics started with an attempt to ascertain whether the cyclopentane ring in the PGE analogue, 3,7-*m*-interphenylene-3-oxa PGE₁ (Fig. 23), is absolutely essential for IP agonist activity on human platelets. It seemed not, since the acyclic analogue shown upper right in Figure 23 displaced [³H]-iloprost binding to human platelet membranes (IC₅₀ 23 μ M).¹³

Figure 23. Development of the tetrahydronaphthalene group of nonprostanoid prostacyclin mimetics from the PGE analogue, 3,7-*m*-interphenylene-3-oxa PGE₁. The 2'-carbon in the tetrahydronaphthalene ring system is asymmetric. As shown lower left, the nature of the heterocycle can be quite critical for IP agonist potency in this series.

After preparation of many analogues, it became clear that high binding affinity for the IP-receptor required the presence of an ω -diphenylmethyl group, and that a diphenylmethoxime (as present in EP 035 and EP 157) and a tetrahydronaphthalene nucleus towards the 1-carboxylate were a particularly effective combination, as in ONO-AP-227 (Fig. 23, lower right).^{13,14}

3. OPTIMISING AGONIST POTENCY

3.1 Orientation of the diphenyl unit

In all three series, analogues with a single aromatic ring at the ω -terminus are either very weak IP agonists or inactive. Also, replacement of one of the benzene rings by a cyclohexyl group abolishes activity as in EP 182, one of a group of 13-azine (-CH=N-N=CR₁R₂) analogues (Fig. 24).¹⁵ These findings point to the essential nature of the diphenyl unit. For optimal binding to the IP-receptor, the evidence points to the phenyl rings being out-of-plane, as shown for the potent azine analogue EP 098 in Figure 24. Planarity due to conjugation is overridden by the need for rotation of the phenyl rings to prevent overlap of their *ortho* hydrogens. EP 079, in which the *ortho* carbons are joined by a single bond to create a planar tricyclic structure, is an order of magnitude less potent than EP 098 (Fig. 24). In the BMY series, the effect of inducing planarity is even is more dramatic; a single bond inserted between the ortho carbons of BMY 42393 to create a phenanthrene-type ring completely destroys IP agonist activity.¹¹

Figure 24. Azine analogues in the EP series demonstrate the importance of the 1,1-diphenyl unit and the out-of-plane orientation of the phenyl rings for IP agonist activity.

3.2 Varying the hetero unit

In 1,1-diphenyl analogues, high IP agonist potency is associated with an unsaturated linear heteroatomic unit such as an oxime; a simple diphenylmethyl ether at the ω -terminus confers low IP agonist potency.¹⁵ In EP 157, there is a preponderance of one of the geometric oxime isomers, probably the *anti* isomer as drawn in Figure 21. However in the ONO series, the groups adjacent to the ketoxime carbon are similar in bulk and the isomers are present in more equal proportions. Careful HPLC separation of the readily interconvertible *syn* and *anti* isomers of the methyl analogue of ONO-AP-227 (Fig. 23) revealed that the *anti* isomer was more potent than the syn isomer.¹⁶ Substituting the oxime unit with a heterocycle can maintain but also reduce IP agonist activity (Fig. 23, lower left).¹⁷ In contrast, in 1,2-diphenyl substituted BMY analogues, considerable variation in the structure of the heterocycle is tolerated (Fig. 22, inset).¹²

3.3 Restricting conformational mobility: BMY 45778

The two-carbon link between the phenyl and oxazole rings of BMY 42393 confers considerable flexibility on the molecule. The Bristol-Myers Squibb chemists have attempted to enhance potency by locking this region in different ways (Fig. 25).

Figure 25. Development of the potent nonprostanoid prostacyclin mimetic BMY 45778. The nature and the stereochemistry of the link between the phenyl and oxazole rings has an important bearing on IP agonist potency.

The much greater potency of the *cis*-ethene analogue (Fig. 25 inset, extreme left) compared to the *trans* ethene and ethyne analogues clearly points to the conformation in which BMY 42393 is drawn in Figure 25.¹⁸ This conformation can be maintained by expanding the *cis* -ethene linkage into a second oxazole ring as in BMY 45778.¹⁹ Indeed, BMY 45778 is one of the most potent of the nonprostanoid prostacyclin mimetics synthesised so far.

3.4 Pharmacophores and receptor-bound conformations

Studies in the BMY series show that the highest IP agonist potency is associated with 7 or 8 methylene units between the heterocycle and the 1-carboxylate.^{19,20} Thus from the findings discussed so far, two closely related nonprostanoid pharmacophores imparting moderate to high agonist activity at IP-receptors can be inferred (Fig. 26).

Figure 26. Upper section: pharmacophores that confer IP agonist activity in the nonprostanoid prostacyclin mimetic series. Lower section: proposed binding of BMY 45778 to the IP-receptor (after Meanwell et al.¹¹ with permission). Oxygen atoms are black; hydrogen atoms are not shown.

In Figure 26, the spatial limits of the diphenyl and carboxylate units are represented by arcs. On the left, the two phenyl groups are attached to adjacent atoms of a heterocycle; this is the 1,2-diphenyl substitution pattern typical of the BMY series. On the right, the two phenyl groups are attached to a single atom, which may be either carbon or nitrogen; this is the 1,1-diphenyl substitution pattern. The single atom is linked to a linear heteroatomic group (e.g. an oxime) in the EP series and to a heterocycle in some of the later ONO and BMY analogues.

Molecular modelling of BMY 45778 based on energy minimisation gives the conformation shown in Figure 26. Again, conjugation does not guarantee planarity: the two oxazole rings are roughly in the same plane but the phenoxy ring is not. The Bristol-Myers Squibb group have proposed that the second oxazole ring in BMY 45778 is more than a locking device and is involved in hydrogen bonding with a specific group in the IP-receptor. 11,19 The reasoning for this is based on the lower potency of an exact isostere of BMY 45778 in which the oxygen and nitrogen of the second oxazole ring are interchanged (Fig. 25 inset, extreme right), and the greater hydrogen bond acceptor capability of oxazolyl nitrogen compared to oxazolyl oxygen. The hydrogen-bond donor in the IP-receptor is thought to be the same group that interacts with the 1 I-hydroxyl of prostacyclin. Structure is indeed critical in this region: a methyl group on the second oxazole ring can be tolerated (Fig. 25 inset), but a corresponding phenyl group cannot ($IC_{50} > 60$ μ M). A phenyl ring in place of the second oxazole also produces a weak IP agonist (Fig. 25 inset).

Unlike the prostacyclin analogue area (see Chapter 2), the effect of chirality on IP agonist potency in the nonprostanoid series has received little attention. This is mainly due to the fact that most of the BMY analogues are achiral. However, in the ONO series, attachment at the 2'-position of the tetrahydronaphthalene nucleus produces an asymmetric centre; the S enantiomer (2'H down) of the methyl analogue of ONO-AP-227 (Fig. 23) was about 10 times more potent than the R enantiomer (2'H up).¹⁶

4. **BIOLOGICAL ACTIONS**

4.1 Receptor subtypes and species differences

Although in vitro aggregation of platelets is inhibited by the nonprostanoid prostacyclin mimetics in all species studied, there are considerable differences in potencies relative to iloprost.^{10,21} Thus human, monkey (cynomolgus), pig and horse platelets comprise a high potency

group, whereas rabbit, rat, guinea-pig, cat, dog and cow platelets form a low potency group (see Chapter 5, Fig. 36). It is well recognised that for a single receptor system the potency of a low efficacy agonist relative to a higher efficacy agonist often decreases as the sensitivity of the preparations to the higher efficacy agonist decreases.²² However, this is unlikely to be the major cause of the species differences observed. For example, on human and horse washed platelets where the IC_{50} values for iloprost (0.15 nM and 23 nM respectively) differ considerably, EP 157 has similar equi-effective molar ratios (EMR) of 54 and 98 respectively; rat washed platelets show an intermediate sensitivity to iloprost ($IC_{50} = 4.7$ nM) but the relative potency of EP 157 is much less (EMR = 3500).²¹ In addition, there were differences between the kinetics of [³H]-iloprost binding to human/horse/pig platelet membranes compared to rabbit/rat platelet membranes in that satisfactory binding assays could only be performed on the latter group when the filtration temperature was reduced from 30°C to 4°C, suggesting a much more rapid dissociation of radioligand-IP-receptor complexes.²¹ Recently, Seiler et al.²³ have reported that IC_{50} values of iloprost for competition with [³H]-iloprost in human and rabbit platelet membranes at 0 - 4°C were similar (61 and 63 nM), whereas the corresponding IC_{50} values of BMY 45778 were 49 and 578 nM. Whether these relative potency differences signify a common difference in the receptor structure of the IP-receptors in the two groups of species is not yet clear.

4.2 Partial agonism at IP-receptors

In spite of what has been discussed in Section 4.1, reduced efficacy does appear to be a characteristic of many of the nonprostanoid prostacyclin mimetics, but it does not always display as a lower functional maximum For example, an analogue of EP response. 157 with а 6oxabicyclo[3.2.1]octane ring could completely inhibit aggregation in human PRP induced by U-46619, PAF and ADP (IC₅₀ range $0.8 - 4.0 \mu$ M). However, it would only raise cyclic AMP levels in human washed platelets by 1.5-fold at 1 µM and 3.0-fold at 10 µM; the log concentration-response curves for cicaprost and EP 157 itself were much steeper with 10 - 15-fold increases in cyclic AMP obtainable at 0.1 and 1 µM respectively.24 Similarly, octimibate had a lower maximum (~60%) for activation of both adenylate cyclase and cyclic AMP-dependent protein kinase compared to iloprost in human washed platelets.¹⁰ In addition, the maximum activity of human platelet membrane GTPase was less for BMY 45778 than for iloprost, and BMY 45778 opposed the action of iloprost in raising GTPase activity (Fig. 27).²³ However, all the nonprostanoids studied so far have produced complete inhibition of human platelet aggregation. The

explanation lies with the exquisite sensitivity of the human platelet to prostacyclin and its close analogues, which may be the result of two factors: a high catalytic efficiency of the IP-receptor/G_s/adenylate cyclase system and a high responsiveness of the protein kinase A system to the generated cyclic AMP (either through a genuinely high molecular sensitivity or through compartmentalisation of the cyclic AMP). Thus, iloprost at about 0.2 nM raises the apparent level of cyclic AMP in human washed platelets by about 50% and this is sufficient to abolish aggregation;²¹ the IP-receptor occupancy at this concentration is about 1% assuming a K_d of 20 nM (see Chapter 5). Since many nonprostanoids can more than double cyclic AMP levels in human platelets, they behave functionally as full agonists.

Figure 27. Agonist profiles of some nonprostanoid prostacyclin mimetics. Upper panels: BMY 45778 on human platelets. Left: inhibition of ADP-induced aggregation in platelet-rich plasma (data derived from an experimental tracing). BMY 45778 is highly bound to plasma proteins and the true inhibition curve probably lies at least one log unit to the left of that shown. Centre and right: stimulation of platelet membrane GTPase (pmol mid⁻¹ mg protein⁻¹ above basal; plasma-free). Data from Seiler et al.,⁹ with permission. Lower panels: EP 157 on pig washed platelets. Left: inhibition of PAF-induced aggregation on preparations with higher (solid line) and lower (broken line) sensitivity to iloprost. Centre and right: elevation of cyclic AMP levels. Data from Armstrong et al.,²¹ with permission.

There are however several situations where a nonprostanoid has clearly shown a lower functional maximum compared to iloprost. In pig washed platelets, the threshold concentration of iloprost for inhibition of aggregation was always similar (~ 0.5 nM), but the slope of the log concentrationresponse curve varied somewhat (Fig. 27, lower left).²¹ On the "steeper preparations", EP 157 completely inhibited aggregation, whereas on the "shallower preparations", inhibition was incomplete even at 20 μ M. In the same study, iloprost raised cyclic AMP levels by at least 20-fold, whereas the maximum elevation to EP 157 was only 1.5 - 2.0-fold (Fig. 27, lower centre), and EP 157 suppressed iloprost's effect on cyclic AMP (lower right). It is possible that in some of the pig platelet preparations more cyclic AMP is required for maximal inhibition of aggregation and when this exceeds twice the resting level, EP 157 behaves as a partial agonist.

Turning to vascular smooth muscle, Figure 28 shows results obtained on human artery ring preparations from different locations. Iloprost showed high relaxant potency on the human pulmonary artery precontracted with phenylephrine (right panel) and BMY 45778, BMY 42393 (not shown) and octimibate behaved as full agonists.²⁵ CU 602, which is related to BMY 42393, showed variable results. On human coronary artery contracted with 45 mM K⁺ (centre panel), iloprost showed moderate relaxant sensitivity and only induced a maximum relaxation of about 60% (the limited relaxant action of IP agonists on K⁺-depolarised vascular smooth muscle is discussed in Chapter 6). Under these conditions, octimibate behaved as a partial agonist, surmountably antagonising the action of iloprost.²⁶

Figure 28. Relaxant profiles on human vascular smooth muscle of nonprostanoid prostacyclin mimetics compared to iloprost. Left: EP 157 on mesenteric artery; right: BMY 45778, octimibate and CU 602 on pulmonary artery. The CU 602 curves are from two separate experiments. Data from Jones et al.,²⁵ Merritt et al.,²⁶ and Armstrong et al.,²¹ with permission.

It should be noted that EP 157 maximally activated adenylate cyclase in human platelet homogenates7 and was close to a full agonist on human mesenteric artery (Fig. 28, left panel).²¹ One needs to be careful not to read too much into small differences in maximal response either of a functional or a second messenger nature, since interference from several sources is possible when the nonprostanoid is present at high concentrations (1 - 30 μM). Firstly, compared to a typical prostacyclin analogue with its polar 11and 1 5-hydroxyls, all the nonprostanoids are highly lipophilic and may exert physiochemical effects on the cell membrane and its integral proteins. Secondly, the 1,1-diphenyl and 1,2-diphenyl units present in the are commonly found in many other classes nonprostanoids of pharmacologically-active molecules such as the α -adrenoceptor antagonists and various morphine analogues.^{1,2} Pertinent to these notions is the observation that in rat neutrophils the azine analogue EP 185 at 10 µM induced a greater maximum inhibition of FMLP-induced aggregation than either cicaprost or BMY 45778.27 Thirdly, the EP₃ agonist activity of a nonprostanoid may be sufficient to oppose its IP agonist activity (see Section 4.5).

4.3 In vivo actions

From the discussion so far, it appears that the nonprostanoid prostacyclin mimetics, like analogues of prostacyclin (see Chapter 2), do not radically discriminate between IP-receptors in platelets and blood vessels of a single species. However, could the "efficacy/post-receptor gain" element generate enough of a difference to allow a nonprostanoid to inhibit platelet aggregation without causing marked peripheral vasodilatation and depression of blood pressure? Published data on this point is rather sparse, but the answer appears to be no. ONO-AP-227 at an intraduodenal dose of 0.3 mg kg⁻¹ in the anaesthetised dog inhibited collagen-induced platelet aggregation (ex vivo), and at 3 mg kg⁻¹ the effect lasted for at least 8 hours 14 The same doses also caused falls in blood pressure with similar durations of action; a peripheral vasodilator action was confirmed by the increase in femoral artery blood flow following close-intra-arterial injection of 3 - 100 µg kg⁻¹ ONO-AP-227. A similar conclusion can be drawn from experiments in the rat where systemic blood pressure and ex vivo inhibition of ADPinduced platelet aggregation were measured after administration of 3 - 30 mg kg⁻¹ ONO-1301 (see Fig. 29 for structure).¹⁴ The long duration of the ONO analogues is partly due to the presence of the phenoxy unit which blocks β oxidation (see Chapter 2 for metabolism of prostacyclin analogues).

4.4 TP antagonism

Since EP 157 evolved from a TP antagonist development project, it was of interest to know whether a 1,1-diphenyl unit at the ω -terminus affords TP-receptor blocking activity. EP 157 did indeed displace [³H]-9, 11-epoxymethano PGH₂ binding to human washed platelets with an IC₅₀ of 3.5 μ M, indicating a low affinity for the TP-receptor.²¹ On human platelets, this activity of EP 157 is unlikely to contribute to inhibition of U-46619-induced aggregation, since its IP agonist activity occurs in the low- to mid-nanomolar concentration range. EP 157 does inhibit U-46619-induced aggregation at slightly lower concentrations than are required against PAF- and ADP-induced aggregation. However, this probably reflects differences in the activation mechanisms of the aggregating agents rather than TP antagonism, since a similar inhibitory profile is seen with selective IP agonists such as cicaprost and iloprost.

TP-receptor antagonism by EP 157 can be observed in smooth muscle preparations lacking IP relaxant systems. Thus, contractile responses of rabbit aorta, dog saphenous vein and guinea-pig trachea to U-46619 were completely blocked by 10 µM EP 157, whereas contractions to noradrenaline on the aorta, clonidine (postsynaptic α_2 -adrenoceptor agonist) on the saphenous vein, and histamine and 16,16-dimethyl PGE₂ (EP₁) agonist) on the trachea were unaffected.²¹ Both the rates of attainment and reversal of TP block by EP 157 were considerably slower than for specific TP antagonists of the EP series (e.g. EP 045). This profile is probably unrelated to the kinetics of binding to the TP-receptor, since (in agreement with the human platelet binding data) the affinities of EP 157 for smooth muscle TP-receptors are only low to moderate; approximate pA₂ values calculated from dose ratios quoted by Armstrong et al.²¹ are 6.1 for rabbit aorta, 7.0 for dog saphenous vein and 6.3 for guinea-pig trachea. A more likely explanation is that EP 157 being highly lipophilic partitions extensively into fatty regions of the smooth muscle cells; the rise to equilibrium concentration in the extracellular fluid in the centre of the muscle mass is slow and on washout this concentration is maintained by agonist released from the cellular reservoir.

TP antagonism by 1,1-diphenyl EP analogues can be maintained or enhanced at the expense of IP agonism by increasing the apparent distance between the diphenyl unit and the 1-carboxylate (Fig. 29). EP 043 and EP 076 have pA_2 values on guinea-pig trachea of 7.5 and 7.8 respectively, while EP 043 has weak IP agonist activity and EP 076 is devoid of IP agonism on human platelets. Conversely, in ridogrel the 1,1-diphenylmethyl/carboxylate distance is much shorter (Fig. 29). This simple azine is a potent TXA synthase inhibitor (see Section 4.5, and a TP antagonist (rat caudal artery $pA_2 = 5.47$), but not an IP agonist as judged by its inability to raise cyclic AMP levels in human PRP at 100 μ M.²⁸⁻³⁰

Figure 29. Changing prostanoid receptor specificity from IP agonism to TP antagonism and to EP_3 agonism. The 3-D fragments show that the 1',5'-disubstituted-dihydronaphthalene nucleus (right) is nonplanar compared to the corresponding naphthalene nucleus (left). In ridogrel and ONO-1301, the presence of the *m*-pyridyl unit confers TXA synthase inhibitory activity.

What of the TP blocking potencies of the BMY and ONO types of nonprostanoid? BMY 45778, BMY 42393, octimibate and CU 602 inhibited U-46619-induced contraction of guinea-pig trachea with IC₅₀ values lying between 1.4 and 3.0 μ M,²⁵ rather weak activity relative to the IC₅₀ of 1.8 nM for the specific TP antagonist GR32191.³¹ ONO-Ap-227 (Fig. 23) and ONO-1301 (Fig. 29) appear to show high selectivity for IP-receptors over TP-receptors on human platelets, having K_i values of 130 and 190 nM for competition for [³H]-iloprost binding and >10 μ M for competition for [³H]-SQ29548 binding.¹⁴

4.5 The switch to EP₃ agonism

In ONO-1301 and ONO-AP-324 (Fig. 29), the central linkage is attached to the 1'-position of the naphthyl unit; the double bond at the 1',2'-position in ONO-1301 confers additional planarity and this is complete in the fully aromatic naphthalene unit of ONO-AP-324. Both ONO-1301 and ONO-AP-234 activate EP₃-receptors and in the case of ONO-AP-324 specificity is high. Its K_i value for the cloned mouse EP₃-receptor expressed in CHO cells is 11 nM, compared to >10 μ M for mouse EP₂-, EP₄- and FP-receptors and human IP- and TP-receptors, and 4.6 μ M for the mouse EP₁-receptor (K. Kondo, personal communication).

Figure 30. Biological activity of nonprostanoid EP_3 agonists on guinea-pig isolated tissues. Top left: inhibition of twitch responses of vas deferens to electrical field stimulation. Top right: relaxant activity against phenylephrine-induced tone on the aorta. Bottom left: ONO-AP-324 contracts the aorta and opposes the action of sulprostone. Bottom right: ONO-AP-324 acts synergistically with phenylephrine on the aorta. Data from Jones et al.,³² with permission.

Activation of EP₃-receptors on postganglionic sympathetic nerve endings in the guinea-pig vas deferens (the archetypical EP₃ preparation) suppresses transmitter release and this is represented functionally by inhibition of twitch responses to electrical field stimulation.³³ ONO-AP-324 behaves as a full agonist in this system and is about 125 and 20 times less active than sulprostone and PGE₂ respectively (Fig. 30).³² ONO-1301 showed weaker EP₃ agonism. Some arterial vessels such as rabbit renal artery,³⁴ human pulmonary artery³⁵ and guinea-pig aorta³² contain contractile EP₃-receptors. ONO-AP-324 contracted human pulmonary artery in the presence of the TP antagonist GR-32191 and was about 125 times less active than the EP₃ standard agonist sulprostone.³² On guinea-pig aorta ONO-AP-324 behaved as a partial agonist, antagonising the action of sulprostone and synergising with phenylephrine (Fig. 30). In contrast, the IP agonist activity of ONO-1301 was dominant on the aorta (Fig. 30).

4.6 Inhibition of thromboxane synthase

Some of the first and most potent TXA synthase inhibitors (e.g. ONO-1581, human platelet microsomes $IC_{50} = 3$ nM), contained a 1-phenyl-1-*m*pyridyl-methyl moiety.³⁶ The ONO prostaglandin team have substituted this unit for the 1,1-diphenylmethyl unit present in ONO-AP-227 and obtained both IP agonism (human PRP: $IC_{50} = 320$ nM) and inhibition of TXA synthase (human platelet microsomes: $IC_{50} = 85$ nM) in the same molecule.³⁷ Enzyme inhibition is greatest when the nitrogen is in the *meta* as opposed to the *ortho* or *para* positions of the pyridine ring, whereas IP agonist potency is little affected. ONO- 130 1, which also contains a 1 -phenyl- 1 -*m*-pyridylmethyl unit (Fig. 29), is a more potent inhibitor ($IC_{50} = 26$ nM).¹⁴ However, this additional property, which was evident in vivo in the rat, was not sufficient to create a non-vasodepressor antithrombotic (see Section 4.3).

5. CONCLUDING REMARKS

The nonprostanoid prostacyclin mimetics offer the potential for more than one prostanoid action of varying intensity within the same molecule, coupled with relative ease of synthesis compared to analogues of prostacyclin. There is also the possibility of obtaining nonprostanoid agonists and antagonists for other prostanoid receptors, such as DP- and TPreceptors and the EP subtypes. Combinatorial chemistry coupled with large scale screening using radioligand binding has the ability to efficiently explore many different functional group combinations. However, the conventional synthetic methods which have been used so far may be more suited to the generation of fused ring systems that explore the rather subtle changes in molecular shape associated with for example the switch from IP to EP_3 agonism in the ONO series.

The K_d of 6 - 10 nM for BMY 45778 in the human platelet [³H]iloprost binding assay^{23,25} demonstrates that nonprostanoid molecules can bind with high affinity to the IP-receptor. Whether one can proceed to a pure IPreceptor antagonist by structural modification within the EP, BMY or ONO series is not known; certainly a blocker has not simply "popped out of the hat" so far

Finally, the nature of the molecular interaction of the nonprostanoids with the IP-receptor could be investigated by the use of chimeric or pointmutated receptors expressed in suitable cell lines (see Chapter 4). One aspect is clear: the diphenyl moiety in the nonprostanoids is not a simple replacement for the ω -chain of prostacyclin, since a hydrid of carbacyclin (α chain and ring system) and EP 157 (ω -chain) is only a weak IP-receptor agonist.³⁸

REFERENCES

- Mimnaugh MN, Gearien JE. "Analgesics." In *Principles of Medicinal Chemistry*, Foye WO, ed. London: Lea & Febiger, 1989;343-358.
- Hite GJ. "Adrenergic drugs." In *Principles of Medicinal Chemistry*, Foye WO, ed. London: Lea & Febiger, 1989;239-275.
- Bundy GL. Synthesis of prostaglandin endoperoxide analogues. Tetrahedron Lett 1975;1975:1957-1960.
- 4. Jones RL, Wilson NH. Partial agonism of prostaglandin H_2 analogs and 11-deoxyprostaglandin $F_{2\alpha}$ to thromboxane-sensitive preparations. Adv Prostaglandin Thromboxane Res 1980;6:467-475.
- Jones RL, Peesapatai V, Wilson NH. Antagonism of the thromboxane-sensitive contractile systems of the rabbit aorta, dog saphenous vein and guinea-pig trachea. Br J Pharmacal 1980;76:423-438.
- Tymkewycz PM, Jones RL, Wilson NH et al. Heterogeneity of thromboxane A₂ (TP-) receptors: evidence from antagonist but not agonist potency measurements. Br J Pharmacol 1991;102:607-614.
- Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol 1986;87:543-551.
- 8. Harris DN, Assad MM, Phillips MB et al. Inhibition of adenylate cyclase in human blood platelets by 9-substituted adenine derivatives. J Cyclic Nucl Res 1979;5:125-134.

- Seiler S, Brassard CL, Arnold AJ et al. Octimibate inhibition of platelet aggregation: stimulation of adenylate cyclase through prostacyclin receptor activation. J Pharmacol Exp Ther 1990;255:1021-1026.
- Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251-259.
- Meanwell NA, Romine JL, Seiler SM. Non-prostanoid prostacyclin mimetics. Drugs Future 1994;19:361-385.
- Meanwell NA, Rosenfeld MJ, Trehan AK et al. Non-prostanoid prostacyclin mimetics.
 Structural variations of the diphenyl heterocycle moiety. J Med Chem 1992;35:3498-3512.
- Hamanaka N, Takahashi K, Nagao Y et al. Molecular design of novel PGI₂ agonists without PG skeleton. I. Bioorg Med Chem Lett 1995;5:1065-1070.
- Kondo K, Hamanaka N. Prostacyclin mimetics with non-prostanoid structures. Folia Pharmacol Jpn 1995;106:181-191.
- 15. Jones RL, Wilson NH, Marr CG et al. Diphenylmethylazine prostanoids with prostacyclin-like actions on human platelets. J Lipid Mediators 1993;6:405-410.
- Hamanaka N, Takahashi K, Nagao Y et al. Molecular design of novel PGI₂ agonists without PG skeleton. II. Bioorg Med Chem Lett 1995;5:1071-1076.
- 17. Nagao Y, Takahashi K, Torisu K et al. Novel nonprostanoid prostacyclin (PGI₂) mimetics with heterocyclic moiety. Heterocycles 1996;42:517-523.
- Meanwell NA, Rosenfeld MJ, Wright JJK et al. Non-prostanoid prostacyclin mimetics.
 Derivatives of 2-[3-[2-(diphenyl-2-oxazolyl)ethyl]phenoxy] acetic acid substituted α to the oxazole ring. J Med Chem 1993;36:3871-3883.
- Meanwell NA, Romine JL, Rosenfeld MJ et al. Non-prostanoid prostacyclin mimetics.
 Structure-activity relationships associated with [3 -[4 -(4,5-diphenyl-2-oxazolyl)-5 oxazolyl]phenoxy]acetic acid. J Med Chem 1993;36:3884-3903.
- Meanwell NA, Rosenfeld MJ, Wright JJK et al. Structure-activity relationships associated with 3,4,5-triphenyl-1*H*-pyrazole-1-nonanoic acid, a non-prostanoid prostacyclin mimetic. J Med Chem 1992;35:389-397.
- Armstrong R4, Lawrence RA, Jones RL et al. Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol 1989;97:657-668.
- 22. Kenakin T. Drugs and receptors. An overview of the current state of knowledge. Drugs 1990;40:666-687.
- Seiler S, Brassard CL, Federici ME et al. β -[4 -(4,5-Diphenyl-2-oxazolyl)-5oxazolyl]phenoxy] acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins 1997;53:21-35.
- 24. Muir G, Jones RL, Will SG et al. Thromboxane receptor active analogues based on the 6-oxabicyclo[3.2.1]octane ring system. Eur J Med Chem 1993;28:609-624.

- 25. Jones RL, Qian YM, Wise H et al. Relaxant actions of non-prostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovas Pharmacol 1997;29:525-535.
- 26. Merritt JE, Brown AM, Bund S et al. Primate vascular responses to octimibate, a nonprostanoid agonist at the prostacyclin receptor. Br J Pharmacol 1991;102:260-266.
- 27. Wise H, Qian YM, Jones RL. A study of prostacyclin mimetics distinguishes neuronal from neutrophil IP receptors. Eur J Pharmacol 1995;278:265-269.
- De Clerk F, Beetens J, de Chaffoy de Courcelles D et al. R 68970: thromboxane A₂ synthetase inhibition and thromboxane A₂/prostaglandin endoperoxide receptor blockade in one molecule-I. Biochemical profile *in vitro*. Thromb Haemostas 1989;61:35-42.
- Janssens WJ, Cools FJS, Hoskens LAM et al. Effect of ridogrel on vascular contractions caused by vasoactive substances released during platelet activation. Thromb Haemostas 1990;64:91-96.
- Hoet B, Arnout J, Deckmyn H et al. Synergistic antiplatelet effect of ridogrel, a combined thromboxane receptor antagonist and thromboxane synthase inhibitor, and UDCG-212, a cAMP-phosphodiesterase inhibitor. Thromb Haemostas 1993;70:822-825.
- Lumley P, White BP, Humphrey PPA. GR 32191, a highly potent and specific thromboxane A₂ receptor blocking drug on platelets and vascular and airways smooth muscle in vitro. Br J Pharmacol 1989;97:783-794.
- Jones RL, Qian YM, Chan KM et al. Characterisation of a prostanoid EP₃-receptor in guinea-pig aorta: partial agonist action of the non-prostanoid ONO-AP-324. Br J Pharmacol 1998;125:1288-1296.
- Hedqvist P. Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. Br J Pharmacol 1976;58:599-603.
- Ahluwalia A, Head SA, Sheldrick RLG et al. Prostanoid receptors mediating contraction of rabbit renal artery. Br J Pharmacol 1988;96:721P.
- Qian YM, Jones RL, Chan KM et al. Potent contractile actions of prostanoid EP₃receptor agonists on human isolated pulmonary artery. Br J Pharmacol 1994;113:369-374.
- Tanouchi T, Kawamura M, Ohyama I et al. Highly selective inhibitors of thromboxane synthetase. 2. Pyridine derivatives. J Med Chem 1981;24:1149-1155.
- Hamanaka N, Takahashi K, Nagao Y et al. Pharmacological evaluation of combined PGI₂ agonists/thromboxane synthase inhibitors. Bioorg Med Chem Lett 1995;5:1087-1090.
- Klar U, Pletsch A. New TXA₂/PGH₂ antagonists based on the carbacyclin skeleton. Bioorg Med Chem Lett 1993;3:199-204.

Chapter 4

Isolation, cloning and characterisation of IP-receptors

1. INTRODUCTION

One of the principal obstacles to the study of IP-receptors has been the lack of highly specific ligands with which to distinguish IP-receptor mediated responses from those due to activation of other prostanoid Thus, a considerable advantage gained from the cloning and receptors. expression of IP-receptors in transfection systems has been the ability to assess the actual potency of nonselective ligands in systems devoid of complications of mixed receptors, as found in most biological systems. The recent comparative ligand binding data of Kiriyama et al.,¹ adapted in Table 2, is invaluable in this respect and should help us to interpret better the data implicating IP-receptor subtypes versus multiple G-protein coupling. This chapter aims to discuss the recent data derived from IP-receptor cloning studies in relation to older data from more classical pharmacological approaches. Much of the confusion concerning the existence of IP-receptor subtypes can now be put in perspective given our more recent knowledge on prostanoid receptor classification, prostanoid drug specificities and the influence of receptor-effector coupling in determining the agonist or antagonist property of many of the prostanoid mimetics.

Although authors have been quick to label their proposed IP-receptor subtypes as IP_1 , IP_2 and IP_3 (see Hébert et al.² and Takechi et al.³), this may lead to confusion with the more well recognised use of IP3 to describe inositol 1,4,5-trisphosphate. The International Union of Pharmacology Committee on Drug Classification and Receptor Nomenclature recognises the possible existence of IP-receptor heterogeneity, but notes the lack of

unequivical experimental evidence. We have decided in this book to refer to the only cloned IP-receptor as the IP₁-receptor. As we shall see in the following sections, the cloned IP₁-receptor has all the properties associated with the well-established antiplatelet and vasorelaxant properties of prostacyclin. For ease of discussion, the novel IP-receptor identified in the rat central nervous system will be referred to here as the IP₂-receptor (see Chapter 11).

-			1	1	
Drug	IP	EP_{I}	EP_2	EP_{3}	EP_4
Cicaprost	10	*	1300	170	*
Iloprost Carbacyclin	$\begin{array}{c} 11\\110\end{array}$	21 *	$\begin{array}{c} 1600 \\ 1600 \end{array}$	22 31	2300 2300
Isocarbacyclin	15	*	1000	31	*
Beraprost	16	*	*	110	*
ONO-1301	47	*	*	740	*
PGE_1 PGE_2	33 *	36 20	10 12	1.1 0.85	2.1 1.9

Table 2. K_i values of prostanoids for mouse cloned prostanoid receptors

Data are K_i values (nM) from ligand binding experiments. *K_i value greater than 10 μ M. Reprinted from Kiriyama et al.,¹ with permission.

The mouse and human IP1-receptor genes have been localised on chromosomes 7 and 19 respectively,⁴ and are phylogenetically related more to EP_2 , EP_4 , and DP-receptors than to EP_1 , EP_3 , FP and TP-receptors,⁵ as would be expected for G_s-coupled receptors. Indeed, a single point mutation in the seventh transmembrane domain (TMVII) of the EP2-receptor (leucine to tyrosine at position 304) results in a 100-fold increase in the activity of iloprost, suggesting that the IP-receptor evolved from the EP₂-receptor.⁶ A significant breakthrough in our understanding of the function of the IP₁receptor, and the possible existence of IP-receptor subtypes, has come from the production of IP_1 -receptor knockout mice.⁷ The gene for the IP_1 -receptor was disrupted in mice by using homologous recombination. The targeting vector was constructed by replacing a 2.4 kb fragment containing parts of the putative exons II and III, which encode the TMVI domain of this seven TMdomain receptor, with the neomycin-resistance gene; this disruption of the gene sequence then prevents gene transcription. Although there was some prenatal mortality in the IP₁-receptor-deficient mice, especially in males, homozygous mice that survived to birth grew normally, lived for more than one year and were fertile. Most importantly when considering IP-receptor subtypes, there was evidence that the IP-receptors in platelets and vascular smooth muscle derive from the same gene. Therefore the search for the Holy Grail of a nonvasodilating, platelet inhibiting IP agonist must be over; the combination is impossible unless one can utilise the tissue-specific nature of partial agonists.

2. IP-RECEPTOR ISOLATION

2.1 Native IP-receptors

Before the successful use of molecular biology techniques to clone and express the IP1-receptor, attempts were made to isolate and characterise IPreceptors using conventional biochemical approaches. Leigh et al.⁸ used radiation inactivation of NCB-20 neuroblastoma cells to determine a molecular weight of approximately 83 kDa for the IP-receptor, and Tsai et al.9 used gel filtration to give an estimate of 150 kDa for the IP-receptor solubilised from human platelets. Ito et al.¹⁰ prepared an irreversible photoaffinity probe [15-3H]-19-(3-azidopheny1)-20-nor isocarbacyclin ([3H]-APNIC) to isolate the IP-receptor from the mouse mastocytoma cell line P-815 and from porcine platelet membranes. [3H]-APNIC specifically labelled a protein of 43 - 45 kDa, and this binding was modulated by GTPyS. A lower molecular weight is apparently often seen using photoaffinity labelling and SDS-PAGE compared with these other methods which appear to measure the association of the receptor with other molecules such as Gproteins.¹⁰ The data obtained from photoaffinity labelling and SDS-PAGE analysis agrees much better with data on the cloned IP₁-receptor;¹¹⁻¹⁶ see Table 3. A broad band around 43 - 45 kDa was observed by fluorography and suggested that the IP-receptor is a glycoprotein;¹⁰ a conclusion that has been substantiated now using the cloned IP1-receptor.¹⁶

2.2 Cloned IP-receptors

Because the IP-receptor was one of the last of the prostanoid receptor family to be cloned, the screening strategy could make use of the observation that there are highly conserved amino acid sequences in the second and seventh transmembrane spanning domains of EP and TP-receptors.¹⁷⁻¹⁹ By using primers corresponding to these conserved sequences, Namba et al.¹⁴ were the first to isolate the mouse IP₁-receptor cDNA using the reverse transcription polymerase chain reaction and hybridisation screening of a cDNA library prepared from P-815 mouse mastocytoma cells. Thereafter, the cDNA for the human and rat IP₁-receptors was rapidly isolated by the same team using cross-hybridisation of cDNA libraries with a probe prepared from the mouse IP1-receptor cDNA.^{12,13,15} Boie et al.¹¹ took a similar approach to Namba et al.¹⁴ to isolate the human IP₁-receptor cDNA; in this case they prepared a [³²P]-labelled probe based on the 9 amino acids (NPILDPWIY) in TMVII of the mouse EP₂-receptor and used this to screen human lung, thymus, and small intestine cDNA libraries. The general

properties of the resulting IP₁-receptor cDNA expressed in COS and CHO cells are summarised in Table 3. It is interesting to note that although the first IP-receptor to be cloned was isolated from a mouse mastocytoma cell line, there is no evidence for a functional role for IP-receptors in mast cells in general. High concentrations of cicaprost can inhibit histamine release from activated rat peritoneal mast cells, but this is unlikely to be due to activation of IP₁-receptors.²⁰

	Human ¹²	Human ¹³	Human ¹¹	Cow^{21}	Mouse ¹⁴	Rat^{15}
Source of cDNA	CMK cells	lung	lung	liver	P-815 cells	lung
Number of amino acids	386	386	386	385	417	416
Deduced Mol. Wt.	40,956	40,956	40,961	41,247	44,722	44,662
Cell line for expression	СНО	COS-7	COS-M6	nd	СНО	COS-7
$K_{d}(nM)^{*}$	3.3	24	1 and 44	nd	4.5	1.3
B _{max} (pmol mg	3.2	5.7	2.0 and 2.3	nd	4.6	1.2

Table 3. Summary data for recombinant IP₁-receptors

CMK cells: megakaryocytic leukaemia cells. P-815 cells: mastocytoma cells.

*[3H]-iloprost binding data. nd; not determined.

The rat IP₁-receptor clone has an N-terminus with 68% amino acid identity to the corresponding region of the mouse IP1-receptor,²² whereas the cow and human homologues have an N-terminus which is 30 amino acids shorter than that of the mouse and rat IP₁-receptors; see Figure 31. The Nterminus may therefore not be important for IP₁-receptor function.¹⁸ From Met-31 to the C-terminal tail, mouse and rat clones have very high sequence homology (98%), whereas the human clone is only 79% identical to mouse and rat; most of this difference lies in the C-terminal tail. The second cytoplasmic loop is completely conserved in cow, human, mouse and rat IP₁receptors which suggests that this region is important for coupling to G_sproteins. In contrast to the cow, mouse and rat IP₁-receptors, the human IP₁receptor has no potential phosphorylation site for cyclic AMP-dependent protein kinase (PKA), although all four clones have consensus sequences for phosphorylation by protein kinase C (PKC). Therefore, the deduced amino acid sequences of these cloned receptors infer membership of the G-proteincoupled receptor superfamily and, in general, the clones from the four species are very similar in their primary structure (Fig. 32), especially in the second cytoplasmic loop. The human IP1-receptor has two potential *N*-glycosylation sites at Asn-7 (in the N-terminal tail) and Asn-78 (in the first extracellular loop); see Figure 32. Western blotting of membranes prepared from HEK 293 cells expressing an epitope-tagged human IP1-receptor resolved as a broad complex with a molecular mass ranging from 44 to 62 kDa.¹⁶ When treated with PNGase F to deglycosylate the receptor, the major band then appeared at 39 kDa.

	<u>I</u>	
hIP	MADSCRNLTYVRGSVGPATSTLMFVAGVVGNGI	A
CIP	******D*******************************	* *
mIP	MKMMASDGHP-GPPSVTPGSPLSAGGREWQG**G**W*I***QD******************************	• *
rIP	MVASGGRPDGPPSITPESPLIVGGREWQG**G**W*I***QD******************************	* *
	<u>II</u>	
hIP	LGILSARRPARPSAFAVLVTGLAATDLLGTSFLSPAVFVAYARNSSLLGLARGGPALCDAFAFA	١M
CIP	****G***HS*************GV*****C*****A*************	* *
mIP	****G***RSH*****************************	* *
rIP	****G***RSH****************C*****************	* *
	III IV	
hIP	TFFGLASMLILFAMAVERCLALSHPYLYAOLDGPRCARLALPAIYAFCVLFCALPLLGLGOHOO	YC
CIP	**************************************	**
mIP	**************************************	**
rIP	**************************************	• *
	v	
hIP	CPGSWCFLRMRWAQPGGAAFSLAYAGLVALLVAAIFLCNGSVTLSLCRMYRQQKRHQGSLGPRI	PR.
cIP	******I***S*E***C**L****S******V*********************	* *
mIP	******I***S****C*****S*M***TS**F*****YH****R**H**FV*TS	3*
rIP	**************************************	3*
hIP	TGEDEVDHLILLALMTVVMAVCSLPLTIRCFTQAVAPDSSSEMGDLLAFRFYAFNPILDPW\	/F
CIP	A*****************GI*******PQIRG****I****-***************************	r *
mIP	AR****Y********************************	* *
rIP	AR****Y******GI**********G***I***-*R****H****N************************	< *
hIP	ILFRKAVFORLKLWVCCLCLGPAHGDSOTPLSOLASGRRDPRAPSAPVGKEGSCVPLSAWGEGC	v
CIP	*****S*******F***YSR**O***R*S***S***K*SS**P*LE**K*NW**********	G
mIP	*************F*L****ARSV***L*A***RP*******P**TSLOA****W****S**T**	*
rIP	**************************************	*
	-	
hIP	EPLPPTQQSSGSAVGTSSKAEASVACSLC 38	6
CIP	G**PAVQLPT*T***P***GSEA***** 38	5
mIP	A**TAV*LTGGD*CS**MP**S**IA**** 41	.7
rIP	A**TAV*LSGGD*CS**MP**T**V***** 41	.6

Figure 31. Comparison of amino acid sequence of cow (c), human (h), mouse (m) and rat (r) IP₁-receptors. Identical amino acid residues are indicated by asterisks. Positions of the putative transmembrane domains I to VII are indicated above the sequences. Reprinted from Katsuyama et al.¹² and Sasaki et al.,¹⁵ with permission, and data from Hasse et al.²¹

Although the overall homology of prostanoid receptors with other rhodopsin-type receptors is not high (about 10 - 20% homology with adrenergic and muscarinic receptors), they have several features in common:¹⁹ (1) asparagine residue(s), which are putative N-glycosylation sites, are conserved in the N-terminus of the extracellular portion of all prostanoid receptors, (2) there are two cysteine residues in the first and second extracellular loops which are presumably required for maintenance of appropriate structure, and (3) there are serine and threonine, i.e. putative phosphorylation sites, widely distributed in the cytoplasmic portion of prostanoid receptors. The second extracellular loop and TMVII of all prostanoid receptors have 22 highly conserved amino acid residues, of which eight are nonvariable.¹⁷ Using the human IP₁-receptor as an example, the important region of the second extracellular loop has PGSWCFL, and TMVII has **R**FYAFNPIL**DPW**VFI (the bold letters represent the invariable amino acids). Comparing the transmembrane segments of TP, EP₃ and β_2 receptors, it seems that the transmembrane segments of prostanoid receptors are more hydrophobic than the adrenergic receptor, which is consistent with the hydrophobic nature of prostanoid molecules, and suggests that their alkyl chains interact with these regions.²³

Figure 32. Diagram showing the predicted configuration of the human IP₁-receptor. Putative membrane spanning regions are shown in the shaded region. Potential PKC phosphorylation sites are shown in black. *N*-Linked glycosylation sites in the N-terminus and the first extracellular loop are indicated with a *Y*. Reprinted from Smyth et al.,¹⁶ with permission.

3. [³H]-ILOPROST BINDING

3.1 Native IP-receptors

[³H]-Iloprost is the most frequently used radioligand in IP-receptor studies, due to its increased specificity towards IP-receptors, its increased stability and reduced level of nonspecific binding compared with [³H]-PGI ₂. However despite this, there are problems when using [³H]-iloprost at concentrations greater than 30 nM for Scatchard plot analysis. At these high concentrations, an appreciable component of the displaceable [³H]-iloprost binding has been identified as due to a very high capacity, low affinity, nonreceptor site in neuroblastoma cells.^{24,25} The association of [³H]-PGI ₂ and [³H]-iloprost to binding sites in vitro is rapid. Even at 0°C almost complete saturation of [³H]-PGI ₂ binding to bovine platelet membranes is reached after only 10 min,²⁶ and 30 sec is sufficient for [³H]-iloprost binding to pig aorta membranes at $37^{\circ}C.^{27}$

Prior to the cloning of the IP₁-receptor, human platelet membranes served as the most popular source of IP-receptors for binding studies, with [³H]iloprost having typical equilibrium dissociation constants (K_d) of 8 - 20 nM (see Table 4). Occasionally both [³H]-iloprost and [³H]-PGI ₂ can recognise two binding sites (Table 4) and in human platelets, PGE1 and 6B-PGI1 can interact with both.²⁸ In this latter case, there is some evidence that there is a biological response (increased cyclic AMP) associated with this low affinity site in platelets. In contrast, prostacyclin activates guinea-pig lung adenylate cyclase, probably in small pulmonary blood vessels,²⁹ at concentrations appropriate to the high affinity [3H]-PGI 2 binding site, and no biological role for the lower affinity species has been identified.³⁰ It is important to remember that [³H]-iloprost can also bind with moderately high affinity to EP_1 and EP_3 -receptors (Table 2). Therefore, although specific [³H]-iloprost binding has been observed in the membrane fraction from bovine heart,³¹ this may not necessarily represent binding to an IP-receptor. For example, this [³H]-iloprost binding was displaced with higher potency by PGE₁ and PGE_2 than by iloprost, therefore it could conceivably represent [³H]-iloprost binding to the EP₃-receptor as there is evidence of EP₃-receptor mRNA in human.^{32,33} mouse³⁴ and rabbit hearts.³⁵

Species	Tissue preparation	Ligand	K_d	Ref.
		-	(nM)	No.
Human	cloned in CHO cells	[³ H] -iloprost	3.3	12
	cloned in COS-7 cells	[³ H] -iloprost	24	13
	cloned in COS-M6 cells	[³ H] -iloprost	1& 44	11
	cloned HA-IP-receptor in HEK	[³ H] -iloprost	0.4& 75	16
	293 cells			
	platelets	[³ H]-iloprost	8.2, 9.7,	9,36-40
			12.9,14,	
			16.6, 19.6	
	platelets	[³ H]-PGI ₂	6.5 & 400,	26,28
			63	
	platelets*	[³ H]-PGI ₂	12.1 & 909	41
	MEG-0 1 cells (megakaryocyte)	[3H]-iloprost	1.2 & 950	37
	CML basophils*	[3H]-iloprost	0.5 & 27	42
Rat	cloned in COS-7 cells	[3H]-iloprost	1.3	15
	platelets	$[^{3}H]$ -PGI ₂	55	26
	CNS; nucleus tractus	[³ H]-iloprost	6.8	3
	solitarius†			
	CNS; nucleus tractus	[³ H]-isocarb.	3.9	3
	solitarius†			
	CNS; thalamus?	[3H]-iloprost	159	3
	CNS; thalamus?	[³ H]-isocarb.	7.8	3
	CNS; rostral cortex†	[³ H]-15R-TIC	<1 & ~30	43
Mouse	cloned in CHO cells	[³ H]-iloprost	4.5	14
	cloned HA-IP-receptors in	[3H]-iloprost	13	44
	COS-7 cells			
	P-815 cells (mastocytoma)	[³ H]-APNIC	4.7	10
Rat/	NG108-15 neuroblastoma cells	[3H]-iloprost	10*	24
Mouse				
Mouse/	NCB-20 neuroblastoma cells	[³ H]-iloprost	5.1, 10,*	8,24,25,36
Hamster			10,* 29.9	
	NCB neuroblastoma cells	$[^{3}H]$ -PGI ₂	16.6, 18.1	45,46
Guinea-	lung	[³ H]- PGI ₂	16 & 258	30
pig	-			
Rabbit	oxyntic mucosa cells*	[³ H]-iloprost	0.11 & 70	47
Dog	platelets	[³ H]-PGI 2	42	26
Pig	aorta smooth muscle	[³ H]-iloprost	22.4	27
Cow	coronary artery	[3H]-iloprost	21 & 750	48
	platelets	[³ H]-PGI 2	7 & 320	26

Table 4. A selection of IP-receptor binding data from various tissues

All data are from membrane preparations, except those marked (*) which are from whole cells, and (†)slice preparation for autoradiography. **Additional low affinity, high capacity, binding site. HA-humadmouse IP₁-receptors have been constructed with the tag of a haemagglutinin epitope from the human influenza virus. [³H]-APNIC is [15-³H]-19-(3-azidophenyl)-20-nor isocarbacyclin. [³H]-isocarb. is [³H]-isocarbacyclin. [³H]-15R-TIC is [³H]-15R-16-*m*-tolylisocarbacyclin.

87

In view of the finding that the cloned human IP₁-receptor can also display two binding components for [³H]-iloprost, ^{11,16} it is unlikely that the lower affinity component of the native receptor represents a second distinct IPreceptor or an EP-receptor. Instead, it is feasible that we are looking at the consequence of using an agonist as the radioligand in these IP-receptor binding studies. For G-protein coupled receptors, the equilibrium between low and high affinity conformations of the receptor is regulated by the activation state of the G-protein. High concentrations of the GTP-bound form of the G-protein will reduce the affinity of the receptor for the agonist, with a resultant decrease in [³H]-agonist binding. For example, in IC2 mast cell membranes, the binding of [³H]-iloprost (10 nM) decreased from 357 fmol mg protein⁻¹ to 69 fmol mg protein⁻¹ in the presence of GTP γ S.49 This loss of [³H]-iloprost binding is most likely due to a decrease in binding affinity as in MEG-01 cells, which display two binding sites for [³H]iloprost, the high affinity site is lost in the presence of GTP γ S.37

iloprost, the high affinity site is lost in the presence of GTPγS.37 Eggerman et al.⁵⁰ have suggested that the variability in reporting one or two affinity binding sites for [³H]-PGI ₂ binding to human platelets may depend both on their method of isolation, and the manner in which the nonspecific component of binding has been accounted for. Another matter to consider is the possible presence of an anti-IP-receptor antibody in the circulation of the blood donors. For example, Kahn et al.⁵¹ have demonstrated the presence of such an antibody in the serum of patients with chronic spinal cord injury, and this antibody preferentially binds to the high affinity binding site for [³H]-PGE₁. Furthermore, it seems that activation of the high affinity state of the IP-receptor is responsible for the inhibition of platelet-stimulated thrombin generation, while activation of the low affinity site results in cyclic AMP accumulation (see Chapter 5, Section 3.1, for further details).

The hydrolysis of prostacyclin to 6-oxo PGF₁ results in almost complete loss of binding activity in guinea-pig lung,³⁰ along with the inability to stimulate adenylate cyclase in guinea-pig lung³⁰ and NCB-20 neuroblastoma cells.⁵² The inactivity of 6-oxo PGF₁ illustrates the importance of the enol ether moiety of prostacyclin for receptor binding, as discussed more fully in Chapter 2. In this context, reduction of the 5,6-double bond in prostacyclin to give 6p-PGI₁ destroys the unique planar stereochemistry of the C4-C7 region and also results in significant loss of binding affinity to guinea-pig lung membranes.³⁰ However, some PGI₁ analogues, such as SM-10906, show high affinity binding (IC₅₀ 20 nM) to the IP-receptor in mouse mastocytoma P-815 cells.⁵³ Interestingly, the methyl ester of SM-10906 (SM-10902) behaves as a partial agonist; the esterification not only reduces the binding affinity (IC₅₀ 2000 nM), but appears to reduce its efficacy as well. Esterification also reduces the binding affinity of SM-10902 by 7 - 20fold in human platelets, and umbilical vein and arterial endothelial cells.⁵⁴ The methyl ester analogue (TEI-9090) of isocarbacyclin (TEI-7165) shows a 40-fold loss in binding affinity in P-815 cell membranes, providing further evidence that a free carboxyl group on the prostanoid a-chain is essential for efficient binding to the IP-receptor.⁵⁵

The higher affinity of PGE₁ relative to PGE₂⁵⁰ probably means that the highly mobile α -side chain of PGE₁ can adopt a conformation that is unobtainable by the more conformationally-restricted PGE₂, and more closely resembles prostacyclin. Similar structure-activity-relationships have been reported for activation of adenylate cyclase in NCB-20 neuroblastoma cells.⁵²

3.2 Cloned IP-receptors

The binding properties of the cloned IP₁-receptors have been studied using [³H]iloprost, and are summarised in Tables 3 and 5. The cloned mouse and rat IP₁-receptors display a single class of [³H]-iloprost binding site with K_d values of 4.5 and 1.3 nM, respectively.^{14,15} Although both Katsuyama et al.¹² and Nakagawa et al.¹³ also found a single class of [³H]-iloprost binding site for the human IP₁-receptor (K_d values of 3.3 and 24 nM, respectively), Boie et al.¹¹ reported that the binding profile could be best fitted with a two-site model yielding K_d values of 1 and 44 nM. Two populations of iloprost binding sites with different affinities have been reported elsewhere but in one of these studies,¹⁶ the same human IP₁-receptor cDNA was used as described by Boie et al.¹¹ As noted in Section 3.1 above, the full significance of this second [³H]iloprost binding site remains to be clarified.

The binding affinities of the major prostanoid ligands are similar for human, mouse and rat IP₁-receptors expressed in COS-M6, COS-7 or CHO cells; they compete with [³H]iloprost binding in the following order: cicaprost \geq iloprost > PGE₁ = carbacyclin >> PGD₂ = PGE₂ = STA₂ or U-46619 (TP-receptor agonists) > PGF_{2a}. Although the overall pattern of responses to prostanoid ligands is similar, the data in Table 5 would indicate the existence of species differences with regard to the affinity of PGE₁ and carbacyclin for IP₁-receptors. Thus, both PGE₁ and carbacyclin compete with higher potency for [³H]iloprost binding to the cloned mouse and rat IP₁-receptors when compared with the human IP₁-receptor. Similar species differences can be seen when looking at the ability of IP agonists to inhibit platelet aggregation, where carbacyclin is clearly more potent in inhibiting rat platelet aggregation compared with human platelet aggregation;⁵⁶ see Chapter 5, Section 3.3 for further discussion. Furthermore, iloprost and carbacyclin showed similar potencies in competition for [³H]-iloprost binding^{8,36} and for stimulation of cyclic AMP production³⁶ in NCB-20 neuroblastoma cells (mouse/hamster hybrid). However, carbacyclin was at least 10-fold less potent than iloprost in both competition for [³H]-iloprost binding and stimulation of adenylate cyclase activity in human platelets.³⁶ In contrast to the relatively higher potency of PGE₁ and carbacyclin in rodents, octimibate and related compounds are 10 - 50-fold less potent in inhibiting rat and rabbit platelets compared with human platelets.^{40,57,60} Our own preliminary studies indicate that in COS-7 and CHO cells transiently expressing the mouse IP₁-receptor, cicaprost and iloprost have EC₅₀ values of approximately 9 nM in stimulating adenylate cyclase activity, but the nonprostanoid prostacyclin mimetic BMY 45778 is 35-fold less potent. At the present time, we have no comparable data for the potency of non-prostanoid prostacyclin mimetics on the human IP₁-receptor.

ugomoto	Human ¹²	Human ¹³	Human ¹¹	Mouse ¹⁴	Rat ¹⁵
[³ H]-iioprost concentration	~20 nM	~20 nM	4nM	20 nM	20 nM
Iloprost	20	60	4 ± 0.14	30	20
Cicaprost	30	60		20	20
Carbacyclin	2,000		431 ±71	600	
PGE ₁	3,000	2,000		200	300
PGE ₂	>10,000	>10,000	-10,000	>10,000	8,000
PGD ₂	>10,000	>10,000	>30,000	>10,000	>10,000
STA ₂	9,000	>10,000		>10,000	8,000
U-466 19			>30,000		
PGF _{2a}	>10,000	>10,000	>30,000	>10,000	>10,000

Table 5. Competition binding data for recombinant IP₁-receptors; IC₅₀ values for prostanoid agonists

Except for data from Boie et al., 11 the IC₅₀ values (nM) have been estimated directly from graphs of the original data.

3.3 Mutant prostanoid receptors

All prostanoid receptors have arginine residues at identical positions in TMVII.²³ In rhodopsin, a lysine residue is present at an analogous position and makes a Schiff base with its ligand, all-*trans*-retinal. Based on this analogy and the fact that the α -carboxyl group is essential for the biological activities of most prostanoids, it has been suggested that this arginine residue in TMVII serves as the binding site for the α -carboxyl group of prostanoids. No site-directed mutagenesis studies have been reported yet for the IP₁-receptor, but we may infer some properties of this receptor from information on other prostanoid receptors. Substitution of arginine 302 in TMVII of the

EP₂-receptor with a neutral residue (glutamine) or a negatively charged residue (glutamate) resulted in a loss of activity for this receptor.⁶ When the positively charged Arg-309 (TMVII) of the mouse EP_{3α}-receptor was replaced with glutamate (neutral), valine (neutral) or lysine (positively charged), only the lysine mutant maintained PGE₂ binding.⁶¹ Similar modifications of the bovine EP3D-receptor also highlight the important role for a charged residue at Arg-332 (TMVII) in relation to the selectivity of G-protein coupling. The interaction between theα-caboxylic acid of the prostanoid agonist and the Arg-332 of EP3D-receptor was not essential for G_i coupling, but was necessary for coupling to G_s and for changes in Ca²⁺ signalling.^{62,63}

The mouse IP₁ and DP-receptors show relatively high homology, with 58% identity in the transmembrane domains, therefore chimeric IP₁/DPreceptors have been made in order to study the domains conferring ligand binding specificity.⁴⁴³H]- PGE₁, but not [³H]-PGE₂, bound with high affinity ($K_d = 27$ nM) to the IP 1-receptor. When the region from TMVI to the C-terminus of the IP₁-receptor was replaced with that of the DP-receptor, then $[{}^{3}H]$ -PGE ₂gained the ability to bind with high affinity (K_d = 40 nM); together the results suggest that the region from TMVI to TMVII confers the specificity of this IP₁-receptor to bind PGE₁ and not PGE₂, i.e. it recognises the a-chain configuration. The other distinguishing feature of prostanoids is their cyclopentane ring structure, and from the IP₁/DP-chimeric receptor studies, it seems that the DP-receptor is much stricter in its recognition of the cyclopentane ring than is the IP₁-receptor. In addition, the binding pocket of the IP₁-receptor for the cyclopentane ring of prostanoid molecules is localised in a region containing the first to the third TM domains. Another striking result from these chimeric receptor studies was the influence of the Thus, when the C-terminal tail of the IP₁-receptor was C-terminal tail. replaced with that of the DP-receptor, then we see a 10-fold increase in binding affinity for both [³H]-iloprost and [³H]-PGE₁. Although several residues of TMVII were also replaced, seven of these nine residues remained unchanged with the majority of changes being in the C-terminal tail itself. The influence of the DP-receptor C-terminal tail on the binding affinity of the IP₁-receptor was lost when TMVI and TMVII of the IP₁-receptor was replaced with the corresponding regions of the DP-receptor.

4. G-PROTEIN COUPLING

4.1 Native IP-receptors

Multiple signalling pathways for IP-receptors have been noted in a variety of normal and transformed cell lines, providing constant speculation to the existence of IP-receptor subtypes. It is notable that in normal cells, e.g. rat dorsal root ganglion (DRG) cells in vitro,⁶⁴ and in transformed cell lines.^{37,65,66} IP agonist potencies for stimulating cyclic AMP and IP₃ production and increasing Ca²⁺ mobilisation are similar, but the sensitivity of the adenylate cyclase response is a 1000-fold higher than phospholipase C (PLC) activation in transfected cells;^{12,14,16} see Figure 33.

In isolated perfused rabbit cortical collecting ducts, iloprost and carbacyclin inhibit vasopressin-stimulated water conductivity $(AVP-Lp)^2$ In an attempt to identify the receptor mediating this action of these IP agonists, Hébert et al.² proposed the existence of three subtypes of IP-receptor: IP₁receptor coupled to increases in IP₃ and $[Ca^{2+}]_i$, presumably via PLC; IP₂-receptor coupled to G, and cyclic AMP production; while the IP₃-receptor coupled to decreases in cyclic AMP, and was responsible for the inhibition of AVP-Lp. Given the lack of suitable receptor antagonists to help identify the site of action of iloprost and carbacyclin, evidence from crossdesensitisation studies with PGE₂ was used as evidence that the IP agonists were not acting on EP-receptors. However, it is still possible that we are looking at the multiple G-protein coupling of IP-receptors, in this case the IP-receptor could be coupling to G_q to cause an increase in $[Ca^{2+}]_{i}$. Furthermore, the existence of a novel IP₃-receptor mediating the inhibition of AVP-L p may also be premature because this is a well known property of EP₃-receptor activation, and as shown in Table 2, both iloprost and carbacyclin have relatively high affinity for EP₃-receptors.

HEL cells (human erythroleukaemia cells) are often used as a model of platelet/megakaryocyte function. In these cells, IP agonists can increase both cyclic AMP and $[Ca^{2+}]_{i}^{67}$ In fact, one group have reported that iloprost and cicaprost increase $[Ca^{2+}]_{i}^{67}$ In fact, one group have reported that iloprost and cicaprost increase $[Ca^{2+}]_{i}^{67}$ is due to mobilisation from internal stores and influx from the extracellular space, is not mimicked by dibutyryl cyclic AMP and is pertussis toxin-insensitive, Schwaner et al.⁶⁸ concluded that the IP agonist effects were due either to the presence of IP-receptor subtypes, or to a tumour cell-associated aberration in receptor-effector coupling. Current evidence from the cloned IP₁-receptors would suggest that we are looking here again at multiple G-protein coupling by an IP-receptor, i.e. coupling to both G_s and G_q. In other human megakaryocyte leukaemia

cell lines (CMK and MEG-0l), PGE₁ and iloprost also increase [Ca ²⁺]_i by a mechanism independent of cyclic AMP and which is also pertussis toxininsensitive,^{37,70} but it is important to note that in platelets themselves, there is no evidence for IP-receptor mediated increases in $[Ca^{2+}]_{i}$.³⁷ More recent evidence suggests that in some HEL cell lines, the Ca²⁺ mobilisation response to IP agonists does not occur at the same concentrations needed to stimulate adenylate cyclase.⁷¹ To complicate matters further, iloprost appears to activate a G_s-coupled receptor to cause Ca²⁺ mobilisation, whereas PGE₁ can activate both this receptor (presumably the IP₁-receptor) and another (novel) G_i-coupled prostanoid receptor to increase [Ca ²⁺]_i; see Chapter 5, Section 3.6, for further details.

The effectiveness of prostacyclin as an adipogenic agent is related to its ability to induce an increase in both intracellular cyclic AMP and $[Ca {}^{2+}]_i$ in preadipocytes (rat adipose precursor cells, mouse Ob177 1 and 3T3-F442A cells).⁷² The carbacyclin-induced increase in $[Ca {}^{2+}]_i$ in Ob1771 cells was independent of changes in cyclic AMP, yet did not involve IP₃ or DAG, and occurred over a similar concentration range (EC₅₀ values of 200 nM and 300 nM for stimulation of cyclic AMP and $[Ca {}^{2+}]_i$, respectively).⁷³ Differentiated 3T3-F442A cells lose their ability to produce cyclic AMP in response to carbacyclin,⁷³ so that while in rat, mouse and man, prostacyclin affects adipose precursor cells, it has no effect on adipocytes. In contrast, PGE₂ exclusively affects adipocytes. Prostacyclin therefore may play a specific role in the development of adipose tissue in vivo.

IP agonists act on preadipose cells (Ob1771 and 3T3-F442A cells) by increasing cyclic AMP and increasing [Ca ²⁺]_i, but carbacyclin additionally acts independently of cell surface receptors, possibly by activating a member of the peroxisome proliferator-activated receptor (PPAR) family.⁷⁴ Carbacyclin appears unique among IP agonists in its ability to regulate the expression of two differentiation-dependent genes in preadipose and adipose cells.⁷⁴ Prostacyclin and prostaglandins also have a cytoprotective action in the central nervous system which does not appear to be mediated by cell surface receptors⁷⁵ or by cyclic AMP⁷⁶

To date therefore, there is no consistent pattern describing the IP₃ and Ca^{2+} elevating properties and pertussis toxin-sensitivities of IP-receptors expressed in normal, transformed or transfected cells. The agonist action of PGE₁ at a novel prostanoid receptor in HEL cells,⁷¹ and the possible agonist action of carbacyclin at PPARs mentioned above, only serves to highlight the need for caution in interpreting agonist-based data.

4.2 Cloned IP-receptors

Namba et al.¹⁴ clearly demonstrated that the cloned IP₁-receptor couples to multiple G-proteins (G_s and G_q), rather than using G_s or its $\beta\gamma$ subunits to generate the inositol phosphate response. However, the affinity and efficacy of coupling to G_q is relatively weak,^{12,14} see Figure 33.

Given the promiscuous nature of receptor-G-protein coupling.⁷⁷ one could simply conclude that the IP₁-receptor activates phosphatidylinositol phosphate turnover due to the relatively high expression level of IP₁receptors in transfection experiments (typically 2 - 6 pmol mg protein¹). In spite of this, the G_a-coupled pathway could have a role in normal cells. For example, it could be responsible for the agonist-dependent PKC-mediated phosphorylation of the human IP_1 -receptor, especially as higher concentrations of IP agonist are also required for this process.¹⁶ Iloprost can produce a rapid phosphorylation of the human IP₁-receptor, this being evident within 15 sec with an EC_{50} of 27 nM, and this agonist-dependent phosphorylation is dependent on PKC rather than PKA activity. G-protein coupled receptor phosphorylation is thought to play a key role in receptor desensitisation and in crosstalk between signalling pathways.78 The Cterminal tail may be the site of phosphorylation since conserved potential PKC phosphorylation sites are found in this region of the cow, human, mouse and rat IP₁-receptors at Ser-328.22 Indeed, Ser-328 appears to be the locus of iloprost-induced PKC-mediated rapid phosphorylation of the human IP1-receptor.⁷⁹ Intriguingly, mutation of Ser-328 to Ala-328 (thus preventing PKC-mediated phosphorylation) drastically reduces coupling to PLC activation while leaving coupling to G_s intact.

Figure 33. The response to iloprost of mouse IP₁-receptors expressed in CHO cells. Cyclic AMP (\bullet) production; EC₅₀ 60 pM. IP₃ content (**D**); EC50 150 nM. Adapted from Namba et al.,¹⁴ with permission.

Both TXA₂ and phorbol myristate acetate (PMA)-treated platelets show an attenuated cyclic AMP response to iloprost, and desensitisation of TPreceptors (which couple to PLC) potentiates the cyclic AMP response to iloprost,⁸⁰ which suggests that phosphorylation normally desensitises the IP₁-It is possible therefore that the IP₁-receptor could utilise G₅receptor. coupled pathways for normal cell signalling, but under abnormally high tissue concentrations of prostacyclin, could down-regulate its responsivity via activation of the G_q-coupled pathway leading to agonist-dependent PKCmediated phosphorylation of the IP₁-receptor. It is becoming apparent that IP₁-receptors expressed in transformed cell lines do not always behave the same as those in normal cells. Thus, in cultured mast cells (IC2 cells) and MEG-01 cells,⁸¹ PKC activation enhances, rather than attenuates, IPreceptor-mediated activation adenvlate of cvclase via а calmodulin/MARCKS (myristoylated alanine-rich C kinase substrate) system.49

Given that splice variants of the cytoplasmic tail have been described for other prostanoid receptors, it has been suggested that such variation in the IP₁-receptor may account for its interaction with multiple G-proteins, but to date there is no evidence for splice variants of IP₁-receptors. Furthermore, the single variant of the human^{12,16} and mouse¹⁴ IP₁-receptors expressed in CHO cells or HEK 293 cells was capable of interacting with more than one signalling pathway, with apparent differential affinity for the G-proteins involved. It is unlikely therefore that this multiple coupling is simply an artefact of the transfection systems, as IP-receptor coupling to increases in cyclic AMP, IP₃ and [Ca²⁺]_i have been reported in normal cells^{2,64,73} and transformed cells.^{37,6,5,67-71,73}

By comparison with cloned EP-receptors, we see that the TMVII region rather than the C-terminal tail may be more important in determining selectivity of G-protein coupling, as suggested from data using a chimeric hybrid of rat EP₃ and human EP₄-receptor. In this example, the C-terminal tail of the rat EP₃-receptor was replaced with the C-terminal tail of the human EP_4 -receptor, and the resulting receptor behaved like the native EP_3 receptor; thus the C-terminal tail did not confer G-protein coupling specificity.⁸² Furthermore, a charged residue at Arg-332 (TMVII) in cow EP3D-receptor is clearly important for selectivity of G-protein coupling. Although the interaction between the α -carboxylic acid of the prostanoid agonist and the arginine residue of the EP3D-receptor was not essential for G_i coupling, it was necessary for coupling to G_s and for changes in Ca²⁺ signalling.^{62,63} A similar result is seen for the mouse EP₃-receptor where Arg-338 is critical for G_i activation and substitution of Arg-329 (TMVII) with alanine or glutamate resulted in complete loss of PGE₂ binding and receptor activation.⁸³ Given that the second cytoplasmic loop is highly

conserved in cow, human, mouse and rat IP_1 -receptors, it would be interesting to determine whether this region provides for the specificity of coupling to G-proteins.

5. EVIDENCE FOR IP-RECEPTOR SUBTYPES

To date there is no evidence from IP-receptor cloning studies to indicate the existence of IP-receptor subtypes, so we eagerly await further studies of the IP₁-receptor knockout mice which should clarify this statement. Evidence from classical pharmacological studies has always been complicated by the lack of suitably selective ligands and difficulties in establishing the validity of cross-species comparisons. For example, the 5E and 5Z geometric isomers of carbacyclin showed equal efficacy for increasing cyclic AMP and inhibiting aggregation in human platelets, vet the unnatural 5Z-carbacyclin had lower efficacy for increasing cyclic AMP and inducing relaxation in rabbit mesenteric artery.⁸⁴ It was concluded that different IP-receptors coupled to adenylate cyclase in platelets and vascular smooth muscle, because SZ-carbacyclin could discriminate between them, being a partial agonist at the myocyte but not on the platelet system. However, the human platelet is much more sensitive to IP agonists than the rabbit mesenteric artery; in the carbacyclin study, K_{act} for cyclic AMP production by carbacyclin in the two systems was 0.5 and 8 μ M respectively, and in our hands, functional IC_{50} values for cicaprost were about 0.2 and 10 nM respectively. Thus, instead of truly different receptor subtypes, we may simply be looking at the consequences of different receptor-effector coupling efficiencies of the same receptor, and/or species differences between IPreceptors. In addition, in the rabbit myocyte inhibition of PGE₁-induced activation of adenylate cyclase required 1 - 2 mM 5Z-carbacyclin and one very much doubts the specificity of any antagonism at these very high concentrations.

Similar arguments relating to coupling efficiency and species differences may be applied to another carbacyclin MM-706 (6a-carba-15-cyclohexyl-13,14-didehydro- ω -pentanor PGI₂), which is claimed to discriminate between platelet and vascular IP-receptors.⁸⁵ MM-706 was a full agonist on human platelets (IC₅₀ 250 - 500 nM) yet was completely inactive (at concentrations up to 10 pM) at relaxing the rabbit femoral artery. However, we have found that on the much more sensitive human pulmonary artery preparation (cicaprost IC₅₀ ~1 nM), MM-706 can produce complete relaxation with an IC₅₀ of 700 nM.⁸⁶

Finally, FCE-22176, the 5Z (unnaturally configured) isomer of 6a-carba-13,14-didehydro-20-methyl PGI₂, has been claimed to be a potent IP-

receptor antagonist in tissues where prostacyclin has a contractile effect.87 Thus on guinea-pig trachea, FCE-22176 (100 - 1000 nM) blocked the contractions of the circular muscle induced by prostacyclin ($pA_2 \sim 7$, our calculation), but not those induced by histamine. In contrast, the 5E isomer FCE-22177 contracted the trachea with a potency similar to prostacyclin $(EC_{50} 850 \text{ nM})$. The same authors also showed that both isomers behave as conventional IP agonists on guinea-pig platelets,⁸⁸ with the 5E isomer having the expected greater potency than the 5Z isomer (IC₅₀ 8.6 and 276 nM) (see Chapter 2). Subsequent studies confirmed the IP agonist action of FCE-22 176: [³H]-iloprost binding to human platelet membranes and NCB-20 neuroblastoma cell membranes was inhibited with K_i values of 400 and 280 nM respectively, and adenylate cyclase activity was correspondingly increased with K_{act} values of 174 and 193 nM respectively.⁸⁹ So, is there a distinct IP-receptor in guinea-pig trachea? The answer is probably not. First, the potent and specific IP agonist cicaprost has minimal contractile activity up to concentrations of 10 µM. Secondly, the moderately potent contractile actions of other prostacyclin analogues, such as iloprost (EC_{50} 27 nM) and isocarbacyclin (EC_{50} 66 nM), are due to activation of the highly sensitive EP₁ contractile system in the trachea. Matching contractions to 16,16-dimethyl PGE₂ (standard EP₁ agonist, EC₅₀ 3 nM), iloprost and isocarbacyclin were blocked to similar extents by the EP₁-receptor antagonists SC 19220 and SC 25 191, whereas responses to histamine and the TP agonist U-46619 were unaffected.⁹⁰ Thus, an alternative explanation is that the FCE isomers and prostacyclin are interacting with EP1-receptors on the guinea-pig trachea. The missing piece of information is the effect of FCE-22176 on the contractile activity of 16,16-dimethyl PGE₂ or the more selective EP₁ agonist 17-phenyl- ω -trinor PGE₂ (EC₅₀ 2.2 nM).⁹¹

Octimibate, BMY 42393 and BMY 45778 aroused much interest because of their high affinity for platelet IP-receptors and their novel chemical structures.⁹² Furthermore when compared with iloprost, octimibate had only weak vascular relaxant activity when tested in monkey aorta, and human coronary and mesenteric arteries.⁹³ Unfortunately, when tested in a more appropriate vascular system, i.e. human peripheral resistance vessels, octimibate showed a degree of relaxant activity expected from the platelet data thus helping to dismiss the idea that platelet and vascular IP-receptors were different.⁹³

The methyl ester derivative of PGI₁ analogue SM-10906, i.e. SM-10902, is another example of an IP agonist which is a partial agonist for stimulating cyclic AMP in cell membranes (P-815 cells) yet acts as a full agonist for inhibiting human platelet aggregation.⁵³ There are now an increasing number of IP agonists which are partial agonists for stimulating adenylate cyclase, yet act as full functional agonists for inhibition of platelet

aggregation, for example, EP 157^{94} and those compounds related to octimibate,^{40,57} i.e. BMY 42393⁵⁸ and BMY 45778.⁶⁰ In addition, these compounds consistently behave as partial agonists with regard to stimulation of adenylate cyclase in a variety of tissues, e.g. rat peritoneal neutrophils,⁹⁵ SK-N-SH neuroblastoma cells,⁹⁶ and human lung.⁹³

This long lasting determination to prove that platelet and vascular IPreceptors are examples of IP-receptor subtypes was encouraged by the pharmaceutical desire for a platelet-specific antithrombotic drug. Now that the IP₁-receptor knockout mice of Murata et al.⁷ have clearly shown that the platelet and vascular IP-receptors derive from the same gene, are we left with any other evidence for receptor subtypes? In 1994, Wise et al.⁹⁷ showed that BMY 45778 could distinguish between the IP-receptor on rat neutrophils with that in the rat enteric nervous system (see Chapter 10), and in 1995, Hébert et al.² proposed the existence of three IP-receptor subtypes to explain the complex effects of iloprost in rabbit cortical collecting ducts (see Section 4.1). In 1996, Takechi et al.³ identified a novel binding site for [³H]-isocarbacyclin in rat brain with characteristics quite different from the binding site recognised by [³H]-iloprost. Whether any of these proposed IPreceptor subtypes survive the test of time is a prospect which keeps the field of IP-receptor pharmacology alive.

6. **IP-RECEPTOR REGULATION**

Prolonged activation of IP-receptors on NG108-15 neuroblastoma cells leads to a heterologous form of desensitisation, where there is loss of responsiveness not only to IP agonists, but also to adenosine A_2 agonists and sodium fluoride; the latter directly activating adenylate cyclase.²⁴ It was suggested that this homologous and heterologous desensitisation was most likely mediated by a single process such as co-internalisation of receptors and G-proteins.⁹⁸ Kelly et al.²⁴ proposed that the loss of responsiveness in NG108-15 cells is probably related to the functional loss of $G_{s\alpha}$ in these cells, and in this respect the characteristics of desensitisation resemble those for human platelets following iloprost pretreatment. Early studies suggested that the decreased potency of IP agonists to stimulate adenylate cyclase following prolonged incubation of NCB-20 neuroblastoma cells with carbacyclin was due to a change in IP-receptor binding affinity.⁴⁶ However in these and other studies,⁴⁵ [³H]-PGI ₂ was used which exhibits a high level of nonspecific binding and thus can complicate data interpretation. Later studies with the more useful radioligand [³H]-iloprost found that prolonged incubation (16 h) of NCB-20 cells with carbacyclin,²⁵ actually decreased the B_{max} value for [³H]-iloprost binding sites, but had no affect on binding
affinity. The consequence of this change in the number of $[^{3}H]$ -iloprost binding sites was a decrease in cyclic AMP production in response to IP agonists.

A more recent study of the internalisation and downregulation of the IPreceptor in human platelets confirms that preincubation with iloprost (100 nM for 18 h) decreases the number of [³H]iloprost binding sites, in particular one sees the loss of the high affinity binding component.⁹⁹ This was reflected by a dramatic reduction in the maximal level of cyclic AMP production in response to iloprost, and a reduction in the potency of iloprost as an inhibitor of collagen-induced aggregation. Thus, at 37°C, [³H]-iloprost is internalised by a time-dependent, temperature-dependent and energydependent process in human platelets, reflecting the loss of specific binding sites from the cell surface.⁹⁹ This study concluded that each IP₁-receptor shuttles between the plasma membrane and another compartment transferring some 25 ligand molecules per receptor molecule during the 2 h incubation period. It is likely therefore that IP-receptor internalisation underlies the desensitisation process. Resensitisation of neuroblastoma cells can occur in the absence of IP agonist and this is dependent on *de novo* protein synthesis.²⁵

The pattern of IP agonist-induced receptor desensitisation very much depends on the cell system being investigated. In both NCB-20 and NG108-15 neuroblastoma cell lines, as seen predominantly in platelets, the loss of $[^{3}H]$ -iloprost binding is due to a decrease in B_{max} rather than any change in K_d values.^{24,25,98} However, only homologous desensitisation is seen in NCB-20 cells,²⁴ whereas heterologous desensitisation is found in NG108-15 cells,²⁴ and platelets.^{100,101} In NG108-15 cells, IP agonists induce a biphasic desensitisation of IP-receptor-stimulated adenylate cyclase with an initial phase coinciding temporally with loss of receptors and G $_{s\alpha}$, whereas the second component appears to occur independently of $G_{s\alpha}$ loss.¹⁰² The role of IP-receptor internalisation in the process of IP-receptor downregulation is still far from clear, 99,103-105 although a major component may be due to loss of IP-receptors and $G_{s\alpha}^{102}$ and the increased breakdown of existing receptors.¹⁰⁶ In fact in HEL cells, iloprost-induced desensitisation of the cyclic AMP response is abolished by pertussis toxin treatment, suggesting an involvement of G_i.¹⁰⁷ IP agonist-induced receptor desensitisation also depends on the IP agonist itself. For example, both iloprost and PGE₁ show antimitogenic effects in bovine coronary smooth muscle cells, yet only the response to iloprost shows desensitisation.¹⁰⁸ These results provide yet another example of complications associated with the use of PGE_1 as an IP agonist (see Chapter 5, Section 3.6).

Iloprost can produce a rapid PKC-dependent phosphorylation of the human IP1-receptor which is mirrored by rapid desensitisation of iloproststimulated cyclic AMP and inositol phosphate production.⁷⁹ Truncation of the C-terminal tail of the human IP1-receptor completely prevented this iloprost-induced desensitisation. Similarly, mutant human EP₄-receptors lacking the long C-terminal tail, and therefore also lacking 36 of the 38 serines and threonines which are targets for phosphorylation, also cannot undergo agonist-induced desensitisation.¹⁰⁹ Although PKC appears to be the major phosphorylating and desensitising kinase in human IP₁-receptors overexpressed in HEK293 cells, this may not be the case in cells that normally express these receptors. Smyth et al.⁷⁹ suggest that it remains possible that GPCR kinase (GRK)-mediated phosphorylation of IP₁-receptors is important but presently no data exist on this subject.

In a variety of tissues, activation of TP-receptors has the opposite or antagonistic effect to activation of IP-receptors. The crosstalk between TPreceptor-associated phosphatidylinositol metabolism and IP-receptorassociated adenylate cyclase activation has been studied in several cell types. For example, TP-receptors in platelets can undergo rapid desensitisation in response to TP agonists and in human platelets this results in an enhanced stimulation of the cyclic AMP response to iloprost,⁸⁰ thus potentiating the turn-off signal of the platelet. Surprisingly, although this TP-receptor is linked to PLC, the sensitisation process was not mediated by PKC. In contrast, activation of TP-receptors in the human megakaryocytic cell line MEG-01 augments iloprost-induced cyclic AMP formation, an effect which does appear to be mediated by PKC.⁸¹ The enhanced cyclic AMP formation in turn suppresses TXA₂-stimulated increases in [Ca²⁺],which in turn will lead to increased cyclic AMP levels. In MEG-01 cells and IC₂ cells (mouse mast cell line), the addition of TPA (12-O-tetradecanoylphorbol-13-acetate) markedly enhanced cyclic AMP production in response to carbacyclin.49 Since cow, human, mouse and rat cloned IP₁-receptors have at least two potential PKC-phosphorylation sites (Fig. 32), these might be the target of TP agonist action in IC₂ and MEG-01 cells. However, Watanabe et al.⁸¹ suggest that adenylate cyclase, and not the IP-receptor, is a more plausible target because the TP agonist U-46619 also enhanced forskolin-induced cyclic AMP accumulation. This crosstalk could therefore work as a negative feedback system for [Ca²⁺], mobilisation induced by PLC-coupled agonists. Alternatively, there is evidence for a role for PKC in MEG-01 and IC₂ cells, its target being a component(s) other than those involved in the sequential coupling of IP-receptors, G_s and adenylate cyclase; this component could be MARCKS, a calmodulin-binding protein which releases calmodulin when phosphorylated by PKC, resulting in activation of adenylate cyclase.⁴⁹

7. IP₁-RECEPTOR mRNA DISTRIBUTION

One exciting option available once the IP₁-receptor had been cloned was to look at the distribution of IP₁-receptor mRNA in various tissues, and this is summarised in Table 6. Although the apparent absence of IP₁-receptor mRNA may simply reflect the limitations of the assay system, the presence of IP₁-receptor mRNA in unexpected places was a valuable surprise. Apparent differences exist between IP₁-receptor mRNA distribution in the different species, but it is too early to assess the full significance of these observations. For example, according to Hirata et al.²² mRNA for the IP₁receptor is most abundant in the mouse thymus and spleen, but is undetectable in the human thymus. One can also detect IP₁-receptor mRNA in rat thymus, but it is far more abundant in rat aorta and lung.110 Differences in IP₁-receptor mRNA levels might just reflect different stages of maturation of thymocytes in lymphatic organs of different species. High level expression of IP_1 -receptor mRNA is seen in human liver and kidney, but this time not in mouse tissues.²² The different pattern of IP_1 -receptor mRNA expression seen in human and mouse kidney may reflect the relative abundance of prostacyclin synthase expression in human glomeruli or glomerular cells.¹¹¹ Furthermore, prostacyclin is the main prostanoid in human glomeruli, whereas in rodents, PGE2 appears to be the main prostanoid (see Kömhoff et al.¹¹¹ for further details).

	Human ¹³	Human ¹¹	Mouse ²²	Rat^{22}
Brain	-	-	-	nd
Thymus	-	nd	+++	+
Lung	+++	++	++	+++
Heart	++	+	+	+
Aorta	+++	nd	nd	++
Spleen	+	nd	+++	+++
Stomach	nd	nd	-	+
Liver	±	++	-	nd
Pancreas	nd	+	nd	++
Intestine	+	+	+	+
Kidney	++	+++	-	nd
Testis	nd	nd	-	nd
Adrenal	+	nd	nd	nd
Placenta	+	±	nd	nd
Skeletal muscle	nd	+	nd	nd

Table 6. Distribution of IP₁-receptor mRNA in various tissues

nd; not determined. Reprinted from Hirata et al.,²² with permission.

Human IP₁-receptor mRNA has been detected in a wide range of megakaryocytic (e.g. MEG-01) and megakaryocytic/erythroid (e.g. HEL) cell lines, and in human cord blood megakaryocytes.¹¹² In addition, this IP₁-

receptor mRNA can be upregulated by cytokines involved in megakaryocytopoiesis (see Chapter 5, Section 3.6).

More detailed cellular localisation studies highlighted the presence of IP₁-receptor mRNA, as expected, in the smooth muscle of a variety of mouse arterial tissues,¹¹³ see Table 7. More importantly, these studies furthered our appreciation of the role of IP-receptors by detecting IP₁-receptor mRNA in the mouse¹⁴ and rat spleen and thymus.¹⁵ These experiments, using in situ hybridisation techniques, demonstrated that hybridisation signals were visible only in the medulla and not the cortex of rat thymus, and were predominantly in thymocytes and not stromal cells.¹¹³ The IP₁-receptor mRNA is therefore exclusively present in the thymic medulla where CD4+8- and CD4-8⁺ thymocytes are harboured. Since prostacyclin is produced by thymic stromal cells and IP₁-receptor mRNA is localised to thymocytes and is distributed in lymphocytes in the white pulp of the spleen,¹¹³ then we should look further now for the functional significance of these unexpected observations (see Chapter 8).

Other unexpected results came with the evidence of very high levels of expression of mouse IP_1 -receptor mRNA in the neurones of the DRG.¹¹³ Approximately 40% of neurones in mouse DRG expressed IP_1 -receptor mRNA, and about 70% of the substance P-containing cells co-expressed IP_1 -receptor mRNA. This evidence therefore suggests a role for these IP_1 -receptors in the transmission of sensory signals, as discussed in Chapter 9.

System	Labelled cells	<i>Relative grain</i> <i>densities on cell</i>
		bodies
Cardiovascular	Smooth muscle cells in:	
	aorta	++
	coronary artery	++
	pulmonary artery	++
	cerebral artery	++
	renal artery	++
	renal interlobular artery	++
	renal afferent arteriole	++
Nervous	Dorsal root ganglion neurone	++++
	Spinal cord	+
Respiratory	Trachea	+
Reticulo-endothelial	Mature thymocyte	+
	Spleen lymphocyte	+
	Megakaryocyte	+++

Table 7. Cellular localisation of IP_1 -receptor mRNA in the mouse

Relative grain densities: ++++, very high; +++, high; ++, moderate; +, low; -, background level. Reprinted from Oida et al.,¹¹³ with permission.

REFERENCES

- 1. Kiriyama M, Ushikubi F, Kobayashi T et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997;122:217-224.
- Hébert RL, Regnier L, Peterson LN. Rabbit cortical collecting ducts express a novel prostacyclin receptor. Am J Physiol 1995;268:F145-F154.
- 3. Takechi H, Matsumura K, Watanabe Y et al. A novel subtype of the prostacyclin receptor expressed in the central nervous system. J Biol Chem 1996;271:5901-5906.
- 4. Ishikawa T, Tamai Y, Rochelle JM et al. Mapping of the genes encoding mouse prostaglandin D, E, and F and prostacyclin receptors. Genomics 1996;32:285-288.
- Toh H, Ichikawa A, Narumiya S. Molecular evolution of receptors for eicosanoids. FEBS Lett 1995;361:17-21.
- Kedzie KM, Donello JE, Krauss HA et al. A single amino-acid substitution in the EP₂ prostaglandin receptor confers responsiveness to prostacyclin analogs. Mol Pharmacol 1998;54:584-590.
- 7. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678-682.
- 8. Leigh PJ, Cramp WA, MacDermot J. Identification of the prostacyclin receptor by radiation inactivation. J Biol Chem 1984;259:12431-12436.
- 9. Tsai A, Hsu M-J, Vijjeswarapu H et al. Solubilization of prostacyclin membrane receptors from human platelets. J Biol Chem 1989;264:61-67.
- Ito S, Hashimoto H, Negishi M et al. Identification of the prostacyclin receptor by use of [15-³H₁]19 -(3-azidophenyl)-20-norisocarbacyclin, an irreversible specific photoaffinity label. J Biol Chem 1992;267:20326-20330.
- Boie Y, Rushmore TH, Darmon-Goodwin A et al. Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 1994;269:12173-12178.
- 12. Katsuyama M, Sugimoto Y, Namba T et al. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 1994;344:74-78.
- Nakagawa 0, Tanaka I, Usui T et al. Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation 1994;90:1643-1647.
- Namba T, Oida H, Sugimoto Y et al. cDNA cloning of a mouse prostacyclin receptor. J Biol Chem 1994;269:9986-9992.
- Sasaki Y, Usui T, Tanaka I et al. Cloning and expression of a cDNA for rat prostacyclin receptor. Biochim Biophys Acta 1994; 1224:601-605.
- 16. Smyth EM, Nestor PV, Fitzgerald GA. Agonist-dependent phosphorylation of an epitope-tagged human prostacyclin receptor. J Biol Chem 1996;271:33698-33704.
- 17. Pierce KL, Gil DW, Woodward DF et al. Cloning of the human prostanoid receptors, Trends Pharmacol Sci 1995;16:253-256.
- Negishi M, Sugimoto Y, Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta 1995;1259:109-120.

- Ushikubi F, Hirata M, Narumiya S. Molecular biology of prostanoid receptors; an overview. J Lipid Mediators Cell Signal 1995;12:343-359.
- Chan CL, Lau HYA. Effects of prostanoids on immunologically activated rat mast cells. XXVI Annual Meeting of the European Histamine Research Society 1997;p59.
- 21. Hasse A, Bönisch D, Schrör K. Gene structure and expression of a prostacyclin receptor in vascular smooth muscle cells. Naunyn-Schmied Arch Pharmacol 1997;355:Rl9.
- 22. Hirata M, Ushikubi F, Narumiya S. Prostaglandin I receptor and prostaglandin D receptor. J Lipid Mediators Cell Signal 1995;12:393-404.
- Narumiya S, Hirata N, Namba T et al. Structure and function of prostanoid receptors. J Lipid Mediators 1993;6:155-161.
- 24. Kelly E, Keen M, Nobbs P et al. Segregation of discrete $G_{s\alpha}$ -mediated responses that accompany homologous or heterologous desensitization in two related somatic hybrids. Br J Pharmacol 1990;99:309-316.
- Leigh PJ, MacDermot J. Desensitization of prostacyclin responsiveness in a neuronal hybrid cell line: selective loss of high affinity receptors. Br J Pharmacol 1985;85:237-247.
- 26. Schillinger E, Prior G. Prostaglandin I₂ receptors in a particulate fraction of platelets of various species. Biochem Pharmacol 1980;29:2297-2299.
- Rücker W, Schrör K. Evidence for high affinity prostacyclin binding sites in vascular tissue: radioligand studies with a chemically stable analogue. Biochem Pharmacol 1983;3212405-2410.
- Lombroso M, Nicosia S, Paoletti R et al. The use of stable prostaglandins to investigate prostacyclin (PGI₂)-binding sites and PGI₂-sensitive adenylate cyclase in human platelet membranes. Prostaglandins 1984;27:321-333.
- 29. MacDermot J, Barnes PJ. Activation of guinea pig pulmonary adenylate cyclase by prostacyclin. Eur J Pharmacol 1980;67:417-425.
- MacDermot J, Barnes PJ, Waddell KA et al. Prostacyclin binding to guinea pig pulmonary receptors. Eur J Pharmacol 1981;75:127-130.
- Lerner RW, Lopaschuk GD, Catena RC et al. [³H]Iloprost and prostaglandin E compete for the same receptor site on cardiac sarcolemmal membranes. Biochim Biophys Acta 1992;1105:189-192.
- 32. Schmid A, Thierauch K-H, Schleuning W-D et al. Splice variants of the human EP₃ receptor for prostaglandin E₂. Eur J Biochem 1995;228:23-30.
- 33. Kotani M, Tanaka I, Ogawa Y et al. Molecular cloning and expression of multiple isoforms of human prostaglandin E receptor EP₃ subtype generated by alternative messenger RNA splicing: multiple second messenger systems and tissue-specific distributions. Mol Pharmacol 1995;48:869-879.
- 34. Sugimoto Y, Namba T, Honda A et al. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP₃ subtype. J Biol Chem 1992;267:6463-6466.
- 35. Breyer RM, Emeson RB, Tarng J-L et al. Alternative splicing generates multiple isoforms of a rabbit prostaglandin E₂ receptor. J Biol Chem 1994;269:6163-6169.

- Hall JM, Strange PG. The use of a prostacyclin analogue, [³H]iloprost, for studying prostacyclin-binding sites on human platelets and neuronal hybrid cells. Biosci Reports 1984;4:941-948.
- Watanabe T, Yatomi Y, Sunago S et al. Characterization of prostaglandin and thromboxane receptors expressed on a megakaryoblastic leukemia cell line, MEG-01s. Blood 1991;78:2328-2336.
- 38. Jones RL, Qian Y, Wise H et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol 1997;29:525-535.
- Buritova J, Honoré P, Besson JM. Ketoprofen produces profound inhibition of spinal c-Fos protein expression resulting from an inflammatory stimulus but not from noxious heat. Pain 1996;67:379-389.
- Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251-259.
- 41. Siegl AM, Smith JB, Silver MJ et al. Selective binding site for [³H]prostacyclin on platelets. J Clin Invest 1979;63:215-220.
- 42. Virgolini I, Li S, Sillaber C et al. Characterization of prostaglandin (PG)-binding sites expressed on human basophils. J Biol Chem 1992;267:12700-12708.
- Watanabe Y, Suzuki M, Björkman M et al. Brain uptake of ¹¹C-labelled stable prostacyclin receptor ligand studied by positron emission tomography. Neuroimage 1997;5:A1.
- 44. Kobayashi T, Kiriyama M, Hirata T et al. Identification of domains conferring ligand binding specificity to the prostanoid receptor. J Biol Chem 1997;272:15154-15160.
- 45. Blair IA, MacDermot J. The binding of [³H]-prostacyclin to membranes of a neuronal somatic hybrid. Br J Pharmacol 1981;72:435-441.
- 46. Blair IA, Leigh PJ, MacDermot J. Desensitization of prostacyclin receptors in a neuronal hybrid cell line. Br J Pharmacol 1982;77:121-127.
- Barr DB, Duncan JA, Kiernan JA et al. Binding and biological actions of prostaglandin E₂ and I₂ in cells isolated from rabbit gastric mucosa. J Physiol 1988;405:39-55.
- Town M-H, Schillinger E, Speckenbach A et al. Identification and characterisation of a prostacyclin-like receptor in bovine coronary arteries using a specific and stable prostacyclin analogue, ciloprost, as radioactive ligand. Prostaglandins 1982;24:61-72.
- 49. Sawai T, Negishi M, Nishigaki N et al. Enhancement by protein kinase C of prostacyclin receptor-mediated activation of adenylate cyclase through a calmodulin/myristoylated alanine-rich C kinase substrate (MARCKS) system in IC₂ mast cells. J Biol Chem 1993;268:1995-2000.
- Eggerman TL, Andersen NH, Robertson RP. Separate receptors for prostacyclin and prostaglandin E₂ on human gel-filtered platelets. J Pharmacol Exp Ther 1986;236:568-573.
- 51. Kahn NN, Bauman WA, Sinha AK. Demonstration of a novel circulating antiprostacyclin receptor antibody. Proc Natl Acad Sci USA 1997;94:8779-8782.

- Blair IA, Hensby CN, MacDermot J. Prostacyclin-dependent activation of adenylate cyclase in a neuronal somatic hybrid: prostanoid structure-activity relationships. Br J Pharmacol 1980;69:519-525.
- 53. Oka M, Negishi M, Yamamoto T et al. Prostacyclin (PGI) receptor binding and cyclic AMP synthesis activities of PGI1 analogues, SM-10906 and its methyl ester, SM-10902, in mastocytoma P-815 cells. Biol Pharm Bull 1994;17:74-77.
- 54. Hiroi T, Maruyama K, Hattori K et al. Affinity for [³H]iloprost binding sites and cAMP synthesis activity of a 3-oxa-methano prostaglandin I₁ analog, SM-10906, in human platelets and endothelial cells. Jpn J Pharmacol 1997;74:37-43.
- 55. Tanaka M, Kojima C, Muramatsu M et al. Binding affinities of isocarbacyclin methyl ester and its free acid to prostanoid receptors. Arzneim-Forsch 1995;45:967-970.
- Armstrong RA, Lawrence RA, Jones RL et al. Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol 1989;97:657-668.
- Seiler S, Brassard CL, Arnold AJ et al. Octimibate inhibition of platelet aggregation: stimulation of adenylate cyclase through prostacyclin receptor activation. J Pharmacol Exp Ther 1990;255:1021-1026.
- Seiler SM, Brassard CL, Federici ME et al. 2-[3-[2-(4,5-Diphenyl-2oxazolyl)ethyl]phenoxy]acetic acid (BMY 42393): a new, structurally-novel prostacyclin partial agonist: (1) inhibition of platelet aggregation and mechanism of action. Thromb Res 1994;74:115-123.
- Meanwell NA, Romine JL, Rosenfeld MJ et al. Non-prostanoid prostacyclin mimetics.
 Structure-activity-relationships associated with [3-[4-(4,5-diphenyl-2-oxazolyl)-5-oxazolyl] phenoxy] acetic acid. J Med Chem 1993;36:3884-3903.
- 60. Seiler SM, Brassard CL, Federici ME et al. [3-[4-(4,5-Diphenyl-2-oxazolyl)-5oxazolyl] phenoxy] acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins 1997;53:21-35.
- 61. Huang C, Tai H-H. Expression and site-directed mutagenesis of mouse prostaglandin E₂ receptor EP₃ subtype in insect cells. Biochem J 1995;307:493-498.
- 62. Negishi M, Harazono A, Sugimoto Y et al. Selective coupling of prostaglandin E receptor EP3D to multiple G proteins depending on interaction of the carboxylic acid of agonist and arginine residue of seventh transmembrane domain. Biochem Biophys Res Commun 1995;212:279-285.
- 63. Negishi M, Irie A, Sugimoto Y et al. Selective coupling of prostaglandin E receptor EP3D to G_i and G_s through interaction of α -carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem 1995;270:16122-16127.
- 64. Smith JAM, Amagasu SM, Eglen RM et al. Characterization of prostanoid receptorevoked responses in rat sensory neurones. Br J Pharmacol 1998;124:513-523.
- 65. Oka M, Negishi M, Nishigaki N et al. Two types of prostacyclin receptor coupling to stimulation of adenylate cyclase and phophatidylinositol hydrolysis in a cultured mast cell line, BNu-2c13 cells. Cell Signal 1993;5:643-650.

Chapter 4

- Vassaux G, Gaillard D, Aihaud G et al. Prostacyclin is a specific effector of adipose cell differentiation. J Biol Chem 1992;267:11092-11097.
- Turner JT, Camden JM, Kansra S et al. Potentiation of cyclic adenosine monophosphate production by thrombin in the human erythroleukemia cell line, HEL. J Pharmacol Exp Ther 1992;263:708-716.
- Schwaner I, Seifert R, Schultz G. Receptor-mediated increases in cytosolic Ca⁺² in the human erythroleukaemia cell line involve pertussis toxin-sensitive and -insensitive pathways. Biochem J 1992;281:301-307.
- Schwaner I, Seifert R, Schultz G. The prostacyclin analogues, cicaprost and iloprost, increase cytosolic Ca²⁺ concentration in the human erythroleukemia cell line, HEL, *via* pertussis toxin-insensitive G-proteins. Eicosanoids 1992;5:SIO-S12.
- 70. Adachi M, Ryo R, Yoshida A et al. Elevation of intracellular calcium ion by prostaglandin E_1 and its inhibition by protein kinase C in a human megakaryocyte leukemia cell line. Cancer Res 1989;49:3805-3808.
- 71. Feoktistov I, Breyer RM, Biaggioni I. Prostanoid receptor with a novel pharmacological profile in human erythroleukemia cells. Biochem Pharmacol 1997;54:917-926.
- Vassaux G, Gaillard D, Darimont C et al. Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E₂: Physiological implications. Endocrinology 1992;131:2393-2398.
- 73. Vassaux G, Gaillard D, Aihaud G et al. Prostacyclin is a specific effector of adipose cell differentiation. J Biol Chem 1992;267:11092-11097.
- 74. Aubert J, Ailhaud G, Negrel R. Evidence for a novel regulatory pathway activated by (carba)prostacyclin in preadipose and adipose cells. FEBS Lett 1996;397:117-121.
- 75. Cazevieille C, Muller A, Meynier F et al. Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem Int 1994;24:395-398.
- Cazevieille C, Muller A, Bonne C. Prostacyclin (PGI₂) protects rat cortical neurons in culture against hypoxia/reoxygenation and glutamate-induced injury. Neurosci Lett 1993;160:106-108.
- 77. Kenakin T. The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 1996;48:413-463.
- Premont RT, Inglesse J, Lefkowitz RJ. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J 1995;9:175-182.
- 79. Smyth EM, Hong Li W, Fitzgerald GA. Phosphorylation of the prostacyclin receptor during homologous desensitization. J Biol Chem 1998;273:23358-23266.
- Murray R, Shipp E, Fitzgerald GA. Prostaglandin endoperoxide/thromboxane A₂ receptor desensitization. J Biol Chem 1990;265:21670-21675.
- Watanabe T, Sunaga S, Togo M et al. Protein kinase C plays a key role in the cross-talk between intracellular signalings via prostanoid receptors in a megakaryoblastic cell line, MEG-01s. Biochim Biophys Acta 1996;1304:161-169.
- Neuschaferrube F, Hanecke K, Blaschke V et al. The C-terminal domain of the G_scoupled EP₄ receptor confers agonist-dependent coupling control to G_i but no coupling to
 G_s in a receptor hybrid with the G_i-coupled EP₃ receptor. FEBS Lett 1997;401:185-190.

106

- Audoly L, Breyer RM. Substitution of charged amino acid residues in transmembrane regions 6 and 7 affect ligand binding and signal transduction of the prostaglandin EP₃ receptor. Mol Pharmacol 1997;51:61-68.
- Corsini A, Folco GC, Fumagalli R et al. (5Z)-carbacyclin discriminates between prostacyclin-receptors coupled to adenylate cyclase in vascular smooth muscle and platelets. Br J Pharmacol 1987;90:255-261.
- 85. Ragazzi E, Chinellato A, Lille Ü et al. Pharmacological properties of MM-706, a new prostacyclin derivative. Gen Pharmacol 1995;26:703-709.
- Jones RL, Qian YM, Wong HNC et al. Prostanoid action on the human pulmonary vascular system, Clin Exp Pharmacol Physiol 1997;24:1969-972.
- Fassina G, Froldi G, Caparrotta L. A stable isosterically modified prostacyclin analogue, FCE-22176, acting as a competitive antagonist to prostacyclin in guinea-pig trachea and atria. Eur J Pharmacol 1985;113:459-460.
- Caparrotta L, Ceserani R, Mongelli N et al. Depression and excitation induced in mice by two geometric isomers of (+)13,14-didehydro-20-methyl-carboprostacyclin, FCE 22177 and FCE 22176. Comparison with effects on blood pressure and platelet aggregation. Prostaglandins 1987;33:351-362.
- 39. Wilkins AJ, MacDermot J. The putative prostacyclin receptor antagonist (FCE-22176) is a full agonist on human platelets and NCB-20 cells. Eur J Pharmacol 1986;127:117-119.
- 90. Dong YJ, Jones RL, Wilson NH. Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol 1986;87:97-107.
- Lawrence RA, Jones RL, Wilson NH. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on the guinea-pig ileum. Br J Pharmacol 1992;105:271-278.
- Meanwell NA, Romine JL, Seiler SM. Non-prostanoid prostacyclin mimetics. Drugs Future 1994;19:361-385.
- 93. Merritt JE, Brown AM, Bund S et al. Primate vascular responses to octimibate, a nonprostanoid agonist at the prostacyclin receptor. Br J Pharmacol 1991;102:260-266.
- Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol 1986;87:543-551.
- 95. Wise H. The inhibitory effects of non-prostanoid prostacyclin mimetics on rat neutrophil function. Prostaglandins Leukot Essent Fatty Acids 1996;54:351-360.
- Wise H, Chow BS. Effect of non-prostanoid prostacyclin mimetics on cyclic AMP production by neuronal SK-N-SH cells. Prostaglandins Leukot Essent Fatty Acids 1996;S:S1 p35.
- 97. Wise H, Qian Y, Jones RL. A study of prostacyclin mimetics distinguishes neuronal from neutrophil IP receptors. Eur J Pharmacol 1995;278:265-269.
- Krane A, MacDermot J, Keen M. Desensitization of adenylate cyclase responses following exposure to IP prostanoid receptor agonists. Biochem Pharmacol 1994;47:953-959.

- Giovanazzi S, Accomazzo MR, Letari O et al. Internalization and down-regulation of the prostacyclin receptor in human platelets. Biochem J 1997;325:71-77.
- 100. Edwards RJ, MacDermot J, Wilkins AJ. Prostacyclin analogues reduce ADPribosylation of the α -subunit of the regulatory Gs-protein and diminish adenosine (A₂) responsiveness of platelets. Br J Pharmacol 1987;90:501-510.
- 101. Jaschonek K, Faul C, Schmidt H et al. Desensitization of platelets with iloprost. Loss of specific binding sites and heterologous desensitization of adenylate cyclase. Eur J Pharmacol 1988;147:187-196.
- 102. Williams RJ, Kelly E. G_s dependent and -independent desensitisation of prostanoidactivated adenylyl cyclase in NG108-15 cells. Eur J Pharmacol 1994;268:177-186.
- 103. Krane A, Keen M. The effect of iloprost pretreatment on the sub-cellular localization of IP prostanoid receptors and G_{isc} in NG108-15 cells. Br J Pharmacol 1995;115:137P.
- 104. Krane A, Keen M. The effect of inhibitors of internalization on IP prostanoid receptor down-regulation in NG108-15 cells. Br J Pharmacol 1995;115:138P.
- 105. Keen M, Krane A. The effect of K⁺-depleted medium on iloprost- and forskolinmediated down-regulation of IP prostanoid receptors in NG108-15 cells. Br J Pharmacol 1996;117:72P.
- 106. Pearce D, Keen M. The effect of cycloheximide on IP prostanoid receptor down-regulation in NG108-15 cells. Br J Pharmacol 1995;116:19P.
- 107. Ashby B. Interactions among prostaglandin receptors. Receptor 1994;4:31-42.
- 108. Zucker T-P, Bönisch D, Hasse A et al. Tolerance development to antimitogenic actions of prostacyclin but not of prostaglandin E₁ in coronary artery smooth muscle cells. Eur J Pharmacol 1998;345:213-220.
- 109. Bastepe M, Ashby B. The long cytoplasmic carboxyl terminus of the prostaglandin E₂ receptor EP₄ subtype is essential for agonist-induced desensitization. Mol Pharmacol 1997;51:343-349.
- 110. Nakagawa O, Sasaki Y, Tanaka I et al. Gene expression of prostacyclin receptor in the hypertrophied heart of spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1995;(Suppl 1):S270-S272.
- 11 1. Nakao K, Lesener B, Nakao K et al. Localization of the prostacyclin receptor in human kidney. Kidney International 1999;54:1899-1908.
- Sasaki Y, Takahashi T, Tanaka I et al. Expression of prostacyclin receptor in human megakaryocytes. Blood 1997;90:1039-1046.
- 113. Oida H, Namba T, Sugimoto Y et al. *In situ* hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995;116:2828-2837.

Chapter 5

IP-receptors on platelets

1. INTRODUCTION

Platelets contribute to maintaining the normal circulation of blood through the preservation of vascular integrity and the control of haemorrhage after injury. Thrombosis is the unwanted formation of a haemostatic plug or thrombus within the blood vessels or heart, and most often manifests itself as myocardial infarction, cerebral infarction or venous thromboembolism, i.e. deep-vein thrombosis and pulmonary embolism.' Acute thrombotic arterial occlusion is the leading cause of morbidity and mortality in industrial societies,² and therefore the search for effective antithrombotic drugs has been extensive. Platelet adhesion and aggregation are the primary events in the formation of coronary and cerebrovascular thrombi, and together with platelet-dependent vasoconstriction are responsible for the primary flow obstruction within a ruptured atherosclerotic vessel.³

The high potency of prostacyclin as an inhibitor of platelet aggregation has made IP agonists prime targets as antithrombotic drugs, and the ready availability of human platelets has made the IP-receptor in human platelets the most well studied of all the prostacyclin receptor systems. Indeed, the reader will already have noticed the use of the platelet aggregation response as the primary screening model to detect IP agonist activity (see Figures in Chapters 2 and 3). The human platelet aggregation model however is less useful for detecting partial agonism, and potential leads to the design of IPreceptor antagonists may have been lost. This is because there is a high degree of receptor-effector coupling in platelets, such that IP agonists can produce complete inhibition of platelet aggregation despite being low efficacy agonists for stimulating adenylate cyclase, as discussed in more detail in Section 3.

In this chapter, we aim to identify the mechanism of prostacyclin's antiplatelet action with particular reference to the use of prostacyclin mimetics as antithrombotic drugs. Where the antithrombotic action of prostacyclin impinges on other disorders, e.g. atherosclerosis, these concerns will be dealt with more fully in the following chapter.

2. PROSTACYCLIN AS AN ENDOGENOUS ANTITHROMBOTIC AGENT

2.1 Platelet thrombus formation

Under normal circumstances, platelets circulate in close contact to the endothelial cell lining of the vessel wall without adhering to it, but they respond rapidly to alterations of endothelial cells and to exposure of subendothelial structures by attaching firmly to the site of the lesion. The first layer of platelets is connected with the thrombogenic surface, whereas subsequent growth of the haemostatic plug depends primarily on plateletplatelet interactions; these two stages represent "adhesion" and "aggregation", respectively. Therefore, although platelet adhesion to exposed reactive surfaces is the necessary initial response to vascular injury, essentially all the platelets recruited into the mass of a haemostatic or pathological thrombus are interacting with one another, not with matrix components. The important ligands for platelet binding to the subendothelial surface are von Willibrand factor (vWF) and platelet glycoprotein GP1 b. Subsequent platelet aggregation is mediated primarily by fibrinogen binding to platelet glycoprotein GPIIb-IIIa (integrin $\alpha_{IIb}\beta_3$) complexes. For a more detailed description of platelet function, see reviews by MacIntyre,⁴ Ruggeri,² Seiss,⁵ Hawiger,⁶ and Body.⁷

Platelets respond to rupture of an atherosclerotic plaque as they would to traumatic damage to a normal blood vessel, with platelet deposition and aggregation, helped by the fact that virtually all the known platelet agonists are released or generated at sites of injury.⁸ For example, activation by thrombin, collagen or vWF involves shape change to allow platelets to flatten and cover the lesion in the endothelium. This is rapidly followed by the release from platelets of activators such as ADP, fibrinogen, serotonin, platelet-activating factor (PAF) and TXA₂.

Thrombosis may occur in any part of the circulatory tree and develop silently until either a local obstruction or a distant obstruction by embolisation produces clinical symptomatology. Arterial thrombosis, which is usually associated with atherosclerosis, is a dynamic process which tends to develop in areas of medium-high flow and shear stress, usually with a triggering factor of vascular origin. Its main effect is to retard or interrupt blood flow, causing ischaemia or actual death (infarction) of the tissue beyond. In contrast, overt vessel wall disease does not appear to be an important factor in venous thrombosis, which tends to occur in areas of relative stasis, and therefore under different conditions and triggering factors, either vascular or flow-related.9 In addition, venous thrombi are composed predominantly of fibrin and red blood cells, with a more variable platelet and leukocyte component compared with arterial thrombi. If a portion of a venous thrombus should break away, it can form an embolus which may block blood vessels, again causing damage to the tissues supplied.

The endothelium has a major role to play in limiting/preventing thrombus formation, and this is discussed in greater detail in the following chapter. Not only does prostacyclin decrease platelet activation, adhesion and aggregation, but its additional vasodilator activity also helps prevent thrombi formation. For example, the vasodilator action would favour anticoagulation because of dilution or washout of procoagulant substances, reduced shear stress, and decreased proximity of vascular elements to platelets.⁷

2.2 A role for endogenous prostacyclin

Prostacyclin was discovered in the mid-1970's when its potent antiaggregatory activity clearly distinguished it from other prostanoids known at that time.¹⁰ It was soon realised that arterial walls are protected against deposition of platelet thrombi by producing prostacyclin, and the concept that a balance between the amount of TXA₂ formed by platelets and prostacyclin formed by blood vessel walls might be critical for thrombus formation, was developed.¹¹ Thus, prostacyclin generated by vascular endothelium could contribute to the thromboresistance of this tissue when intact. The ability of the arterial wall to generate prostacyclin is highest in the intimal surface and progressively decreases to the adventitial surface, accompanied by an increase in the pro-aggregatory activity of each layer.¹² These observations help to explain the lack of thrombus formation on normal vascular endothelium.

In 1978, Higgs et al.¹³ demonstrated for the first time the inhibitory effect of prostacyclin on platelet aggregation in vitro, ex vivo and in vivo in the same species (hamster), and in particular, demonstrated the antithrombotic

nature of prostacyclin in an in vivo model of thrombosis. Furthermore, they showed that rings of hamster aorta generated a substance which prevented ADP-induced aggregation of human platelets, and whose production was inhibited by aspirin. These results therefore supported the concept that generation of prostacyclin by vascular tissue is an important natural defence against intravascular thrombus formation.

Originally, it was suggested that blood vessels could use endoperoxides generated by platelets to increase their production of prostacyclin,¹⁰ but this does not appear to be the case under normal circumstances.¹⁴ However, if TXA₂ synthesis in platelets is inhibited, then PGH₂ may become available for conversion to prostacyclin by endothelial cells;¹⁵ this mechanism may contribute to the antithrombotic efficacy of TXA synthase inhibitor / TP antagonist compounds (e.g. ridogrel).¹⁶ Interestingly, human lymphocytes possess prostacyclin synthase activity which is capable of converting platelet-derived PGH₂ into prostacyclin, and this prostacyclin is sufficient to inhibit platelet function.¹⁷ Importantly, the platelets have to be activated in order to donate PGH₂ to the lymphocytes.

At one stage it was thought that prostacyclin was a circulating factor, released continuously from the lungs,^{18,19} but this view was quickly countered.^{15,20} In fact there is no detectable 6-oxo PGF_{1α} in human blood except under conditions of severe infection or endotoxin shock.¹² The implication that prostacyclin deficiency is a cause of thrombotic events was suggested by the successful use of prostacyclin (epoprostenol) in the treatment of recurrent arterial and venous thromboses.²¹ Prostacyclin is the most potent endogenous inhibit of platelet aggregation yet discovered and IP agonists not only inhibit thrombus formation, but also disperse platelet aggregates.²² Prostacyclin and its mimetics inhibit aggregation (platelet-platelet interactions) at much lower concentrations than those needed to inhibit adhesion (platelet-collagen interactions).²³⁻²⁵ This is thought to be beneficial since limited production of prostacyclin by the endothelium would allow platelet adhesion for repair purposes, while at the same time preventing or limiting thrombus formation.²⁶

In mice lacking the IP₁-receptor gene, bleeding time was normal.²⁷ The absence of IP₁-receptors was confirmed by beraprost failing to prolong bleeding time and cicaprost failing to inhibit ADP-induced platelet aggregation in vitro. However, when the vascular endothelium in the carotid arteries of these IP₁-receptor knockout mice was damaged, there was an increased incidence of obstructive thrombi formation resulting in death due to bilateral occlusion of the carotid arteries and/or embolic stroke. These results would suggest that while prostacyclin is not involved in the regulation of bleeding under basal conditions, it is crucial to prevent thrombus formation arising from damaged vascular endothelium.

Altered sensitivity of platelets to prostaglandins has been observed in a variety of conditions, For example, in coronary heart disease and angina pectoris, there is a significant decrease in sensitivity to prostacyclin and PGE₁ (with no change for PGD₂).^{28,29} Furthermore, those patients with type 2 diabetes in addition to coronary heart disease had even lower sensitivity than those with coronary heart disease alone. Platelet aggregability was also significantly higher in patients with cardiac ischaemia and prostacyclin was less effective in inhibiting platelet aggregation.³⁰ It was rapidly recognised that intravenous infusion of prostacyclin could have transient beneficial effects in coronary artery disease, peripheral arterial disorders, and thrombotic thrombocytopenic purpura, but its vasodilator effects and extreme lability would always be limiting factors in its usefulness. We have seen in the preceeding chapters the results of extensive chemical efforts to produce more platelet-selective and stable prostacyclin mimetics, and we have seen that the advent of cloned IP₁-receptors has enabled us to appreciate the innate flaw in this proposition, i.e. one cannot hope for antiplatelet activity in the absence of vasodilator activity. However, it is still possible that by more fully understanding the function of platelet IP₁-receptors, and the differing receptor-effector coupling mechanisms in platelets and vascular smooth muscle cells, we may be able to use the newer agents for well-defined tasks, being thoroughly aware of the nature of the expected side effects.

3. CHARACTERISATION OF PLATELET IP₁-RECEPTORS

Our primary concern here is to consider what we know about the IPreceptors which regulate platelet function. Receptors of four of the five major classes of prostanoids are represented on platelets (i.e. DP, EP, IP and TP) and the pharmacology of these receptors has been reviewed by Armstrong.³¹ Platelets can be activated by a considerable variety of agonists, each with its own profile of intracellular signalling pathways, It would be beyond the scope of this chapter to deal with each platelet agonist in detail and therefore the reader is referred elsewhere to discover more of the complexity of platelet activation.^{5,7,32} What is clear is that IP agonists can inhibit platelet function independent of the platelet agonist used, for example, octimibate inhibits human platelet aggregation stimulated by ADP, U-466 19, serotonin, thrombin and vasopressin.³³ In addition, the platelet IPreceptor and the cloned IP₁-receptor appear to be one and the same. In this section we will consider the evidence for species-specific IP₁-receptors, concentrating on the results of binding assays, adenylate cyclase assays and functional assays such as inhibition of platelet aggregation. We will also look at the mechanism of action of IP agonists and the properties of IP-receptors in platelet-like cells.

3.1 **IP**₁-receptor binding studies

Classically, prostaglandins compete for [3 H]-iloprost binding to human platelets with an order of potency PGI₂ > PGE₁ >> PGE₂ > 6-oxo PGF₁ α ; 34 typical K_d values for [3 H]-IP agonist binding to platelets can be found in Chapter 4, Table 4. Photoaffinity labelling of porcine platelet membranes with [3 H]-APNIC ([15- 3 H] 19 -(3-azidophenyl)-20-nor isocarbacyclin) suggested that the iloprost binding site was a protein of 43 - 45 kDa, 35 which agrees well with the deduced molecular weight of the cloned IP₁-receptors from cow, human, mouse and rat (Chapter 4, Table 3).

In 1986, Eggerman et al.³⁶ used binding assays to determine if prostacyclin and prostaglandins of the E series shared a common receptor. Their results are shown in Figure 34 and clearly demonstrate that prostacyclin and PGE₁ share a different binding site to PGE₂, and that PGE₁ can recognise both the prostacyclin and the PGE₂ binding sites. They also found only one affinity binding site for [³H]-PGI ₂, in contrast to other reports of two sites.

Figure34. Competition for specific binding of [³H]-PGI ₂(left) and [³H]-PGE ₂(right) to human gel-filtered platelets. Reprinted from Eggerman et al.,³⁶ with permission.

From our own studies of $[{}^{3}H]$ -iloprost binding to human platelet membranes we also detected only one affinity binding site with a K_d = 12.9 \pm 1.7 nM and B_{max} = 943 \pm 49 fmol mg protein^{-1,37} We also tested an extensive range of prostacyclin mimetics in competition binding assays with $[{}^{3}H]$ -iloprost (see Fig. 35) and noted that the order of potency of these compounds to relax human pulmonary artery and their affinity for the platelet [3 H]-iloprost binding site was similar and provides good evidence that we are looking at the same IP-receptor in vascular tissue and platelets, i.e. the IP₁-receptor. In general there is also a good correlation between competition binding data and inhibition of human platelet aggregation when looking at the commonly used IP agonists prostacyclin, iloprost, carbacyclin and PGE₁.³⁸ However, if we look at data from nonprostanoid prostacyclin mimetics belonging to the BMY and EP series (Table 8), the correlation is less good. For these nonprostanoid prostacyclin mimetics, it is difficult to predict their potency in inhibiting human platelet aggregation, based solely on competition binding data. The apparent functional potency of these compounds in vitro is heavily influenced by their relatively high affinity for plasma proteins present in PRP (platelet-rich plasma), and their efficacy for activating IP₁-receptors, see Sections 3.2 and 3.3.

Figure 35. Competition for specific [³H]-iloprost binding to human platelet membranes. Raw data for IC_{50} values quoted in Jones et al.³⁷

	Qui-effective molar ratios ($iloprost = 1.0$)			
	[³ H]-iloprost	Cyclic AMP	Inhibition of aggregation	
	binding	production	(PRP)	(washed platelets)
BMY 45778	0.2 - 0.3	0.9 - 2	25	
BMY 42393	5-8	4	879	
Octimibate	8 -17	4 - 7	161 - 729	
EP 157	18	121		49
EP 035	41	438		276

Table 8. A comparison of the potency of IP agonists in human platelets, expressed as equieffective molar ratios compared to iloprost

For BMY 45778, BMY 42393 and octimibate, data are from Ref. No. 33,37,39-41. Control values for iloprost are: [3 H]-iloprost binding, IC₅₀ = 29 nM; cyclic AMP production, EC₅₀ = 6.8 nM; inhibition of aggregation in human PRP, IC₅₀ = 1.4 nM. For EP 157 and EP 035, data are from Ref. No. 42. Control values for iloprost are: [3 H]-iloprost binding, IC₅₀ = 110 nM; cyclic AMP production, EC₂₀ = 2.4 nM; inhibition of aggregation in human washed platelets, IC₅₀ = 0.06 - 0.18 nM.

[³H]-PGI₂ binding to bovine platelet membranes is extremely rapid; even at 0°C almost complete saturation occurred after only 10 min, but minute changes during the isolation procedure of the platelets can prevent binding of [³H]-PGI ₂ to the high affinity site.⁴³ Although the K_d values remained fairly constant at 35 - 63 nM for incubations performed at 0°C the number of binding sites varies considerably between human, cat, cow and rat platelets. Results at slight variance to these have also been reported, with rat and rabbit platelet membranes having considerably lower affinity for [3H]iloprost than human, pig and horse platelets.44 Indeed, to detect specific binding of [³H]-iloprost to rat and rabbit platelet membranes, it is essential to perform the assays at 4°C, although identical binding constants can be obtained with pig platelet membranes when incubated at either 4°C or 30°C.⁴⁴ Temperature-dependent effects can also be specific to the competing compound under test. For example, BMY 45778 competes for [³H]-iloprost binding to human platelet membranes with an IC_{50} value of 7 nM at 37°C, but this value increases to 49 nM when assaved at 4°C.⁴⁰ This temperaturedependent affinity is not seen with either iloprost itself or BMY 42393 and it has been suggested that BMY 45778 is a much more conformationallyrestricted molecule than either of the other IP agonists tested.

Lombroso et al.⁴⁵ noted two classes of binding site and two components for adenylate cyclase activation in human platelets, and suggested that these could be located on different platelet populations. In Chapter 4 we noted the variable reporting of two affinity binding sites for [³H]-PGI₂ and [³H]-iloprost in a variety of tissues (see Chapter 4, Table 4), including platelets. One interesting explanation comes from the work of Kahn et al.^{46,47} who have presented evidence that a novel circulating anti-IP₁-receptor antibody preferentially binds to the high affinity state of the platelet IP₁-receptor, and

have identified a specific function associated with this site. These conclusions came from a rather unexpected source, i.e. a study of the relatively high degree of coronary artery disease (CAD) occuring in patients with chronic spinal cord injury (SCI). Incubation of normal platelets with SCI plasma resulted in the loss of high affinity binding of $[^{3}H]$ -PGE₁ without affecting either the number of low affinity binding sites, or the binding affinity of these two sites (normal platelets: $K_{d1} = 9.1$ nM, B, = 170 sites per cell; $K_{d1} = 1.9 \mu M$, $B_{max} = 1832$ sites per cell. SCI-treated platelets: $K_{d1} =$ 7.2 nM, $B_{max} = 23$ sites per cell; $K_{d1} = 1.6 \mu M$, $B_{max} = 1740$ sites per cell). Furthermore, incubation of platelets with 100 nM prostacvclin produced similar increases in cyclic AMP formation in both normal and SCI-treated platelets, but this same concentration of prostacyclin failed to inhibit platelet-stimulated thrombin generation in platelets treated with the IgG-like protein from SCI patients. One conclusion from this study therefore is that activation of the high affinity state of the IP₁-receptor is responsible for the inhibition of platelet-stimulated thrombin generation, yet activation of cyclic AMP production results from the stimulation of the low affinity state. Since cyclic AMP generation is unaffected by the presence of SCI plasma, then presumably cyclic AMP does not mediate the antithrombin generation activity of prostacyclin. The loss of control of platelet-stimulated thrombin generation would be expected to have significant consequences for the pathogenesis of atherosclerosis and CAD. Thus, prostacyclin binding to the high affinity site would prevent atherogenesis, while binding to the low affinity site would prevent thrombosis. We look forward to hearing if this antibody can help further dissect the nature of the interaction of prostacyclin with its platelet receptors.

[³H]-PGE ₁ binding sites on platelets can be increased by insulin pretreatment, and it is thought that this may relate to the hyperactivity of platelets isolated from diabetic patients lacking insulin.⁴⁸ The loss of high affinity [³H]-PGE ₁ binding in platelets from SCI patients was indeed restored with insulin preincubation, which also restored the inhibitory effect of prostacyclin on platelet-stimulated thrombin generation.⁴⁶

3.2 Adenylate cyclase activation

Traditionally, agents that increase cyclic AMP levels in platelets, such as prostacyclin, are described as having receptors that are coupled to G_s and capable of activating adenylate cyclase, (see Brass et al.³² for further details of platelet G-proteins). Relatively little information is available about the forms of adenylate cyclase present in platelets, beyond the absence of type I enzyme.⁴⁹ Types III and IV have been detected by polymerase chain

reaction (PCR) in the megakaryocytic HEL cell line,⁵⁰ but as we shall see in Section 3.6, the HEL cell line is not necessarily representative of platelets.

Prostacyclin and PGE₁ stimulate adenylate cyclase in human platelets with K_{app} values of 52 nM and 140 nM, respectively.⁴⁵ Octimibate, BMY 42393 and BMY 45778 clearly have lower efficacy for stimulating platelet adenylate cyclase when compared with prostacyclin mimetics such as iloprost and cicaprost (also seen in lung membranes,⁵¹ neutrophils (see Chapter 7) and neuroblastoma cells (see Chapter 11)). For example, octimibate stimulated platelet cyclic AMP production to a level of 57 - 72% of the maximum response to full agonists such as iloprost and PGE₁.^{33,39} Furthermore, BMY 42393 and BMY 45778 gave 75 - 80%⁴¹ and 80 - 100%⁴⁰ maximum responses, respectively. Despite this, these compounds can still act as full functional agonists for inhibition of platelet aggregation.

It has been known for some time that PGE₁ inhibits platelet aggregation at concentrations where there was no measurable increase in cyclic AMP.⁵² Seiler et al.⁴⁰ remind us that even small increases of platelet cyclic AMP levels can translate into a large degree of protein kinase activation in the whole platelet. This disparity has been explained by the contention that physiologically important pools of cyclic AMP cause dramatic activation of the cyclic AMP-dependent protein kinase (PKA) yet represent only a small change in the total cellular cyclic AMP concentration. In addition, these very small changes in cyclic AMP may still be sufficient because most of the basal cyclic AMP in platelets is already bound to the tight-binding sites on PKA, with the result that a doubling of platelet cyclic AMP can cause almost full activation of these enzymes.⁵³

In general, stimulation of adenylate cyclase correlates well with the functional response of platelets. For example, for human platelets the antiaggregatory potencies of iloprost, PGE₁ and OP-1206 (a PGE₁ analogue with IP and EP₂ agonism) were positively correlated with increases in cyclic AMP production.⁵² The equi-effective molar ratios for iloprost, cicaprost, carbacyclin and EP 157 matched well in assays of cyclic AMP production and inhibition of platelet aggregation,⁴⁴ and parallel effects of prostacyclin, OP-41483 (prostacyclin analogue), carbacyclin and PGE₁ were observed for stimulation of adenylate cyclase activity and inhibition of human platelet aggregation;⁵⁴ see also Table 8. Evidence linking IP agonist-mediated increase in platelet cyclic AMP levels to inhibition of platelet aggregation will be presented in Section 3.4.

3.3 Inhibition of platelet activation

The inhibitory activity of natural prostaglandins on human platelet aggregation is similar, regardless of the platelet activator used, and follows the order of potency: PGI_2 , 6-oxo PGE_1 , PGD_2 , 6-oxo $PGF_{1\alpha}$, 13,14-dihydro PGE_2 (a pulmonary metabolite of PGE_2), PGE_2 and $PGF_{2\alpha}$.⁴ It was also quickly recognised that PGE_1 and prostacyclin share the same receptor which is different from that used by PGD_2 although both seemed to function by increasing platelet cyclic AMP to inhibit aggregation.⁵⁵ To complicate matters a little, it was found that PGE_2 could potentiate rather than inhibit platelet aggregation and subsequent studies clearly showed that EP_3 agonists could potentiate the primary aggregation wave in human platelets.⁵⁶ However, iloprost is considerably more selective for IP_1 -receptors compared to EP_3 -receptors, and its antiplatelet activity dominates. For less selective agonists though, interpretation of data may be more complicated under conditions where the EP_3 response dominates over the IP response.^{57,58}

Because of the relative ease of using platelet aggregation as the primary screen for prostacyclin-like activity (see Chapters 2 and 3), an overwhelming amount of data exists for human platelets. However, when we try to look for evidence of species specificity in IP₁-receptors, we encounter the problem of comparing data from functional experiments where the inhibitory agonist's profile is dependent on the strength of the aggregation stimulus used and on the degree of protein binding when assays are performed in PRP, diluted PRP or plasma-free solution. The potential interference of all these factors can be demonstrated with BMY 45778. For example, BMY 45778 inhibits human platelet aggregation in PRP with an IC₅₀ value of 35 nM, compared with 1.4 nM for iloprost.^{33,40} In all other respects though, the platelet activity of BMY 45778 when tested in plasma-free conditions is very similar to that of iloprost: BMY 45778 stimulates cyclic AMP production with an EC₅₀ value of 6 - 10 nM; it stimulates GTPase activity (EC₅₀ 10 nM) and competes with [³H]-iloprost binding (IC₅₀ 7 nM).

These data have been drawn together in Figure 36 and we can see the expected pattern of a classical IP₁-receptor mediated response, i.e. that prostacyclin, iloprost and cicaprost have comparable potency for inhibiting human platelet aggregation, whereas PGE₁ and carbacyclin are less potent. Beraprost is intermediate in activity between these two groups, and both EP 157 and octimibate are the least potent. There is one trend that stands out in Figure 36; the two nonprostanoids (octimibate and EP 157) are relatively more potent in the upper four species. than in the lower six (sheep data unavailable for these two IP agonists), and this is not correlated with absolute sensitivity to the standard agonist iloprost. In addition, carbacyclin is relatively less potent in human, pig and horse platelets compared to rat and rabbit platelets, and a similar picture is seen for cyclic AMP production and inhibition of [³H]-iloprost binding.⁴³ However, another study shows consistent potency ratios for prostacyclin and carbacyclin between the two groups of species.⁵⁴ There is also some evidence that PGE₁ is a relatively

more potent inhibitor in rat platelets compared to human platelets,⁵⁵ and this is supported by data on cyclic AMP production, inhibition of thrombinstimulated increases in IP₃ and [Ca ²⁺]_i, and [³H]-iloprost binding.^{59,60} Again, not all studies agree.⁵⁴

Now does any of this mean that we are looking at different receptors in different species? As suggested above, and from the cloned IP₁-receptor data, we see that PGE1 and carbacyclin have higher affinity for rat and mouse IP₁-receptors compared with human IP₁-receptors. Furthermore, our data⁶¹ looking at cyclic AMP production in COS-7 cells transfected with the mouse IP₁-receptor also finds PGE₁ merely 10-fold less potent than iloprost and cicaprost, and BMY 45778 is 40-fold less potent which is lower than one would expect if this was the human IP₁-receptor. Indeed, the family of related compounds octimibate, 33,39 BMY 42393 41,62 and BMY 45778 40,63 are consistently less potent than iloprost and cicaprost in inhibiting rat platelets compared with human platelets (Table 9), even when problems of protein binding are accounted for. So for the moment, we conclude that rat platelets are different from human platelets, but the question remains why PGE_1 and carbacyclin are relatively more potent in rat than human platelets, yet octimibate, BMY 42393 and BMY 45778 are relatively more potent in human compared with rat platelets.

IP agonist	Inhibition of ADP-stimulated platelet aggregation in PRP $(IC_{50} values, nM)$			
	Human	Monkey	Rat	Rabbit
BMY 45778	35		1,300	126
BMY 42393	1,230	83	7,300	27,500
Octimibate	1,020		28,800	21,600

Table 9. A comparison of the potency of octimibate and related compounds in platelets from different species

Data taken from Seiler et al.39-41

3.4 Mechanism of antiplatelet action

Most aggregating agonists activate phospholipase C (PLC) and elevate $[Ca 2^+]_i$ by an IP³-dependent release of Ca²⁺ from intracellular stores, as well as stimulation of the entry of extracellular calcium.⁵ Therefore, since IP agonists inhibit platelet activation independent of the activator used, then it is probable that they interfere in some way with this pathway. Indeed, prostacyclin has several inhibitory mechanisms. It inhibits the release of Ca²⁺ from the dense tubular system, resulting in decreased TXA₂ production and decreased actin-myosin interactions, i.e. platelet contraction.⁶⁴ Moreover, prostacyclin can potentiate Ca²⁺ reuptake into platelet stores by inhibiting the inositol 1,4,5-trisphosphate (InsP₃)-receptor.⁶⁵

Figure 36. Potencies of IP agonists to inhibit platelet aggregation in different species. In each panel, horizontal bars link the IC_{50} values of the pair of IP agonists; arrows in (a) indicate that cicaprost is more potent than iloprost; dual bars in (d) indicate separate studies. Data in (a), (b, iloprost - carbacyclin), (e) and (f) were obtained on washed platelet suspensions,^{33,44} and in (b, prostacyclin - - carbacyclin), (c) and (d) on platelet-rich plasma.^{51,66,67}

Fibrinogen binding to its platelet receptor (GPIIb-IIIa) plays a pivotal role in the formation of platelet thrombi, and the negative regulation of the receptor involves cyclic AMP or cyclic GMP-mediated fibrinogen reactions.⁶ Certainly prostacyclin-stimulated increase in cyclic AMP correlates with the inhibition of binding of fibrinogen to activated platelets, which is paralleled by inhibition of platelet aggregation. In platelets and vascular smooth muscle cells, cyclic AMP and cyclic GMP are synergistic, but their mechanisms are not identical;⁷ see Chapter 6, Figure 46. Cyclic GMP inhibits cyclic AMP-dependent phosphodiesterase (PDE-III) activity, thereby increasing platelet cyclic AMP.68 The effect of cyclic AMP on inhibiting activation occurs at its physiological concentration in the platelet, suggesting that cyclic AMP is the primary controller of platelet reactivity. In contrast, one needs 10-fold the basal level of cyclic GMP to observe any effect on platelet function.53 In addition, cyclic GMP can also inhibit cyclic AMP accumulation by activating cyclic GMP-stimulated PDE-II.69 Provided cyclic GMP is present, PDE-II plays a major role in the hydrolysis of low concentrations of cyclic AMP, and restricts any increase in cyclic AMP and inhibition of platelet aggregation caused by inhibition of PDE-III. But at high cyclic AMP concentrations, PDE-II plays the major role in cyclic AMP breakdown, whether cyclic GMP is present or not. A functional synergism has been noted between iloprost and the nitric oxide donor SIN-1 in human platelets (probably due to the cyclic GMP-mediated inhibition of PDE-III), and between iloprost and aspirin, but the interaction between these three drugs is less predictable.³

Cyclic AMP not only inhibits platelet fibrinogen receptor exposure and PLC activity, it also inhibits secretion and aggregation independently of Ca^{2+} mobilisation by decreasing activation of protein kinase C (PKC) and Ca^{2+} /calmodulin-dependent kinases.⁷⁰ These actions suppress the excitatory effects of phorbol esters and the Ca^{2+} ionophore ionomycin (Fig. 37). Finally, it has been shown that prostacyclin or PGE₁-induced inhibition of aggregation is associated with activation of PKA and phosphorylation of proteins with molecular masses ranging from 22 - >400 kDa.⁵

Evidence that IP_1 -receptor activation leads to inhibition of platelet function via stimulation of adenylate cyclase comes not only from positive correlations between the potency of IP agonists to increase cyclic AMP levels and to inhibit platelet aggregation. For example, as predicted, inhibition of PDE activity potentiated prostacyclin and PGE₁-mediated inhibition of human platelet aggregation in vitro,^{55,71} and in vivo.⁷² Moreover, the ability of prostacyclin, PGE₁ and the prostacyclin mimetic SM-10902 to inhibit thrombin-stimulated increase in IP₃ production, [Ca ²⁺]_i and ⁴⁵Ca²⁺ influx in rat platelets was reversed by pretreatment with the adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at concentrations

shown to inhibit cyclic AMP production.⁵⁹ The adenylate cyclase inhibitor DDA also inhibited the antiaggregation activity of the prostacyclin analogue OP-41483 in guinea pigs,⁵⁴ as did the adenylate cyclase inhibitor SQ 22536 for prostacyclin, iloprost, PGE1 and EP 157-mediated inhibition of human aggregation.42,44 Furthermore, octimibate and platelet its related cyclic nonprostanoid prostacyclin mimetics clearly stimulate AMP production and activate PKA in human platelets.^{39,41}

Figure 37. Pathways involved in platelet aggregation. The bold arrows indicate inhibitory mechanisms following PKA activation by prostacyclin.

3.5 Regulation of platelet IP₁-receptors

Incubation of human platelets with iloprost (100 nM - 1 μ M) for periods of 12 - 24 h decreases the amount of [³H]-iloprost binding due to a decrease

in B_{max} rather than changes in K_d values.^{73,74} This loss of [³H]-iloprost binding is matched by a decreased cyclic AMP response to iloprost.⁷³ Iloprost preincubation of human platelets also leads to heterologous desensitisation due to a decrease in G_{so} .⁷⁵

In a study where two affinity binding sites for $[{}^{3}\text{H}]$ -iloprost could be detected, it appeared that the iloprost preincubation-induced decrease in B_{max} value was due to the loss of the high affinity binding site.⁷⁶ It would appear that incubating platelets at 37°C leads to internalisation of the high affinity binding site by a process which is energy-dependent, and this process could presumably subserve desensitisation. IP₁-receptors are therefore internalised during short-term desensitisation (3 h with 100 nM iloprost), and they are not degraded but can be recycled rapidly to the platelet surface in a functionally active form after withdrawal of the agonist.⁷⁷ Giovanazzi et al.⁷⁶ proposed that each IP₁-receptor shuttles between the platelet plasma membrane and another compartment transferring some 25 ligand molecules per receptor molecule during a 2 h incubation period.

Platelet IP₁-receptor mediated responses can be indirectly regulated as a result of TP-receptor desensitisation. When human platelets are incubated with a TP agonist, this leads to rapid desensitisation of the TP-receptor-associated responses and causes an increase in the cyclic AMP response to iloprost (and forskolin), i.e. sensitisation of the platelet adenylate cyclase system which would function to potentiate the turn-off signal of the platelet.⁷⁸ In addition, exogenous alkaline phosphatase (a dephosphorylating enzyme) also enhances the cyclic AMP response to prostacyclin.⁷⁹

The clinical relevance of IP1-receptor desensitisation/downregulation observed in vitro has been the subject of much debate, see Gryglewski & Stock.⁸⁰ For example, patients with peripheral vascular disease, when infused with prostacyclin (5 ng kg⁻¹ min⁻¹), rapidly developed (24 - 48 h) a decrease in sensitivity of their platelets to prostacyclin, returning to normal within a few days of cessation of the infusion.⁸¹ This is known as the rebound phenomenon, seen as increased susceptibility of platelets to the proaggregatory action of platelet agonists. However, not all prostacyclin mimetics behave the same way, and the desensitisation of platelets against taprostene⁸² appears to be much less than that for iloprost.⁸¹ Infusion of rabbits with carbacyclin (5 μ g kg⁻¹ min⁻¹) caused a 70 - 80% inhibition of ADP-aggregation ex vivo, with no apparent desensitisation after 5 h infusion.⁸³ As seen with prostacyclin and beraprost,⁶⁴ the antiaggregation action of carbacyclin was short-lived once the infusion was terminated. The extent of loss in platelet responsiveness to prostacyclin mimetics is greater than would be expected from a consideration of the plasma concentration of drug, and MacDermot et al.⁸⁴ suggested that this was due to a high

concentration of agonist at the site of injection causing desensitisation of platelets at that site.

Patients with acute myocardial infarction or with unstable angina showed decreased [${}^{3}H$]-PGE $_{1}$ binding, due to a significant decrease in B_{max}, which normalised within 2 - 8 weeks and but was not due to any changes in endogenous prostacyclin.²⁹ Since platelets do not synthesise new protein macromolecules (i.e. receptors), it was suggested that the transient decrease in IP₁-receptors could be related to a temporal derangement of protein synthesis in megakaryocytes, the precursor cells of platelets.

3.6 IP-receptors in platelet-like cells

CMK and MEG-01 cells are human megakaryocytic (the progenitor of platelets) leukaemia cells, and HEL is a pluripotent human leukaemia cell line which possesses erythrocytic, megakaryocytic and macrophage-like properties; both of these cell types are frequently used as models for human platelets. As already well established for platelets, IP agonists also increase cyclic AMP levels in MEG-01,⁸⁵ CMK⁸⁶ and HEL cells.^{87,88} but in marked contrast with platelets,⁸⁹ activation of these cells with IP agonists also increases [Ca²⁺]_i.⁸⁶⁻⁹¹ Furthermore, additional discrepancies appear when comparing the responses to iloprost and PGE₁. For example, in MEG-01 cells, iloprost-stimulated increase in [Ca²⁺], is pertussis toxin (PT)insensitive whereas the response to PGE₁ is attenuated by PT-treatment.⁸⁹ Schwaner et al.⁹⁰ reported similar observations in HEL cells and also suggested that PGE_1 acted on both IP and EP-receptors, although the dependence on extracellular Ca²⁺ was not consistent between these two cell types. It is possible that we can now consider resolving this issue with data from Feoktistov et al.⁸⁷ using HEL cells. Here they observed that iloprost increased [Ca²⁺]_i only at concentrations greater than 1 μ M, but could potentiate thrombin-stimulated increase in [Ca²⁺]_i with an EC₅₀ value of 0.6 nM (comparable with an EC_{50} value of 3.3 nM for stimulation of cyclic AMP). The Ca²⁺ response to iloprost was PT-insensitive, involving an increase in IP₃ only at high concentrations, and involved facilitating Ca²⁺ influx. In contrast, the dominant Ca²⁺ response to PGE₁ was PT-sensitive, was independent of extracellular calcium and involved an increase in IP₃. More significantly, 11-deoxy-16,16-dimethyl PGE₂ was the most potent of the prostanoids able to mimic the profile of Ca^{2+} responses to PGE_1 . We would expect this analogue to have little agonist activity at IP-receptors, at least at IP₁-receptors. Thus, there appear to be at least two prostanoid receptors functionally coupled to changes in intracellular Ca²⁺ in HEL cells: a putative IP-receptor coupled to G_s proteins that enhances Ca²⁺ influx

independently of cyclic AMP, and a novel prostanoid receptor that evokes Ca²⁺mobilisation through stimulation of PLC by a PT-sensitive pathway.

In all cases where IP agonists such as cicaprost or iloprost increase [Ca²⁺] in these platelet-like cells, the response is always independent of cyclic AMP production.^{86,87,89,90} and therefore could be due to IP₁-receptor coupling to more than one G-protein, as observed for the cloned IP₁receptors,92-94 or could be mediated by Gs coupling directly to a Ca2+ channel.⁸⁷ Now that the hazards associated with using PGE₁ as an IP agonist are more obvious (e.g. its ability to stimulate this novel prostanoid receptor in HEL cells and its potent agonist activity on all EP-receptor subtypes), further characterisation of IP₁-receptors in these platelet-like cells should concentrate more on responses to cicaprost as the most specific of the available IP₁-receptor agonists. When HEL cells are differentiated with DMSO, their time-course profile of cyclic AMP response to iloprost becomes more similar to that seen in platelets, due to the induction of a G_icoupled EP₃-receptor.⁵⁷ It was suggested therefore that IP agonist-mediated activation of the EP₃-receptor would serve to limit the antiplatelet activity of any nonselective agonist such as PGE₁.

Although [³H]-iloprost binding studies and cyclic AMP responses to iloprost are comparable between MEG-01 cells and human platelets,⁸⁹ that appears to be where the similarity ends. In addition, there are differences in the regulation of adenylate cyclase by thrombin in HEL cells and platelets.⁹⁵ For example, in HEL cells but not in platelets, thrombin can increase cyclic AMP levels and act synergistically with forskolin and prostacyclin. Therefore, if we really want to study IP₁-receptors on platelets, then we must use platelets as our starting material.

On testing a wide range of megakaryocytic and megakaryocytic/erythroid cell lines (HEL, NS-Meg, CMK11-5, CMK, MEG-01 and K562), Sasaki et al.⁹⁶ found only one (K562) which failed to express mRNA for the human IP₁-receptor. Phorbol ester-induced maturation and a range of cytokines also increased human IP₁-receptor expression in these cells. In addition, this treatment also increased [3H]-iloprost binding and iloprost-stimulated cyclic AMP production in HEL and NS-Meg cells, as reported reported earlier for HEL cells.⁹⁷ Furthermore, normal umbilical cord blood megakaryocytes also expressed IP₁-receptor mRNA with peak expression occurring before terminal differentiation. Platelets possess only a small amount of remnant RNA transcribed from the nucleus of the megakaryocyte, therefore the supply of new receptors on platelet membranes is trivial and the expressed receptors on platelets must have originated from the megakaryocyte. Sasaki et al.⁹⁶ discussed the relevance of IP₁-receptor mRNA upregulation by cytokines involved in megakaryocytopoiesis, and concluded that since interleukin-1 (IL-1) and tumour necrosis factor- α (TNF α) stimulate coagulation activity in conditions such as endotoxemia, then their ability to induce expression of IP_1 -receptors in megakaryocytes might act as a homeostatic mechanism to inhibit thrombosis.

4. CLINICAL USE OF PROSTACYCLIN AND ITS ANALOGUES

The major clinical goal in antiplatelet therapy has been the prevention of arterial thrombosis.⁹⁸ Arterial thrombi are composed predominantly of platelets formed under conditions of elevated shear stress at sites of atherosclerotic vascular injury and disturbed blood flow. In contrast, venous thrombi tend to form in the absence of underlying vascular damage and are composed predominantly of red cells enmeshed in fibrin. Although the clinical indications for antiplatelet agents are commonly coronary, cerebrovascular and peripheral arterial thrombosis, the pathophysiological and clinical distinctions between arterial and venous thrombosis are not absolute. The platelet GPIIb-IIIa receptor is the sole mediator of platelet aggregation, but the arachidonic acid pathway (i.e. increase in TXA₂) is not absolutely required for GPIIb-IIIa activation by platelet aggregation, and that the ability of IP agonists to suppress all modes of aggregation promises to be advantageous.

Initial animal studies were often promising; for example, clinprost (isocarbacyclin, TEI-9090) caused thrombus disaggregation and decreased thrombus growth rates subsequent to ADP-induced stimulation of platelet thrombi in venules of the microcirculation in a hamster cheek pouch model.⁹⁹ In addition, both iloprost and MM-706 (a carbacyclin analogue) prevented the reduction in circulating platelets induced by ADP in conscious rats, but only MM-706 produced this response in the absence of significant changes in blood pressure and heart rate.¹⁰⁰ Prostacyclin and carbacyclin infusion in rabbits produced similar cardiovascular changes in doses producing an equivalent degree of platelet inhibition. In rabbits, the prostacyclin analogue OP-4 1483 was antithrombotic; a property associated with its potent antiplatelet activities.⁵⁴ And, unlike prostacyclin, OP-4 1483 (i.v.) showed antiaggregation activity at doses which had no significant effect on blood pressure in monkeys. Together these results were sufficient to indicate that one might be able to use IP agonists as antithrombotic drugs without any cardiovascular side effects.

The clinical use of prostacyclin however is consistently hampered by its variable effect on bleeding time,¹⁰¹ and the small margin between antiplatelet effects and undesirable side effects. Early evaluation of carbacyclin

infusions in man suggested that it could inhibit platelet aggregation ex vivo yet have no effect on blood pressure or heart rate.¹⁰² Oral dosing with carbacyclin did though increase heart rate and it was clear that substantial inhibition of platelet aggregation ex vivo often required drug concentrations sufficient to give side effects of facial flushing and headache. Beraprost sodium is orally active as an antiplatelet drug in man, yet is only effective against ADP, and not collagen-induced aggregation, and needs several days of therapy to become effective.⁶⁴ In addition, the left ventricular pre-ejection period was significantly diminished and this needs further investigation. Unfortunately, the separation of antiplatelet and vasodilator properties of IP agonists in humans has been rare, and it is these haemodynamic factors which have severely restricted the clinical use of these compounds to date (see iloprost,¹⁰³ isocarbacyclin⁹⁹ and beraprost⁶⁷).

Around 1985 it was still envisioned that the definitive separation of platelet and cardiovascular system properties of prostacyclin analogues, if demonstrated in man, would have extensive therapeutic possibilities. Ten years later, the value of IP agonists as antiplatelet compounds was reassessed by Schrör,¹⁰⁴ where he predicted major problems associated with the low selectivity for the platelet and the receptor-mediated nature of the response. To date, the occurrence and even relevance of IP₁-receptor desensitisation and rebound phenomena remain uncertain (see Section 5). Schrör noted that there were only a small number of large trials with prostacyclin-related drugs, and the results, in general, were not encouraging. He suggested that while prostacyclin mimetics with oral activity have an impressive therapeutic potential, their future may not be in the antiplatelet area. He felt that the receptor-mediated nature of their antiplatelet effects, i.e. dependence on the number of available functioning IP-receptors, limited selectivity for platelets, short duration of action, narrow therapeutic range and the availability of established pharmacological alternatives (e.g. aspirin), is a severe limitation. However, the advantage of IP agonists compared with current antithrombotic drugs such as aspirin, is that while aspirin irreversibly inhibits COX, this is only one component of platelet activation; it serves mainly as a positive feedback for secondary platelet aggregation and secretion induced by weak platelet stimuli such as ADP and adrenaline, but it is not essential for platelet adhesion, shape change, aggregation and secretion induced by strong physiological agonists such as collagen or thrombin. Therefore, it has been suggested that the combination of aspirin with antiplatelet drugs such as IP agonists or nitric oxide donors which have alternative mechanisms of action, should provide a more effective antiplatelet treatment.3

Despite these drawbacks, a useful clinical role for iloprost has been found in the management of thrombotic microangiopathy; in this case there appears to be defective bioavailability of prostacyclin due to impaired vascular generation or accelerated degredation.¹⁰⁵ Low plasma 6-oxo PGF_{1α} levels are also found in the Upshaw-Schulman syndrome, and 10 days of continuous infusion of the prostacyclin analogue OP-4 1483 successfully treated the microangiopathic haemolytic process.¹⁰⁶

Regional administration of prostacyclin prevents extracorporeal platelet consumption and reduces the risk of platelet embolisation and bleeding in cardiopulmonary bypass, charcoal haemoperfusion and haemodialysis,⁹⁸ especially when the use of heparin may be dangerous because of the risk of bleeding involved.¹⁰⁰ The potent short-lived platelet antiaggregatory action of iloprost has indeed been exploited with good effect during cardiac surgery in patients with heparin hypersensitivity.¹⁰³ Interestingly, prostacyclin prolongs the viability of washed human platelets used in the treatment of thrombocytopaenic patients,¹⁰⁷ and indeed helps in the production of washed platelets for experimental purposes by preventing any premature aggregation reactions.

One especially intriguing use of iloprost and platelets has recently been described, and although not yet perfected, has much potential; this process involves the use of autologous platelets, electroloaded with iloprost.¹⁰⁸ Thus, by exploiting the natural haemostatic properties of platelets to adhere to sites of endothelial denudation, drugs can be targeted to and retained at a vascular lesion. In this case, the vascular lesion would be one typically resulting from angioplasty, and it was hoped that reducing platelet accumulation on the damaged vascular tissue, one would see decreased smooth muscle cell migration and proliferation which commonly lead to restenosis. However, although studies in pigs found decreased platelet deposition, there was no inhibition of neointima formation.¹⁰⁸

5. **DISCUSSION**

One of the prime clinical uses of IP agonists would be expected to be as antiplatelet drugs, targeted towards the management of arterial thrombosis and atherosclerosis. Yet, despite the synthesis and testing of numerous IP agonists, none have satisfactorily demonstrated antiplatelet activity at doses which did not produce side effects resulting from the vasodilator properties of these compounds. In fact, the discovery that IP₁-receptor knockout mice lacked a vasodilator response to cicaprost merely confirmed what had been suspected for so long, that IP-receptors on platelets and vascular smooth muscle were identical. The partial agonist properties associated with many of the nonprostanoid prostacyclin mimetics offered the scope for utilising the tissue-specific nature of agonist-mediated responses. Unfortunately, studies of vascular IP1-receptors in human small resistance vessels (in vitro) and cardiovascular responses in cynomolgus monkeys (in vivo) both indicated a lack of platelet selectivity for, octimibate, despite its weak activity in human coronary and mesenteric arteries (in vitro).⁵¹ Thus, the vascular IP₁-receptors responsible for the unwanted side effects of IP agonists are presumably as well-coupled as are platelet IP₁-receptors with regard to receptor-effector mechanisms. Furthermore, there is already a vast array of potential antithrombotic agents currently under clinical investigation (see Fareed¹⁰⁹), such as heparin-related drugs, endothelial lining modulators and viscosity modulators, and it is against these drugs that IP agonists would have to compete in the market for antiplatelet drugs. Without sufficient separation of platelet and vascular responses, the clinical use of IP agonists may be relegated to more highly specialised applications.

REFERENCES

- 1. Rosendaal FR. Thrombosis in the young: epidemiology and risk factors. A focus on venous thrombosis. Thromb Haemostas 1997;78:1-6.
- Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemostas 1997;78:611-616.
- 3. Negrescu EV, Grunberg B, Kratzer MA et al. Interaction of antiplatelet drugs in vitro: aspirin, iloprost, and the nitric oxide donors SIN-1 and sodium nitroprusside. Cardiovasc Drugs Ther 1995;9:619-629.
- MacIntyre DE. "Platelet prostaglandin receptors." In *Platelets in Biology and Pathology* - 2, Gordon JL, ed. Elsevier, 1981;211-247.
- 5. Seiss W. Molecular mechanisms of platelet activation. Physiol Rev 1989;69:58-178.
- Hawiger J. Mechanisms involved in platelet vessel wall interaction. Thromb Haemostas 1995;74:369-372.
- Body SC. Platelet activation and interactions with the microvasculature. J Cardiovasc Pharmacol 1996;27(Suppl 1):S13-25.
- Coller BS. The role of platelets in arterial thrombosis and the rationale for blockade of platelet GPIIb/IIIa receptors as antithrombotic therapy. Eur Heart J 1995;16(Suppl L):11-15.
- Badimon L. Models to study thrombotic disorders. Thromb Haemostas 1997;78:667-671.
- Moncada S, Gryglewski R, Bunting S et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976;263:663-665.
- 11. Gryglewski RJ, Bunting S, Moncada S et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 1976;12:685-713.

- 12. Moncada S, Herman AG, Higgs EA et al. Differential formation of prostacyclin (PGX or PGI₂) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 1977;11:323-344.
- Higgs EA, Higgs GA, Moncada S et al. Prostacyclin (PGI₂) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch. Br J Pharmacol 1978;63:535-539.
- 14. Hornstra G, Haddeman E, Don JA. Blood platelets do not provide endoperoxides for vascular prostacyclin production. Nature 1979;279:66-68.
- 15. Needleman P. Prostacyclin in blood vessel-platelet interactions: perspectives and questions. Nature 1979;279:14-15.
- 16. Trial co-ordinators. Randomized trial of ridogrel, a combined thromboxane A₂ synthase inhibitor and thromboxane A₂ / prostaglandin endoperoxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. Circulation 1994;89:588-595.
- 17. Wu KK, Papp AC, Manner CE et al. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. J Clin Invest 1987;79:1601-1606.
- 18. Gryglewski RJ, Korbut R, Ocetkiewicz A. Generation of prostacyclin by lungs *in vivo* and its release into the arterial circulation. Nature 1978;273:765-767.
- 19. Moncada S, Korbut R, Bunting S et al. Prostacyclin is a circulating hormone. Nature 1978;273:767-768.
- Christ-Hazelhof E, Nugteren DH. Prostacyclin is not a circulating hormone. Prostaglandins 1981;22:739-746.
- 21. Lanham JG, Levin MBZ, Gharavi AE et al. Prostacyclin deficiency in a young woman with recurrent thrombosis. Br Med J 1986;292:435-436.
- 22. Nishio S, Matsuura H, Kanai N et al. The in vitro and ex vivo antiplatelet effect of TRK-100, a stable prostacyclin analog, in several species. Jpn J Pharmacol 1988;47:1-10.
- Stürzebecher C-S, Losert W. "Effects of iloprost on platelet activation in vitro." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;39-45.
- 24. Moncada S. Biology and therapeutic potential of prostacyclin. Stroke 1983;14:157-168.
- 25. Savage B, Shattil SJ, Ruggeri ZM. Modulation of platelet function through adhesion receptors. J Biol Chem 1992;267:11300-11306.
- 26. Moncada S. Prostacyclin/thromboxane-mediated mechanisms in platelet-vascular wall interactions. Adv Prostaglandin Thromboxane Leukot Res 1985; 15507-512.
- 27. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678-682.
- 28. Sinzinger H, Schernthaner G, Kaliman J. Sensitivity of platelets to prostaglandins in coronary heart disease and angina pectoris. Prostaglandins 1981;22:773-781.
- 29. Kahn NN, Mueller HS, Sinha AK. Impaired prostaglandin E_1/I_2 receptor activity of human blood platelets in acute ischemic heart disease. Circ Res 1990;66:932-940.

- Manrique RV, Manrique R. "Resistance of platelets to prostacyclin." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;57-63.
- 31. Armstrong RA. Platelet prostanoid receptors. Pharmacol Ther 1996;72:171-191.
- 32. Brass LF, Manning DR, Cichowski K et al. Signaling through G proteins in platelets: to the integrins and beyond. Thromb Haemostas 1997;78:581-589.
- Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251-259.
- 34. Siegl AM, Smith JB, Silver MJ et al. Selective binding site for [³H] prostacyclin on platelets. J Clin Invest 1979;63:215-220.
- Ito S, Hashimoto H, Negishi M et al. Identification of the prostacyclin receptor by use of [15- ³H₁]19 -(3-azidophenyl)-20-norisocarbacyclin, an irreversible specific photoaffinity label. J Biol Chem 1992;267:20326-20330.
- Eggerman TL, Andersen NH, Robertson RP. Separate receptors for prostacyclin and prostaglandin E₂ on human gel-filtered platelets. J Pharmacol Exp Ther 1986;236:568-573.
- 37. Jones RL, Qian Y, Wise H et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol 1997;29:525-535.
- Hall JM, Strange PG. The use of a prostacyclin analogue, [³H] iloprost, for studying prostacyclin-binding sites on human platelets and neuronal hybrid cells. Biosci Reports 1984;4:941-948.
- Seiler S, Brassard CL, Arnold AJ et al. Octimibate inhibition of platelet aggregation: stimulation of adenylate cyclase through prostacyclin receptor activation. J Pharmacol Exp Ther 1990;255:1021-1026.
- Seiler SM, Brassard CL, Federici ME et al. [3 -[4 -(4,5-Diphenyl-2-oxazolyl)-5oxazolyl] phenoxy] acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins 1997;53:21-35.
- Seiler SM, Brassard CL, Federici ME et al. 2-[3 -[2 -(4,5-Dipheny1-2oxazolyl)ethyl]phenoxy]acetic acid (BMY 42393): a new, structurally-novel prostacyclin partial agonist: (1) inhibition of platelet aggregation and mechanism of action. Thromb Res 1994;74:115-123.
- 42. Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol 1986;87:543-551.
- 43. Schillinger E, Prior G. Prostaglandin I₂ receptors in a particulate fraction of platelets of various species. Biochem Pharmacol 1980;29:2297-2299.
- Armstrong RA, Lawrence RA, Jones RL et al. Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol 1989;97:657-668.

- 45. Lombroso M, Nicosia S, Paoletti R et al. The use of stable prostaglandins to investigate prostacyclin (PGI₂)-binding sites and PGI₂-sensitive adenylate cyclase in human platelet membranes. Prostaglandins 1984;27:321-333.
- Kahn NN, Bauman WA, Sinha AK. Loss of high-affinity prostacyclin receptors in platelets and the lack of prostaglandin-induced inhibition of platelet-stimulated thrombin generation in subjects with spinal cord injury. Proc Natl Acad Sci USA 1996;93:245-249.
- 47. Kahn NN, Bauman WA, Sinha AK. Demonstration of a novel circulating antiprostacyclin receptor antibody. Proc Natl Acad Sci USA 1997;94:8779-8782,
- Dutta-Roy AK, Kahn NN, Sinha AK. Interaction of receptors for prostaglandin E₁/prostacyclin and insulin in human erythrocytes and platelets. Life Sci 1991;49:1129-1139.
- Taussig R, Iniguez-Lluhi JA, Gilman AG. Inhibition of adenylyl cyclase by G_{iα}. Science 1993;261:218-221.
- 50. Hellevuo K, Yoshimura M, Kao M et al. A novel adenylyl cyclase sequence cloned from the human erythroleukemia cell line. Biochem Biophys Res Commun 1993;192:311-318.
- 51. Merritt JE, Brown AM, Bund S et al. Primate vascular responses to octimibate, a nonprostanoid agonist at the prostacyclin receptor. Br J Pharmacol 1991;102:260-266.
- 52. Hecker G, König E, Ney P et al. Potent inhibition of PAF-stimulated human platelets and polymorphonuclear leukocytes by the PGE₁ analog OP-1206. Prog Clin Biol Res 1987;247:317-322.
- 53. Eigenthaler M, Nolte C, Halbrügge M et al. Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Eur J Biochem 1992;205:471-481.
- Katsube N, Sakaguchi K, Fujitani B et al. Anti-platelet and anti-thrombotic effects of OP-41483.α-CD, a prostacyclin analogue, in experimental animals. Prostaglandins Leukot Essent Fatty Acids 1993;49:795-804.
- 55. Whittle BJR, Moncada S, Vane JR. Comparison of the effects of prostacyclin (PGI₂), prostaglandin E_1 and D_2 on platelet aggregation in different species. Prostaglandins 1978;16:373-387.
- 56. Matthews JS, Jones RL. Potentiation of aggregation and inhibition of adenylate cyclase in human platelets by prostaglandin E analogues. Br J Pharmacol 1993; 108:363-369.
- 57. Ashby B. Interactions among prostaglandin receptors. Receptor 1994;4:31-42.
- Mao G-F, Jin J-G, Bastepe M et al. Prostaglandin E₂ both stimulates and inhibits adenyl cyclase on platelets: comparison of effects on cloned EP4 and EP3 prostaglandin receptor subtypes. Prostaglandins 1996;52:175-185.
- 59. Nishimura T, Yamamoto T, Komuro Y et al. Antiplatelet functions of a stable prostacyclin analog, SM-10906 are exerted by its inhibitory effect on inositol 1,4,5-trisphosphate production and cytosolic Ca⁺⁺ increase in rat platelets stimulated by thrombin. Thromb Res 1995;79:307-317.
- 60. Tsai A, Hsu M-J, Vijjeswarapu H et al. Solubilization of prostacyclin membrane receptors from human platelets. J Biol Chem 1989;264:61-67.
- Wise H, Kobayashi T, Hong LL et al. Modification of the carboxyl-terminal tail of the prostacyclin (IP)-receptor increases the efficacy of the IP-receptor partial agonist, BMY 45778. Proc 1 st IUPHAR Conference 1998;p28.
- Meanwell NA, Rosenfeld MJ, Trehan AK et al. Nonprostanoid prostacyclin mimetics.
 2. 4,5-Diphenyloxazole derivatives. J Med Chem 1992;35:3483-3497.
- Meanwell NA, Romine JL, Rosenfeld MJ et al. Non-prostanoid prostacyclin mimetics.
 Structure-activity-relationships associated with [3-[4-(4,5-diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid. J Med Chem 1993;36:3884-3903.
- 64. Nony P, Ffrench P, Girard P et al. Platelet-aggregation inhibition and hemodynamic effects of beraprost sodium, a new oral prostacyclin derivative: a study in healthy male subjects. Can J Physiol Pharmacol 1996;74:887-893.
- Cavallini L, Coassin M, Borean A et al. Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J Biol Chem 1996;271:5545-5551.
- 66. Whittle BJR, Moncada S, Mullane K et al. Platelet and cardiovascular activity of the hydantoin BW245C, a potent prostaglandin analogue. Prostaglandins 1983;25:205-223.
- 67. Toda N. Beraprost Sodium. Cardiovasc Drug Rev 1988;6:222-238.
- Maurice DH, Haslam RJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 1990;37:671-681.
- 69. Dickinson NT, Jang EK, Haslam RJ. Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: effects on platelet aggregation. Biochem J 1997;323:371-377.
- Siess W, Lapetina EG. Prostacyclin inhibits platelet aggregation induced by phorbol ester or Ca²⁺ ionophore at steps distal to activation of protein kinase C and Ca²⁺dependent protein kinases. Biochem J 1989;258:57-65.
- Jorgensen KA, Dyerberg J, Stoffersen E. Prostacyclin (PGI₂) and the effect of phosphodiesterase inhibitors on platelet aggregation. Pharmacol Res Commun 1979;11:605-614.
- 72. Darius H, Lefer AM, Leprán I et al. *In vivo* interaction of prostacyclin with an inhibitor of cyclic nucleotide phosphodiesterase, HL 725. Br J Pharmacol 1985;84:735-741.
- Alt U, Leigh PJ, Wilkins AJ et al. Desensitization of iloprost responsiveness in human platelets follows prolonged exposure to iloprost *in vitro*. Br J Clin Pharmacol 1986;22:118-119.
- Jaschonek K, Faul C, Schmidt H et al. Desensitization of platelets with iloprost. Loss of specific binding sites and heterologous desensitization of adenylate cyclase. Eur J Pharmacol 1988;147:187-196.
- Edwards RJ, MacDermot J, Wilkins AJ. Prostacyclin analogues reduce ADPribosylation of the a-subunit of the regulatory G_s-protein and diminish adenosine (A₂) responsiveness of platelets. Br J Pharmacol 1987;90:501-510.

- 76. Giovanazzi S, Accomazzo MR, Letari O et al. Internalization and down-regulation of the prostacyclin receptor in human platelets. Biochem J 1997;325:71-77.
- 77. Fisch A, Tobusch K, Veit K et al. Prostacyclin receptor desensitization is a reversible phenomenon in human platelets. Circulation 1997;96:756-760.
- Murray R, Shipp E, Fitzgerald GA. Prostaglandin endoperoxide/thromboxane A₂ receptor desensitization. J Biol Chem 1990;265:21670-21675.
- Elalamy I, Sharareh E, Vargaftig BB et al. Signal transduction involved in the platelet adenylate cyclase sensitization associated with PGH₂/TxA₂ receptor desensitization. Br J Haematol 1997;99:190-196.
- Discussion on platelet mechanisms. In *Prostacyclin and its Stable Analogue Iloprost*. Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;103-112.
- 81. Sinzinger H, Silberbauer K, Horsch AK et al. Decreased sensitivity of human platelets to PGI₂ during long-term intraarterial prostacyclin infusion in patients with peripheral vascular disease a rebound phenomenom? Prostaglandins 1981;21:49-51.
- 82. Darius H, Michael-Hepp J, Meyer J. Platelet prostacyclin receptor desensitization by iloprost but not by the analog taprostene. Thromb Haemostas 1993;69:p1336.
- 83. Whittle BJR, Moncada S, Whiting F et al. Carbacyclin a potent stable prostacyclin analogue for the inhibition of platelet aggregation. Prostaglandins 1980;19:605-627.
- MacDermot J, Alt U, Leigh PJ et al. "Desensitization of iloprost or prostacyclin responsiveness." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;53-56.
- Watanabe T, Sunaga S, Togo M et al. Protein kinase C plays a key role in the cross-talk between intracellular signalings via prostanoid receptors in a megakaryoblastic cell line, MEG-01s. Biochim Biophys Acta 1996;1304:161-169.
- Adachi M, Ryo R, Yoshida A et al. Elevation of intracellular calcium ion by prostaglandin E₁ and its inhibition by protein kinase C in a human megakaryocyte leukemia cell line. Cancer Res 1989;49:3805-3808.
- Feoktistov I, Breyer RM, Biaggioni I. Prostanoid receptor with a novel pharmacological profile in human erythroleukemia cells. Biochem Pharmacol 1997;54:917-926.
- Turner JT, Camden JM, Kansra S et al. Potentiation of cyclic adenosine monophosphate production by thrombin in the human erythroleukemia cell line, HEL. J Pharmacol Exp Ther 1992;263:708-716.
- Watanabe T, Yatomi Y, Sunago S et al. Characterization of prostaglandin and thromboxane receptors expressed on a megakaryoblastic leukemia cell line, MEG-01s. Blood 1991;78:2328-2336.
- Schwaner I, Seifert R, Schultz G. Receptor-mediated increases in cytosolic Ca²⁺ in the human erythroleukaemia cell line involve pertussis toxin-sensitive and -insensitive pathways. Biochem J 1992;281:301-307.
- Schwaner I, Seifert R, Schultz G. The prostacyclin analogues, cicaprost and iloprost, increase cytosolic Ca²⁺ concentration in the human erythroleukemia cell line, HEL, *via* pertussis toxin-insensitive G-proteins. Eicosanoids 1992;5:S 104 12.

- Namba T, Oida H, Sugimoto Y et al. cDNA cloning of a mouse prostacyclin receptor. J Biol Chem 1994;269:9986-9992.
- 93. Katsuyama M, Sugimoto Y, Namba T et al. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 1994;344:74-78.
- 94. Smyth EM, Nestor PV, Fitzgerald GA. Agonist-dependent phosphorylation of an epitope-tagged human prostacyclin receptor. J Biol Chem 1996;271:33698-33704.
- 95. Brass LF, Woolkalis MJ. Dual regulation of cyclic AMP formation by thrombin in HEL cells, a leukaemic cell line with megakaryocytic properties. Biochem J 1992;281:73-80.
- 96. Sasaki Y, Takahashi T, Tanaka I et al. Expression of prostacyclin receptor in human megakaryocytes. Blood 1997;90:1039-1046.
- 97. Murray R, Furci L, Fitzgerald GA. Induction of prostacyclin receptor expression in human erythroleukemia cells. FEBS Lett 1989;255:172-174.
- 98. Schafer AI. Antiplatelet therapy. Am J Med 1996;101:199-209.
- 99. Clinprost. Drugs Future 1997;22:608-625.
- 100. Meggiato C, Padoin E, Ragazzi E et al. Inhibition of platelet activation by MM-706, a stable carbacyclin analog, in the conscious rat. Gen Pharmacol 1997;28:251-255.
- 101. Data JL, Molony BA, Meinzinger MM et al. Intravenous infusion of prostacyclin sodium in man: clinical effects and influence on platelet adenosine diphosphate sensitivity and adenosine 3':5'-cyclic monophosphate levels. Circulation 1981;64:4-12.
- 102. Whittle BJR, Moncada S. Platelet actions of stable carbocyclic analogues of prostacyclin. Circulation 1985;72:1219-1225.
- 103. Grant SM, Goa KL. Iloprost. Drugs 1992;43:889-924.
- 104. Schrör K. Antiplatelet drugs. Drugs 1995;50:7-28.
- 105. Sagripanti A, Carpi A, Rosaia B et al. Iloprost in the treatment of thrombotic microangiopathy: report of thirteen cases. Biomed Pharmacother 1996;50:350-356.
- 106. Konno M, Yoshioka A, Takase T et al. Partial clinical improvement in Upshaw-Schulman syndrome following prostacyclin infusion. Acta Paed Jpn 1995;37:97-100.
- 107. Blackwell GJ, Radomski M, Vargas JR et al. Prostacyclin prolongs viability of washed human platelets. Biochim Biophys Acta 1982;718:60-65.
- 108. Banning A, Brewer L, Wendt M et al. Local delivery of platelets with encapsulated iloprost to balloon injured pig carotid arteries: effect on platelet deposition and neointima formation. Thromb Haemostas 1997;77:190-196.
- 109. Fareed J. Current trends in antithrombotic drug and device development. Sem Thromb Hemostas 1996;22(Suppl 1):3-8.

Chapter 6

IP-receptors in the vasculature

1. INTRODUCTION

Prostacyclin (IP-) receptors are distributed throughout the cardiovascular systems of many species and their activation leads to arteriolar dilatation and reduction in blood pressure. Many blood vessels also contain a prostacyclingenerating system in the endothelium. Indeed, prostacyclin is one of several endothelium-derived relaxing factors (EDRFs) that help to control the distribution of blood flow within the cardiovascular system. In this chapter we shall discuss some basic and clinical attributes of vascular IP systems: their agonist profiles, second messenger systems and interactions with other vasoactive agents; how endogenous prostacyclin may affect cardiovascular function in both health and disease; and the therapeutic uses of IP agonists in cardiovascular disease. With respect to the latter two areas, IP agonists have powerful inhibitory actions on platelets (Chapter 5) and modulatory actions on white cells (Chapter 8) that may well influence their vascular effects. The reader will find more detailed descriptions of studies performed prior to 1991 in the excellent review by Dusting & MacDonald.¹

2. ACTIONS OF IP-RECEPTOR AGONISTS ON ISOLATED VESSEL PREPARATIONS

2.1 Distribution and cellular location of IP-receptors

In general, prostacyclin-sensitive relaxant systems are not limited to particular areas of the arterial system. Systemic arteries with conduit functions (e.g. guinea-pig thoracic aorta²), and resistance functions (human cerebral arteries of 0.5 mm diameter³), together with pulmonary arteries (intralobular arteries of rabbit, dog and man⁴) are all dilated by prostacyclin, and there is no evidence for gradation of sensitivity within a vascular tree. IP agonists tend to have weaker dilator actions on veins compared to arteries. For example, prostacyclin and its analogue iloprost relaxed bovine coronary artery at nanomolar concentrations, whereas on bovine coronary vein contractile and relaxant effects respectively were observed, but only at micromolar concentrations.⁵ Also, prostacyclin was a much weaker relaxant agent than PGE₂ on rabbit saphenous vein, and its activity may be due to activation of EP₄-receptors.⁶ A few vessels, for example rabbit aorta, are devoid of IP-receptors and are useful for studying other properties of IP agonists, such as the TP-receptor antagonism shown by some nonprostanoid prostacyclin mimetics (see Chapter 3).⁷

Relaxation induced by an IP agonist is usually unaffected by physical removal of the endothelium,^{4,8} blockade of neuronal Na⁺-channels with tetrodotoxin,⁹ and pretreatment with antagonists for muscarinic, β -adrenergic, and histamine H₂-receptors; ¹⁰ these findings indicate that the IP agonist acts directly on the vascular smooth muscle cell.

2.2 Choice of vascular preparation

In deciding on a suitable vascular preparation for the study of IP agonists (and of course the elusive IP antagonist), ready availability of tissue and high sensitivity to prostacyclin are important considerations, but the presence of other prostanoid receptor systems can be a critical factor. For example, on rat aorta,¹¹ rat pulmonary artery¹² and monkey peripheral arteries,⁸ submaximal relaxation progressed to contraction as the concentrations of prostacyclin and carbacyclin were increased. Inclusion of a TP-receptor antagonist showed that the contractions were due to activation of TP-receptors, and this was supported by binding studies on cultured smooth muscle cells from rat aorta, where both prostacyclin and carbacyclin

competed with [¹²⁵I]-BOP for TP-receptors (IC₅₀ = 2.3 and 1.5 μ M respectively).¹¹

Certain human blood vessels are relatively easy to obtain from surgical procedures and of these, intrapulmonary,^{4,9} uterine,¹³ umbilical¹⁴ and mesenteric¹⁵ arteries relax well to IP agonists (cicaprost IC₅₀s 0.1 - 1 nM). While the contractile TP systems in these preparations can be suppressed with a TP antagonist, the presence of a contractile EP₃ system (for which no antagonist is available) may affect estimation of IP agonist potency. On human intrapulmonary artery for example, Walch et al.¹⁶ concluded that only IP-receptors are involved in prostanoid-induced relaxation mainly on the basis that cicaprost and iloprost inhibited noradrenaline-induced tone, but PGE₂ did not. However, in an earlier study Qian et al.¹⁷ showed that PGE₂ could induce relaxation in some pulmonary artery preparations, whilst in the remainder its EP_{2?} relaxant action was obscured by an EP3 contractile action. The prostacyclin analogue TEI-3356 also activates this EP₃ system leading to underestimation of IP agonist potency (Fig. 38).⁹

Figure 38. Comparison of relaxant potencies on human pulmonary artery (IC_{50} , unfilled circle) and binding affinity for human platelet IP₁-receptors (K_i, filled circles) for prostacyclin analogues and nonprostanoid prostacyclin mimetics. Prostacyclin has an IC_{50} for relaxation of about 4 nM. The horizontal arrow indicates that the IP agonist potency of TEI-3356 is underestimated due to its EP₃ contractile action. Benzo-PGI = benzodioxane prostacyclin. Data from Jones et al.,⁹ with permission.

The presence of relaxant EP_2 and/or EP_4 systems (for which there are again no good antagonists) can also create difficulties, and this point is well illustrated by the studies of Hedlund & Andersson¹⁸ on vascular tissue from

the human penis (Fig. 39). Under conditions of resting tone, corpus cavernosum preparations were potently contracted by the TP agonist U-466 19; PGF_{2a} (data not shown) and prostacyclin were moderately active contractile agents, whereas PGE₁ and PGE₂ showed no effect. When tone was raised with either $PGF_{2\alpha}$ or noradrenaline, relaxation was seen with PGE_1 and PGE_2 but not with prostacyclin. Thus the corpus cavernosum possesses a relaxant EP system, which undoubtedly contributes to the therapeutic efficacy of PGE₁ (Alprostadil) in erectile dysfunction in man when given by the intracavernosal or intraurethral routes.^{19,20} However, it should not be concluded that prostacyclin is inactive at EP-receptors in the corpus cavernosum preparation, since its contractile activity (at TPreceptors?) may have counteracted its relaxant activity. Relevant to this suggestion is the finding that cicaprost, iloprost, carbacyclin and isocarbacyclin all compete with [³H]-PGE₂ for mouse EP₂-receptors expressed in CHO cells with K₁ values between 1.0 and 1.6 µM.²¹

Figure 39. Log concentration response curves for prostanoid agonists on isolated vascular preparations from the human penis. Tone was induced by 1 μ M PGF_{2α} in the lower panels. Broken lines joining data points indicate that absolute responses were not quoted in the original report, simply a description "no response over the concentration range ...". Data from Hedlund & Andersson,¹⁸ with permission.

On the human cavernous artery preparation, the picture is quite different (Fig. 39): this vessel is also highly sensitive to the contractile action of U-46619, but prostacyclin now has no effect on resting tone and abolishes PGF_{2α}-induced tone at a concentration of 25 nM; PGE₁ is a less potent relaxant and PGE₂ shows a bell-shaped curve. It is possible that the cavernous artery contains only a relaxant IP-receptor, for which the expected potency ranking would be prostacyclin > PGE₁ >> PGE₂. However, there may also be a relaxant EP-receptor present since the contractile action of PGE₂ could offset its relaxant activity. The profile of PGE₁ tells us little since we know that it activates EP₂, EP₄ and IP-receptors; its K_i values for these mouse cloned receptors in CHO cells are 10, 2.1 and 33 nM respectively,²¹ see Table 2.

Returning to suitable animal preparations, rings of bovine coronary artery,⁵ and dog and rabbit mesenteric arteries,^{15,22} are all sensitive to IP agonists, but again they contain contractile TP-receptors and contractile and/or relaxant EP-receptors.

2.3 Pharmacological characterisation

Iloprost and cicaprost are better standard agonists than prostacyclin since the latter hydrolyses in the bathing fluid leading to a sharper response profile and modest underestimation of its agonist potency (see Chapter 2 for structures and stability data).^{9,13}

Vascular IP-receptors appear to be of the IP₁ subtype, based on the high absolute potency of cicaprost, and its marginally greater potency over iloprost (1.5 - 3-fold) and somewhat greater potency over prostacyclin (3 - 20-fold), as typified by the data for human pulmonary artery shown in Figure 38.⁹ This is substantiated by the weaker activity of another commonly used prostacyclin analogue, carbacyclin, which was 9.8, 2.1 and 3.6-fold less potent than cicaprost on human, rabbit and dog mesenteric arteries respectively,¹⁵ and 4.3-fold less potent than prostacyclin on rabbit mesenteric artery.²³ Unfortunately, comprehensive comparison of IP agonist potency rankings for different vascular beds and for different species is virtually impossible, since in many studies only one or two prostacyclin analogues have been examined.

There has also been little work on comparing relaxant potencies of a range of IP agonists with their binding affinities in the same vascular preparation, mainly because of problems in obtaining good quality data on membrane preparations from vascular tissue. For example, Parfenova et al.²⁴ quoted an EC₅₀ of 27 nM for saturable [³H]-iloprost binding to membranes from pig cerebral microvessel cells grown in culture, but declined to carry out a Scatchard analysis due to the high level of nonspecific binding. A

secondary option is to compare relaxant potencies with more easily obtainable binding affinities for the IP₁-receptor on platelet membranes from the same species. Figure 38 shows that these two parameters correlate well for human pulmonary artery rings and human platelet membranes.⁹ For the prostacyclin analogues (TEI-33 56 excluded), the predicted occupancy of vascular IP₁-receptors at the corresponding IC₅₀ value ranges from 2.5 to 10% indicating moderately high efficacies. By the same procedure the nonprostanoid prostacyclin mimetics would appear to have lower efficacies and this aspect is discussed more fully in Chapters 3 and 5.

3. CELLULAR MECHANISMS INVOLVED IN RELAXATION

3.1 Adenylate cyclase/protein kinase A and dependence on the tone-inducing agent

Several studies on isolated arterial vessels and cultured vascular cells have implicated the adenylate cyclase/protein kinase A (PKA) system in the relaxant action of IP agonists (Fig. 40).²⁴⁻²⁹ MacDermot & Barnes³⁰ found K_{act} values for adenylate cyclase in guinea-pig pulmonary (artery) tissue homogenates to be 26 nM for prostacyclin, 350 nM for PGE₁, and about 100 μ M for PGE₂; these values correlated well with competition for [³H]-PGI ₂ binding in the same tissue.³¹ Dong et al.³² showed that the maximal relaxant effect of endothelium-derived prostacyclin on rabbit middle cerebral artery was inhibited by 56% by the adenylate cyclase inhibitor SQ 22536. The PKA blockers H-89 and Rp-8-CPT-cAMPS inhibited iloprost-induced dilatation in rat tail small arteries by 77 and 92% respectively.³³ Elevation of cyclic AMP has also been demonstrated in vivo in the open-chest dog by rapid freezing of coronary vessels during prostacyclin infusion.³⁴

IP agonists and other agents that raise cyclic AMP levels inhibit vascular tone induced by a variety of spasmogens. However, inhibitory profiles against different spasmogens are not always identical and this is relevant to the processes whereby cyclic AMP causes relaxation. There are a number of reports where even quite high levels of tone induced by U-46619 were totally or almost totally inhibited by an IP agonist: in contrast, although the IP agonist completely inhibited low K⁺ (25 mM) tone, it could only partially inhibit high K⁺ (45 - 75 mM) tone (Fig. 40, inset).9,35,36 How can these observations be explained? High K⁺ in the external fluid depolarises the plasma membrane and consequently opens voltage-gated (L-type) Ca^{2+} -

channels; the depolarisation also sensitises calmodulin / contractile proteins to Ca^{2+} (Fig. 40, lower section).³⁷

Figure 40. Potential mechanisms for the vasorelaxant actions of IP agonists. The bold and open arrows indicate phosphorylation and dephosphorylation respectively. The lower portion shows the mechanisms whereby IP agonists inhibit tone induced by high external K^* . The inset shows that cicaprost can only partially inhibit tone induced by high K^* in human pulmonary artery rings.⁹

In opposition, a cyclic AMP elevator appears to have two major modes of action:³⁸ opening of K⁺-channels to cause hyperpolarisation (and hence closure of L-type Ca²⁺-channels) and reduction in the sensitivity of calmodulin / contractile proteins to Ca²⁺. High [K +]_o will abrogate the first relaxation mechanism by moving the membrane potential closer to the K⁺ equilibrium potential (E_K). Little K⁺ will flow through the open channels, and this explains why the K⁺-channel opener cromakalim is virtually ineffective against high K⁺ tone. The second relaxation mechanism will still

operate however, and this was demonstrated for the IP system in guinea-pig aorta where 1 μ M iloprost relaxed high K⁺ tone by 25 - 30% with little effect on [Ca ²⁺]_i.³⁶ Yamagishi et al.³⁸ first proposed a similar explanation to account for incomplete relaxation of pig coronary artery by β_1 -adrenoceptor agonists.

In contrast to this large body of evidence, Turcato & Clapp³⁹ have recently demonstrated that IP agonist-induced relaxation of guinea-pig aorta may be independent of cyclic AMP. In the absence of phosphodiesterase inhibition, iloprost (60 nM) induced about 65% relaxation of phenylephrine tone accompanied by a 3-fold rise in cyclic AMP. SQ 22536 abolished the rise in cyclic AMP, but had absolutely no effect on relaxation. Could there be a more direct link to K⁺-channels in the plasma membrane (Fig. 40) and if so, what function does cyclic AMP serve in this situation?

Other mechanisms besides opening of K⁺-channels and reduction of Ca²⁺ sensitivity could contribute to relaxation induced by IP agonists. It is known that forskolin and dibutyryl cyclic AMP can inhibit phosholipase C activation in vascular⁴⁰ and tracheal smooth muscle.⁴¹ In addition, cyclic AMP elevation in tracheal smooth muscle promotes sequestration of Ca²⁺ into internal stores.⁴² Another possibility is activation of the plasma membrane Na⁺-K⁺ ATPase to cause hyperpolarisation and lowering of [Ca ²⁺]_i. Fukuda et al.⁴³ have shown that in pig coronary artery the Na⁺-pump inhibitor ouabain shifts the log concentration-response curve for PGE₁ to the right by about 0.8 log unit. However it is not clear whether PGE₁ was activating IP and/or EP-receptors in this preparation.

3.2 Opening of K⁺-channels

Let us now examine information gained from electrophysiological studies about the nature of the K⁺-channels involved in IP agonist-induced vascular relaxation. In a comprehensive series of experiments, Siege1 et al.³⁵ showed that the hyperpolarisation of dog carotid artery by 1 μ M iloprost was accompanied by a 3 - 4-fold increase in K⁺ efflux as detected by ⁴²K washout. Using the whole-cell patch-clamp method on single vascular smooth muscle cells from rat portal vein (Fig. 41, Table 10), these workers also showed that the inward Ca²⁺ current in response to a depolarisation jump was not affected by iloprost (Ba²⁺ was the charge carrier and Cs⁺ was present in the pipette solution to inhibit K⁺ fluxes). When measured in either Ba²⁺ or Ca²⁺ solutions and with K⁺ in the pipette, iloprost's action to increase outward K⁺ current was much more dramatic and it was concluded that activation of IP-receptors opens both voltage-dependent and Ca²⁺-activated K⁺-channels (K_v and K_{Ca}). Table 10 shows that delayed rectifier and ATPsensitive K⁺-channels (K_{drf} and K_{ATP}) are also involved in IP-agonist-induced relaxation of vascular smooth muscle cells. The K_{ATP} -channel blocker glibenclamide must be used with caution however, since it is also a weak TP-receptor antagonist (pA₂ 6.2) and could affect U-466 19-induced tone.⁴⁴

In vitro	IP agonist	Method/inhibitors	Ion Channels		Ref.
preparation	_		identified	excluded	No.
Rat coronary circulation	Iloprost	Perfusion pressure/Glib	K_{ATP}		45
Rat aorta ring	Iloprost	Muscle tension/Glib		KATP	4s
Rat lung circulation	Iloprost	Perfusion pressure/Glib, CTX	K _{atp} K _{C2}		46
Rat tail small artery segment	Iloprost	Video-imaging/Glib, IBTX, TEA	$K_{ATP} K_{Ca}$		33
Rabbit coronary circulation	Iloprost PGI ₂	Perfusion pressure/Glib	Katp		47
Rabbit middle cerebral artery ring	PGI ₂ *	Muscle tension/Glib, CTX, IBTX, DTX, 4- AP	$\begin{matrix} K_{Ca} \\ K_{v} \end{matrix}$		32
Cow coronary artery strip	Iloprost	Muscle tension/Glib	K_{ATP}		47
Guinea-pig aorta ring	Iloprost Cicaprost	Muscle tension/Glib, TEA, IBTX	K ^{Ca}	K_{ATP}	48
Rat portal vein isolated cell	Iloprost	Whole cell patch-clamp	${\displaystyle \mathop{K_{Ca}}\limits_{v}}$		35
Rat tail artery isolated cell	Iloprost	Whole cell and cell- attached patch- clamp/Glib, IBTX, 4- AP	K _{Ca}	K _{ATP}	33
Cow small coronary artery isolated cell	Iloprost	Cell-attached and inside-out patch-clamp	$K_{\rm drf}$	K _{ca}	49

Table 10. Role of K+-channels in vascular relaxation induced by IP agonists

*Released as an EDRF. Glib = glibenclamide, CTX = charybdotoxin, IBTX = iberiotoxin, DTX = dendrotoxin, TEA = tetraethyl ammonium (halide), 4-AP = 4-aminopyridine. K_{ATP} K_{Ca} , K_v and K_{drf} are ATP-dependent, Ca₂₊-dependent, voltage-dependent and delayed rectifier K⁺-channels, respectively.

The patch-clamp experiments of Schubert et al.^{33,50} on freshly isolated tail artery cells of the rat provide clear evidence of an interaction between the adenylate cyclase/PKA system and K_{Ca}-channel function in the relaxant action of IP agonists (Fig. 40) Iloprost-induced outward current was markedly inhibited by the K_{Ca}-channel blocker iberiotoxin and the PKA inhibitor Rp-8-CPT-cAMPS; this current was also enhanced by the phosphatase inhibitor okadaic acid. Iloprost did not open the K_{Ca}-channels by elevating [Ca ²⁺]_i. It may however promote phosphorylation of K_{Ca}-

channels to enhance their sensitivity to $[Ca^{2+}]_i$ as proposed by Sadoshima et al.⁵¹ for isoprenaline action on cultured smooth muscle cells from rat aorta.

Figure 41. Effects of iloprost on Ca^{2+} and K^+ currents recorded in single vascular smooth muscle cells from the rat portal vein. Data from Seigel et al.,³⁵ with permission.

4. IN VIVO EFFECTS OF PROSTACYCLIN AND ITS STABLE ANALOGUES

4.1 Actions on peripheral vasculature

Prostacyclin given intravenously lowers the systemic blood pressure of all animal species examined so far. Early studies in the dog showed that arteriolar dilatation was the primary mechanism, with cardiac output and stroke volume increasing passively.⁵² Stable analogues of prostacyclin such as iloprost and beraprost were also hypotensive in the dog, cat, rat and rabbit.^{5,53-55} Prostacyclin induces dilatation in many arterial beds when given by either close-intraarterial infusion (e.g. coronary,⁵⁶ femoral,⁵⁶ and renal⁵⁷⁻⁵⁹ arteries of the dog) or topical application (e.g. hamster cheek pouch,⁶⁰ rat cremaster muscle,⁶¹ cat cerebrum⁶²). Iloprost dilated rabbit ear artery segments to the same extent when tone was induced by either transmural nerve stimulation or phenylephrine,⁶³ indicating a direct (postsynaptic) action on the arterioles.

The cardiovascular effects of intravenous prostacyclin (Fig. 42) and several of its analogues in man are summarised in Table 11. Peripheral vasodilation was evident with each of the agents and facial flushing, headache and nasal congestion often limited the dose that could be given. Vomiting occurred at the higher doses of prostacyclin and beraprost. Carbacyclin infusions produced modest inhibition of platelet aggregation (ex vivo), but no cardiovascular changes.⁶⁴ In one subject, 25 mg of carbacyclin by the oral route produced signs of peripheral vasodilatation, but also systemic hypertension.

Attempts to improve the therapeutic profile of prostacyclin analogues still continue. Etaloprost is an oral pro-drug in which an elongated a-chain is shortened by β -oxidation in vivo to give the highly potent cicaprost (see Chapter 2 for structure).⁶⁵ However, the activation process tends to be too fast to achieve a sustained plasma level of cicaprost. Another approach has been to incorporate isocarbacyclin methyl ester, which is highly lipophilic, into a lipid microsphere formulation (TTC-909) for intravenous use.⁶⁶ The isocarbacyclin methyl ester is then slowly released at the supposed site of action and de-esterified to give the active agent.⁶⁷ Transient orthostatic hypotension was observed with TTC-909 in one subject and postural hypotension in another, raising the usual dilemma of what to do when adverse effects appear with a sustained-release formulation.

Figure 42. Effects of intravenous infusions of prostacyclin and 6-oxo PGE₁ on diastolic blood pressure (DBP), heart rate (HR), ADP-induced platelet aggregation (Pla) (all left y-axis) and plasma renin activity (Ren, right y-axis) in man. Data from Miyamori et al.,⁶⁸ with permission.

Prostanoid / Subject group	IV infusion rate (ng kg ⁻¹ min ⁻¹)	Effects	Ref. No.
Prostacyclin / healthy subjects	0.5 - 2.5	Facial flushing. Hypotension, tachycardia, facial flushing, mild abdominal cramping, increase in plasma renin activity.	69-72
	2.5 - 10	Hypotension, tachycardia, decrease of sinus cycle length and AV node refratoriness.	
	4-10	Headache, tachycardia, nausea and vomiting, increase in bleeding time, erythema at infusion site and "vagal reflex" after about 1 h.	
	10-15	Sweating, restlessness, sighing	
	50	and yawning. Bradycardia, pallor, nausea, marked hypotension.	
Iloprost / patients with occlusive disease of lower limbs	0.5 - 4 (also oral t.i.d.)	Hypotension, tachycardia, increase in cardiac index, fall in pulmonary vascular resistance, no change in mean pulmonary arterial pressure.	73
Carbacyclin / heathy subjects	20 - 80 25 mg orally	No cardiovascular changes, inhibition of platelet aggregation. Hypertension, facial flushing,	64
Ciprostene* healthy subjects	120 - 480	headache. Headache, restlessness, perspiration, facial flushing, nausea and vomiting, jaw pain.	74
ONO-41483* healthy subjects	10	Hypotension, inhibition of platelet aggregation.	75
Beraprost / healthy subjects	75 - 150 μg day ⁻¹ t.i.d. orally 200 μg single oral	Facial flushing, heavy- headedness, nasal congestion, inhibition of platelet aggregation. Mild breathlessness, loss of	76,77
TTC-909∜ healthy subjects	uose 1 - 4 μg single IV dose	Temporary orthostatic hypotension, postural hypotension.	78

Table 11. Effects of prostacyclin and its analogues on cardiovascular function in man

*9β-methyl carbacyclin; **15 -cyclopentyl-ω-pentanor carbacyclin; †Lipid microsphere formulation of isocarbacyclin methyl ester.

4.2 Renal actions

The renal actions of prostacyclin have been investigated in depth, particularly by infusion into a renal artery of the anaesthetised dog, which

largely avoids the systemic hypotension (and consequent antidiuresis) associated with the intravenous route.^{57,58} Infusion of prostacyclin at 3 - 6 ng kg⁻¹ min⁻¹ induced equivalent increases in renal blood flow to PGE₂ at 0.5 - 1.5 ng kg⁻¹ min⁻¹. However, PGE₂ was much more effective than prostacyclin in increasing urinary water and sodium output.^{59,79} Jones et al.⁵⁹ suggested that the natriuretic actions of prostacyclin might be largely due to its renal haemodynamic activity, whereas PGE₂ is likely to have additional direct actions on sodium reabsorption in the ascending limb of Henlé and the distal tubule / collecting ducts and on antidiuretic hormone function (see Jones et al.⁵⁹ for references). However, Gullner et al.⁸⁰ have shown that in hypophysectomised/cortisol-treated dogs under maximal water diuresis, prostacyclin infusion enhances sodium excretion, probably by a direct action on the distal nephron.

Another facet of prostacyclin's action on the kidney is its ability to release renin, with consequent generation of angiotensin II and aldosterone. Early observations showed that (a) infusion of arachidonic acid into the renal artery of the rabbit,⁸¹ rat⁸² and dog⁸³⁻⁸⁵ induces renin release, which is blocked by indomethacin, (b) renal medullary prostaglandins contribute to the elevated plasma renin levels in patients with Bartter's syndrome (see Levenson et al.⁸⁶ and Guay-Woodford⁸⁷), and (c) prostacyclin is the dominant product synthesised by cyclo-oxygenase (COX) in renal arterioles close to juxtaglomerular cells.^{88,89} In the presence of indomethacin, prostacyclin stimulates renin release from rat renal cortical slices with an IC_{50} of about 50 nM,⁹⁰ and this and other in vitro studies⁹¹⁻⁹⁴ support the idea that activation of IP-receptors on juxtaglomerular cells releases renin. Only a few prostacyclin analogues have been investigated for their renin-releasing activity. In the rat, intravenous administration of taprostene (CG 4203, see Chapter 2)⁹⁵ and the 15-cyclohexyl- ω -pentanor and 15-(3-thienyloxymethyl)- ω -pentanor analogues of prostacyclin methyl ester⁹⁶ markedly stimulated renin release. However, direct release of renin is unlikely to be the sole mechanism involved, since blood pressure was reduced concomitantly by the prostacyclin analogues. Indeed, the angiotensin receptor antagonist saralasin enhanced the hypotensive action of taprostene and abolished the increase in blood pressure seen on stopping of the taprostene infusion.95

In vivo measurements in dog and man, support the view that endogenous prostacyclin can directly release renin.⁹⁷⁻¹⁰⁰ However, the three main mechanisms effecting renin release are often difficult to study in isolation and consequently it is not easy to determine the involvement of intrarenally-generated prostacyclin in each mechanism.¹⁰¹ In the first mechanism, a fall in blood pressure activates the systemic baroreceptors leading to increased sympathetic nervous tone to the kidney and activation of β_1 -adrenoceptors

on juxtaglomerular cells. The consensus is against an involvement of prostacyclin in this mechanism,¹⁰¹ since renin release from the rabbit isolated perfused kidney¹⁰² and from rat renal cortical slices⁹⁰ induced by the β -adrenoceptor agonist isoprenaline was unaffected by COX inhibition. In addition, indomethacin failed to affect renin release resulting from renal nerve stimulation in the anaesthetised dog.^{99,103}

In the second or renal baroreceptor mechanism, the renal afferent arteriole /juxtaglomerular cells sense changes in stretch or wall tension and release renin when renal perfusion pressure falls; the experimental evidence relating to a role for prostacyclin in this mechanism is mixed. In dogs with an intact filtering kidney, reduction in renal perfusion pressure to within the autoregulatory range (83 - 90 mmHg) caused release of renin that was inhibited by indomethacin; renin release elicited by lower perfusion pressures (53 - 60 mmHg) was not affected by indomethacin.^{104,105} Moreover, in adrenalectomised dogs¹⁰⁶ and rats¹⁰⁷ with a single denervated nonfiltering kidney (in which the macula densa mechanism does not operate; see below), indomethacin and meclofenamic acid respectively failed to affect renin release in response to aortic constriction.

For the third renin release mechanism, in which the macula densa detects fluid flow and electrolyte composition within the distal tubule, the evidence is also contradictory. Thus, the elevated plasma renin activity in response to chronic sodium deprivation in the rat was abolished,¹⁰⁸ partially inhibited,¹⁰⁹ or unaffected¹¹⁰ by indomethacin. In the dog, there is also evidence for ¹¹¹ and against¹¹² prostacyclin involvement, and in man there is some evidence against.¹¹³ In conclusion, prostacyclin biosynthesis is not a final common pathway in renin release, but may function to accentuate intrarenally-driven renin release mechanisms. Further studies would benefit from the use of a specific IP-receptor antagonist, which would not affect the activity of endogenous PGE₂ as COX inhibitors do.

It is possible that a metabolite of prostacyclin, 6-oxo PGE₁, may be responsible for some of the renin-releasing activity of prostacyclin.¹¹⁴ The enzyme responsible, 9-hydroxy-prostaglandin dehydrogenase, is present in higher amount in the cortex of the rabbit kidney compared to the medulla and papilla, and this corresponds to the renin content.^{114,115} When infused into the renal artery of the dog, 6-oxo PGE₁ was about four times more potent than prostacyclin in increasing renal blood flow and inducing renin release.¹¹⁶ However, in human subjects its renin-releasing activity was minimal at doses that caused significant inhibition of platelet aggregation (Fig. 42).⁶⁸ 6-Oxo PGE₁, like PGE₁, is an agonist at both IP- and EP-receptors.¹¹⁷

4.3 Involvement of autonomic reflexes

In man, the intravenous infusion of prostacyclin can result in modest hypotension associated with marked tachycardia (Fig. 42). However, at higher infusion rates or longer infusion times severe hypotension, bradycardia and pallor develop (Table 11). The mechanisms may be similar to those found in conscious dogs, where prostacyclin¹¹⁸ (and 6-oxo PGE₁¹¹⁹) stimulates sensory nerve endings in the heart to cause a reduction in sympathetic outflow from the brain. An instructive comparison was made with nitroglycerin (NTG), which reduced the internal pressure and enddiastolic diameter of the left ventricle by directly dilating veins; the consequent fall in arterial blood pressure actuated the baroreceptor reflex to increase heart rate. Neither section of the cervical vagi nor α_1 -adrenoceptor blockade by prazosin affected the reduction in end-diastolic diameter. Prostacyclin on the other hand caused a more prolonged fall in blood pressure and a small reduction in heart rate. The accompanying fall in enddiastolic diameter was abolished by vagotomy and inhibited by 75% by prazosin. Thus, it may be concluded that prostacyclin has two main actions: the first is to directly dilate systemic arterioles (which will activate the normal baroreceptor reflex); the second is to activate vagal sensory receptors in the cardiopulmonary region, which results in reduction in sympathetic tone to the arterioles, veins and heart, thus reducing afterload, preload and The nature of the sensory nerve endings stimulated by heart rate prostacyclin is discussed in Chapter 9.

4.4 Knockout of the IP-receptor gene

The removal of an organism's ability to manufacture a particular receptor by knockout of the corresponding gene is an important addition to receptor characterisation studies. As shown in Figure 43, the inhibitory action of cicaprost in platelet-rich plasma (PRP) from wild-type mice was absent in PRP from mice with homozygous knockout of the IP₁-receptor gene (IP₁receptor-KO).¹²⁰ Similarly, high intravenous doses of cicaprost had no hypotensive action in anaesthetised mice with homozygous IP-receptor-KO, again demonstrating the identity of platelet and vascular IP₁-receptors within a species. PGE₂ had similar (transient) depressor activity in both wild-type and IP₁-receptor-KO mice confirming the specificity of the gene knockout procedure.

Figure 43. Effects of cicaprost on in vitro platelet aggregation and blood pressure of wild-type and IP₁-receptor-KO mice. Cicaprost concentration in platelet experiments was 10 nM. Data from Murata et al.,¹²⁰ with permission.

5. PROSTACYCLIN AS AN ENDOTHELIUM-DERIVED RELAXING FACTOR

5.1 The several EDRF systems in blood vessels

As discussed in Chapter 5, the finding that the endothelium of an artery can convert arachidonic acid or prostaglandin endoperoxides into prostacyclin,¹²¹⁻¹²³ raised the possibility that prostacyclin suppresses the reactivity of platelets in contact with the intimal surface, thus generating "antithrombotic cover" for the vessel.¹²⁴ However, if the prostacyclin were to diffuse into the circular smooth muscle layer, then vasodilatation might ensue. This type of endothelium-dependent vasodilatation has been investigated intensely following the report by Furchgott & Zawadski¹²⁵ in 1980 that the relaxant action of acetylcholine on rabbit aorta was abolished following removal of the endothelium. It was proposed that activation of an endothelium-derived relaxing factor or EDRF. In practice, at least three

EDRF systems exist in blood vessels (Fig. 44) and all are switched on by a rise in endothelial $[Ca^{2+}]_{i}$.

- (i) Endothelial nitric oxide synthase (eNOS) converts L-arginine into nitric oxide (NO), which rapidly diffuses into smooth muscle cells to activate guanylate cyclase. This is often the dominant EDRF system.
- (ii) Phospholipase A₂ (PLA₂) releases arachidonic acid from membrane phospholipids and COX and prostacyclin synthase then produce prostacyclin, which interacts with IP-receptors on the surface of the smooth muscle cell to activate adenylate cyclase.
- (iii) Α third enzyme system generates an endothelium-derived hyperpolarising factor or EDHF, which may be a cytochrome P450 mono-oxygenase metabolite of arachidonic acid, 126,127 although there is also evidence for and against it being the cannabinoid receptor agonist anandamide.^{128,129} EDHF opens K⁺-channels in the smooth muscle cell to cause membrane hyperpolarisation and closure of voltage-sensitive Ca2+-channels, and its effect can usually be inhibited by appropriate K⁺-channel blocker(s) (see later). It has also been suggested that in some vessels EDHF action is not chemical in nature, but involves a hyperpolarising current generated in the endothelial cell coupling electronically to the smooth muscle cell via gap junctions.

The basic protocol for determining the contribution of each EDRF system to blood vessel relaxation involves constructing dose-response curves for the dilator stimulus in the presence of a NOS inhibitor (e.g. L-NAME, L-NNA or L-NOARG), a COX inhibitor (e.g. indomethacin), and a combination of the two. For example, on rabbit middle cerebral artery (Table 12, Fig. 44, inset), relaxant responses to acetylcholine (1 nM - 30 µM) were partially inhibited by both L-NOARG and indomethacin and almost abolished by a of the inhibitors,³² indicating roles for both NO and combination prostacyclin as EDRFs. The remaining small relaxation may be due to EDHF, although it is difficult to establish that NOS and COX have been completely inhibited. Different EDRF profiles are found depending on the species and vascular bed examined. In substance P-induced relaxation of human umbilical artery, prostacyclin was dominant over NO,133 whereas in human omental artery and vein prostacyclin's role was minimal.¹³⁴ The complexities of interpreting EDRF profiles are discussed in Section 5.4.

Figure 44. Endothelium-dependent relaxation systems present in blood vessels. Nitric oxide synthase (NOS) can be inhibited by L-NAME, cyclo-oxygenase (COX) by nonsteroidal anti-inflammatory agents (NSAIDS) such as indomethacin (Indo), and prostacyclin synthase (PGIS) by 15-hydroperoxy-eicosatetraenoic acid (15-HPETE). Nitric oxide (NO) levels can be reduced by binding to oxyhaemoglobin (HbO). EDHF = endothelium-dependent hyperpolarising factor; GC = guanylate cyclase; AC = adenylate cyclase. The inset shows the effect of L-NOARG and indomethacin alone and in combination on acetylcholine-induced relaxation of middle cerebral artery rings; from Dong et al.,³² with permission.

Throughout this chapter, we have conveniently assumed that prostacyclin is the COX-generated EDRF in arterial preparations. However, unequivocal identification is lacking in most studies. Often the evidence merely consists of demonstrating that a functional IP system is present on the arterial smooth muscle as judged by its high responsiveness to prostacyclin or iloprost. In some cases, radio-immunoassay has been used to show a corresponding increase in the concentration of 6-oxo PGF₁, the hydrolysis product of prostacyclin, in the bathing fluid.¹³⁵ PGE₂ is the likely alternative to

prostacyclin, and it is pertinent that the endothelium of rabbit saphenous vein can convert exogenous arachidonic acid into PGE₂, which is then released to act on the sensitive EP₄ dilator system of the smooth muscle cells.⁶ Moreover, the calcium ionophore A23187 also caused synthesis and release of PGE₂ from the venous endothelium. To discriminate prostacyclin from PGE₂, the bathing fluid can be assayed on platelet-rich plasma for antiaggregatory activity,¹³⁶ since PGE₂ is a very weak platelet inhibitor. Exposing the artery to tranylcypromine, a low affinity inhibitor of prostacyclin synthase,¹²⁴ can also provide evidence for prostacyclin generation, provided that its contractile action is first blocked by anαadrenoceptor antagonist such as phentolamine.¹³⁶

5.2 Physiological role

Arteries constrict in response to raised intravascular pressure (the myogenic response) and dilate in response to increased intraluminal flow (shear stress). If correctly balanced at the organ level, these two mechanisms should provide appropriate distribution of blood flow without precipitous stealing of flow from one area to another. The flow-dependent dilatation is mediated by the endothelium¹³⁷ and involves a negative feedback role for EDRFs to maintain shear stress within normal limits.¹³⁸ The shear stress on the endothelium elevates [Ca ²⁺],by opening divalent cation channels in the plasma membrane: a mechanotransducer system.^{139,140} In addition, fluid flow induces membrane hyperpolarisation due to K⁺ efflux ¹⁴¹⁻¹⁴³ with different types of K⁺-channels opening under pulsatile as opposed to steady pressure conditions.¹⁴⁴ The hyperpolarisation increases the electrochemical gradient for Ca²⁺ influx, a necessary event since endothelial cells do not have voltage-dependent Ca²⁺-channels.¹⁴⁵

Both prostacyclin and NO have been proposed as EDRFs involved in flow-dependent dilatation. In vitro studies on endothelium-intact gracilis muscle arterioles of the rat have shown that NO and prostacyclin make approximately equal contributions to the dilatation.¹⁴⁶ Also in rabbit femoral arteries, shear stress elicited a 11- to 12-fold increase in prostacyclin release (detected as 6-oxo PGF₁a) and a 5- to 7-fold increase in NO.¹⁴⁷ However, in the perfused coronary circulation of the isolated rabbit heart, L-NNA completely inhibited flow-dependent dilatation, indicating no role for prostacyclin.¹⁴⁸ In vivo, there is also no consensus; Koller & Kaley¹⁴⁶ have shown that prostacyclin has a dominant role in the cremaster muscle microcirculation of the dog, whereas Holtz et al.¹³⁷ found no role for endogenous prostanoids in epicardial coronary arteries of the conscious dog.

Recent experiments conducted by Kaley and colleagues (G. Kaley, personal communication) on first-order gracilis arteries from mice with

knockout of the eNOS gene (eNOS-KO) are quite intriguing. Flowdependent dilatation was similar in perfused vessels from wild-type and eNOS-KO, male and female mice. In wild-type, male and female vessels, NO and prostacyclin appeared to function equally as EDRFs, judging from the inhibitory effects of L-NNA and indomethacin. However, in eNOS-KO indomethacin abolished male vessels. the dilatation. showing that prostacyclin had accommodated for the loss of NO function. More surprisingly in eNOS-KO female vessels, indomethacin had minimal effect, and miconazole, a P450 mono-oxygenase inhibitor, now abolished the dilatation. Thus EDHF, and not prostacyclin, appeared to accommodate for the NO deficit in the eNOS-KO female vessel. Dilatation induced by carbacyclin was similar in all four situations, indicating that changes in sensitivity of the smooth muscle IP-receptor system were not responsible for the different EDRF profiles.

The blood pressure and heart rate of the IP-receptor-KO mouse were very similar to those of the wild-type mouse and this might indicate that prostacyclin has no role in circulatory control (at least in the mouse).¹²⁰ However, blood pressure is perhaps too crude a measure for the assessment of such an intrinsically complex mechanism as flow-dependent dilatation, which can operate at different levels of the vascular tree, and may involve compensation by one EDRF system for a deficit in another. The solution may be to directly measure flow-dependent dilatation in a IP-receptor-KO animal, preferably a species larger than the mouse.

5.3 Mechanisms of prostacyclin release

Cultured endothelial cells offer considerable advantages in the study of release mechanisms for EDRFs, including prostacyclin, and human umbilical vein and pig and cow aortae are common tissue sources. Using agonists for cell surface receptors, two main mechanisms may be The first mechanism, which is typically elicited by ATP, distinguished. bradykinin, histamine and thrombin, results in rapid EDRF generation and involves the classical G₀/phospholipase C pathway with subsequent activation of cytosolic PLA₂ (Fig. 45). In thrombin-stimulated human umbilical vein endothelial cells (HUTVEC), [Ca 2+] rose to about 3 µM mainly due to internal release and then dropped to a sustained level of 1 µM after about 4 min as Ca2+ influx from the extracellular fluid became dominant; prostacyclin release (measured as 6-oxo PGF1a) was delayed by 10 - 20 s and reached a plateau after 4 min (Fig. 45, inset).¹⁴⁹ Diacylglycerol (DAG) also appears to increase prostacyclin release, this time through PKC activation, based on experiments with exogenous PKC activators such as 4β phorbol 12-myristate 13-acetate (PMA):¹⁵⁰⁻¹⁵² the mechanism may involve

sensitisation of PLA₂ to Ca^{2+,41} However, PMA has also been shown to inhibit receptor- and ionophore-mediated EDRF release from intact vessels and isolated endothelial cells,^{153,154} and to decrease both the peak and steady-state elevations in Ca²⁺ induced by ATP.⁴¹ Buchan & Martin¹⁵⁵ also observed a reduction in [Ca ²⁺]_i with PMA during the plateau phase of bradykinin, thrombin and histamine action on bovine aorta endothelial cells, and this was prevented by the PKC inhibitor staurosporine. The role of PKC is clearly complex.

Figure 45. Mechanisms involved in prostacyclin release from endothelial cells. The major release mechanism (centre) involves activation of a cell surface receptor (e.g. thrombin receptor) to give a rapid release of Ca^{2+} from internal stores; the elevated $[Ca^{2+}]_i$ is maintained by influx from the extracellular fluid. The inset shows the correlation with prostacyclin release measured as its hydrolysis product 6-oxo PGF₁ PGIS = prostacyclin synthase. Modulating influences include: (a) diacylglycerol (DAG) activation of protein kinase C (PKC), (b) elevation of cyclic AMP levels by agonists (e.g. isoprenaline) acting on cell surface receptors, and (c) increased expression of PLA₂ and COX enzymes (unfilled arrows) by cytokine action on the cell.

Prostacyclin release through the second mechanism occurs with inflammatory cytokines such as interleukin-1 (IL-1) and tumour necrosis factor- α -(TNF $_{\alpha}$), and is delayed by several hours due to the need for gene transcription and de novo synthesis of PLA₂ and COX-2.¹⁵⁶ In HUVEC, the

action of TNF, is associated with increased expression of the secretory type II $\ensuremath{\text{PLA}}_{2^{.157}}$

Finally, a less common EDRF release mechanism involves the generation of cyclic AMP. For example, in bovine aorta endothelial cells isoprenaline (and forskolin) had no effect on the resting $[Ca^{2+}]$ or the transient Ca^{2+} release induced by thrombin, bradykinin or ATP. However internal release and influx of Ca2+ during the plateau phase were increased." Similar results were obtained by Graier et al.¹⁵⁸ in pig aorta endothelial cells, but Lückhoff et al.¹⁵⁹ reported that cyclic AMP inhibited endothelial Ca²⁺ mobilisation. In a few situations, prostacyclin itself may act as an endothelium-dependent vasodilator. Thus in pig coronary artery, perfusion of prostacyclin through the intact vessel caused EDRF release, which was detected as a relaxation of an endothelium-denuded ring of the same vessel.¹⁶⁰ The EDRF was mainly NO, since relaxations were markedly reduced by oxyhaemoglobin (an inactivator of NO, Fig. 44) and enhanced by superoxide dismutase plus catalase (inhibitors of NO breakdown). Schröder et al.63 also observed greater relaxation to iloprost in rabbit isolated mesenteric artery with intact endothelium compared to a denuded preparation.

5.4 Interactions between EDRF systems

In studying the interactions between EDRF systems, it is important to appreciate that complications can arise when the vasodilator acts on both the endothelium and the circular smooth muscle (Table 12). In the case of monkey and dog mesenteric arteries¹³⁵ and dog temporal artery,¹⁶¹ an agonist-induced relaxant component was still present after endothelium removal. This was abolished by indomethacin treatment, and in both dog arteries evidence was presented for the generation of prostacyclin within the smooth muscle layer. In contrast, in human and pig pulmonary, monkey coronary¹³⁵ and rat hepatic arteries,¹⁶⁴ a vasoconstrictor response emerged after endothelium removal, and in the pig pulmonary and monkey coronary arteries this was due to generation of prostanoid(s), possibly TXA₂.¹⁶⁵

The first situation that suggests an interaction between EDRF systems is where endothelium-dependent relaxation is independently abolished by two types of EDRF inhibitor. For example, in the dog isolated pulmonary artery, submaximal endothelium-dependent relaxation induced by bradykinin was virtually abolished by either L-NAME or indomethacin.¹⁶⁶ In addition, glibenclamide, a blocker of K_{ATP} channels (the target of EDHF in this preparation), partially inhibited bradykinin responses, but did not affect either the solitary NO component (indomethacin present) or the solitary prostacyclin component (L-NAME present). It was proposed that a synergistic interaction between NO and prostacyclin occurs within the smooth muscle cell to enhance basal EDHF function (Fig. 46). NO-generated cyclic GMP inhibits cyclic AMP phosphodiesterase (PDE III); the consequent rise in cyclic AMP concentration then activates a protein kinase associated with the K_{ATP} -channel; channel opening then leads to hyperpolarisation of the plasma membrane and glibenclamide-sensitive relaxation.¹⁶⁷ The glibenclamide-insensitive relaxation also involves NO and prostacyclin, but they are non-interactive and opening of K_{ATP} -channels is not involved.

Figure 46. Potential interaction (within broken-line box) of endothelium-derived relaxing factors (EDRFs) in a vascular smooth muscle cell. The K_{ATP} -channel blocker glibenclamide inhibits relaxation induced by this interaction mechanism, but does not affect the relaxations induced by NO alone or prostacyclin alone. PDE = phosphodiesterase, kin = kinase.

In the second general situation, one type of EDRF inhibitor has no effect on the endothelium-dependent relaxation, but enhances the suppressive effect of a second type of inhibitor. For example, in the human isolated pulmonary artery, L-NOARG had no effect on the relaxant response to low concentrations of acetylcholine (10 - 300 nM), but enhanced the inhibition due to indomethacin.¹⁶² NO has been shown to inhibit prostacyclin release from endothelial cells^{168,169} and it may operate in this manner in the pulmonary artery. Inhibition of NOS by L-NOARG would remove the brake from prostacyclin synthesis and the enhanced prostacyclin release would compensate for the reduction in NO, resulting in little change in relaxation. In the recent studies of Zygmunt et al.¹⁶⁴ on the rat isolated hepatic artery, singly-applied L-NOARG and charybdotoxin/apamin (blockers of the target K⁺-channels for EDHF) both failed to effect the relaxant response to acetylcholine, whereas L-NOARG plus charybdotoxin/apamin shifted the dilator response curve to the right by 0.8 log units. This profile raises the possibility of reciprocal inhibition of EDRF synthesis.¹⁶⁹ However exogenous NO failed to inhibit the EDHF component of acetylcholineinduced relaxation

<i>Table 12</i> . D	ilator mech	anisms on	isolated arteries			
Artery	Agonist	Action on endothelium		Action on smooth muscle		Ref: No.
		Effect	Mechanism	Effect	Mechanism	
Human omental	SP	¥	NO and EDHF	-	-	134
Rabbit cerebral	ACh H*	↓	NO and PGI ₂	-	-	32,170
Guinea- pig coronary	ACh	Ļ	PGI ₂		-	171
Dog mesenteric	ACh	¥	NO and PGI ₂	Ļ	PGI ₂	135
Monkey mesenteric	ACh	¥	NO and PGI_2	Ļ	Prostanoid	135
Dog temporal	SP	¥	NO	Ļ	PGI ₂	161
Human	SP	¥	weak NO and	-	-	172,173
coronary	BK	\downarrow	other EDRF	-	-	174
	Н	¥		1	?	
Human	ACh*	↓	NO and PGI ₂	↑	?	162,163,
pulmonary						175-177
Monkey coronary	ACh	↓	NO, (PGI₂and other EDRF?)	¥	Prostanoid	135
Pig pulmonary	ACh	Ļ	NO	1	Prostanoid	163
Rat hepatic	ACh	t	NO, PGI ₂ and EDHF	1	?	164
Human umbilical	SP	t	PGI ₂	-	-	133

Agonists: ACh = acetylcholine; BK = bradykinin; H = histamine; SP = substance P.

*Acting at H₃-receptor. **Acting at M₁ and M_{1/3}-receptors, respectively.

 \downarrow = relaxation: \uparrow = contraction.

In the Zygmunt et al. experiments¹⁶⁴ the role of prostacyclin was also investigated: indomethacin alone, indomethacin plus NOARG, and indomethacin plus charybdotoxin/apamin all had no effect on acetylcholineinduced relaxation. However, the combination of all three inhibitors abolished relaxation (and revealed a contractile response). Thus a prostacyclin component was present, which the authors emphasised could only be reliably detected when each type of EDRF inhibitor and all their combinations were examined.

There is a gold mine of potential publications arising from the knowledge that EDRF profiles differ according to animal species, particular vessel, and even vasodilator agent examined. Whilst some of these studies will lead to important information about cellular mechanisms, they do not necessarily provide insight into the in vivo operation of EDRF systems.

6. CLINICAL ASPECTS

6.1 Role of prostacyclin in hypertension

The potential role of prostacyclin in hypertension cannot be considered in isolation since other prostanoids, particularly PGE_2 and PGH_2/TXA_2 , also have potent actions on vascular smooth muscle and renal mechanisms. In addition, hypertension is a risk factor for acute myocardial infarction linked to coronary heart disease, and for progression to chronic heart failure, conditions where prostanoids may also have vital roles.

Early studies in the 1980's implicated prostanoids in human hypertension. Firstly, indomethacin had a mild hypertensive action in man associated with a rise in peripheral vascular resistance and a fall in cardiac index.^{178,179} Secondly, several research groups reported decreased levels of 6-oxo PGF_{1α} in plasma and urine of essential hypertensive patients and strong negative correlations between 6-oxo PGF_{1α} levels and blood pressure.¹⁸⁰⁻¹³⁸ There were also complementary increases in TXB₂ levels in plasma and urine. The conclusion was that reduction in prostacyclin levels may participate, at least in part, to the maintenance of blood pressure in patients with essential hypertension.

Around this period, several different rat models of hypertension were used to probe the involvement of prostanoids in specific hypertensive mechanisms, and we will compare these data with studies in man where possible. In dexamethasone-induced hypertension in the rat, the plasma concentration, urinary excretion, and release from blood vessel and kidney tissue of 6-oxo PGF_{1α} were all unchanged.¹⁸⁴ In contrast, the plasma concentration and urinary excretion of PGE₂ increased and were associated with reduced 15-hydroxy prostaglandin dehydrogenase (15-PGDH) levels in the kidney but not in the lung. PGE₂ production by renal medulla in vitro was also reduced. The authors concluded that deficits in circulating and renal prostacyclin and PGE₂ were not responsible for the hypertension. In contrast, Miyamori et al.⁶⁸ reported that mesenteric arteries from dexamethasone-induced hypertensive rats produced less prostacyclin than control vessels under basal conditions and in response to angiotensin 11, and suggested that decreased prostacyclin synthesis contributed to the hypertension by allowing vasoconstrictor stimuli to exert greater effects. On salt loading, the Dahl rat either becomes hypertensive (salt-sensitive)

or remains normotensive (salt-resistant), Prostacyclin synthesis was increased in aortic rings of salt-sensitive rats on high salt intake compared to low salt intake; no change was observed in salt-resistant rats.¹⁸⁵ The authors concluded that enhancement of prostacyclin synthesis may be secondary to the hypertension. In contrast, PGE₂ synthesis was increased in the kidney medulla of both salt-sensitive and salt-resistant groups on salt loading. However, in the salt-sensitive group renal PGE_2 synthesis was lower and 15-PGDH activity higher. Thus, deficient renal PGE₂ levels leading to reduced sodium excretion may contribute to the development of hypertension in the salt-resistant rat. In related studies in patients with essential hypertension, 186 salt loading following a low sodium diet resulted in variable increases in mean blood pressure. The percentage increases in mean blood pressure were negatively correlated with plasma PGE_2 levels and positively correlated with urinary 6-oxo $PGF_{1\alpha}$ levels. Peripheral renin activities also rose on salt loading, but these were positively correlated with plasma PGE₂ levels and not with urinary 6-oxo PGF_{1 α} levels. The conclusions were similar to those for the Dahl rat, namely an adaptive role for prostacyclin to regulate blood pressure in salt loading and a natriuretic role for PGE₂, which may be defective in salt-sensitive hypertensives.

Most studies have been performed with the spontaneously hypertensive (SH) rat, using the Wistar-Kyoto (WKY) strain as a control. In a very recent study the role of prostacyclin in the SH rat was addressed using molecular biological techniques.¹⁸⁷ COX-1 mRNA and protein, PGI synthase mRNA and protein, and prostacyclin biosynthesis were higher in the thoracic aorta of the SH rat compared to the WKY rat, and showed delayed increases relative to the rises in systolic blood pressure (Fig. 47). However, at 5 weeks of age when hypertension had not yet set in, IP-receptor mRNA was already lower in the SH aorta compared to the WKY aorta and remained lower for up to 40 weeks. The authors suggested that decreased IP-receptor expression in the prehypertensive period could be one of the causes of the hypertension; increased endothelial production of TXA₂ may also be important.¹⁸⁸ In the chronic hypertensive state, the loss of vasodilator sensitivity may be caused by the persistently high intravascular pressure, and this has been studied in rats with a metal ring around the lower abdominal aorta is subjected to high pressure. Relaxations of thoracic aorta induced by histamine (endothelium-dependent) and iloprost (endothelium-independent)

were attenuated by this procedure. In contrast, histamine-induced relaxation of the abdominal aorta was normal, as was the weak effect of iloprost. So in established hypertension in the SH rat, the increased contractility of the aorta may be the result of decreased sensitivity of the vascular smooth muscle to prostacyclin and increased endothelial and platelet production of the vasoconstrictors PGH₂ and TXA₂.^{189,190} In opposition would be increased prostacyclin generation, which may be partly induced by the PGH₂/TXA₂ acting on TP-receptors on endothelial cells.^{191,192} It would be of considerable interest to extend molecular biology and functional studies of this type to peripheral vessels in the SH rat, including the renal circulation.

Figure 47. Comparison of the prostacyclin systems in thoracic aorta of spontaneously hypertensive (SH) and control (WKY) rats. Data from Numaguchi et al.,¹⁸⁷ with permission.

Indomethacin had no effect on the blood pressure of the SH rat.¹⁹³ However, the TX synthase inhibitor, 4-(imidazol-1-yl)-acetophenone suppressed the development of hypertension in the SH rat consistent with removal of the deleterious action of TXA_2 and maintenance of the beneficial action of prostacyclin.¹⁹⁴ In a second study, another TX synthase inhibitor

UK 38,485 lowered blood pressure in the established phase of hypertension;¹⁹⁵ urinary levels of 2,3-dinor-6-oxo PGF_{1a} were not changed by UK 38,485, indicating that shunting of PGH₂ to prostacyclin did not contribute to the antihypertensive effect. Turning to the most important element, essential hypertension in man, the combined TX synthase inhibitor and TP antagonist ridogrel reduced renal and extrarenal TXA₂ synthesis, increased renal and extrarenal prostacyclin synthesis, and suppressed platelet responsiveness to TP agonists, but failed to lower blood pressure.¹⁹⁶ Also, a more recent study of 133 untreated essential hypertensives by Ritter et al.,¹⁹⁷ has shown no significant correlation between systemic blood pressure and the urinary excretion rate of either 6-oxo PGF_{1a} (representing mainly renal prostacyclin production) or 2,3-dinor-6-oxo PGF_{1a}, (extra-renal prostacyclin production). It may be that we need to return to an earlier hypothesis that PGE₂ is the more important prostanoid in essential hypertension.

6.2 Contribution of vasodilator prostanoids to antihypertensive drug action

In most studies, treatment with a COX inhibitor reduces the efficacy of clinically-used antihypertensive agents, including diuretics, angiotensin converting enzyme (ACE) inhibitors and α - and β -adrenoceptor antagonists (see Smith & Dunn¹⁷⁹). These findings implicate endogenous prostanoids in the depressor actions of the drugs, but in a fair proportion of studies it is not clear whether prostacyclin or PGE₂ is the important mediator. Looking at the loop diuretic frusemide first, studies in salt-depleted dogs showed that frusemide increased renal blood flow and urinary sodium excretion; the former was abolished and the latter reduced by 50% in the presence of indomethacin.¹⁹⁸ In salt-loaded animals, frusemide did not increase renal flow and indomethacin did not affect frusmide-induced natriuresis. Thus the renal prostanoids released by frusemide act to decrease reabsorption of salt and water in the proximal tubule and may also inhibit sodium transport out of the thick ascending loop of Henlé. Subsequent experiments in man have shown that prostanoid-dependent increases in renal plasma flow, glomerular filtration rate and plasma renin activity due to frusemide were similar in normal subjects and patients with mild essential hypertension.¹⁹⁹

Most information in this area derives from work on ACE inhibitors, particularly captopril where early studies showed that indomethacin reduced its acute hypotensive action in rabbit²⁰⁰ and man.²⁰¹ ACE inhibitors prevent angiotensin II formation and also the deactivation of bradykinin by kininase. Using the superfused cat terminal ileum as a (brady)kinin detector, Pontieri et al.²⁰² showed that 0.15 and 10 mg kg⁻¹ captopril raised arterial bradykinin levels by about 4 nM in the anaesthetised dog. Since indomethacin reversed

the blood pressure fall to captopril without affecting the response of the kinin-detecting tissue to exogenous bradykinin, it was concluded that the bradykinin induced the biosynthesis of dilator prostanoids. The three main sites at which elevated levels of bradykinin/prostanoid(s) may act are the peripheral blood vessels, the kidney, and the sensory/central nerves controlling sympathetic outflow, and each will be discussed in turn.

ACE inhibitors have endothelium-dependent relaxant actions on isolated blood vessels. For example, on rat isolated aorta, captopril, lisinopril and ramipril all stimulated prostacyclin biosynthesis, effects that were abolished by competitive block of bradykinin receptors. ^{203,204} However, Guivernau et al.²⁰⁵ have linked the stimulation of prostacyclin synthesis to captopril's SH group, since 2-mercaptoethanol had the same effect, and both effects were inhibited by the SH-blockers N-ethylmaleimide and ethacrynic acid. They stated (but gave no data) that bradykinin was not involved, since bradykinin could not be detected by radio-immunoassay in supernatants of aortic rings. Goldschmidt & Tallarida²⁰⁶ have also implicated the SH group, but this time as a superoxide (O₂⁻)-scavenger protecting EDRF (NO). They used rabbit aortic rings and showed that captopril-induced endothelium-dependent relaxation was not affected by indomethacin, and the non-SH ACE inhibitor enalaprilat had no relaxant effect. However, very high concentrations of captopril (100 - 600 μ M) were used in this study. On dog femoral artery rings, the relaxant actions of captopril and M-1 (the active metabolite of the ACE inhibitor delapril and a non-SH agent) were partially blocked by aspirin and abolished by the NOS inhibitor L-NMMA.²⁰⁷ Relaxation was only partially inhibited by a bradykinin receptor antagonist. In a more physiological experiment, anaesthetised rats were dosed with either bradykinin antagonist or vehicle followed by enalaprilat; aortae were then removed and incubated in drug-free buffer.²⁰⁸ Aortic prostacyclin synthesis was elevated by enalaprit, but not when the bradykinin antagonist was also administered. Enalaprilat added directly to aortic rings did not affect prostacyclin production. Clearly, there is some disagreement as to the role of prostacyclin in the vasodilator action of ACE inhibitors, some of which may be due to genuine differences between species.

In the conscious dog, captopril produces a shortlasting renal vasodilatation (< 2 h), which corresponds in time to small increases in urinary 6-oxo PGF₁ α levels.²⁰⁹ However, sodium excretion is still rising at this time and it appears unlikely that prostacyclin is responsible for this effect. The rate urniary excretion of 6-oxo PGF₁ α after captopril was much less than the rates obtained during intravenous prostacyclin infusion, implying that an increase in systemic prostacyclin synthesis is unlikely to contribute significantly to the hypotensive action of captopril.

In other studies in conscious dogs, captopril decreased renal sympathetic nerve activity, but increased this parameter after indomethacin administration.²¹⁰ As expected, sodium nitroprusside, at doses causing a similar fall in blood pressure to captopril, increased renal nerve activity. The authors suggest that captopril, either directly or through bradykinin generation, induces prostacyclin biosynthesis close to cardiac or lung sensory afferents (see Section 4.3) and this results in reduction of sympathetic outflow to the kidney; this would be beneficial in terms of lowering blood pressure.

Turning to recent studies involving longer term antihypertensive treatment in man, the evidence is against an important role for prostacyclin. Gerber et al.²¹¹ showed that neither captopril nor enalapril (twice daily for two weeks) stimulated prostacyclin production as judged by urinary 2,3-dinor-6-oxo PGF_{1a} levels, and their hypotensive actions were not inhibited by indomethacin. In a more comprehensive study, Ritter et al.¹⁹⁷ treated newly-diagnosed patients for one year with one of four antihypertensive drugs, the ACE inhibitor quinapril, the diuretic bendrofluazide, the β-blocker metoprolol, and the Ca²⁺-channel blocker amlodipine. Renal and extrarenal prostacylin production were no different before and after treatment with any of the drugs.

6.3 Atherosclerosis

Atheromatous changes in blood vessels are the starting point for a range of pathological cardiovascular conditions and in view of the ability of the blood vessel endothelium to synthesise prostacyclin, it has been natural to investigate its role in these conditions. The initial events in atherosclerosis involve (a) migration of monocytes into the intima due to changes in endothelial function, but not necessarily loss of the endothelial layer,²¹² (b) concentration of cholesterol ester (CE) in macrophages with formation of fatty streaks, and (c) proliferation of smooth muscle cells.

Prostacyclin generation by vessels or cultured smooth muscle cells from cholesterol-fed rabbits and from patients with atherosclerosis is reduced compared to controls. ²¹³⁻²¹⁶ In addition, studies on cultured human and bovine aorta endothelial cells show that low-density lipoprotein (LDL) and its oxidised product, which are risk factors for ischaemic vascular disease, inhibit prostacyclin biosynthesis.^{217,218} The natural anti-oxidants vitamin E and selenium, which are thought to afford protection against oxidative attack on the blood vessel wall, enhance prostacyclin synthesis by endothelial cells,²¹⁸⁻²²¹ and this has been linked to activation of PLA₂.²²² The crucial link between these observations may be the ability of atherosclerotic vessels to synthesise increased amounts of lipoxygenase products, such as 15-

hydroperoxy-eicosatetraenoic acid (15-HPETE), which are inhibitory to PGI synthase.²²³ Mathur et al.²²⁴ have also suggested that depressed phospholipase activity accounts for low prostaglandin output from cholesterol-rich macrophages. (See Chapter 8, Section 3.6 for further information on prostacyclin and macrophages in atherosclerosis.)

Apart from its vasodilator and platelet inhibitory actions, what benefit could prostacyclin bring to the atherosclerotic situation? Firstly, prostacyclin could inhibit CE accumulation through its ability to enhance CE hydrolase activity. In rabbit aorta smooth muscle cells in culture, the EC₅₀ for this effect was about 50 nM and PGE₂ was inactive.²²⁵ CE hydrolase activity was increased by membrane-permeant dibutyryl cyclic AMP and inhibited by the adenylate cyclase inhibitor dideoxy-adenosine, Cyclic AMP levels were correspondingly raised by prostacyclin, strongly suggesting that the IP-receptor couples to adenylate cyclase. In cells cultured from atherosclerotic lesions of human aorta, carbacyclin at 2.8 μ M decreased CE levels by about 40% over 6 days (IC₅₀ ~ 200 nM); 6β-PGI₁, a weak IP agonist, was a less potent inhibitor of CE levels.²²⁶

Secondly, prostacyclin may inhibit proliferation of smooth muscle cells in the intima, a process thought to be initiated by mitogenic substances, such as platelet-derived growth factor, thrombin and oxidised arachidonate products, released from damaged endothelial cells, leukocytes and platelets. Prostacyclin and its stable analogue RS-93427 (see Chapter 2) inhibit this mitogen release,^{227,228} and this correlates with inhibition of DNA synthesis in rabbit aorta smooth muscle cells,²²⁹ and inhibition of [³H]-thymidine incorporation into cultured human atheroma cells.²²⁶

The picture painted above may not fit all clinical circumstances and FitzGerald et al.²³⁰ have demonstrated higher urinary output of the prostacyclin metabolite 2,3-dinor-6-oxo $PGF_{1\alpha}$ in severe atherosclerotic patients who had evidence of platelet activation. They have proposed that the rise in prostacyclin production may be the result of platelet interactions with the endothelium.

There are several treatment modes for atherosclerosis that may involve a prostacyclin component. For example, the well-known protective effect of oestrogen replacement therapy against cardiovascular disease in postmenopausal women may be partly due to stimulation of prostacyclin synthesis in endothelial cells, and this area has been recently reviewed by Mikkola et al.²³¹ Low-dose aspirin therapy has also been tried in man with the intention of inhibiting TXA₂ biosynthesis without affecting prostacyclin biosynthesis.²³² However, it appeared that the selectivity obtainable in young healthy men was not achievable in older atherosclerotic men and their age-matched controls, with significantly greater inhibition of prostacyclin production occurring in the latter two groups. A more direct approach would

be to give a prostacyclin analogue chronically, and studies in animal models of atherosclerosis, particularly in the rabbit, support the strategy. Iloprost showed a beneficial effect in atherosclerosis induced with soyabean oil extract.²³³ Beraprost improved serum lipid profiles, reduced serum concentrations of TXB₂ and 6-oxo PGF_{1 α} and the TXB₂/6-oxo PGF_{1 α} ratio, and reduced stenosis of an aortic anastomosis and intimal thickening along the suture line.²³⁴ Also, oral administration of the selective IP agonist cicaprost at a subhypotensive dose (5 µg kg-1 day-1) reduced the extent of lesions, improved endothelial-dependent relaxations atheromatous to acetylcholine and substance P, and reduced platelet and leukocyte hyperreactivity.²³⁵ Of particular interest is octimibate, a nonprostanoid developed in an anti-atherosclerosis programme directed at inhibition of acyl-CoA:cholesterol acyltransferase (ACAT),²³⁶ which was subsequently shown to be an IP agonist (see Chapter 3). Octimibate is a weak ACAT inhibitor²³⁷ and a weak agonist at rabbit IP-receptors²³⁸ (see Chapter 3), but the relative contributions of these two mechanisms to the reduction in serum cholesterol levels and aortic plaque formation seen in the rabbit is not clear.²³⁹ When tested in patients with primary hypercholesterolaemia, octimibate (~4 mg kg-1 day-1 for 10 days) improved the serum lipid profile, but adverse symptoms of indigestion, dizziness and muscular ache were common.²⁴⁰

An exciting new approach to atherosclerosis treatment involves localised transfer of the PGI synthase gene to at-risk blood vessels in vivo with the intention of enhancing prostacyclin biosynthesis. In one study, human PGI synthase gene was transferred to rat carotid arteries which had been damaged by balloon inflation.²⁴¹ This procedure resulted in the increased 6-oxo PGF₁ levels in the carotid arteries (3 days), a strong human PGI synthase immunoreactivity signal in neointimal cells (7 days), and reduced neointima formation (14 days). A beneficial effect was also seen in a similar model involving transfer of rat PGI synthase gene;²⁴² neointima formation was reduced and endothelium regeneration was enhanced at 14 days post-injury.

6.4 Peripheral vascular disease

Longterm treatment of patients with an IP agonist for the purpose of generally arresting the development of atherosclerotic lesions has not been attempted and clearly there are major problems of formulation and side-effects to be considered. However, there are a number of studies where IP agonists have been used to treat specific types of peripheral vascular disease.

Intermittent claudication, in which exercise brings on pain in the legs forcing the patient to rest, has been treated with either iloprost or beraprost. Following a typical iloprost intravenous infusion protocol (2 ng kg⁻¹ ml⁻¹ for 6 - 8 h per day for 3 - 14 days), treadmill walking time was improved for one

to two months post-therapy, whereas the inhibition of platelet aggregability did not outlast the infusion period. Iloprost was also beneficial in patients with more severe forms of leg ischaemia, where complete vessel occlusion occurs, ulcers develop and amputation is often necessary (see Grant & Goa²⁴³ for a review). Beraprost was of benefit in both intermittant claudication^{244,245} and diabetic angiopathy.²⁴⁶

 PGE_1 has been used for some time in intermittent claudication with variable sucess. ²⁴⁷⁻²⁴⁹ Improved therepy has been reported with an aclatedesterified prodrug of PGE_1 (AS-013) incorporated into lipid microspheres, which give a more selective delivery of PGE_1 to the vessel wall.²⁴⁸ From a mechanistic standpoint, the question that continues to arise with PGE_1 is whether its major effects are exerted via EP- or IP-receptors (see Section 2.2). In this context, the PGE₁ analogue misoprostol, which has potent EP_2 and EP_3 agonist activity but little IP agonist potency, has recently been shown to be beneficial in intermittent claudication.²⁵⁰

6.5 Pulmonary hypertension

Primary pulmonary hypertension (primary PH) is a serious condition characterised by increased pulmonary artery pressure and pulmonary vascular resistance and consequent excessive load on the right heart. Vasodilator therapy appears warranted, but reactivity to dilators declines as medial hypertrophy of vessels progresses to fibrosis of the intima.

The stimulus for using prostacyclin in primary PH in man derives from early observations of its potent pulmonary dilator action in laboratory animals. In the cat, prostacyclin decreased perfusion pressure when injected into a lobar pulmonary artery and was about 15 times more potent than PGE₁, consistent with activation of IP-receptors.²⁵¹ In addition, prostacyclin inhibited the vasoconstriction and platelet aggregation induced by intralobar infusion of ADP. Prostacyclin also reduced pulmonary vascular resistance in the neonatal sheep.²⁵²

One of the first uses of prostacyclin in human primary PH was the treatment of an 8-year-old girl with severe idiopathic primary PH.²⁵³ Her plasma levels of 6-oxo PGF₁ and TXB₂ before treatment were 400 (normal <50) and 850 (normal 65) pg ml⁻¹ respectively. During treatment with prostacyclin at 44 ng kg⁻¹ min⁻¹, the circulating 6-oxo PGF₁ level rose to 2200 pg ml⁻¹ while the TXB₂ level fell to 170 pg ml⁻¹, probably indicating a reduction in platelet activation. Prostacyclin produced greater pulmonary vasodilatation than PGE₁, isoprenaline or tolazoline (α -adrenoceptor antagonist), without reducing systemic vascular resistance. Subsequently, continuous intravenous infusion of prostacyclin was used as a stop-gap until lung/heart-lung transplantation became feasible.²⁵⁴ However, prostacyclin
has progressively become more important in longterm therapy of primary PH, $^{255-257}$ and survival rates are similar to those for single lung transplantation; see reviews by Kneussl et al. 258 and Barst. 259

The acute response to a pulmonary vasodilator is usually determined as a guide to longterm therapy. However, prostacyclin differs from other dilators (e.g. calcium channel blockers) in that longterm administration can lead to considerable haemodynamic improvement despite a poor acute response. In PH associated with acute respiratory failure, there was evidence of increased stroke volume due to decreased afterload during prostacyclin therapy.²⁶⁰ An important aspect of prostacyclin therapy is its ability to improve the structure and function of the right ventricle.²⁶¹

One issue that has arisen is the relative merits of NO versus prostacyclin in the therapy of primary PH. Test inhalation of NO appears to have the edge on prostacyclin infusion in that it is less expensive, easier to administer and has a shorter time to peak effect.²⁶² NO poses difficulties in terms of its mode of administration over long periods and its safety is not yet known. Prostacyclin on the other hand is acceptable to patients in the longterm when delivered by a lightweight portable infusion pump into a central catheter inserted into a subclavian or jugular vein.^{254,263,264} The moderate side effects listed in Table 11 are common and are easily dealt with by altering the dosage rate.

Whether the chemical instability of prostacyclin contributes to a selective action on the pulmonary circulation is not clear. After all, the loss of activity during transit from pulmonary to systemic arterioles must be quite small. In relation to this, the stable prostacyclin analogue beraprost given by mouth showed a good therapeutic profile in patients with either primary or secondary PH in the shortterm.²⁶⁵ Clearly, there is scope for experimentation with other prostacyclin analogues in man to see if any are improvements on prostacyclin.

6.6 Congestive heart failure

The 1980's saw the successful shortterm use of prostacyclin in patients with severe heart failure (New York Heart Association class III or IV); the commonest use is in pulmonary hypertensive crisis after cardiac transplantation and after cardiothoracic surgery on infants (see Haywood et al.²⁶⁶). The rationale for therapy involves reductions in the afterload of both the right and left ventricles, possibly accompanied by suppression of platelet reactivity.²⁶⁶⁻²⁶⁸ Prostacyclin administered by an indwelling central venous catheter reduced right and left atrial filling pressures, increased cardiac index, and reduced pulmonary and systemic vascular resistances with little change in their ratio.²⁶⁹⁻²¹¹

The 1990's saw prostacyclin being used for longterm treatment of severe heart failure, a much more difficult proposition since the death rate often exceeds 50% even with the best available therapy with diuretics, vasodilators and positive inotropic agents. A number of drugs, such as dobutamine, amrinone and milrinone, have all showed promising profiles in small-scale studies, but increased mortality and poor side-effect profiles have emerged in larger randomised clinical trials, leading to their abandonment (see Haywood et al.²⁶⁶). Sad to say, prostacyclin has followed a similar path. Early studies indicated significant benefits,²⁷² but the Flolan International Randomized Survival Trial (FIRST) was cut short because prostacyclin therapy did not improve walking distance or quality of life and was associated with an increased risk of death.²⁷³ Montalescot et al.²⁷⁴ have suggested that the mortality is due to a positive inotropic effect of prostacyclin.

6.7 Lupus nephritis

Proliferative glomerulonephritis (lupus nephritis) is an often fatal progression of systemic lupus erythematosus (SLE). Glomerular thrombi occur frequently in active lupus nephritis and their presence is associated with a reduced ability of plasma to generate prostacyclin.²⁷⁵ Patrono et al.²⁷⁶ showed that urinary excretion of TXB₂ as increased, while 6-oxo PGF_{1α} excretion was decreased. This group went on to show that renal function was improved following treatment with the TP antagonist BM 13177.²⁷⁷ Subsequently it was shown that the TX synthase inhibitor DP-1904 reduced urinary TXB₂ levels without affecting 6-oxo PGF_{1α} levels and this was associated with an improved creatinine clearance.²⁷⁸ Neither low-dose aspirin nor indomethacin improved kidney function. The overall conclusion was that TXA₂ generated within renal tissue (but not necessarily from platelets) may be responsible for some of the deterioration in renal haemodynamics and also that it is important to maintain prostacyclin production. We await further developments in this area.

7. CONCLUDING REMARKS

The 1980's saw an explosion of interest in the vascular actions of prostacyclin. Now that the pace has slowed, we can see that it does have important roles in normal and aberrant cardiovascular function. In addition, prostacyclin and its analogues have specific uses in the treatment of vascular disease. In some cases, their limited efficacy may be because we are attempting to salvage the unsalvageable. For the future, genetic manipulation of the PGI synthase/IP-receptor system offers the hope of both

more precise knowledge of pathophysiological function and improved therapy.

REFERENCES

- 1. Dusting GJ, MacDonald PS. Prostacyclin and vascular function: implications for hypertension and atherosclerosis. Pharmacol Ther 1990;48:323-344.
- Jones RL, Qian YM, Chan KM et al. Characterization of a prostanoid EP₃-receptor in guinea-pig aorta: partial agonist action of the non-prostanoid ONO-Ap-324. Br J Pharmacol 1998;125:1288-1296.
- 3. Hempelmann RG, Barth HL, Mehdom HM et al. Effects of potassium channel openers in isolated human cerebral arteries. Neurosurgery 1995;37:1146-1153.
- Hadházy P, Malomvolgyi B, Magyar K et al. Species dependent relaxation of intrapulmonary (IPA) arteries of rabbits, dogs and humans by prostacyclin. Prostaglandins 1985;29:673-688.
- 5. Schrör K, Darius H, Matzky R. The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK 36374) equipotent to PGI_2 in vitro. Arch Pharmacol 1981;316:252-255.
- 6. Rouaud C, Delaforge M, Anger-Leroy M et al. The cyclo-oxygenase-dependent regulation of rabbit vein contraction: evidence for a prostaglandin E₂-mediated relaxation. Br J Pharmacol 1999;126:35-44.
- Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol 1986;87:543-551.
- 8. Kawai Y, Ohhashi T. Effects of isocarbacyclin, a stable prostacyclin analogue, on monkey isolated cerebral and peripheral arteries. Br J Pharmacol 1994;112:635-639.
- 9. Jones RL, Qian YM, Wise H et al. Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol 1997;29:525-535.
- 10. Toda N. Beraprost sodium. Cardiovasc Drug Rev 1988;6:222-238.
- 11. Williams SP, Dorn GW, Rapoport RM. Prostaglandin I₂ mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 1994;267:H796-H803.
- 12. Zhao YJ, Wang J, Tod ML et al. Pulmonary vasoconstrictor effects of prostacyclin in rats: Potential role of thromboxane receptors. J Applied Physiol 1996;81:2595-2603.
- Baxter GS, Clayton JK, Coleman RA et ai. Characterisation of the prostanoid receptors mediating constriction and relaxation of human uterine artery. Br J Pharmacol 1995;116:1692-1696.
- 14. Bjøro K. Effects of angiotensin I and II and their interactions with some prostanoids in perfused umbilical arteries. Prostaglandins 1985;30:989-999.
- Armstrong RA, Lawrence RA, Jones RL et al. Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br J Pharmacol 1989;97:657-668.

- Walch L, Labat C, Gascard JP et al. Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol 1999;126:859-866.
- Qian YM, Jones RL, Chan KM et al. Potent contractile actions of prostanoid EP₃receptor agonists on human isolated pulmonary artery. Br J Pharmacol 1994;113:369-374.
- Hedlund H, Andersson KE. Contraction and relaxation induced by some prostanoids in isolated human penile erectile tissue and cavernous artery. J Urol 1985;134:1245-1250.
- 19. Porst H. The rational for prostaglandin E_1 in erectile failure: a survey of worldwide experience. J Urol 1996;155:802-815.
- 20. Werthman P, Rajfer J. MUSE therapy: preliminary clinical observations. Urology 1997;50:809-811.
- Kiriyama M, Ushikubi F, Kobayashi T et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 1997;122:217-224.
- Hatano Y, Kohli JD, Goldberg LI et al. Relative contracting and relaxing potencies of a series of prostaglandins on isolated canine mesenteric artery strips. Prostaglandins 1981;21:515-529.
- Corsini A, Folco GC, Fumaglli R et al. (5Z)-carbacyclin discriminates between prostacyclin-receptors coupled to adenylate cyclase in vascular smooth muscle and platelets. Br J Pharmacol 1987;90:255-261.
- Parfenova H, Hsu P, Leffler CW. Dilator prostanoid-induced cyclic AMP formation and release by cerebral microvascular smooth muscle cells: inhibition by indomethacin. J Pharmacol Exp Ther 1995;272:44-52.
- Miller OV, Aiken JW, Hemker DP et al. Prostacyclin stimulation of dog arterial cyclic AMP levels. Prostaglandins 1979; 18:9 15-925.
- 26. Kukovetz WR, Holzmann S, Wurm A et al. Prostacyclin increases cAMP in coronary arteries. J Cyclic Nucl Res 1979;5:469-476.
- Dembinska-Kiec A, Rucker W, Schonhofer PS. PGI₂ enhanced cAMP content in bovine coronary arteries in the presence of isobutylmethylxanthine. Naunyn-Schmied Arch Pharmacol 1979;308:107-110.
- Holzmann S, Kukovetz WR, Schmidt K. Mode of action of coronary arterial relaxation by prostacyclin. J Cyclic Nucl Res 1979;6:451-460.
- 29. Oliva D, Noè A, Nicosia S et al. Prostacyclin-sensitive adenylate cyclase in cultured myocytes: differences between rabbit aorta and mesenteric artery. Eur J Pharmacol 1984;105:207-213.
- MacDermot J, Barnes PJ. Activation of guinea-pig pulmonary adenylate cyclase by prostacyclin. Eur J Pharmacol 1980;67:419-425.
- 31. MacDermot J, Barnes PJ, Waddell KA et al. Prostacyclin binding to guinea pig pulmonary receptors. Eur J Pharmacol 1981;75:127-130.
- Dong H, Waldron GJ, Cole WC et al. Roles of calcium-activated and voltage-gated delayed rectifier channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 1998;123:821-832.

- Schubert R, Serebryakov VN, Mewes H et al. Iloprost dilates rat small arteries: role of KATP- and KCa-channel activation by cAMP-dependent protein kinase. Am J Physiol 1997;272:H1147-H1156.
- 34. Ito T, Ogawa K, Enomoto I et al. Prostaglandins and cyclic nucleotides: effects of PGI₂ and PGE₁ on cardiac haemodynamic and coronary and myocardial cyclic nucleotide levels in dogs. Jpn Circ J 1980;44:755-761.
- 35. Siegel G, Emden J, Wenzel K et al. "Potassium channel activation in vascular smooth muscle." In *Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle,* Advances in Experimental & Medicinal Biology, Frank GB, Bianchi P, Keurs HEDJ et al., eds. New York: Plenum Press, 1992;53-72.
- Ozaki H, Abe A, Uehigashi Y et al. Effects of a prostaglandin I₂ analog iloprost on cytoplasmic Ca²⁺ levels and muscle contraction in guinea-pig isolated aorta. Jpn J Pharmacol 1996;71:231-237.
- 37. Yanagisawa T, Okada Y. KCl depolarisation increases Ca²⁺ sensitivity of contractile elements in coronary arterial smooth muscle. Am J Physiol 1994;267:H614-H621
- 38. Yamagishi T, Yanagisawa T, Satoh K et al. Relaxant mechanisms of cyclic AMPincreasing agents in porcine coronary artery. Eur J Pharmacol 1994;251:253-262.
- Turcato S, Clapp LH. Effects of the adenylyl cyclase inhibitor SQ 22536 on iloprostinduced vasorelaxation and cyclic AMP elevation in isolated guinea-pig aorta. Br J Pharmacol 1999;126:845-847.
- Ahn HY, Kang SE, Chang SE et al. Dibutyryl cyclic AMP and forskolin inhibit phosphatidylinositol hydrolysis, Ca²⁺ influx and contraction in vascular smooth muscle. Jpn J Pharmacol 1992;59:263-265.
- Carter TD, Hallam TJ, Pearson JD. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca²⁺. Biochem J 1989;262:1181-1190.
- 42. McGrogan I, Lu S, Sormaz HL et al. Mechanisms of cyclic nucleotide-induced relaxation in canine tracheal smooth muscle. Am J Physiol 1995;268:L407-L413.
- Fukuda S, Morioka M, Tanaka T et al. Prostaglandin E₁-induced relaxation in porcine coronary arteries. J Pharmacol Exp Ther 1992;260:1128-1132.
- Cocks TM, King SJ, Angus JA. Glibenclamide is a competitive antagonist of the thromboxane A₂ receptor in dog coronary artery *in vitro*. Br J Pharmacol 1990;100:375-378.
- 45. Bouchard JF, Dumont E, Lamontagne D. Evidence that prostaglandins I_2 , E_2 and D_2 may activate ATP sensitive potassium channels in the isolated rat heart. Cardiovasc Res 1994;28:901-905.
- 46. Dumas M, Dumas JP, Rochette L et al. Role of potassium channels and nitric oxide in the effects of iloprost and prostaglandin E₁ on hypoxic vasoconstriction in the perfused isolated lung of the rat. Br J Pharmacol 1997; 120:405-410.
- Jackson WF, Aidakan PG, Dambacher T et al. Prostacyclin-induced vasodilatation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol 1993;264:H238-H243.

- Clapp LH, Turcato S, Hall S et al. Evidence that Ca²⁺-activated K⁺ channels play a major role in mediating the vascular effects of iloprost and cicaprost. Eur J Pharmacol 1998;356:215-224.
- 49. Li PL, Zou AP, Campbell WB. Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators. Hypertension 1997;29:262-267.
- Schubert R, Serebryakov VN, Engel H et al. Iloprost activates K_{Ca} channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. Am J Physiol 1996;271:C1203-C1211.
- Sadoshima JI, Akaike N, Kanaide H et al. Cyclic AMP modulates Ca-activated K channel in cultured smooth muscle cells of rat aortas. Am J Physiol 1988;255:H754-H759.
- Chapple DJ, Dusting GJ, Hughes R et al. Some direct and reflex cardiovascular actions of prostacyclin (PGI₂) and PGE₂ in anaesthetised dogs. Br J Pharmacol 1980;68:437-447.
- 53. Herman F, Hadházy P, Magyar K. Critical evaluation of the *in vivo* selectivity between hypotensive and platelet antiaggregating actions of iloprost and prostacyclin in beagle dogs. Arch Int Pharmacodyn Ther 1989;300:281-291.
- Steinberg H, Medvedev OS, Luft FC et al. Effect of prostacyclin derivative (iloprost) on regional blood flow, sympathetic nerve activity and baroreceptor reflex in the conscious rat. J Cardiovasc Pharmacol 1988;11:84-89.
- Murata T, Murai T, Kanai T. General Pharmacology of berapost sodium. 2nd Communication: effect on the autonomic, cardiovascular and gastrointestinal systems, and other effects. Drug Res 1989;39:867-876.
- Dusting GJ, Chapple DJ, Hughes R. Prostacyclin induces coronary vasodilatation in anaesthetised dogs. Cardiovasc Res 1978;12:720-730.
- 57. Bolger PM, Eisner GM, Ramwell PW. Renal actions of prostacyclin. Nature 1978;371:467-469.
- Hill TWK, Moncada S. The renal haemodynamic and excretory actions of prostacyclin and 6-oxoPGF in anaesthetized dogs. Prostaglandins 1981;17:87-98.
- 59. Jones RL, Watson ML, Ungar A. A comparison of the effects of prostaglandins E₂ and I₂ on renal function and renin release in salt-loaded and salt-depleted anaesthetized dogs. Quart J Exp Physiol 1981;66:1-15.
- 60. Higgs GA, Cardinal GC, Moncada S et al. Microcirculatory effects of prostacyclin (PGI₂) in the hamster check pouch. Microvasc Res 1979;18:245-254.
- 61. Faber JE, Harris PD, Miller FN. Microvascular sensitivity to PGE₂ and PGI₁ in skeletal muscle of decerebrate rat. Am J Physiol 1982;243:H844-H851.
- Ellis EF, Enoch PW, Kontos HA. Vasodilatation of cat cerebral arterioles by prostaglandins D₂, E₂ and I2 Am J Physiol 1979;237:H381-H385.
- 63. Schröder G, Beckmann R, Schillinger E. "Studies on vasorelaxant effects and mechanisms of iloprost in isolated preparations." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1987;129-137.

- 64. Karim SMM, Adaikan PG, Lau LC et al. Inhibition of platelet aggregation with intravenous and oral administration of carboprostacyclin in man. Prostagland Med 1981;6:521-527.
- 65. Hildebrand M. Bioactivation of eptaloprost in animals and man. Prostaglandins 1993;46:177-189.
- 66. Kurozumi S, Araki H, Tanabe H et al. Lipid microsphere preparation of a prostacyclin analogue. Adv Drug Deliv Rev 1996;20:181-187.
- Minagawa T, Kohno Y, Suwa Y et al. Species differences in hydrolysis of isocarbacyclin methyl ester (TEI-9090) by blood esterases. Biochem Pharmacol 1995;49:1361-1365.
- Miyamori I, Morise T, Yasuhara S et al. Single-blind study of epoprostenol and 6-ketoprostaglandin E₁ in man: effects on platelet aggregation and plasma renin. Br J Clin Pharmacol 1985;20:681-683.
- 69. Pickles H, O'Grady J. Side effects occurring during administration of epoprostenol (prostacyclin, PGI₂) in man. Br J Clin Pharmacol 1982;14:177-185.
- FitzGerald GA, Hossmann V, Hummerich W et al. The renin-kallikrein-prostaglandin system: plasma active and inactive renin and urinary kallikrein during prostacyclin infusion in man. Prostagland Med 1980;5:445-456.
- Perrot B, Clozel JP, Terrier de la Chaise A et al. Electrophysiological effects of intravenous prostacyclin in man. Eur Heart J 1984;5:883-889.
- 72. Data JL, Moloney BA, Meinzinger MM et al. Intravenous infusion of prostacyclin sodium in man: clinical effects and influence on platelet adenosine diphosphate sensitivity and adenosine 3':5'-cyclic monophosphate levels. Circulation 1981;64:4-12.
- 73. Kaukinen S, Ylitalo P, Pessi T et al. Hemodynamic effects of iloprost, a prostacyclin analog. Clin Pharmacol Ther 1984;36:464-469.
- Linet 01, Nishizawa EE, Schaub RG et al. Tolerance and pharmacology of ciprostene, a stable epoprostenol (prostacyclin) analogue in humans. J Clin Pharmacol 1986;26:131-140.
- 75. Yui Y, Takatsu Y, Hattori R et al. A new stable prostacyclin analogue OP41483 (15cyclopentyl-omega-pentanor-5(E)-carbacyclin). Jpn Circ J 1985;49:571-575.
- 76. Kato K, Uji Y, Ohno K. Phase I trial of a new prostacyclin derivative of TRK-100. Jpn Clin Pharmacol Ther 1986;17:267-278.
- Kato R, Uji Y, Matsumoto K. Phase I study of beraprost sodium (TRK 100), a prostacyclin derivative - repeated oral administration study for 10 days. Jpn Clin Pharmacol Ther 1989;20:529-539.
- Tsunoo M, Minigawa T, Takahama S et al. Intravenous administration of TTC-909 in healthy male adult volunteers (2nd report) - Evaluation of safety and pharmacodynamics of repeated dose administration. Clin Resp 1995;29:77-91.
- 79. Hashimoto T. Effects of prostaglandin E_2 , I_2 and F $_{2\alpha}$ on systemic and renal haemodynamics, renal function and renin secretion in anaesthesied dogs. Jpn J Pharmacol 1979;30:173-186.

- 81. Larsson C, Weber P, Anggard E. Arachidonic acid increases and indomethacin decreases plasma renin activity in the rabbit. Eur J Pharmacol 1974;28:391-394.
- Weber P, Holgreve H, Stephen R et al. Plasma renin activity and renal sodium and water excretion following infusion of arachidonic acid in rats. Eur J Pharmacol 1975;34:299-304.
- 83. Bolger PM, Eisner GM, Ramwell PW et al. Effect of prostaglandin synthesis on renal function and renin release in the dog. Nature 1976;259:244-245.
- 84. Data JL, Gerber JG, Crump WJ et al. The prostaglandin system: a role in canine baroreceptor control of renin release. Circ Res 1978;42:454-458.
- Seymour AA, Zehr JE. Influence of renal prostaglandin synthesis on renin control mechanisms in the dog. Circ Res 1979;45:13-25.
- Levenson DJ, Simmons CE, Brenner BM. Arachidonic acid metabolism, prostaglandins and the kidney. Am J Med 1982;72:354-374.
- Guay-Woodford LM. Bartter syndrome: unravelling the pathophysiologic enigma. Am J Med 1998;105:151-161.
- Terragno NA, Terragno DA, Early JA et al. Endogenous prostaglandin synthesis inhibitor in the renal cortex. Effects on production of prostacyclin by renal blood vessels. Clin Sci Mol Med 1978;55:199s-202s.
- McGiff JC, Wong PYK. Compartmentalization of prostaglandins and prostacyclin within the kidney. Fed Proc 1979;38:89-93.
- Henrich WL, Campbell WB. Relationship between PG and β-adrenergic pathways to renin release in rat renal cortical slices. Am J Physiol 1984;247:E343-E348.
- Schwertschlag U, Stahl T, Hackenthal E. A comparison of the effects of prostacyclin and 6-keto-prostaglandin E1 on renin release in the isolated rat and rabbit kidney. Prostaglandins 1982;23:129-138.
- Whorton AR, Misono K, Hollifield J et al. Prostaglandins and renin release: I. Stimulation of renin release from rabbit renal cortical slices by PGI₂. Prostaglandins 1977;14:1095-1104.
- 93. Beierwaltes WH, Schryver S, Sanders E et al. Renin release selectively stimulated by prostaglandin I₂ in rat isolated glomeruli. Am J Physiol 1982;243:F276-F283.
- 94. Spokas EG, Wong PYK, McGiff JC. Prostaglandin-related renin release from rabbit renal cortical slices. Hypertension 1982;4:96-100.
- Müller D, Schneider J, Wilsmann K et al. Role of renin release in the hemodynamic, renal and dipsogenic actions of the prostacyclin analogue CG 4203 in conscious rats. Prostaglandins 1983;11:361-372.
- Schölkens BA. Plasma renin activity and vasodepressor action of prostacyclins with modified o-side chain in anaesthetized rats. Prostagland Med 1980;4:357-362.
- 97. Seymour AA, Davis JO, Freeman RH et al. Renin release from filtering and non-filtering kidneys stimulated by PGI₂ and PGD₂. Am J Physiol 1979;237:F285-F290.

- Patrono C, Pugliese F, Ciabattoni G et al. Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J Clin Invest 1982;69:231-239.
- Jackson EK, Gerkens JF, Brash AR et al. Acute renal artery constriction increases renal prostaglandin I₂ biosynthesis and renin release in the conscious dog. J Pharmacol Exp Ther 1982;222:410-413.
- 100. Frolich JC, Hollifield JW, Michelakis AM et al. Reduction of plasma renin activity by inhibition of the fatty acid cyclooxygenase in human subjects: independence of sodium retention. Circ Res 1979;44:781-787.
- 101. Freeman RH, Davis JO, Villarreal D. Role of renal prostaglandins in the control of renin release. Circ Res 1984;54:1-9.
- 102. Vandongen R, Tunney A, Mahoney D et al. Dissociation of beta-adrenergic stimulation of renin secretion and prostaglandin synthesis in the rabbit kidney. Prostaglandins 1981;21:1007-1014.
- 103. Kopp U, Aurell M, Sjolander M et al. The role of prostaglandins in the alpha and beta adrenoceptor mediated renin release response to graded renal nerve stimulation. Pflügers Archiv-Eur J Physiol 1981;391:1-8.
- 104. Blackshear JL, Spielman WS, Knox FG et al. Dissociation of renin release and renal vasodilatation by prostaglandin synthesis inhibitors. Am J Physiol 1979;237:F20-F24.
- 105. Berl T, Henrich WL, Erickson AL et al. Prostaglandins in the beta-adrenergic and baroreceptor-mediated secretion of renin. Am J Physiol 1979;236:F472-F477.
- 106. Freeman RH, Davis JO, Dietz JR et al. Renal prostaglandins and the control of renin release. Hypertension 1982;4(Suppl II):106-112.
- 107. Villarreal D, Davis JO, Freeman RH et al. Effects of meclofenamate on the renin response to aortic constriction in the rat. Am J Physiol 1984;247:R513-R519.
- 108. Francisco LL, Osborn JL, DiBona GF. Prostaglandins in renin release during sodium deprivation. Am J Physiol 1982;243:H584-H589.
- 109. Suzuki S, Franco-Saenz R, Tan SY et al. Effects of indomethacin on plasma renin activity in the conscious rat. Am J Physiol 1981;240:E286-E289.
- 110. Campbell WB, Jackson EK, Grahan RM. Saralasin-induced renin release: Its blockade by prostaglandin synthesis inhibitors in the conscious rat. Hypertension 1979;1:637-642.
- 111. Gerber JC, Nies AS, Olsen RD. Control of canine renin release: macula densa requires prostaglandin synthesis. J Physiol 1981;319:419-429.
- 112. Villarreal D, Freeman RH, Davis JO et al. Effects of sodium chloride on prostacyclinstimulated renin release in dogs with filtering and non-filtering kidneys. Proc Soc] Exp Biol Med 1982;171:34-40.
- 113. Watson ML, Goodman RP, Gill JR et al. Endogenous prostacyclin synthesis is decreased during activation of the renin-angiotensin system in man. Clin Endocrinol Metab 1984;58:304-308.
- 114. McGiff JC, Spokas EG, Wong PYK. Stimulation of renin release by 6-oxoprostaglandin E₁ and prostacyclin. Br J Pharmacol 1982;75:137-144.

- 115. Moore PK, Hoult JRS. Prostaglandin metabolism in rabbit kidney: identification and properties of a novel prostaglandin 9-hydroxydehydrogenase. Biochim Biophys Acta 1978;528:276-287.
- 116. Jackson EK, Herzer WA, Zimmerman JB et al. 6-Keto-prostaglandin E_1 is more potent than prostaglandin I_2 as a renal vasodilator and renin secretagogue. J Pharmacol Exp Ther 1981;216:24-27.
- 117. Adaikan PG, Tai MY, Lau LC et al. A comparison of some pharmacological actions of prostaglandin E₁, 6-oxo-PGE₁ and PGI₂. Prostaglandins 1984;27:505-516.
- 118. Nganele DM, Hintze TH. Prostacyclin reduces "preload" in conscious dogs via a vagal reflex mechanism. Am J Physiol 1987;253:H1477-H1483.
- Panzenbeck MJ, Hintze TH, Kaley G. 6-keto-Prostaglandin E₁ is a potent coronary vasodilator and stimulates a vagal reflex in dogs. J Pharmacol Exp Ther 1988;244:814-819.
- 120. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678-682.
- 121. Bunting S, Gryglewski R, Moncada S. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins 1976;12:897-913.
- 122. Moncada S, Herman AG, Higgs EA. Differential formation of prostacyclin (PGX or PGI₂) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Adv Prostaglandin Thromboxane Leukot Res 1977;11:323-344.
- 123. Weksler B, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I₂ (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA 1977;74:3922-3926.
- 124. Gryglewski RJ, Bunting S, Moncada S et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 1976;12:685-713.
- 125. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-375.
- Cohen RA, Vanhoutte PM. Endothelium-dependent hyperpolarisation: Beyond nitric oxide and cyclic GMP. Circulation 1995;92:3337-3349.
- 127. Campbell WB, Gebremedhim D, Pratt PF et al. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarising factors. Circ Res 1996;78:415-423.
- 128.Randall MD, Alexander SPH, Bennett T et al. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun 1996;229:114-120.
- 129. White R, Hiley CR. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. Br J Pharmacol 1997;122:1573-1584.
- 130. Von der Weid PY, Beny JL. Simultaneous oscillations in the membrane potential of pig coronary artery endothelial and smooth muscle cells. J Physiol 1993;471:13-24.
- 131. Marchenko SM, Sage SO. Calcium-activated potassium channels in the endothelium of intact rat aorta. J Physiol 1996;492:53-60.

- 132. Yamamoto Y, Fukuta H, Nakahira Y et al. Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in the guinea-pig arterioles. J Physiol 1998;511 533-548.
- 133. Bodelsson G, Stjemquist M. Endothelium-dependent relaxation to substance P in human umbilical artery is mediated via prostanoid synthesis. Human Reprod 1994;9:733-737.
- 134. Wallerstedt SM, Bodelsson M. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Br J Pharmacol 1997;120:25-30.
- 135. Okamura T, Minami Y, Toda N. Endothelium-dependent and -independent mechanisms of action of acetycholine in monkey and dog isolated arteries. Pharmacology 1989;38:279-288.
- 136. Toda N, Konishi M, Miyazaki M. Involvement of prostaglandin I₂ in the vascular action of histamine in dogs. J Pharmacol Exp Ther 1982;223:257-262.
- 137. Holtz J, Giesler M, Pohl U et al. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 1984;6:1161-1169.
- 138. Griffith TM, Edwards DH, Davies RL et al. EDRF coordinates the behaviour of vascular resistance vessels. Nature 1987;329:442-445.
- 139. Lansman J, Hallam B, Rink TJ. Single stretch-activated ion channels in vascular smooth muscle cells as mechanotransducers. Nature London 1987;325:811-813.
- 140. Schwartz G, Callewaert G, Droogmans G et al. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol 1992;458:527-538.
- 141. Nakache M, Gaub HE. Hydrodynamic hyperpolarization of endothelial cells. Proc Natl Acad Sci USA 1988;85:1841-1843.
- 142. Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K⁺ current in vascular endothelial cells. Nature London 1988;331:168-170.
- 143. Alevriadou BR, Eskin SG, McIntire LV et al. Effect of shear stress on ⁸⁶Rb⁺ efflux from calfpulmonary endothelium cells. Ann Biomed Eng 1993;21:1-7.
- 144. Hutcheson IP, Griffith TM. Heterogeneous populations of K⁺ channels mediate EDRF release to flow but not agonists in rabbit aorta. Am J Physiol 1994;266:H590-H596.
- 145. Lückhoff A, Busse R. Calcium influx into endothelium cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflügers Archiv - Eur J Physiol 1990;416:305-311.
- 146. Koller A, Kaley G. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res 1990;67:529-534.
- 147.Hecker M, Mülsch A, Bassenge E et al. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 1993;265:H828-H833.
- 148. Lamontagne D, Pohl U, Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 1992;70:123-130.

- 149. Hallam TJ, Pearson JD, Needham LA. Thrombin-stimulated elevation of human endothelial cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J 1988;251:243-249.
- 150. Halldorsson H, Kjeld M, Thorgeirsson G. Role of phosphoinositides in the regulation of endothelial prostacyclin production. Arteriosclerosis 1988;8:147-154.
- 151. Demolle D, Boeynaems JM. Role of protein kinase C in the control of vascular prostacyclin: study of phorbol esters effect in bovine aortic endothelium and smooth muscle. Prostaglandins 1988;35:243-257.
- 152. Carter TD, Hallam TJ, Pearson JD. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca²⁺. Biochem J 1989;262:431-437.
- 153. Weinheimer G, Wagner B, Oswald H. Interference of phorbol esters with endotheliumdependent vascular smooth muscle relaxation. Eur J Pharmacol 1986;130:319-322.
- 154. De Nucci G, Gryglewski RJ, Warner TD et al. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 1988;85:2334-2338.
- 155. Buchan KW, Martin W. Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate acetate and cyclic AMP but not cyclic GMP. Br J Pharmacol 1991;104:361-366.
- 156. Goodman R, Stevens TM, Mantegna LR et al. Phospholipase A₂ (PLA₂) activity in bovine pulmonary artery endothelial cells. Agents Actions 1991;34:113-116.
- 157. Murakami M, Kudo I, Inoue K. Molecular nature of phospholipases A₂ involved in prostaglandin I₂ synthesis in human umbilical vein endothelial cells. J Biol Chem 1993;268:839-844.
- 158. Graier WF, Groschner K, Schmidt K et al. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J 1992;288:345-349.
- 159. Lückhoff A, Mulsch A, Busse R. cAMP attenuates autacoid release from endothelial cells: relation to internal calcium. Am J Physiol 1990;258:H960-H966.
- 160. Shimokawa H, Flavahan NA, Lorenz RR et al. Prostacyclin releases endotheliumderived relaxing factor and potentiates its action in coronary arteries of the pig. Br J Pharmacol 1988;95:1197-1203.
- 161. Enokibori M, Okamura T, Toda N. Mechanism underlying substance P-induced relaxation in dog isolated superficial temporal arteries. Br J Pharmacol 1994;111:77-82.
- 162. Norel X, Walch L, Costantino M. M₁ and M₃ muscarinic receptors in human pulmonary arteries. Br J Pharmacol 1996;119:149-157.
- 163. Lawrence RN, Clelland C, Beggs D et al. Differential role of prostanoids in porcine and human isolated pulmonary arteries in response to endothelium-dependent relaxants. Br J Pharmacol 1998;125:1128-1137.
- 164. Zygmunt M, Plane F, Paulsson M et al. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDRF. Br J Pharmacol 1998;124:992-1000.

- 165. Miller VM, Vanhoutte PM. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Physiol 1985;248:H432-H437.
- 166. Gambone LM, Murray PA, Flavahan NA. Synergistic interaction between endotheliumderived NO and prostacyclin in pulmonary artery: potential role for K*_{ATP} channels. Br J Pharmacol 1997;121:271-279.
- 167. Linde C, Quast U. Potentiation of P1075-induced K⁺ channel opening by stimulation of adenylyl cyclase in rat isolated aorta. Br J Pharmacol 1995;1 15:515-521.
- 168. Doni MG, Whittle BJR, Palmer RMJ et al. Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur J Pharmacol 1988;151:19-25.
- 169. Barker JE, Bakhle YS, Anderson J et al. Reciprocal inhibition of nitric oxide and prostacyclin synthesis in human saphenous vein. Br J Pharmacol 1996;118:634-648.
- 170. Ea Kim L, Javellaud J, Oudart N. Endothelium-dependent relaxation of rabbit middle cerebral artery to a histamine H₃-agonist is reduced by inhibitors of nitric oxide and prostacyclin synthesis. Br J Pharmacol 1992;105:103-106.
- 171. Parkington HC, Tare M, Tonta MA et al. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine. J Physiol 1993;465:459-476.
- 172. Stork AP, Cocks TM. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor. Br J Pharmacol 1994;113:1099-1104.
- 173. Toda N, Nakajima M, Okamura T et al. Interactions of thromboxane A₂ analogs and prostaglandins in isolated dog arteries. J Cardiovasc Pharmacol 1986;8:818-825.
- 174. Chester AH, O'Neil GS, Moncada S et al. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1990;336:897-900.
- 175. Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 1987;252:H434-H438.
- 176.Dinh-Xuan AT, Higenbottam TW, Clelland C et al. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger's syndrome. Br J Pharmacol 1990;99:9-10.
- 177. McCormack D. Endothelium-derived relaxing factors and the human pulmonary circulation. Lung 1990;168(Suppl):35-42.
- 178. Hermiller JB, Bambach D, Thompson MJ et al. Vasodilators and prostaglandin inhibitors in primary pulmonary hypertension. Ann Int Med 1982;97:480-489.
- Smith MC, Dunn MJ. The role of prostaglandins in human hypertension. Am J Kidney Dis 1985;5:A32-A39.
- 180. Grose JH, Lebel M, Gbeassor FM. Imbalanced prostacyclin and thromboxane A₂ production in essential hypertension. Adv Prostaglandin Thromboxane Leukot Res 1983;11:413-415.
- 181. Chen LS, Ito T, Ogawa K et al. Plasma concentrations of 6-keto-prostaglandin F thromboxane B₂ and platelet aggregation in patients with essential hypertension. ^{1α}, Jpn Heart J 1984;25:1001-1009.

- 182. Uehara Y, Ishii M, Ikeda T et al. Plasma levels of 6-keto prostaglandin Fια in normotensive subjects and patients with essential hypertension. Prost Leukot Med 1983;10:455-464
- 183. Gotoh S, Ogihara T, Nakamuru M et al. Levels of plasma 6-keto-PGF_{Iα} in normotensive and essential hypertensive males with and without a family history of hypertension. Prost Leukot Med 1983;10:27-32.
- 184. Nasjletti A, Erman A, Cagen LM et al. Plasma concentrations, renal excretion, and tissue release of prostaglandins in the rat with dexamethasone-induced hypertension. Endocrinology 1984;114:1033-1040.
- 185. Limas C, Goldman P, Limas CJ. Effect of salt on prostaglandin metabolism in hypertension-prone and -resistant Dahl rats. Hypertension 1981;3:219-224.
- 186. Ogihara T, Gotoh S, Tabuchi Y et al. Involvement of endogenous prostaglandins in saltinduced hypertension. Acta Endocrinol 1985;108:114-118.
- 187. Numaguchi Y, Harada M, Osanai H et al. Altered gene expression of prostacyclin synthase and prostacyclin receptor in the thoracic aorta of spontaneously hypertensive rats. Cardiovasc Res 1999;41:682-688.
- 188. Osanai T, Matsumura H, Kikuchi T et al. Changes in vascular wall production of prostacyclin and thromboxane A₂ in spontaneously hypertensive rats during maturation and the concomitant development of hypertension. Jpn Circ J 1990;54:507-514.
- 189. Iwama W, Kaot T, Muramatsu M. Correlation with blood pressure of the acetylcholineinduced endothelium-derived contracting factor in the rat aorta. Hypertension 1992;19:326-332.
- 190. Ge T, Hughes H, Junquero DC et al. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H₂ in the SHR aorta. Circ Res 1995;76:1003-1010.
- 191. Clesham G, Parsaee H, Joseph S et al. Activation of bovine endothelial thromboxane receptors triggers release of prostacyclin but not EDRF. Cardiovasc Res 1992;26:513-517.
- 192. Kent KC, Collins LJ, Schwerin FT et al. Identification of functional PGH₂/TXA₂ receptors on human endothelial cells. Circ Res 1993;72:958-965.
- 193. Levy JV. Changes in systolic arterial blood pressure in normal and spontaneously hypertensive rats produced by acute administration of inhibitors of prostaglandin biosynthesis. Prostaglandins 1977;13:153-160.
- 194.Uderman HD, Workman RJ, Jackson EK. Attenuation of the development of hypertension in spontaneously hypertensive rats by the thromboxane synthase inhibitor 4'-(imidazol-1-yl)acetophenone. Prostaglandins 1982;24:238-244.
- 195. Uderman HD, Jackson EK, Puett D et al. Thromboxane synthase inhibitor UK38,485 lowers blood pressure in the adult spontaneously hypertensive rat. J Cardiovasc Pharmacol 1984;6:969-972.
- 196. Ritter JM, Barrow SE, Dokter HS et al. Thromboxane A₂ receptor antagonism and synthase inhibition in essential hypertension. Hypertension 1993;22:197-203.

- 197. Ritter JM, Brett SE, Woods JD et al. Prostacyclin biosynthesis in essential hypertension before and during treatment. Human Hypertens 1996;10:37-42.
- 198. Nies AS, Fadul S, Gal J et al. Indomethacin-furosemide interaction: the importance of renal blood flow. Adv Prostaglandin Thromboxane Leukot Res 1983;11:529-532.
- 199. Mackay IG, Nath K, Cumming AD et al. Haemodynamic and endocrine responses of the kidney to frusemide in mild essential hypertension. Clin Sci 1985;68:159-164.
- 200. Murthy VS, Waldron TL, Goldberg ME. The mechanism of bradykinin potentiation after inhibition of angiotensin-converting enzyme by SQ 14,255 in conscious rabbits. Circ Res 1978;43:I-40.
- 201. Moore TJ, Crantz FR, Hollenberg NK et al. Contributions of prostaglandins in the antihypertensive action of captopril in essential hypertension. Hypertension 1981;3:168-173.
- 202. Pontieri V, Lopes OU, Ferreira SH. Hypotensive effect of captopril. Role of bradykinin and prostaglandin like substances. Hypertension 1990;15:155-158.
- 203. Dusing R, Scherhag R, Landsberg G et al. The converting enzyme inhibitor captopril stimulates prostacyclin synthesis by isolated rat aorta. Eur J Pharmacol 1983;91:501-504.
- 204. Hoffmann G, Dusing R. ACE inhibition, kinins, and vascular PGI₂ synthesis. Eicosanoids 1992;5(Suppl):S60-S62.
- 205. Guivernau M, Armijo F, Rosas R. Role of sulfhydryl groups in the stimulatory effect of captopril on vascular prostacyclin synthesis. Eur J Pharmacol 1991;198:1-6.
- 206. Goldschmidt JE, Tallarida RJ. Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilatation: effect of sulfhydryl groups on endothelium-derived relaxing factor. J Pharmacol Exp Ther 1991;257:1136-1145.
- 207. Moroi M, Akatsuka N, Fukazawa M et al. Endothelium-dependent relaxation by angiotensin-converting enzyme inhibitors in canine femoral arteries. Am J Physiol 1994;266:H583-H589.
- 208. Beierwaltes WH, Crretero OA. Kinin antagonist reverses converting enzyme inhibitorstimulated vascular prostaglandin I₂ synthesis. Hypertension 1989;13:754-758.
- 209. Watson ML, Jones RL. The contribution of PGI₂ to the effects of captopril in conscious dogs in differing states of sodium balance. Clin Sci 1986;71:533-538.
- 210. Zucker IH, Chen JS, Wang W. Renal sympathetic nerve and hemodynamic responses to captopril in conscious dogs: role of prostaglandins. Am J Physiol 1991;260:H260-H266.
- 211. Gerber JG, Franca G, Byyny RL et al. The hypotensive action of captopril and enalapril is not prostacyclin dependent. Clin Pharmacol Ther 1993;54:523-532.
- 212. Joris I, Zand T, Nunnari JJ et al. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypocholesterolemic rats. Am J Pathol 1983;113:341-358.
- 213. D'Angelo VD, Villa S, Mysliwiec M et al. Defective fibrinolytic and prostacyclin-like activity in human plaques. Thromb Haemostas 1978;39:535-536.
- 214. Larrue J, Rigaud M, Daret D et al. Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta. Nature London 1980;285:480-482.

- 215. Beetens JR, Coene MC, Verheyen A et al. Biphasic response of intimal prostacyclin during the development of experimental atherosclerosis. Prostaglandins 1986; 1986:3 19-334.
- 216. Rush DS, Kerstein MD, Bellan JA et al. Prostacyclin, thromboxane A₂ and prostaglandin E₂ formation in atherosclerotic human carotid artery. Atherosclerosis 1988;8:73-78.
- 217. Moncada S. Biological importance of prostacyclin. Br J Pharmacol 1982;76:3-31.
- 218. Thorin E, Hamilton CA, Dominiczak MH et al. Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 1994;14:453-459.
- 219. Pyke DD, Chan AC. Effects of vitamin E on prostacyclin release and lipid composition of the ischemic rat heart. Arch Biochem Biophys 1990;277:429-433.
- 220. Kunisaka M, Umeda F, Inoguchi T et al. Vitamin E binds to specific binding sites and enhances prostacyclin production by cultured aortic endothelial cells. Thromb Haemostas 1992;68:744-751.
- 221. Meydani M. Modulation of the platelet thromboxane A_2 and aortic prostacyclin synthesis by dietary selenium and vitamin E. Biol Trace Element Res 1992;33:79-86.
- 222. Tran K, Chan AC. R,R,R-alpha-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochim Biophys Acta 1990;1043:189-197.
- 223. Moncada S, Gryglewski RJ, Bunting S et al. A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins 1976;12:715-733.
- 224. Mathur SN, Albright E, Field FJ. Decreased prostaglandin production by cholesterol-fed macrophages. J Lipid Res 1989;30:1383-1395.
- 225. Hajjar DP, Weksler BB. Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostaglandins I₂ and E₂. J Lipid Res 1983;24:1176-1184.
- 226. Orekhov AN, Tertov VV, Mazurov AV et al. "Regression" of atherosclerosis in cell culture: effects of stable prostacyclin analogues. Drug Dev Res 1986;9:189-201.
- 227. Willis AL, Smith DL, Vigo C et al. Effects of prostacyclin and orally stable mimetic agent RS-93427-007 on basic mechanisms of atherogenesis. Lancet 1986;ii:682-683.
- 228. Willis AL, Smith DL, Vigo C et al. Orally active prostacyclin mimetic RS-93427: therapeutic potential in vascular occlusive disease associated with atherosclerosis. Adv Prostaglandin Thromboxane Leukot Res 1987; 17:254-265.
- 229. Morisaki N, Kanzaki T, Motoyama N et al. Cell cyclic-dependent inhibition of DNA synthesis of prostaglandin I_2 in cultured rabbit aortic smooth muscle cells, Atherosclerosis 1988;71:165-171.
- 230. FitzGerald GA, Smith B, Pedersen AK et al. Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platetet activation. New Eng J Med 1984;310:1065-1068.

- 231. Mikkola T, Viinikka L, Ylikorkala O.. Estrogen and postmenopausal estrogen/progestin therapy: effects on endothelium-dependent prostacyclin, nitric oxide and endothelin-1 production. Eur J Obstet Gynecol 1998;79:75-82.
- 232.Knapp HR, Healy C, Lawson J et al. Effects of low-dose aspirin on endogenous eicosanoid formation in normal and atherosclerotic men. Thromb Res 1988;50:377-386.
- 233. Takacs E, Jellinek H. Early morphological changes of vessels in an experimental model system. Int Angiol 1987;6:7-19.
- 234. Kouchi Y, Esato K, O-Hara M et al. Effect of prostaglandin I₂ analogue TRK-100 on the suppression of intimal fibrous proliferation. J Vasc Surg 1992; 16:232-238.
- 235. Braun M, Hohlfeld T, Kienbaum P et al. Antiatherosclerotic effects of oral cicaprost in experimental hypercholesterolemia in rabbits. Atherosclerosis 1993; 103:93-105.
- 236. Rucker W, Prop G, Huther AM. Antiatherosclerotic and antihyperlipidemic effects of octimibate sodium in rabbits. Atherosclerosis 1988;69: 155-160.
- Harris NV, Smith C, Ashton MJ et al. Acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors.
 2-(Alkylthio)-4,5-diphenyl-1H-imidazoles as potent inhibitors of ACAT. J Med Chem 1992;35:4384-4392.
- Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251-259.
- 239. Jackson B, Gee A, Black S et al. Effects of octimibate, an inhibitor of acyl coenzyme A: cholesterol acyltransferase, on cholesterol metabolism in the hamster and rat. Biochem Pharmacol 1990;39: 1487-1489.
- 240. Weisweiler P, Gopfert E. Lipid-lowering properties of the ACAT inhibitor octimibate in hypercholesterolemic subjects. Arterioscler Thromb 1991; 11:1487-1498.
- 241. Todaka T, Yokoyama C, Yanamoto H et al. Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 1999;30:419-426.
- 242. Namaguchi Y, Naruse K, Harada M et al. Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol 1999; 19:727-733.
- 243. Grant SM, Goa KL. Iloprost. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peripheral vascular disease, myocardial ischaemia and extracorporeal circulation procedures. Drugs 1992;43:889-924.
- 244.Lievre M, Azoulay S, Lion L et al. A dose-effect study of beraprost sodium in intermittent claudication. J Cardiovasc Pharmacol 1996;27:788-793.
- 245. Kato H, Emura S, Ngashima K et al. Successful treatment of intermittent claudication due to spinal stenosis using beraprost sodium, a stable prostaglandin I₂ analogue. Angiology 1997;48:457-461.
- 246. Okuda Y, Sone H, Mizutani S et al. Acute effect of beraprost sodium on lower limb circulation in patients with non-insulin-dependent diabetes mellitus-evaluation by color Doppler ultrasonography and laser cutaneous blood flowmetry. Prostaglandins 1996;52:375-384.

- 247. Creutzig A, Bullinger M, Cachovan M et al. Improvement in the quality of life after i.v. PGE₁ therapy for intermittent claudication. Vasa 1997;26: 122-127.
- 248. Belch JJF, Bell PRF, Creissen D et al. Randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of AS-013, a prostaglandin E₁ prodrug, in patients with intermittent claudication. Circulation 1997;95:2298-2302.
- 249. Balcaro G, Laurora G, Nicolaides AN et al. Treatment of severe intermittent claudication with PGE₁ - a short-term vs a long-term infusion plan - a 20 week, European randomized trial - analysis of efficiacy and costs. Angiology 1998;49:885-894.
- 250. Goszcz A, Grodzinska L, Kostka-Trabka E et al. Treatment of peripheral vascular disease with misoprostol (Cytotec): a pilot study. Meth Find Exp Clin Pharmacol 1998;20:439-445.
- 251. Hyman AL, Kadowitz PJ. Pulmonary vasodilator activity of prostacyclin (PGI₂) in the cat. Circ Res 1979;45:404-409.
- 252. Starling MB, Neutze JM, Elliott RL. Control of elevated pulmonary vascular resistance in neonatal swine with prostacyclin (PGI₂). Prostagland Med 1979;3:105-117.
- 253. Watkins WD, Peterson MB, Crone RK et al. Prostacyclin and PGE₁ for severe idiopathic pulmonary artery hypertension. Lancet 1980;i: 1083.
- 254. Higenbottam TW, Wheeldon D, Wells FC et al. Long-term treatment of primary pulmonary hypertension with continuous intravenous epoprostenol. Lancet 1984;i: 1046-1047.
- 255. Higenbottam TW, Spiegelhalter D, Scott JP. Prostacyclin (epoprostenol) and heart-lung transplantation as treatments for severe pulmonary hypertension. Br Heart J 1993;70:366-370.
- 256. Barst RJ, Rubin LJ, McGoon MD et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med 1994; 121:409-415.
- 257. Barst RJ, Rubin LJ, Long WA. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. New Eng J Med 1996;334:296-301.
- 258.Kneussl MP, Lang IM, Brenot FP. Medical management of primary pulmonary hypertension. Eur Respir J 1996;9:2401-2409.
- 259. Barst RJ. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin. Heart 1997;77:299-301.
- 260. Bihari DJ, Smithies M, Gimson A et al. The effects of vasodilatation with prostacyclin on oxygen delivery and uptake in critically ill patients. New Eng J Med 1987;317:397-403.
- 261. Hinderliter AL, Willis PW, Barst RJ et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Circulation 1997;95:1479-1486.
- 262. Sitbon 0, Brenot F, Denjean A et al. Inhaled nitric oxide as a screening vasodilator agent in primary pulmonary hypertension. A dose-response study and comparison with prostacyclin. Am J Respir Crit Care Med 1995;151:384-389.

- 263. Jones DK, Higenbottam TW, Wallwork J. Treatment of primary pulmonary hypertension with epoprostenol (prostacyclin). Br Heart J 1987;57:270-278.
- 264. Rubin LJ, Mendoza J, Hood M. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol): results of a randomized trial. Ann Int Med 1990;112:485-491.
- 265. Saji T, Ozawa Y, Ishikita T et al. Short-term hemodynamic effect of a new oral PGI₂ analogue, beraprost, in primary and secondary pulmonary hypertension. Am J Cardiol 1996;78:244-247.
- 266. Haywood GA, Adams KF, Gheorghiade M et al. Is there a role for epoprostenol in the management of heart failure? Am J Cardiol 1995;75:44A-50A.
- 267. Yoshiki Y, Nakajima H, Kawai C et al. Prostacyclin therapy in patients with congestive heart failure. Am J Cardiol 1982;50:320-324.
- 268. Dzau VJ, Swartz SL, Creager MA. The role of prostaglandins in the pathophysiology of and the therapy for congestive heart failure. Heart Failure 1986;2:6-13.
- 269. Yui Y, Nakajima H, Kawai C et al. Prostacyclin therapy in patients with congestive heart failure. Am J Cardiol 1982;50:320-324.
- 270. Nishikawa H. Intravenous vasodilator therapy in patients with refractory congestive heart failure. Mie Med J 1986;36:57-83.
- 271. Auinger C, Virgolini I, Weissel M et al. Prostaglandin I₂ (PGI₂) increases left ventricular ejection fraction (LVEF). Prostaglandins Leukot Essent Fatty Acids 1989;36: 149-154.
- 272. Sueta CA, Gheorghiade M, Adams KF et al. Safety and efficacy of epoprostenol in patients with severe congestive heart failure. Am J Cardiol 1995;75:34A-43A.
- 273. Califf RM, Adams KF, McKenna WJ et al. A randomised controlled trial of epoprostenol for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J 1997;134:44-54.
- 274. Montalescot G, Drobinski G, Meurin P et al. Effects of prostacyclin on the pulmonary vascular tone and cardiac contractility of patients with pulmonary hypertension secondary to end-stage heart failure. Am J Cardiol 1998;82:749-755.
- 275. Kant KS, Dosekun AK, Chandran KG et al. Deficiency of a plasma factor stimulating vascular prostacyclin generation in patients with lupus nephritis and glomerular thrombi and its correction by ancrod: in-vivo and in-vitro observations. Thromb Res 1982;27:651-658.
- 276. Patrono C, Ciabattoni G, Remuzzi G. Functional significance of renal prostacyclin and thromboxane A₂ in patients with systemic lupus erythematosus. J Clin Invest 1985;76:1011-1018.
- 277. Pierucci A, Simonetti BM, Pecci G. Improvement of renal function with selective thromboxane antagonist in lupus nephritis. New Eng J Med 1989;320:421-425.
- 278. Yoshida T, Kameda H, Ichikawa Y et al. Improvement of renal function with a selective thromboxane A₂ inhibitor, DP-1904, in lupus nephritis. J Rheumatol 1996;23:1719-1724.

Chapter 7

IP-receptors on neutrophils

1. INTRODUCTION

Neutrophils (polymorphonuclear leukocytes) are defence cells that are recruited from the blood into inflamed tissues or sites of inflammation by chemotactic agents. Once recruited, neutrophils phagocytose and usually kill bacteria through O₂-derived radicals and proteolytic enzymes; unfortunately these latter factors are also toxic to the host and therefore neutrophils need to be under tight control to prevent damage to the host itself. However patients who have a complete deficiency or extremely low levels of the neutrophil adhesion molecule CD18 also have severe defects in their inflammatory responses due to the lack of appropriate neutrophil responses.¹ The clinical features include soft tissue lesions, impaired pus formation, defective wound healing, and increased morbidity and mortality from bacterial infections. Thus while neutrophils are an essential component of our defense systems, we shall see later (Section 3.2) that they are also a dangerous component of ischaemia-reperfision injury.

As prostaglandins can inhibit a wide range of neutrophil functions when activated by a range of chemotactic stimuli, it is possible that they represent an endogenous mechanism designed to modulate neutrophil activity under physiological and pathological conditions.²⁻⁵ There are several types of chemotactic molecules with different origins: N-formyl-methionyl-leucyl-phenylalanine (FMLP) is a product of bacteria; the complement fragment C5a is formed in blood plasma and inflammatory exudates upon complement activation; opsonised zymosan (OZ) is a form of immune complex; platelet-activating factor (PAF) and leukotriene B₄ (LTB₄) derive from membrane

phospholipids and are released by activated neutrophils; and interleukin-8 (IL-8) is produced by monocytes. A more detailed explanation of neutrophil biology and their role in inflammation and disease can be found in Hellewell & Williams.⁶

2. EFFECT OF IP AGONISTS ON NEUTROPHIL FUNCTION

Unlike most other cell types involved in inflammation, neutrophils are reported to be poor producers of prostaglandins,^{7,8} having rather low cyclooxygenase (COX) activity relative to lipoxygenase (LOX),^{8,9} and synthesising relatively low amounts of prostacyclin and PGE₂.^{10,11} Therefore although prostacyclin and its mimetics are clearly able to regulate a variety of neutrophil functions, prostacyclin itself does not appear to play an autocrine role in these cells. Instead, it seems that endothelial cells may provide this source of prostacyclin, since cultured endothelial cells can synthesise prostacyclin in the presence of FMLP-activated human and rat' peritoneal neutrophils.¹² Although there is plenty of evidence for an involvement of IP-receptors in regulating rat peritoneal neutrophil function, there have been no studies characterising IP-receptors by radioligand binding experiments. Indeed there is only one report of [³H]-PGD₂ and [³H]-PGE₂ binding with high affinity to human neutrophils.¹³

In an attempt to simplify experiments needing large numbers of neutrophils, many researchers have turned to using the human promyelocytic HL-60. which when differentiated leukaemic cell line with dimethylsulphoxide, displays many aspects of neutrophil activity.14,15 However, we have shown that PGE₁, PGE₂, and to a lesser extent cicaprost and iloprost, can cause an unexpected aggregation response in neutrophillike HL-60 cells.¹⁶ Furthermore, this PGE₂-induced aggregation response is not mediated by elevations in cyclic AMP or changes in intracellular calcium concentration ($[Ca^{2+}]_i$) and may involve a novel intracellular signalling pathway for EP_2 (and IP)-receptors.¹⁷ Now in contrast to our data, others have shown that PGE_2 can increase $[Ca^{2+}]_i$ in neutrophil-like HL-60 cells, but again this effect is not mimicked by forskolin or cell-permeable forms of cyclic AMP.¹⁸ Because of this lack of consistency in data derived from HL-60 cells, we have tended to concentrate on discussing data from neutrophils wherever possible. The reader should note that studies of IP-receptors in human neutrophils utilise cells taken directly from venous blood, whereas neutrophils from rats, rabbits and guinea-pigs come from the peritoneal cavity following injection of an inflammatory agent. Therefore, what might

at first appear to be a species-dependent property of IP-receptors, may actually be due to the differences between resting and elicited cells.

2.1 Adenylate cyclase

An early, but inconsistent,¹⁹ event in human neutrophil activation is a transient (5 - 15 s) elevation in cyclic AMP which is thought to act as a negative regulator of neutrophil function.²⁰⁻²³ In the presence of a phosphodiesterase (PDE) inhibitor, nonactivated human neutrophils consistently respond to $10 \ \mu M PGE_1$ and PGE_2 with a 3 - 4-fold increase in cyclic AMP production,^{24,25} whereas variable results have been obtained with IP agonists. Thus, prostacyclin and iloprost were inactive at concentrations $<10 \mu$ M, but iloprost at 10 μ M produced a 2-fold increase in cyclic AMP.²⁴ Yet in another study, prostacyclin appeared much more potent producing a 3-fold increase in cyclic AMP at approximately 300 nM, even in the absence of a PDE inhibitor.²⁶ In a comparative study of IP agonists related to taprostene, it was clear that while these compounds produced only minor increases in cyclic AMP alone, they dramatically potentiated the cyclic AMP response to FMLP with maximal effects observed at 10 µM.²⁷ In yet another study, iloprost and carbacyclin were also inactive at 10 uM, but cicaprost (10 µM) produced a significant 4-fold increase in cyclic AMP, being equipotent with PGE₂ and the DP agonist ZK 110841.²⁵ Because of this discrepancy between the adenylate cyclase response of human neutrophils to three IP agonists, Armstrong & Talpain²⁵ guestioned the selectivity of cicaprost, especially since there was no comparative data on the effect of cicaprost in other assays of human neutrophil function. They also noted that in neutrophil-like HL-60 cells, cicaprost was much weaker than PGE₂, achieving a maximum increase in cyclic AMP which was merely 15% of the PGE_2 response.²⁵ The greater response of human neutrophils to PGE1 and PGE_2 compared with IP agonists has also been seen in the presence of $FMLP^{27}$ and PAF,²⁸ yet in the presence of PAF, much smaller increases in cyclic AMP production were found.²⁸ These results contrast with those of Sedgwick et al.²⁹ who found that the adenylate cyclase response of human neutrophils to stimulation by PGE₁ was similar in the presence of FMLP, OZ or phorbol myristate acetate (PMA). No cross-desensitisation was seen between PGE₁/PGE₂ and iloprost-mediated increases in cyclic AMP, suggesting that PGE_1 and PGE_2 act here on EP-receptors, whereas iloprost and prostacyclin act on IP-receptors.²⁸ All in all, one can conclude that measurements of cyclic AMP production by human neutrophils in response to IP agonists, in the absence or presence of neutrophil activators, leads to highly inconsistent results, not least because of the inate variablity of neutrophils isolated from human subjects.²⁷

In the presence of FMLP, rat peritoneal neutrophils produced a significant increase in cyclic AMP in response to beraprost, prostacyclin and PGE₂ (all at 1 µM) with increases over basal levels of 70, 84 and 59%, respectively.³⁰ Although Ham et al.³¹ noted a 20% increase in cyclic AMP levels in response to FMLP, our own studies have shown that activation of rat peritoneal neutrophils with FMLP produces no consistent effect on cyclic AMP production, and that FMLP does not affect the adenylate cyclase response of neutrophils to prostaglandins.³² In rat peritoneal neutrophils we found that 1 µM cicaprost, iloprost and PGE₂ stimulated adenylate cyclase activity with an increase over basal levels of 262, 270 and 254%, Cicaprost and iloprost have relatively high potency, respectively.^{32,33} comparable with PGE₂, with EC₅₀ values of 20 nM and 44 nM, respectively, and appear to act as full agonists for stimulating adenylate cyclase in rat peritoneal neutrophils. The related nonprostanoid prostacyclin mimetics BMY 42393 and BMY 45778 gave responses typical of partial agonists, failing to produce the same maximal level of adenylate cyclase activation as seen with cicaprost and iloprost; the related nonprostanoid octimibate produced no statistically significant effect even at 10 μ M;³² see Figure 48.

Figure 48. The effects of IP agonists on rat peritoneal neutrophil activity. Stimulation of $[{}^{3}\text{H}]$ -cyclic AMP production (\blacksquare). Inhibition of FMLP-stimulated aggregation (\bullet). Reprinted from Wise,³⁴ with permission.

It is conceivable that the different responsiveness of human and rat peritoneal neutrophils to IP agonists may be because the human neutrophils

are nonelicited cells, taken directly from the blood of the donor. Elicited mouse, rat and human macrophages all gain in their adenylate cyclase response to prostacyclin (Chapter 8, Table 16), therefore it is possible that human blood neutrophils are more similar to resident macrophages.

2.2 Calcium fluxes and phospholipid turnover

FMLP, LTB₄ and PAF all produce different patterns of time-dependent changes in IP₃ production, and release different amounts of Ca^{2+} , which may be responsible for the different repertoire of responses to these chemotactic factors.^{35,36} Changes in [Ca ²⁺]_i were thought to play a central role in the activation process since [Ca ²⁺]_i was consistently elevated in stimulated cells and some biological responses could be mimicked by treating the cells with calcium ionophores such as A23187. However some responses persist under conditions where [Ca ²⁺]_i remains at low or below resting levels.³⁷ Therefore attempts to relate IP agonist-mediated changes in [Ca ²⁺]_tto changes in functional responses are complicated by the particular Ca²⁺-dependency of the process being studied.

Although both PGE_1 and PGE_2 can inhibit FMLP and PAF-stimulated Ca^{2+} influx in human neutrophils, iloprost was inactive even at 10 μ M.²⁸ We have also shown that PGE_2 (1 μ M) significantly inhibited FMLP-stimulated increases in $[Ca^{2+}]_i$ in human neutrophils¹⁶ but cicaprost, octimibate, BMY 42393 and BMY 45778 were inactive (unpublished observations). Beraprost (100 μ M) produced about 50% inhibition of FMLP-stimulated $[Ca^{2+}]_i$ in human neutrophils, but this is still rather a weak effect?³⁸ Neutrophil-like HL-60 cells behaved here in a similar fashion to human neutrophils, with PGE₁ and PGE₂ inhibiting FMLP-stimulated increases in $[Ca^{2+}]_i$ with IC_{50} values of 140 nM and 30 nM, respectively, and cicaprost (1 μ M) being inactive.¹⁶ In contrast, IP agonists were active in rat peritoneal neutrophils³² and inhibited FMLP-stimulated increases in $[Ca^{2+}]_i$ by decreasing the influx of extracellular Ca^{2+} .³⁰ PGE₂ also inhibits the influx of extracellular Ca^{2+} in response to FMLP in rat and guinea-pig peritoneal neutrophils.^{39,40}

Cicaprost and iloprost showed similar potency for inhibiting FMLPstimulated increases in [Ca²⁺]_i and for stimulating adenylate cyclase in rat peritoneal neutrophils (Table 13). Unfortunately, high concentrations of both octimibate and BMY 45778 fluoresce at the wavelength used to detect Ca²⁺ binding to Fura-2, and thus their potency in inhibiting FMLP-stimulated increases in [Ca²⁺]_i cannot be readily measured.³² It is clear however that cicaprost and iloprost have no effect alone on rat peritoneal neutrophil [Ca²⁺]_i, which suggests that unlike recombinant IP₁-receptors expressed in CHO cells (Chapter 4), IP-receptors in rat peritoneal neutrophils are unable to couple to G_q-proteins.

2	6			
Drug	Cyclic AMP production	Inhibition of FMLP-stimulated aggregation	Inhibition of FMLP-stimulated increase in [Ca ²⁺] _i	
	$(EC_{50} nM)$	$(IC_{50} nM)$	$(IC_{50} nM)$	
Cicaprost	20	2	24	
Iloprost	44	5	75	
BMY 45778	245	20	>1,000 *	
BMY 42393	160	462	18,000 *	
Octimibate	>10,000	286	>1,000	

Table 13. Summary data for IP agonists in rat peritoneal neutrophils

Data from Wise.³² *Estimate only as data limited by autofluorescence of nonprostanoid.

In rat peritoneal neutrophils, beraprost, prostacyclin and PGE₂ also inhibited FMLP-stimulated inositol phospholipid turnover, with IC₅₀ values of approximately 1 μ M.³⁰ However, it is unlikely that this reflects a change in initial IP₃ production in response to FMLP, because as noted above, IP agonists affected the influx of extracellular Ca²⁺ rather than the release of Ca²⁺ from intracellular stores. Kainoh et al.³⁰ therefore concluded that IP agonists modify inositol phospholipid turnover by an indirect route.

2.3 Chemotaxis and adhesion

Neutrophil adhesion in response to chemotactic factors is characterised by the expression of the β_2 integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) on the surface of the neutrophil; the latter adhesion molecule being most important for FMLP-stimulated human neutrophils.⁴1 Monoclonal antibodies directed against CD11b or CD18 decrease rat peritoneal neutrophil adherence to and emigration from rat mesenteric venules.⁴² Cyclic AMP modulators are thought to affect neutrophil rather than endothelial cell function; thus, they inhibit FMLP-mediated adhesion of human neutrophils.⁴¹ In contrast, iloprost mediated inhibition of human neutrophil adhesion to endothelial cells was apparently independent of Mac-1.⁴³

Human neutrophils extrude about 50% of their cyclic AMP, but there are conflicting reports concerning the chemotactic nature of cyclic AMP.^{44,45} Prostanoids themselves are similarly not chemotactic for human neutrophils but can inhibit FMLP-stimulated chemotaxis.^{46,47} This statement requires slight clarification though since it has been reported that EP₃ agonists can stimulate human neutrophil chemotaxis at low concentrations.⁴⁸ Presumably the typical concentrations of PGE₂ used in chemotaxis experiments is high enough for the more dominant EP₂/EP₄-receptor-mediated inhibitory effect to be measurable.

In rat peritoneal neutrophils, both beraprost and prostacyclin inhibited FMLP-stimulated chemotaxis with IC_{50} values of 30 nM; similar to the effect of PGE₂.³⁰ Although it is rare to find a functional response of human neutrophils modified by IP agonists, prostacyclin has been reported to suppress the adherence of nonactivated human neutrophils to endothelial cells.²⁶ Surprisingly, prostacyclin inhibited human neutrophil adhesion to endothelial cells at concentrations (approximately 300 nM) which had no effect on OZ-stimulated respiratory burst or phagocytic activity, suggesting that prostacyclin might play a role in regulating neutrophil adhesiveness to endothelial cells without compromising host defence.²⁶

In a model of inflammatory skin lesions, prostacyclin (50 ng kg⁻¹ min⁻¹, i.v.) significantly inhibited neutrophil migration in response to intradermal injection of zymosan-activated plasma in dogs.⁵ In contrast, intradermal iloprost significantly enhanced accumulation of neutrophils induced by zymosan-activated plasma (ZAP), but not by the passive cutaneous anaphylactic (PCA) reaction, in guinea-pig skin.⁴⁹ In similar models of inflammation in rabbit skin, prostaglandins are both pro-inflammatory and anti-inflammatory depending on the route of administration; thus, when given locally, prostaglandins are anti-inflammatory.⁴⁹

2.4 Aggregation

Neutrophils aggregate in response to activators such as FMLP, LTB₄ and PAF, and this homotypic aggregation is thought to be a prerequisite for the successfull emigration of fast-moving neutrophils from the blood stream into the tissue space.^{50,51} Neutrophil aggregation provides a mechanism for increasing the density of neutrophils near the site of inflammation/infection by sequestration of neutrophil aggregates in the microvasculature.⁵² Rat peritoneal neutrophil aggregation can be inhibited by anti-Mac-1, but not by anti-LFA-1 monoclonal antibodies.⁵³ Recent evidence indicates though that while neutrophils isolated from the bone marrow of mice deficient in Mac-1 are defective in homotypic aggregation, these mice have a normal inflammatory response when challenged by thioglycollate intraperitoneally; indeed neutrophil emigration into the peritoneal cavity is inhibited far more when the mice are treated with monoclonal antibodies against LFA-1.¹

FMLP causes human neutrophil aggregation and this is a direct effect, not the consequence of LTB_4 biosynthesis.⁵⁴ The FMLP-stimulated aggregation of human neutrophils can be inhibited by PGE_1 and PGE_2 , but not by $PGF_{2\alpha}$.⁵⁵ A similar profile is seen with rat peritoneal neutrophils, but in addition, IP agonists are potent inhibitors of aggregation (Table 14) while PGD_2 and U-46619 are inactive.^{32,33} With the as yet unexplained exception

of BMY 42393, the potency of cicaprost, iloprost, octimibate and BMY 45778 for inhibition of rat peritoneal neutrophil aggregation is independent of the neutrophil activator used (Table 14). Although the octimibate-related prostacyclin mimetics behave as partial agonists for stimulation of adenylate cyclase activity (Section 2.1), they all produced the same maximal inhibition of FMLP-stimulated rat peritoneal neutrophil aggregation;³² see Figure 48. The question of whether or not cyclic AMP mediates the functional effects of IP agonists on neutrophils will be discussed later in Section 2.8.

Table 14. Comparison of the inhibitory effect of IP agonists against different neutrophil activators

Drug	Inhibition of FMLP-	Inhibition of PAF-	
	stimulated aggregation	stimuIated aggregation	
	(IC ₅₀ , nM)	$(IC_{50} nM)$	
Cicaprost	2.1	1.3	
Iloprost	4.5	nd	
BMY 45778	20	18	
BMY 42393	462	88	
Octimibate	286	184	

Data from Wise³² and Wise & Chow.⁵⁶ nd = not determined.

2.5 Respiratory burst

Neutrophils exhibit a respiratory burst, characterised by an increase in O_2 consumption, activation of the hexose monophosphate shunt and production of reactive O_2 -derived free radicals. When a variety of reactive O_2 species (ROS) were measured, it was shown that PGE₁ could significantly decrease superoxide anion, H_2O_2 and OH production by OZ-stimulated human neutrophils, but PGE₁ did not affect the levels of ROS generated by a cell-free ROS generating system.⁵⁷ Similarly, PGE₂, prostacyclin and iloprost were reported to have no scavenging properties in a cell-free system.²⁸ Therefore the inhibitory effects of PGE₂ and IP agonists result from direct cellular actions.

PGE₁, PGE₂ and PGD₂ inhibited FMLP- and OZ-stimulated respiratory burst by human neutrophils with IC₅₀ values ranging from 80 - 800 nM, but beraprost, cicaprost, iloprost, prostacyclin and 6-oxo PGF₁ were much less potent (iloprost and prostacyclin had IC₅₀ values of 2 - 10 μ M and approximately 30 μ M, respectively).^{2,28,29,38,58-60} PGF₂ and U-466 19 were almost inactive in inhibiting FMLP-stimulated superoxide anion generation by human neutrophils,⁵⁸ yet PGE₁ and taprostene inhibited FMLP-stimulated respiratory burst with IC₅₀ values of 100 - 300 nM.²⁷ Furthermore, the potency of inhibitory prostanoids was dependent on the neutrophil activator used; thus, PGD₂ and PGE₁ were equipotent against FMLP and OZ, but PGE₂ was more potent against the FMLP-stimulated respiratory burst.^{2,28} Prostaglandins fail to modulate superoxide anion production when added 10 s or later after FMLP stimulation of human neutrophils, suggesting that they act at an early step in the neutrophil response pathway.⁶⁰

The lack of cross-desensitisation between PGE_1 and iloprost for inhibition of neutrophil respiratory burst (and for stimulation of cyclic AMP),²⁸ clearly indicates that PGE_1 and iloprost are acting at different receptors, and suggests that PGE_1 activation of EP_2/EP_4 -receptors, and not IP-receptors, is the dominant effect of PGE_1 in human neutrophils. The compound OP-1206 was made in an attempt to design a PGE_1 analogue with antiplatelet activity equivalent to that of prostacyclin.²⁴ However, although PGE_1 , PGE_2 and OP-1206 inhibited FMLP-stimulated superoxide anion production by human neutrophils, both iloprost and prostacyclin were inactive, even at 10 μ M. As we have seen above, IP agonists are much less potent than PGE_2 (and EP_2 agonists) at inhibiting the respiratory burst of human neutrophils, which might suggest that OP-1206 is both an EP_2 agonist (responsible for antineutrophil activity) and an IP agonist (responsible for antiplatelet activity).

As seen above for human neutrophils, rabbit peritoneal neutrophils also failed to respond to prostacyclin.⁶¹ Unfortunately PMA was used as the stimulus here and there are important differences to note between modulation of receptor- and nonreceptor-stimulation of the respiratory burst in neutrophils (see Section 2.8). Therefore this data alone does not allow us to make any conclusion yet as to the role of IP-receptors in modulating rabbit neutrophil functions. Canine neutrophils are also similar to human neutrophils, in that high concentrations of IP agonists (about 100 μ M of prostacyclin and iloprost) are needed to produced 50% inhibition of OZ-stimulated superoxide anion production.^{4,5} In 1983, Ham et al.³¹ noted that superoxide anion production by rat peritoneal neutrophils stimulated with FMLP was significantly inhibited by PGE₁ and PGE₂, with IC₅₀ values of 10 - 100 nM, and that this inhibition might be associated with cyclic AMP productoin. Unlike human neutrophils, FMLP-stimulated superoxide anion production by rat peritoneal neutrophils due to the superoxide anion production is produced superoxide anion production. With this inhibition might be associated with cyclic AMP productoin. Unlike human neutrophils, FMLP-stimulated superoxide anion production by rat peritoneal neutrophils was potently inhibited by both prostacyclin and beraprost.³⁰

2.6 Enzyme release

The bacteria-destroying proteolytic enzymes of neutrophils are contained within granules of which the neutrophil has two types: azurophilic and specific. The azurophilic granules contain a variety of enzymes, including β -glucuronidase and lysozyme (which is also found in the specific granules),

and the release of enzymes from azurophilic granules is under tighter control than the specific granule release. 62

While both PGE_1 and PGE_2 significantly inhibited FMLP- and PAFstimulated β -glucuronidase release from human neutrophils, neither iloprost or prostacyclin had any significant effect at 10 μ M²⁸ However, both PGE₂ and prostacyclin were effective in inhibiting OZ-stimulated β -glucuronidase and lysozyme release from rabbit peritoneal neutrophils, whereas TXB₂ and PGF_{2 α} were inactive,⁶¹ suggesting that rabbit peritoneal neutrophils are more similar to rat peritoneal neutrophils than to human neutrophils; thus supporting the idea that the elicitation process used to harvest peritoneal neutrophils accounts for the apparent difference between species.

2.7 Leukotriene B₄ production

Leukotriene B₄, the major arachidonic acid metabolite of neutrophils, is itself a potent chemoattractant and activator of neutrophils and thus may serve as an amplification factor in inflammatory processes.²⁸ Despite this, it is difficult to detect LTB₄ formation and release by FMLP, PAF or arachidonic acid-stimulated human neutrophils, therefore exogenous arachidonic acid needs to be added in these assays.⁶³ Although both PGE₁ and PGE₂ could inhibit PAF- and FMLP-stimulated LTB₄ release from human neutrophils, an equivalent concentration of iloprost (1 0 μ M) had no significant effect;⁶³ this was one of the first studies to note the relative lack of effect of IP agonists on human neutrophil function. In OZ-stimulated human neutrophils, iloprost, U-46619 and PGF₂ α were at least one order of magnitude weaker than PGE₂ or PGD₂ in inhibiting LTB₄ release; thus, iloprost had an IC₅₀ value of approximately 2 μ M compared with 720 nM and 9 10 nM for PGE² and PGD₂, respectively.⁵⁸

In rat neutrophils, PGE₁ and PGE₂ were slightly more potent inhibitors of FMLP-stimulated LTB₄ release (IC₅₀ ~ 10 nM) than in human neutrophils (IC₅₀ ~30 - 100 nM).³¹ In rat peritoneal neutrophils, the order of potency of prostanoids was PGE₁ **≈** PGE₂ > MMM-I-135 (prostacyclin analogue) > PGA₁ **≈** PGA₂ > PGI₂ > PGF_{2α} > PGF_{1α} > PGD₂. This order of potency and the low potency of prostacyclin (IC₅₀ 16 μ M) suggests that these inhibitory effects could be attributed to activation of EP₂/EP₄-receptors rather than IP-receptors.

2.8 Mechanisms of action

All the prostanoid receptors which are inhibitory for neutrophils (DP, EP_2/EP_4 , IP) couple to activation of adenylate cyclase⁶⁴ and it has been clear for some time that the inhibitory effect of prostaglandins on neutrophil

function is often mimicked by cyclic AMP,29 and that the neutrophilsuppressant potencies of prostaglandins generally correlates with their potencies for activation of adenylate cyclase.⁹ However, this in itself is not sufficient proof of a second messenger role for cyclic AMP. For example, the effect of prostaglandins on superoxide anion generation is dependent on the specific stimulus and increased cyclic AMP in activated neutrophils by itself is not sufficient to limit superoxide anion induced by all agonists.^{2,28} Thus, while 10 µM iloprost produced an equivalent increase in cyclic AMP as 1 μ M PGE₁ in human neutrophils, only PGE₁ produced a significant inhibition of superoxide anion release.²⁸ Total cellular cyclic AMP is also not well correlated with inhibition of human neutrophil chemotaxis to all stimuli. In one study, PGE₁ needed a PDE inhibitor to inhibit FMLPstimulated chemotaxis, but was active alone against LTB4-stimulated chemotaxis; 8-bromo cyclic AMP was inactive against both stimuli.⁴⁵ If we attempt to relate forskolin-induced increases in cyclic AMP and functional responses, we see that it has no significant effect on the early responses of a neutrophil to FMLP (shape change, transmigration, priming) yet forskolin inhibits the late events (respiratory burst, PLA₂ activation).65 The differences in neutrophil stimulus and response sensitivities to cellular cyclic AMP suggests that cyclic AMP alone does not regulate neutrophil function, unless we implicate a role for highly compartmentalised changes in cvclic AMP

The general consensus of opinion is that prostaglandins only inhibit receptor-activated neutrophils, and do not inhibit activation by receptorindependent processes such as the use of PMA, arachidonic acid or A23187. Thus PGE₁ and PGE₂ had no effect on A23187-stimulated LTB₄ release,⁶³ or against arachidonic acid-stimulated respiratory burst,^{28,60} or against PMA-stimulated respiratory burst in human neutrophils.^{29,60,66} Interestingly, neither dibutyryl cyclic AMP nor theophylline could inhibit PMA-stimulated respiratory burst in human neutrophils, whereas they were both effective inhibitors of FMLP- or OZ-stimulated responses.²⁹ Prostacyclin (30 µM) similarly failed to inhibit PMA-stimulated respiratory burst in human neutrophils,⁶⁰ and although beraprost inhibited FMLP-stimulated respiratory burst, it was also inactive against PMA and A23187 in human neutrophils.³⁸ In contrast, prostacyclin appeared able to inhibit PMA-stimulated enzyme release in rabbit peritoneal neutrophils, but this effect could be overcome by increasing the concentration of PMA,⁶¹ and iloprost still inhibited PMA-stimulated human neutrophil adhesion to endothelial cells.⁴³ Another surprise is that the PDE-IV inhibitor nimesulide could inhibit both FMLPand PMA-stimulated respiratory burst in human neutrophils, but no completely satisfactory explanation was offered.⁶⁷ If the release of eicosanoids by neutrophils is relevant to their overall response profile, then it

may be worth noting that while PMA is a potent stimulant of neutrophil oxidative metabolism and degranulation (i.e. enzyme release), unlike OZ and calcium ionophores, PMA does not release arachidonic acid.⁸

It has been suggested that the general failure of PGE_1 and dibutyryl cyclic AMP to inhibit PMA-stimulated respiratory burst and enzyme secretion is because PMA acts directly on protein kinase C by a Ca²⁺-dependent mechanism.⁶⁶ This implies that cyclic AMP modulators need to influence Ca²⁺ to produce an inhibitory effect. Despite this conclusion, and the observations that cyclic AMP modulators can inhibit the elevation of [Ca ²⁺]_i in activated neutrophils, there are sufficient anomalies to suggest that Ca²⁺ fluxes are not the major target for the inhibitory action of prostaglandins.^{22,66}

Using results from studies of PGE1 and PGE2, we can see that the maximal inhibition seen with these prostaglandins shows considerable variation which cannot be entirely accounted for by differences in concentration of neutrophil activator used. Thus the efficacy of PGEs in inhibiting neutrophil functions is as follows: respiratory burst (90 - 100%), chemotaxis and LTB4 release (80%), aggregation (60%), enzyme release (30 -50%), increases in [Ca ²⁺]_i (20 - 40%). In addition, Kainoh et al.³⁰ noted that beraprost was more effective in inhibiting FMLP-stimulated rat peritoneal neutrophil chemotaxis than in inhibiting the respiratory burst, and suggested that the inhibitory mechanisms used by beraprost to inhibit these neutrophil functions are unlikely to be identical. Of course, such conclusions can be confused by the use of different neutrophil activators; thus, C5a and FMLP show similar potency for stimulating aggregation, C5a has greater potency than FMLP for releasing lysozyme, and FMLP is more potent than C5a in stimulating the respiratory burst in human neutrophils.⁶⁸ Therefore it is difficult to tell if these results may account for the observation that C5a-stimulated human neutrophil aggregation and lysozyme release is more sensitive to inhibition by PGE_1 and PGE_2 than is the respiratory burst.⁶⁸ However, when a larger group of prostanoids and a larger range of responses are studied, we see that the relative potencies are similar, irrespective of the stimulus being used or the function being examined, and the most likely explanation for these results is that prostanoids inhibit a common pathway involving a fundamental mechanism of neutrophil activation.^{28,58}

Much of the mechanistic work on the inhibition of neutrophil function by prostaglandins has naturally concentrated on PGE_2 since IP agonists have relatively little effect on human blood-derived neutrophils. Since all the inhibitory prostanoid receptors (i.e. DP, EP_2/EP_4 and IP) couple to activation of adenylate cyclase,⁶⁴ we shall include the mechanistic studies on PGE_2 here for reference. At the simplest level, studies have looked for a correlation between concentrations of prostanoids needed to stimulate cyclic

AMP and to inhibit neutrophil functions. Thus, a correlation exists for inhibition of the respiratory burst,28-31,61,68,69 and for inhibition of LTB4 release.³¹ A more detailed study in human neutrophils using cyclic AMP mimetics and antagonists indicates that inhibition of the respiratory burst by PGE₂ is clearly dependent on cyclic AMP,⁶⁹ whereas the correlation between the extent of cyclic AMP production and inhibition of respiratory burst for IP agonists such as PGE₁, taprostene, naxaprostene and CG 4303 is far from ideal.27 Although a correlation was noted for inhibition of chemotaxis by PGE2 and prostacyclin in rat peritoneal neutrophils,30 and inhibition of adhesion by iloprost in human neutrophils,43 no such quantitative relationship was found in rabbit peritoneal neutrophils,44 and a more thorough study of human neutrophils indicated that the inhibitory effect of PGE₂ and EP₂ agonists was independent of cyclic AMP.⁴⁷ Agents which increase cyclic AMP, including PGE₁, tend to inhibit chemotaxis and spontaneous motility of rabbit peritoneal neutrophils, but there is a poor concentration-response relationship.⁴⁴ Explanations ventured were that these quantitative discrepancies may indicate that the rise in cyclic AMP is coincidental with but bears no relationship to the inhibition of neutrophil chemotaxis and locomotion, or that there is compartmentalisation of cyclic AMP in the neutrophil.

Contradictory results exist for inhibition of lysozyme release; for example, there is a poor correlation in human neutrophils,⁶⁸ and a better correlation for PGE₂ and prostacyclin in rabbit peritoneal neutrophils.⁶¹ There is also a poor correlation for PGE₂-mediated inhibition of C5a-stimulated human neutrophil aggregation,⁶⁸ and for FMLP-stimulated rat peritoneal neutrophil aggregation by PGE₂ and IP agonists,32,70 but we cannot yet rule out a role for highly localised changes in cyclic AMP which might inhibit phosphatidylinositol 3-kinase activity, resulting in the antiaggregation effect of PGE₂ in rat peritoneal neutrophils.⁷⁰

The involvement of cyclic AMP in mediating the antiaggregatory effect of IP agonists is far from clearcut. Figure 48 clearly shows that if IP agonists do inhibit aggregation by increasing cyclic AMP, then very small (undetectable) changes are all that are required in this highly-coupled system. For example, the nonprostanoid prostacyclin mimetics octimibate, BMY 42393 and BMY 45778 are all relatively weak activators of adenylate cyclase, yet all produce the same maximal inhibition of aggregation as seen with cicaprost and iloprost. In addition, although the inhibitory effect of cicaprost in rat peritoneal neutrophils can be potentiated by PDE inhibition, it cannot be blocked by protein kinase A (PKA) inhibitors.³² We also studied the effect of PDE and PKA inhibitors on iloprost, octimibate, BMY 42393 and BMY 45778 and concluded that these enzyme inhibitors can only modulate the effect of IP agonists when very small changes in cyclic AMP are involved.³²

Prostaglandin-mediated inhibition of many neutrophil functions occurs at concentrations well below the half-maximal concentration for activation of adenylate cyclase, therefore submaximal activation of adenylate cyclase can provide substantial regulation.⁷¹ But as pointed out,⁷¹ activation of adenylate cyclase alone may be insufficient in the control of neutrophils. If increasing neutrophil cyclic AMP leads to inhibition of neutrophil activity, then we might expect the converse effect on inhibiting cyclic AMP production. Indeed, it has been reported that EP₃ agonists can stimulate chemotaxis at low concentrations:⁴⁸ and that EP₃ agonists increase the release of LTB₄ in OZ-activated human neutrophils.⁵⁸

Chromatographic evidence suggests that the PDE isozyme present in the cytosol of human neutrophils is predominantly PDE-IV (cyclic AMP specific), and PDE-IV inhibitors such as IBMX, nimesulide, Ro-20-1724 and zardaverine all increase basal and FMLP-stimulated cyclic AMP and inhibit the respiratory burst.^{67,72} Furthermore, rolipram and Ro-20-1724 have little or no effect on FMLP-stimulated chemotaxis in human neutrophils, and unlike the respiratory burst, the antichemotactic effect of PGE₂ cannot be inhibited by PKA inhibitors.⁴⁷ We find very little effect of rolipram on basal cyclic AMP levels in rat peritoneal neutrophils, but it produces a substantial enhancement of PGE₂ and IP agonist-stimulated cyclic AMP.^{32,70} Rolipram is a fairly potent inhibitor of rat peritoneal neutrophil aggregation (IC₅₀ 194 nM),³² but has slightly different effects when used with PGE₂ or cicaprost. Thus, the inhibitory concentration-response curve for cicaprost is potentiated by rolipram, while there is only an additive effect with PGE₂.^{32,70}

It is unlikely that inhibition of FMLP-stimulated increases in $[Ca^{2+}]_i$ is responsible for the anti-aggregatory effect of IP agonists in rat peritoneal neutrophils. IP agonists are at least 10-fold less potent in inhibiting FMLPstimulated increases in $[Ca^{2+}]_i$ compared with inhibiting the aggregation response, despite the observation that the EC_{50} for FMLP in stimulating increases in $[Ca^{2+}]_i$ was18-fold less than the EC_{50} for stimulating rat peritoneal neutrophil aggregation.³² In addition, IP agonists can activate ATP-sensitive K₊ channels (K_{ATP}) in coronary artery smooth muscle,^{73,74} in a cyclic AMP-independent fashion, but the K_{ATP} antagonist glibenclamide had no significant effect on IP agonist activity in rat peritoneal neutrophils.³²

An alternative mechanism could involve a direct effect of prostaglandins on the FMLP receptor. PGE₂ does not inhibit [³H]-FMLP binding to human neutrophils,¹⁹ but neutrophils isolated from rats treated with 15-methyl PGE₁ showed a decrease in binding affinity for FMLP to its receptor and a decrease in the ability to secrete lysosomal enzymes, which might account for the anti-inflammatory nature of PGEs.⁷⁵ One must bear in mind that prostaglandins inhibit neutrophil responses to a wide range of stimuli, and there are no other reports of prostaglandins decreasing the affinity of other chemotactic agents to their receptors.

2.9 Characterisation of neutrophil IP-receptors

Because cicaprost and iloprost were nearly as potent in inhibiting rat peritoneal neutrophil aggregation as in inhibiting human platelet aggregation, we attempted to compare the potency of a range of IP agonists in both assays (Table 15). Characterising IP-receptors using agonist potency ratios has many hazards, one of which is clearly shown in Table 15. Rather than comparing IC_{xx} values, it is usual to compare the order of potency of agonists relative to the standard compound when looking for evidence of receptor subtypes. A comparison of data in columns 4 and 7 of Table 15 would suggest that IP-receptors in human platelets differ from those in rat peritoneal neutrophils; the nonprostanoid prostacyclin mimetics being relatively more potent at rat IP-receptors. However, the nonprostanoid prostacyclin mimetics have a high degree of protein binding^{76,77} and this factor becomes highly relevant when one assay, i.e. platelet aggregation, is performed in the presence of plasma proteins. Thus, reanalysis of the results with reference to BMY 45778 as the standard compound gives a more reliable interpretation; i.e. although these IP agonists are 4-fold less potent in rat peritoneal neutrophils compared with human platelets, the order of potency is similar and it is probable that there is no difference between these IP-receptors. Therefore, the IP-receptor of rat neutrophils is likely to be similar to the IP₁-receptor of human platelets. However, in Chapter 5 we suggested that the human platelet IP1-receptor differed from the rat platelet IP₁-receptor. Therefore the question arises over whether the rat platelet and rat neutrophil IP₁-receptors are different, and with the pharmacological tools available to us at the moment, we are unable to satisfactorily answer this question.

Stahlberg et al.²⁷ had earlier shown a similar order of potency for IP agonists to inhibit platelet aggregation and to inhibit the neutrophil respiratory burst, i.e. taprostene > naxaprostene > CG 4303. However, because considerably higher (~ 20-fold) concentrations of prostacyclin analogues were required to affect neutrophil function, the authors suggested that IP-receptors in neutrophils are distinct from those of platelets. Since in general, human neutrophils do not respond well to IP agonists, and given that few researchers have access to a complete range of IP agonists for testing, then we have no same-tissue comparisons available for the IP-receptors of rat and human neutrophils. We have though attempted a same-

species comparison and discovered that the IP-receptor of rat peritoneal neutrophils differs from that which inhibits the spontaneous contractile activity of rat colon (see Chapter 1 0).⁷⁸

	Inhibition of human platelet aggregation		Inhibition of rat neutrophil aggregation (assayed in protein-free buffer)			
Drug						
	(assayed in platelet-rich plasma)					
-	IC_{50}	EMR VS.	EMR VS.	IC_{30}	EMR VS.	EMR vs
	(nM)	cicaprost	BMY 45778	(nM)	cicaprost	BMY 45778
Cicaprost	0.8	1	0.03	2.6	1	0.12
Iloprost	1.6	2	0.06	2.5	0.96	0.96
	2.0	5.9	0.17			
BMY 45778	27	34	21	21	8	1
Octimibate	200	250	278	278	107	13
	1020	1275				
EP 185	100-	125-	500	500	192	24
	300	375				
BMY 42393	1200	1500	368	368	139	18

Table 15. Comparison of IP agonist potency in studies of human platelet and rat neutrophil aggregation

Data on cicaprost, BMY 45778, EP 185 and BMY 42393 are from Ref. No. 78. Data on iloprost and octimibate are from Ref. No. 79-81. IC_{30} values were used for the neutrophil aggregation data in this table because all compounds except EP 185 failed to produce more than 60% maximal inhibition. EMR = equi-effective molar concentration.

3. ROLE OF NEUTROPHILS IN DISEASE

3.1 Adult Respiratory Distress Syndrome

The etiology of Adult Respiratory Distress Syndrome (ARDS) remains unknown, but there is clear evidence that neutrophils are involved in the component of lung injury. Endothelial cells in the lung are thought to be damaged by ROS released from phagocytes and neighbouring endothelial cells. It is thought that PGE₁ may prove effective in the treatment of ARDS by lessening of autoinjury to endothelial and alveolar cells partly through its action to reduce superoxide anion production by neutrophils.⁵⁷ Furthermore, when human neutrophils were infused into isolated buffer-perfused rat lungs and subsequently stimulated with PMA, iloprost pretreatment reduced the extent of lung injury.⁴³ Although this protective effect of iloprost occurred despite the continued production of superoxide anion and upregulation of Mac-1, the authors could not entirely discount the neutrophil rather than the endothelial cells as the target site for iloprost since iloprost (30 μ M) was able to inhibit PMA-stimulated human neutrophil adhesion to endothelial cells despite having no effect on Mac-1 expression. Following soft tissue trauma in anaesthetised pigs, neutrophils accumulate in the lungs, and there is some evidence that iloprost plays a protective role in this trauma model by affecting neutrophil pulmonary sequestration.⁸²

3.2 Ischaemia-reperfusion injury

A period of ischaemia causes irreversible cellular injury which may be exacerbated by inadequate restoration of blood flow if the arteries are occluded with platelet thrombi. An alternative view is that reperfusion itself can result in a drastic acceleration of tissue necrosis, resulting in ischaemia-reperfusion injury. An excellent discussion of the roles played by neutrophils in this process can be found in Williams;⁸³ we will concentrate here on the influence of IP agonists on ischaemia-reperfusion injury.

The ability of prostacyclin to alter responses to acute myocardial ischaemia was studied in open-chest, anaesthetised cats, where prostacyclin infusion (0.5 nmoles kg⁻¹ min⁻¹, i.v.) protected the ischaemic myocardium by reducing oxygen demand, primarily through reduction in cardiac work, and perhaps by inhibiting platelet aggregation and preserving myocardial cell integrity.⁸⁴ The possible involvement of neutrophils in this cytoprotective effect of IP agonists was noted in 1985 when examining the effects of iloprost (0.6 µmoles kg⁻¹ min⁻¹, i.v.) in the reperfused ischaemic myocardium of cats.⁸⁵ The interstitial spaces of the ischaemic myocardium in control animals frequently contained neutrophils, whereas the extravasation of neutrophils was rarely seen in the iloprost-treated group. This was later confirmed in dogs where the cytoprotective nature of prostacyclin (50 ng kg⁻¹ min⁻¹, i.v.),⁵ iloprost (100 ng kg⁻¹ min⁻¹, i.v.)⁴ and beraprost (300 ng kg⁻¹ min⁻¹, i.v.)⁸⁶ during myocardial ischaemia and reperfusion was related to an inhibition of neutrophil migration and the decreased production of cytotoxic ROS. By inhibiting neutrophil infiltration, monoclonal antibodies against CD11b or CD18 decreased ischaemia-reperfusion damage in rat heart⁸⁷ and rat brain,⁸⁸ further implicating the neutrophil as a major contributor to tissue damage following ischaemia-reperfusion injury. Previously it had been assumed that prostacyclin, by reducing arterial blood pressure, would decrease myocardial ischaemia by reducing afterload and thus myocardial oxygen demand. However, this does not appear to be the case because in a model of myocardial ischaemia in the dog, the prostacyclin analogue SC39902 produced the same changes in cardiovascular responses as prostacyclin, yet afforded no cytoprotection.⁵ Furthermore, prostacyclin, but not SC39902, inhibited canine neutrophil respiratory burst and only prostacyclin inhibited neutrophil migration into inflammatory skin lesions.
Thus, the cytoprotective nature of prostacyclin is independent of changes in blood flow to the previously ischaemic myocardium and is more likely due to inhibition of neutrophil activation. Furthermore, the coronary release of prostacyclin is greater in lipopolysaccharide-treated rats, and it may be this factor which attenuates the deterioration of myocardial function in response to ischaemia-reperfusion in these animals.³ Certainly, 6-oxo PGF_{1 α} is the principal prostaglandin released from cardiomyocytes in vitro in response to oxidative stress and 30 nM iloprost significantly limits cell damage.⁸⁹ causing oxidative stress (e.g. H_2O_2 or doxorubicin) Factors in cardiomyocytes led to induction of COX-2, mediated by activation of extracellular signal-regulated kinases (ERK) 1/2, with the consequent elevation in 6-oxo PGF1a. The COX-2 specific inhibitor NS398 prevented the elevation in 6-oxo $PGF_{1\alpha}$ and potentiated doxorubicin-induced cell damage.⁸⁹ It is therefore possible that the heart is capable of limiting the damage caused by ischaemia-reperfusion injury by the generation of prostacyclin and the subsequent inhibition of neutrophil activity; the use of aspirin immediatedly following an ischaemic event may therefore need to be re-evaluated.

The processes involved as a result of spinal cord injury may also relate to those of ischaemia-reperfusion injury. For example, compressive spinal cord trauma in rats can be significantly attenuated by infusion of iloprost (100 ng kg⁻¹ min⁻¹), to a similar extent as seen in neutropenic rats.⁹⁰ Consistent with the neutrophil as the target site of action of iloprost, neutrophil infiltration of the spinal cord was significantly attenuated by iloprost.

4. **DISCUSSION**

Regardless of the functional measure under consideration, human neutrophils are little affected by IP agonists,^{2,24,28,59,63} and inhibitory prostanoid receptors can be ranked in order of inhibitory potency as: $EP_2 \approx$ DP >>> IP > FP, TP. The situation differs for rat peritoneal neutrophils where the order of inhibitory potency is: $EP_2 \approx$ IP >>DP > FP, TP.^{30,33} Because many of the in vivo inflammatory models used in research involve rodents rather than humans, then this species difference between the relative roles of PGE₂ and prostacyclin needs to be taken into consideration, along with the primary cell type of interest. If we look briefly at another similar inflammatory cell such as the eosinophil, we see that the respiratory burst of the human eosinophil responds in the same way as the human neutrophil in that it can be inhibited by PGE₂ and PGD₂, but not by cicaprost.⁵⁹ Similarly, PGE₁ and PGE₂ suppress eosinophil accumulation in guinea-pig skin, but iloprost has no effect.⁴⁹ In addition, the homotypic aggregation of elicited

guinea-pig eosinophils is also unaffected by IP agonists and is inhibited by PGE_2 (via the EP₂-receptor), but this time PGD_2 is without effect.⁹¹

Schrör & Hecker²⁴ suggested that prostacyclin and its analogues, while being effective antiplatelet agents, might not cause any direct antineutrophil action in humans because of the absence of an antineutrophil potential. Clearly this concept needs re-evaluating because it may be the elicited neutrophils which are responsible for the tissue damage in chronic inflammatory conditions, As described in Chapter 8, elicited monocytes from mouse, rat and humans increase their responsiveness to prostacyclin compared with nonelicited cells. It is possible therefore that human neutrophils might be relatively unresponsive to IP agonists because they are not elicited cells. It is conceivable therefore that human neutrophils could increase their responsiveness to IP agonists during the priming process which will occur during transendothelial cell migration. It is clear that the activation status of a cell is highly influential on the expression of IPreceptors, thus, human basophils express high affinity binding sites for [³H]iloprost and these are downregulated following cell incubation with the activating cytokine interleukin-3, with a matching concentration-dependent decrease in cyclic AMP production in response to IP agonists.⁹² It remains to be seen whether the cytokines which will influence neutrophils during transendothelial cell migration have any effect on IP-receptor expression.

These conclusions are however as yet unproven. In a study comparing blood and tissue (elicited) neutrophils, we begin to see some consistency between species.⁹³ Using human saliva neutrophils as representative of tissue neutrophils, Kanamori et al.⁹³ showed that tissue neutrophils are less (rather than more) responsive than blood neutrophils to the inhibitory activity of EP₂ and DP agonists, when measuring FMLP-stimulated respiratory burst. Identical results were found when comparing rabbit blood and peritoneal neutrophils. Unfortunately IP agonists were not included in this study, so for the moment, our hypothesis that tissue neutrophils gain in responsiveness to IP agonists remains unchallenged.

REFERENCES

- 1. Lu H, Smith CW, Perrard J et al. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J Clin Invest 1997;99:1340-1350.
- Gryglewski RJ, Szczeklik A, Wandzilak M. The effect of six prostaglandins, prostacyclin and iloprost on generation of superoxide anions by human polymorphonuclear leukocytes stimulated by zymosan or formyl-methionyl-leucylphenalanine. Biochem Pharmacol 1987;36:4209-4213.

- 3. Yang BC, Chen LY, Saldeen TGP et al. Reperfusion injury in the endotoxin-treated rat heart: reevaluation of the role of nitric oxide. Br J Pharmacol 1997;120:305-311.
- Simpson PJ, Mickelson J, Fantone JC et al. Iloprost inhibits neutrophil function in vitro and in vivo and limits experimental infarct size in canine heart. Circ Res 1987;60:666-673.
- Simpson PJ, Mitsos SE, Ventura A et al. Prostacyclin protects ischemic reperfused myocardium in the dog by inhibition of neutrophil activation. Am Heart J 1987;113:129-137.
- 6. Hellewell PG, Williams TJ. "Immunopharmacology of Neutrophils." In *The Handbook* of *Immunopharmacology*, Page C, ed. London, Academic Press, 1994;1-334.
- Davies P, MacIntyre DE. "Prostaglandins and inflammation." In *Inflammation: basic principles and clinical correlates*, Gallin JI, Goldstein IM, Snyderman R, eds. New York: Raven Press, 1992:123-138.
- 8. Walsh CE, Waite BM, Thomas MJ et al. Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem 1981;256:7228-7234.
- Gryglewski RJ, Salvemini D. "Modulation of polymorphonuclear leukocyte function by prostaglandins and nitric oxide." In *Prostacyclin: New Perspectives for Basic Research and Novel Therapeutic Indications,* Rubanyi GM, Vane J, eds. Amsterdam: Elsevier, 1992;59-92.
- Gemsa D, Leser H-G, Seitz M et al. Membrane perturbation and stimulation of arachidonic acid metabolism. Mol Immunol 1982;19:1287-1296.
- 11. McGuire JC, Sun FF. Metabolism of arachidonic acid and prostaglandin endoperoxide by assorted leukocytes. Adv Prostaglandin Thromboxane Res 1980;8:1665-1667.
- 12. Miller DK, Sadowski S, Soderman DD et al. Endothelial cell prostacyclin production induced by activated neutrophils. J Biol Chem 1985;260:1006-1014.
- Rossi AG, O'Flaherty JT. Prostaglandin binding sites in human polymorphonuclear neutrophils. Prostaglandins 1989;37:641-653.
- Collins SJ, Ruscetti FW, Gallagher RE et al. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethyl sulfoxide. J Exp Med 1979;149:969-974.
- 15. Harris P, Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol 1985;37:407-422.
- 16. Wise H, Xie ZH. Activation of neutrophil-like HL-60 cells by prostaglandin E_2 . Prostaglandins Leukot Essent Fatty Acids 1996;54: 199-205.
- 17. Xie ZH, Wise H. Cyclic AMP-independent activation of neutrophil-like HL-60 cells by PGE₂. Cell Signal 1997;9:531-537.
- Mitsuhashi M, Mitsuhashi T, Payan DG. Multiple signaling pathways of histamine H₂ receptors. J Biol Chem 1989;264:18356-18362.
- Schrör K, Hecker G. "Different effects of E- and I-type prostaglandins on human platelet and polymorphonuclear cell function." In *Prostaglandin E₁ in Atherosclerosis*, Sinzinger H, Rosatti W, eds. Berlin: Springer Verlag, 1986:22-31.

- Simchowitz L, Fischbein LC, Spilberg I et al. Induction of a transient elevation in intracellular levels of adenosine-3',5'-cyclic monophosphate by chemotactic factors: an early event in human neutrophil activation, J Immunol 1980;124:1482-1491.
- Verghese MW, Fox K, McPhail LC et al. Chemoattractant-induced alterations of cAMP levels in human polymorphonuclear leukocytes require a Ca²⁺-dependent mechanism which is independent of transmembrane activation of adenylate cyclase. J Biol Chem 1985;260:6769-6775.
- Della Bianca V, De Togni P, Grzeskowiak M et al. Cyclic AMP inhibition of phosphoinositide turnover in human neutrophils. Biochim Biophys Acta 1986;886:441-447.
- De Togni P, Della Bianca V, Grzeskowiak M et al. Mechanism of desensitization of neutrophil response to N-formylmethionylleucylphenylalanine by slow rate of receptor occupancy. Studies on changes in Ca²⁺ concentration and phosphatidylinositol turnover. Biochim Biophys Acta 1985;838:23-31.
- Schrör K, Hecker G. Potent inhibition of superoxide anion generation by PGE₁ and the PGE₁ analogue OP-1206 in human PMN's - unrelated to its antiplatelet PGI₂-like activity. Vasa 1987;(Suppl 17):11-16.
- 25. Armstrong RA, Talpain E. Comparison of the prostaglandin E (EP) receptor of human neutrophils and HL-60 cells differentiated with DMSO. Prostaglandins 1994;4:221-234.
- 26. Boxer LA, Allen JM, Schmidt M et al. Inhibition of polymorphonuclear leukocyte adherence by prostacyclin. J Lab Clin Med 1980;95:672-678.
- Stahlberg HJ, Loschen G, Flohe L. Effect of prostacyclin analogs on cyclic adenosine monophosphate and superoxide formation in human polymorphonuclear neutrophils stimulated by formyl-methionyl-phenyl-alanine. Biol Chem 1988;369:329-336.
- Hecker G, Ney P, Schrör K. Cytotoxic enzyme release and oxygen centered radical formation in human neutrophils are selectively inhibited by E-type prostaglandins but not by PGI₂. Naunyn-Schmied Arch Pharmacol 1990;341:308-315.
- 29. Sedgwick JB, Berube ML, Zurier RB. Stimulus-dependent inhibition of superoxide generation by prostaglandins. Clin Immunol Immunopathol 1985;34:205-215.
- 30. Kainoh M, Imai R, Umetsu T et al. Prostacyclin and beraprost sodium as suppressors of activated rat polymorphonuclear leukocytes. Biochem Pharmacol 1990;39:477-484.
- Ham EA, Soderman DD, Zanetti ME et al. Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc Natl Acad Sci USA 1983;80:4349-4353.
- 32. Wise H. The inhibitory effects of non-prostanoid prostacyclin mimetics on rat neutrophil function. Prostaglandins Leukot Essent Fatty Acids 1996;54:351-360.
- Wise H, Jones RL. Characterization of prostanoid receptors on rat neutrophils. Br J Pharmacol 1994;113:581-587.
- Wise, H. Effects of prostacyclin mimetics on neutrophil function. Adv Exp Med Biol 1996;407:261-264.
- 35, Verghese MW, Charles L, Jakoi L et al. Role of a guanine nucleotide regulatory protein in the activation of phospholipase C by different chemoattractants. J Immunol 1987;138:4374-4380.

- Montero M, Alvarez J, Garcia-Sancho J. Agonist-induced Ca²⁺ influx in human neutrophils is secondary to the emptying of intracellular calcium stores. Biochem J 1991;277:73-79.
- Foyouzi-Youssefi R, Petersson F, Lew DP et al. Chemoattractant-induced respiratory burst: increases in cytosolic Ca²⁺ concentrations are essential and synergize with a kinetically distinct second signal. Biochem J 1997;322:709-718.
- Okuyama M, Kambayashi J, Sakon M et al. PGI2 analogue, sodium beraprost, suppresses superoxide generation in human neutrophils by inhibiting p47phox phosphorylation. Life Sci 1995;57:1051-1059.
- Kato H, Ishitoya J, Takenawa T. Inhibition of inositol phospholipids metabolism and calcium mobilization by cyclic AMP-increasing agents and phorbol ester in neutrophils. Biochem Biophys Res Commun 1986;139:1272-1278.
- Wise H, Jones RL. Modulation of rat neutrophil intracellular calcium by prostaglandin E₂. Adv Prostaglandin Thromboxane Leukot Res 1994;22:p36.
- 41. Derian CK, Santulli RJ, Rao PE et al. Inhibition of chemotactic peptide-induced neutrophil adhesion to vascular endothelium by cAMP modulators. J Immunol 1995;154:308-317.
- 42. Kurose I, Granger DN, Evans DJJr et al. *Helicobacter pylori*-induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets. Gastroenterology 1994;107:70-79.
- Riva CM, Morganroth ML, Ljungman AG et al. Iloprost inhibits neutrophil-induced lung injury and neutrophil adherence to endothelial monolayers. Am J Respir Cell Mol Biol 1990;3:301-309.
- Rivkin I, Rosenblatt J, Becker EL. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. J Immunol 1975;115:1126-1134.
- 45. Harvath L, Robbins JD, Russell AA et al. cAMP and human neutrophil chemotaxis. J Immunol 1991;146:224-232.
- Watanabe K, Murakami M, Furukawa Y et al. Effects of prostaglandins on chemotaxis. Jpn J Inflamm 1983;3:124-127.
- 47. Armstrong RA. Investigation of the inhibitory effects of PGE₂ and selective EP agonists on chemotaxis of human neutrophils. Br J Pharmacol 1995;116:2903-2908.
- 48. Armstrong RA. PGE2 and EP3 agonists induce chemotaxis of human neutrophils *in vitro*. Br J Pharmacol 1992;105:45P.
- Teixeira MM, Williams TJ, Hellewell PG. E-type prostaglandins enhance local oedema formation and neutrophil accumulation but suppress eosinophil accumulation in guineapig skin. Br J Pharmacol 1993;110:416-422.
- Anderson DC, Miller LJ, Schmalstieg FC et al. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol 1986;137:15-27.

- 51. Simon SI, Rochon YP, Lynam EB et al. β_2 -Integrin and L-selectin are obligatory receptors in neutrophil aggregation. Blood 1993;82:1097-1106.
- 52. Mease AD, Burgess DP, Thomas PJ. Irreversible neutrophil aggregation. Am J Pathol 1981;104:98-102.
- 53. Wise H, Chow BS. Rat neutrophil aggregation: the role of adhesion molecules. Asian Pacific J Allergy Immunol 1997;15:p63.
- Beckman JK, Gay JC, Brash AR et al. Differential effects of lipoxygenase products on FMLP and LTB₄ evoked neutrophil aggregation. Lipids 1985;20:357-360.
- 55. O'Flaherty JT, Kreutzer DL, Ward PA. Effect of prostaglandins E_1 , E_2 and $F_{2\alpha}$ on neutrophil aggregation. Prostaglandins 1979;17:201-210.
- Wise, A. and Chow, K. B. S. Effect of prostacyclin mimetics on PAF-stimulated rat neutrophil aggregation. Inflamm Res 1997;46:S237.
- 57. Mikawa K, Akamatsu H, Maekawa N et al. Inhibitory effect of prostaglandin E₁ on human neutrophil function. Prostaglandins Leukot Essent Fatty Acids 1994;51:287-291.
- 58. Wheeldon A, Vardey CJ. Characterization of the inhibitory prostanoid receptors on human neutrophils. Br J Pharmacol 1993;108:1051-1054.
- Norman P, Sturton RG. Human neutrophils and eosinophils contain both DP and EP2, but not IP receptors. 8th Int Conf on Prostaglandins & Related Compounds, Montreal 1992;p73.
- Fantone JC, Kinnes AD. Prostaglandin E₁ and prostaglandin I₂ modulation of superoxide production by human neutrophils. Biochem Biophys Res Commun 1983;113506-512.
- 61. Fantone JC, Marasco WA, Elgas LJ et al. Stimulus specificity of prostaglandin inhibition of rabbit polymorphonuclear leukocyte lysosomal enzyme release and superoxide anion production. Am J Pathol 1984;115:9-16.
- 62. Baggiolini M, Kernen P. Neutrophil activation: control of shape change, exocytosis, and respiratory burst. News Physiol Sci 1992;7:215-219.
- Ney P, Schrör K. E-Type prostaglandins but not iloprost inhibit platelet activating factor-induced generation of leukotriene B₄ by human polymorphonuclear leukocytes. Br J Pharmacol 1989;96:186-192.
- Coleman RA, Kennedy I, Humphrey PPA et al. "Prostanoids and their receptors." In Membranes and their Receptors Vol. 3, Hansch C, Sammes PG, Taylor JB et al., eds. Oxford: Pergamon Press, 1990:643-676.
- 65. Daniels R, Bird IN, Hill ME et al. Differential regulation of early phase and late phase responses in human neutrophils by cAMP. Biochem Pharmacol 1993;45:1613-1620.
- De Togni P, Cabrini G, Di Virgilio F. Cyclic AMP inhibition of fMet-Leu-Phedependent metabolic response in human neutrophils is not due to its effects on cytosolic Ca²⁺. Biochem J 1984;224:629-635.
- 67. Bevilacqua M, Vago T, Baldi G et al. Nimesulide decreases superoxide production by inhibiting phosphodiesterase type IV. Eur J Pharmacol 1994;268:415-423.

- Nagata S, Kebo DK, Kunkel S et al. Effect of adenylate cyclase activators on C5ainduced human neutrophil aggregation, enzyme release and superoxide production. Int Arch Allergy Immunol 1992;97:194-199.
- Talpain E, Armstrong RA, Coleman RA et al. Characterization of the PGE receptor subtype mediating inhibition of superoxide production in human neutrophils. Br J Pharmacol 1995;114:1459-1465.
- Wise H. The inhibitory effect of prostaglandin E₂ on rat neutrophil aggregation. J Leukoc Biol 1996;60:480-486.
- Lad PM, Goldberg BJ, Smiley PA et al. Receptor-specific threshold effects of cyclic AMP are involved in the regulation of enzyme release and superoxide production from human neutrophils. Biochim Biophys Acta 1985;846:286-295.
- 72. Schudt C, Winder S, Forderkunz S et al. Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Ca_i. Naunyn-Schmied Arch Pharmacol 1991;344:682-690.
- 73. Siegel G, Carl A, Adler A et al. Effect of prostacyclin analogue iloprost on K⁺ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 1989;2:213-222.
- Jackson WF, König A, Dambacher T et al. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol 1993;264:H238-H243.
- Fantone JC, Marasco WA, Elgas LJ et al. Anti-inflammatory effects of prostaglandin E₁: in vivo modulation of the formyl peptide chemotactic receptor on the rat neutrophil. J Immunol 1983;130:1495-1497.
- 76. Meanwell NA, Romine JL, Seiler SM. Non-prostanoid prostacyclin mimetics. Drugs Future 1994;19:361-385.
- Jones RL, Wilson NH, Marr CG et al. Diphenylmethylazine prostanoids with prostacyclin-like actions on human platelets. J Lipid Mediators Cell Signal 1993;6:405-410.
- 78. Wise H, Qian Y, Jones RL. A study of prostacyclin mimetics distinguishes neuronal from neutrophil IP receptors. Eur J Pharmacol 1995;278:265-269.
- Merritt JE, Hallam TJ, Brown AM et al. Octimibate, a potent non-prostanoid inhibitor of platelet aggregation, acts via the prostacyclin receptor. Br J Pharmacol 1991;102:251-259.
- Seiler SM, Brassard CL, Federici ME et al. [3-[4-(4,5-diphenyl-2-oxazolyl)-5oxazolyl] phenoxy] acetic acid (BMY-45778) is a potent prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins 1997;53:21-35.
- Seiler S, Brassard CL, Arnold AJ et al. Octimibate inhibition of platelet aggregation: stimulation of adenylate cyclase through prostacyclin receptor activation. J Pharm Exp Ther 10;255:1021-1026.

- Malmros C, Blomquist S, Mårtensson L et al. Iloprost attenuates trauma-related sequestration of leucocytes and platelets. Prostaglandins Leukot Essent Fatty Acids 1994;50:203-210.
- 83. Williams FM. "Role of neutrophils in reperfusion injury." In *Immunopharmacology of Neutrophils*, Hellewell PG, Williams TJ, eds. London: Academic Press, 1994:245-257.
- 84. Ogletree ML, Lefer AM, Smith JB et al. Studies on the protective effect of prostacyclin in acute myocardial ischemia. Eur J Pharmacol 1979;56:95-103.
- 85. Arnold G, Thiemermann C, Heymans L et al. "Morphological analysis of the iloprost effects on reperfused ischemic myocardium." In *Prostaglandins and Other Eicosanoids in the Cardiovascular System*, Schrör K, ed. Basel: Karger, 1985:254-258.
- 86. Ueno Y, Miyauchi Y, Nishio S. Beraprost sodium protects occlusion/reperfusion injury in the dog by inhibition of neutrophil migration. Gen Pharmac 1994;25:427-432.
- 87. Yamazaki T, Seko Y, Tamatani T et al. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules. Am J Pathol 1993;143:410-418.
- Chopp M, Zhang RL, Chen H et al. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 1994;25:869-876.
- Adderley SR, Fitxgerald DJ. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 1999;274:5036-5046.
- 90. Taoka Y, Okajima K, Uchiba M et al. Reduction of spinal cord injury by administration of iloprost, a stable prostacyclin analog. J Neurosurg 1997;86: 1007-101 l,
- Teixeira MM, AI-Rashed S, Rossi AG et al. Characterization of the prostanoid receptors mediating inhibition of PAF-induced aggregation of guinea-pig eosinophils. Br J Pharmacol 1997;121:77-82.
- 92. Virgolini I, Li S, Sillaber C et al. Characterization of prostaglandin (PG)-binding sites expressed on human basophils. J Biol Chem 1992;267:12700-12708.
- Kanamori Y, Niwa M, Kohno K et al. Migration of neutrophils from blood to tissue: Alteration of modulatory effects of prostanoid on superoxide generation in rabbits and humans. Life Sci 1997;60:1407-1417.

This page intentionally left blank.

Chapter 8

IP-receptors on monocytes/macrophages and lymphocytes

1. Introduction

As we have seen in Chapter 7, circulating neutrophils are the first of the body's white cell defence force to limit microbiological invasion or respond to tissue damage. Next in line are the blood-borne monocytes, which when transformed into macrophages, are capable of phagocytosis and chemotaxis, and many other responses also seen with neutrophils. If the local inflammatory reaction cannot contain the infection, then invading microorganisms are carried to the regional lymph nodes via the lymphatics. Here the macrophage-like cells of the reticuloendothelial system phagocytose the microorganisms and act as antigen-presenting cells to facilitate both cell-mediated and antibody-mediated immune responses involving lymphocytes. Antigen presenting cells additionally release cytokines such as interleukin-1 (IL-1) to facilitate the induction phase of these immune responses. In turn, lymphocytes can trigger macrophage releasing activation bv chemokines. Thus the activity of monocytes/macrophages and lymphocytes are closely interrelated.1

Although we are primarily interested here to discuss the role of IPreceptors on monocytes and lymphocytes, we again find that the predominant inflammation-related prostanoid studied to date is prostaglandin E_2 (PGE₂) rather than prostacyclin. Given that the most popular antiinflammatory drugs in current use are the nonsteroidal anti-inflammatory drugs (NSAIDs), and since these drugs will inhibit all prostanoid production (i.e. both prostacyclin and PGE₂), then it is important for us to try and pick out the differences in activity of prostacyclin and PGE_2 with a view to highlighting the potential therapeutic use of specific prostanoid receptor agonists and antagonists should they become available.

Studies using macrophages in particular are often hampered by the lack of readily accessible, and location-appropriate human cells. For example, usable numbers of monocytes can be harvested from human peripheral blood, and allowed to settle on tissue culture plates for several days; the adherence process being a stimulus for differentiation into macrophages.² However, these cells are not identical to those involved in an inflammatory reaction. Thus, during inflammation and in response to a chemotactic signal, monocytes would normally migrate from the blood vessel into the tissue space, and in the process they would be influenced by a variety of chemical factors including prostanoids and chemokines. Therefore, despite the fact that blood mononuclear phagocytes are probably precursors of practically all macrophages, once they enter diverse anatomical sites the blood-borne cells ultimately develop tissue-determined differences.³ The influence of these changes in monocytes/macrophages has been studied in the mouse where it is clear that the production of prostacyclin is highly dependent on the stage of cell development and the factors present in its local environment.⁴ With the clear role played by macrophages in inflammatory diseases, and the usual need to treat these disorders only when they have become already well established in the body, then it is these tissue macrophages which really need to be studied. While macrophages can be harvested from the synovial fluid of patients with arthritis,⁵ or from the peritoneal cavity of patients undergoing CAPD (continuous ambulatory peritoneal dialysis as treatment for kidney failure),⁶⁸ it is always difficult to obtain sufficient cells, especially those which can serve as the correct control cells. Obviously a more complete understanding of the human macrophage would allow one to make better comparative data with the more accessible rodent macrophage. Microscopic examination of rat peritoneal macrophages shows gross differences between resident and elicited cells.⁸ Thus, the elicited cells are larger and contain ingested particles and many vacuoles, i.e. all the features of activated macrophages. The human peritoneal macrophages of CAPD patients do not represent the same type of resident macrophage as seen in rodents. According to Bonta et al.⁸ these cells are more similar to the elicited rather than the resident macrophages of rats, probably due to the stimulating action of the dialysis treatment. Much of the literature therefore deals with macrophages from nonhuman species (or cell lines maintained in culture), which may lead us into problems if there are species-specific properties of IP-receptors (see Chapter 4). Therefore when considering the role played by IP-receptors in macrophages, we must bear in mind the source

of the cells (i.e. species and tissue) before attempting to infer properties onto human macrophages.

In contrast to macrophages, circulating human lymphocytes are readily accessible and are suitable for studying many of the functions of lymphocytes. However, when it comes to assessing the function of IP-receptors on lymphocytes, we find that relatively little work has been done in this particular area, with work on PGE_2 taking greater priority.

2. MONOCYTES/MACROPHAGES

2.1 Prostacyclin production

Current evidence indicates that among the family of leukocytes, cells of the monocyte/macrophage lineage are the most potent producers of prostaglandins, and the range of prostanoids produced is species-dependent. Thus mouse, but not human, monocytes are a significant source of prostacyclin.' For human macrophages, prostanoid production follows the order: thromboxane A_2 (TXA₂) >> PGE₂ > prostaglandin $F_{2\alpha}$ (PGF_{2\alpha}); in mouse macrophages we see that $PGI_2 = PGE_2 >> TXA_2$; and in rabbit macrophages, TXA_2 and prostaglandin D_2 (PGD₂) are the cell's major cyclooxygenase (COX) metabolites. Furthermore, the relative amounts of prostacyclin, PGE₂ and TXA₂ produced by macrophages are markedly influenced by the cell activator used and the time period studied.¹⁰ In addition, it is important here also to consider the range of COX products produced by other inflammatory cells because of the potential for transcellular metabolism. For example, platelet derived prostaglandin H₂ (PGH₂) can be used by lymphocytes to produce prostacyclin," and the antiinflammatory agent 15-epi-lipoxin A₄ (15-epi-LXA₄) is produced by human leukocytes using 15R-15-hydroxy-5,8,11- cis - 13- trans -eicosatetraenoic acid (15R-HETE) derived from aspirin-treated macrophages or vascular The use of nonmacrophage COX intermediates by endothelial cells.¹² macrophages still remains to be studied in detail.

The complement of prostaglandins produced by macrophages is also highly dependent on the tissue source of the cells, therefore it is clear that when we considering the function of **IP-receptors** are on monocytes/macrophages, we must also be aware not only of the species, but also the source/state of these cells. We also need to be aware of the normal production of COX products by these cells. In 1977, Humes et al.¹³ showed that thioglycollate-elicited mouse peritoneal macrophages responded to zymosan-challenge by producing only relatively small amounts of [³H]-

prostaglandins from [³H]-arachidonic acid-labelled phospholipids. In contrast, resident cells produced a 24-fold increase in PGE₂ and a 15-fold increase in 6-oxo PGF₁ α (the stable metabolite of prostacyclin), despite both cell populations incorporating similar amounts of [³H]-arachidonic acid. The process of phagocytosis itself is insufficient to increase macrophage prostaglandin synthesis, e.g. ingestion of immunologically inert latex particles has no effect on PGE₂ production, yet phagocytosis of inflammatory stimuli such as zymosan, antigen-antibody complexes and opsonised bacteria (IgG plus complement) releases prostaglandins from macrophages.¹³

When peritoneal murine macrophages were elicited and harvested following injection with *Listeria monocytogenes*, it was shown that immune activation of macrophages in vivo also suppressed the arachidonic acid and prostaglandin endoperoxide-dependent enzymes with the notable exception of thromboxane synthase.¹⁴ Thus, immunising mice activates macrophages and leads to a 80% reduction in COX and lipoxygenase (LOX) metabolites relative to resident cells. The most striking change was seen with prostacyclin production; for example, if we consider the ratio of TXA₂:PGI₂:PGE₂ in resident macrophages as 1:25:5, then in immune activated macrophages, the ratio changed to 1:1:1. Resident murine alveolar and peritoneal macrophages also produce significantly more prostacyclin than elicited peritoneal cells in response to the calcium ionophore A23187.⁴

In a comprehensive study of eicosanoid production by resident murine macrophages, Rouzer et al.¹⁵ found that in addition to PGE_2 and TXA_2 , pulmonary tissue macrophages, but not alveolar macrophages, produced prostacyclin in response to zymosan challenge. Furthermore, LOX products seemed to predominate in pulmonary tissue macrophages, especially leukotriene C₄, whereas COX products dominated in peritoneal macrophages, especially PGE₂. The local environment therefore seems to play an important determining factor in the production of prostacyclin by macrophages.

Resident murine peritoneal and plural macrophages produce prostacyclin and PGE_2 in equal amounts, but their metabolic response following elicitation by *Corynebacterium parvum* injection is highly location-specific and involves changes in the production of prostacyclin and TXA₂, but not PGE_2 .¹⁶ Macrophages were harvested, labelled with [³H]-arachidonic acid, and stimulated with a maximum phagocytic stimulus (zymosan). Following an intraplural injection of *C. parvum*, intraplural, but not intraperitoneal, macrophages released less prostacyclin than resident macrophages in response to zymosan challenge. Similarly, following an intraperitoneal injection of *C. parvum*, intraperitoneal, but not intraperitoneal injection of *C. parvum*, intraperitoneal, but not intraplural macrophages also released less prostacyclin. These results suggest that a downregulation of

specific arachidonic acid metabolites occurs as a localised process involving a contained macrophage population in the region of the inflammatory stimulus. Injection of several types of insoluble and soluble irritants into the pleural cavity of rats resulted in a three-fold increase in prostacyclin and TXA₂, with much smaller changes in PGE₂ and PGF_{2 α} in peritoneal fluid after 24 h.¹⁷ Even 3 to 5 days after intrapleural injection of dextran, peritoneal macrophages liberated higher amounts of prostanoids compared to untreated control cells. Consistently higher levels of prostacyclin production by peritoneal macrophages were found in response to intrapleural injection of dextran or calcium pyrophosphate. Therefore during the development of an acute inflammation reaction at one site (i.e. the pleural cavity), cells present at a distant site (i.e. the peritoneal cavity) display an increased capacity to release prostanoids, even several days after resolution of the local inflammatory process. The important difference between these two studies is that the latter¹⁷ has measured prostanoid production in unstimulated macrophages, while the former¹⁶ has measured prostanoid production by macrophages in response to activation by zymosan, but this in no way entirely explains the different results. In a comparative study it was noted that basal prostacyclin generation was much lower in guinea-pig elicited peritoneal macrophages $(0.08 \pm 0.06 \text{ pmol } 106 \text{ cells}^{-1})$ than in rat elicited macrophages $(4.5 \pm 1.3 \text{ pmol } 106 \text{ cells}^{-1})^{18}$ It was also noted that guinea-pig resident peritoneal macrophages could generate prostacyclin in response to *N*-formyl-methionyl-phenyl-alanine (FMLP), platelet activating factor (PAF), zymosan and A23187, yet rat resident peritoneal macrophages produced prostacyclin only in response to zymosan and A23187. Again we see though that elicited peritoneal macrophages from rats and guinea-pigs show reduced prostacyclin generation, in response to activation, compared to resident cells.

Looking at the limited data on elicited macrophages from humans, we see that peritoneal macrophages from CAPD patients produce readily measurable levels of prostacyclin (approximately 0.2 ng ml⁻¹ 10⁶ cells⁻¹) and TXA₂ (approximately 0.6 ng ml⁻¹ 10⁶ cells⁻¹),⁶ although the spontaneous production of 6-oxo PGF_{1α}, PGE₂ and TXB₂ (the stable metabolite of TXA₂) falls during Peritonitis.⁷ Furthermore, even in the presence of exogenous substrate (arachidonic acid), human rheumatoid synovial fluid macrophages fail to release prostacyclin.⁵

There is therefore overwhelming evidence that elicited mouse and human macrophages lose their capacity to produce prostacyclin, and it is possible that this decreased prostacyclin production by macrophages upregulates IPreceptors (or conversely, prevents prostacyclin-mediated IP-receptor downregulation), thus making the macrophages more responsive to prostacyclin. Evidence for this idea can be found when looking at the adenylate cyclase response of resident and elicited macrophages to stimulation by prostacyclin and PGE_2 (Table 16). In addition, macrophages isolated from rats receiving a sublethal dose of lipopolysaccharide (LPS) show a significant increase in levels of IP1-receptor mRNA.¹⁹ This upregulation of IP-receptors and associated increased cyclic AMP response to cicaprost are thought to underlie the tolerance" of these rats to subsequent doses of LPS.

Table 16. The relative ability of prostacyclin and PGE_2 to stimulate cyclic AMP production by macrophages

-)							
	Mouse		Rat			**Human CAPD patients	
	<i>Res.</i> 20	Elic.20	Res.8	<i>Elic</i> . ^{3,8}	*Gran. 21	Res ^{7,8}	Elic.7
PGI ₂	+	+++		+/++	+	++/++	+++
PGE ₂	+	+++	+	++/++	++++++	+/+	+++
Basal			++	+		++++	

*Except for these granuloma (Gran.) cells, all other macrophages were obtained from the peritoneal cavity, as resident (Res.) or elicited (Elic.) cells. **See Section 1 for a description of resident and elicited cells in CAPD patients.

Of increasing interest in current inflammation research is the interaction between the activity of inducible nitric oxide synthase (iNOS) and COX-2. It now seems that agents which increase cyclic AMP production, for example, prostacyclin, iloprost and PGE₂ can all inhibit bacterial LPS-stimulated expression of iNOS and COX-2 mRNA, and reduce nitric oxide (NO) release and COX activity by the murine macrophage cell line J774.²² Although not tested using prostacyclin, it is clear that the suppression of LPS-induced iNOS induction by PGE₂ was functionally significant, in that it protected against the mild cytotoxicity of the NO generated in response to endotoxin. Pang & Hoult²² therefore suggest that macrophages possess a feedback regulatory suppression of COX-2 induction by a prostaglandin-driven cyclic AMP-mediated process. The authors also noted that the marked ability of phosphodiesterase (PDE) inhibitors to inhibit iNOS and COX-2 activity also suggests that such prostaglandin-mediated inhibition is normally held in check by active PDE enzymes in these cells.

2.2 IP-receptor binding studies

 $[^{3}H]$ -Prostacyclin binds to rat peritoneal macrophages in a saturable and reversible manner, with IC₅₀ values of approximately 6 nM in whole cells, and 400 nM in a membrane preparation in which the B_{max} value increased four-fold to 1200 fmol mg protein^{-1.23} Unfortunately, satisfactory interpretation of these experiments is hampered by the low amount of

specific binding compared to total binding (45 - 50% and the conversion of a biphasic to a monophasic binding curve on the use of a membrane preparation. Surprisingly, PGE₂ was more potent in inhibiting [³H]-prostacyclin binding and in stimulating cyclic AMP production in these elicited peritoneal macrophages; results which might suggest that we are looking at [³H]-prostacyclin binding to PGE₂ receptor sites rather than to IP-receptors, since by definition the prostanoid receptor is classified according to the activity of the most potent natural prostaniod.²⁴ The authors subsequently suggested that PGE₂ elevated cyclic AMP in rat cells through binding to a greater number of binding sites, i.e. receptors for both PGE₂ and prostacyclin, whereas prostacyclin can only act through the IP-receptor.⁸ However, this conclusion still does not explain the higher affinity of PGE₂ compared with prostacyclin for competition with [³H]-prostacyclin binding to rat peritoneal macrophages.

2.3 Adenylate cyclase

Using elicited rat peritoneal macrophages, it was shown that PGE₂ can inhibit the cyclic AMP-elevating effect of prostacyclin, but prostacyclin did not modify the responsiveness of macrophages to PGE₂.²⁵ Similar effects were seen using *rac*- 13,14-didehydrocarbacyclin (DDH-carbacyclin), which is a stable analogue of prostacyclin and therefore not liable to undergo rapid decomposition. With the benefit of hindsight, it is possible to conclude that the biphasic inhibitory effect of PGE₂ could be due to low concentrations of PGE₂ stimulating EP₃-receptors (which are inhibitory for adenylate cyclase), whereas the higher concentrations of PGE₂ could begin to activate the EP₂/EP₄-receptors which couple positively to adenylate cyclase; especially since the low inhibitory concentrations of PGE₂ failed to increase cyclic AMP levels alone. Bonta & Adolfs²⁵ speculated that endogenous PGE₂ rather than endogenous prostacyclin has the dominant role in regulating the levels of cyclic AMP are of importance in governing the activation of macrophages, then these and other results implicate endogenous PGE₂ as a major feedback regulator of immuno-inflammatory processes in which macrophages are involved. We shall see now that this original assessment of the relative importance of prostacyclin and PGE₂ is dependent on both the species studied and the activation state of the macrophages, and may require some modification.

Elicited human peritoneal macrophages can be obtained from CAPD patients who have the complication of peritonitis. It is clear that cyclic AMP levels in macrophages from normal CAPD patients decline sharply during the period of peritonitis, but are restored after recovery from infection, and

are closely matched by a fall in the spontaneous production of 6-oxo $PGF_{2\alpha'}$ PGE_2 and TXB_2 during peritonitis.⁷ The lower cyclic AMP content of inflammatory macrophages compared to resident macrophages (Table 16) is more marked when the membrane adenylate cyclase assay is performed in the presence of GTP, but whether or not the difference lies at the receptor or effector level is unclear.²⁶ Macrophages from the uncomplicated (normal) stage of CAPD were more responsive to DDH-carbacyclin than to PGE₂, but we should note that these resident human peritoneal macrophages may be more similar to elicited rather than resident rodent macrophages.⁸ However, during inflammation, the cells displayed a marked increase in sensitivity toward prostaglandins, especially toward PGE₂. Therefore for elicited human peritoneal macrophages show improved sensitivity to both PGE₂ and prostacyclin, it is the change in response to PGE₂ which is the most pronounced.

The evidence presented so far suggests a real difference in the response of macrophages dependent on the species studied. For example, a comparison of elicited rat peritoneal macrophages and human macrophages from CAPD patients indicates that rat and human cells are similar in their response to DDH-carbacyclin, but differ in their response to PGE₂ (Fig. 49). Thus DDH-carbacyclin stimulates cyclic AMP production with EC₅₀ values of 384 nM and 3 10 nM, and maximum stimulation in the presence of the PDE inhibitor IBMX of 785% and 720% control in rat and human macrophages respectively (nonlinear regression analysis of data from Bonta et al.⁸) In contrast, rat macrophages are much more responsive to the cyclic AMP-elevating effects of PGE₂ than are human macrophages: EC₅₀ values were 95 nM and 149 nM, and maximum stimulation was 1066% and 362% control in rat and human macrophages, respectively.

Figure 49. Effect of DDH-carbacyclin and PGE_2 on macrophages from the peritoneal cavity of humans and rats. Adapted from Bonta et al.,⁸ with permission.

Results so far suggest that in the rat, PGE₂ appears to be the more important mediator of macrophage function, with prostacyclin being more important in humans. These observations are further supported by the work of Elliott et al.⁵ who studied the adenylate cyclase response of human synovial fluid macrophages. When these cells were harvested from rheumatoid patients with an active synovitis, PGE₂ produced a doubling of cyclic AMP production, peaking at approximately 30 nM, whereas DDH-carbacyclin produced a four-fold increase in cyclic AMP production at approximately 300 nM. These experiments also indicated that a low basal level of cyclic AMP production was indicative of a good response to prostacyclin.

Prostacyclin or DDH-carbacyclin appear able to stimulate more cyclic AMP production in elicited macrophages when compared to resident cells (Table 16); presumably the infiltrating monocytes undergo a change following the inflammatory stimulus (e.g. thioglycollate or starch), resulting in macrophages which are more responsive to stimulation by prostaglandins than are resident cells. Morley²⁷ suggested that the hyposensitivity of macrophages towards PGE₂ could be part of the mechanism maintaining the inflammation response. Indeed, the loss of responsiveness to prostacyclin, and the marked gain in responsiveness to PGE₂ seen in granuloma macrophages is quite striking²¹ and distinguishes the granuloma cell response from that of elicited peritoneal cells. PGE2, but not DDHcarbacyclin, stimulated cyclic AMP production by guinea-pig alveolar macrophages, and the responses to both prostaglandins were significantly enhanced in antigen-challenged sensitised guinea-pigs.²⁸ In these latter cells, the response to DDH-carbacyclin was relatively minor compared to PGE₂, though comparable to the response to histamine. When these results are expressed relative to the altered basal level of cyclic AMP in the different macrophage samples, prostacyclin clearly stands out in its enhanced ability to stimulate adenylate cyclase and Beusenberg et al.²⁸ suggest that this may be due to improved receptor-effector coupling.

Furthermore, we have shown in Chapter 7 that for neutrophils there is often a poor correlation between the production of cyclic AMP and the final functional response to prostacyclin and PGE₂. Therefore, it may be premature to speculate on the relative importance of prostacyclin and PGE₂ in controlling macrophage function in any species until the efficiency of receptor-effector coupling has been considered. Bonta et al.²¹ concluded that macrophages, together with lymphocytes, are pivotal targets for both the anti-inflammatory and immuno-modulatory effects of E-prostaglandins; but the question remains as to why, when compared to elicited rat macrophages, do macrophages from granulomatous tissue lose their response to

prostacyclin, and why do elicited mouse and rat peritoneal macrophages gain in their response to prostacyclin (Table 16).

If we examine responses of macrophage-like cell lines, we see that prostacyclin is much less potent than PGE₂ in stimulating cyclic AMP production in the human monocytic cell line THP-1, with EC₃0 values of 40 μ M and 22 μ M, respectively.²⁹ Similarly, iloprost is less potent than PGE₂ in stimulating cyclic AMP production by the human monocytic cell line Mono Mac 6, with EC₅₀ values of 1.7 µM and 54 nM, respectively.³⁰ In addition, the nonprostanoid prostacyclin mimetics octimibate and BMY 42393 stimulate cyclic AMP accumulation by elicited mouse peritoneal macrophages; at 10 µM they produced increases of 80% and 140% respectively.³¹ It is noticeable that mouse macrophages are much less responsive to these nonprostanoid prostacyclin mimetics than are human monocytes, which is either due to species differences or the different effect of IP agonists on monocytes vs macrophages.³¹

3. FUNCTIONAL EFFECTS OF IP AGONISTS ON MONOCYTES/MACROPHAGES

3.1 Inflammation

Peritoneal macrophages are commonly used for experimental purposes, but one has to bear in mind that in order to obtain sufficient cells for experimental use, these cells are usually elicited by intraperitoneal injection of thioglycollate or starch. Therefore these cells have already undergone one cycle of chemotaxis and transendothelial cell migration in order to move into the peritoneal cavity; as such they are representative of macrophages present at the site of inflammation. An additional method for studying macrophages actively involved in an inflammatory reaction is to use the carrageenininduced granuloma model. This is an immune-related inflammatory model in which activated macrophages, but not lymphocytes, participate,3 and has proved crucial in recognising the different effects of PGE₂ and prostacyclin Thus, the adenylate cyclase response of rat on macrophage function. peritoneal macrophages to PGE₂ and prostacyclin is similar, while rat granuloma macrophages respond to PGE_2 but not to prostacyclin (Table 16). During the macrophage phase of granuloma tissue growth, local administration of prostacyclin did not result in any appreciable reduction in granuloma formation, but PGE₂ significantly inhibited the tissueproliferative macrophage-phase of granulomatous inflammation.²¹ It is not

clear why granuloma macrophages should become more sensitive to PGE_2 yet lose their sensitivity to prostacyclin, but it has been suggested that endogenous formation of PGE_2 modulates the ability of the cells to respond to exogenously added prostaglandin in terms of cyclic AMP levels.²⁰ Therefore, Bonta et al.²¹ concluded that the distinction between the responsiveness of granuloma-derived macrophages to PGE_2 and prostacyclin in vitro, is directly related to the difference between these two substances as inhibitors of the macrophage-phase of immune-related inflammatory granuloma in vivo.²¹

3.2 Chemotaxis

Transendothelial migration of monocytes occurs in response to an inflammatory stimulus and this process depends on the initial adhesion of monocytes to endothelial cells. The chemotactic peptide FMLP can stimulate the adhesion and migration of human peripheral blood monocytes to porcine aortic endothelial cells in culture.³² Prostacyclin had no effect on basal or FMLP-stimulated monocyte adhesion, and did not affect the monocyte cell surface expression of the adhesion molecules CD11/CD18, yet produced a concentration-dependent inhibition of FMLP-stimulated chemotaxis.³² Presumably therefore prostacyclin inhibits chemotaxis by affecting monocyte motility. Elevated monocytic cyclic AMP has been reported to inhibit chemotaxis,³³ and 1 μ M prostacyclin produced a small (2.3-fold) but significant increase in cyclic AMP in these human monocytes.³² However, prostacyclin also produced a significant increase (1.7-fold) in cyclic GMP production which is more generally associated with an increase in chemotaxis.

The ability of various prostaglandins to inhibit monocyte chemotaxis induced by monocyte chemoattractant protein-1 (MCP-1) has been studied using THP-1 cells.²⁹ Although PGE₁ and PGE₂ showed high potency (IC₅₀ values of 2.8 nM and 0.9 nM respectively), prostacyclin and isocarbacyclin were much less potent with IC₅₀ values of 30 μ M and 300 μ M, matching their low potency in stimulating adenylate cyclase.

Using a model of atherosclerosis in hyperlipidaemic hamsters, Kowala et al.³¹ found that both octimibate and BMY 42393 reduced the number of mononuclear cells on the luminal surface of the aortic arch. These nonprostanoid prostacyclin mimetics also inhibited FMLP-stimulated chemotaxis by human peripheral blood monocytes in vitro with IC₅₀ values of approximately 10 nM. Together these results suggest that by inhibiting mononuclear cell adhesion to the artery wall, and/or by inhibiting chemotaxis, then monocyte diapedesis could be reduced resulting in fewer intimal macrophage-foam cells accumulating in vivo.

3.3 Phagocytosis

In addition to the complications of interpreting data across species and tissue sources, we also have to consider the nature of the functional test being studied. For example, following preincubation with indomethacin to inhibit endogenous prostanoid production, resident rat peritoneal cells (80% macrophages) lose their ability to perform CR1 (opsonin-receptor)able dependent phagocytosis, vet remain fully to perform FcR (immunoglobulin-receptor)-dependent phagocytosis of bacteria.³⁴ It is likely therefore that the COX products which are formed by macrophages in response to CR1-opsonised bacteria, play an obligatory role in the phagocytosis of these bacteria.³⁴ Although the effect of prostacyclin was not directly measured in this study, we can see a marked difference between the effect of PGE₂ and PGE₁; both prostanoids potentiated CR1-mediated phagocytosis at concentrations from 100 µM to 10 nM, but only inhibited phagocytosis at concentrations above 100 nM. In contrast, PGE₂ had only a minor inhibitory effect on FcR-dependent phagocytosis at the highest concentration tested (10 μ M), but PGE₁ inhibited this response at concentrations from 1 to 100 nM. It is possible therefore that both PGE_2 and PGE_1 activate EP_3 -receptors (inhibitory for adenylate cyclase) at low concentrations, thus facilitating phagocytosis, and at higher concentrations EP_2/EP_4 -receptors (stimulatory for adenylate cyclase), activate thus inhibiting CR1-mediated phagocytosis. contrast, FcR-mediated In phagocytosis is not influenced by stimulation of EP2, EP3 or EP4-receptors, but activation of IP-receptors by PGE_1 (and high concentrations of PGE_2) leads to inhibition of FcR-mediated phagocytosis. The authors themselves concluded that endogenous PGE₂ and/or prostacyclin produced by rat peritoneal cells are involved in the complement activation-dependent bacterial phagocytosis by rat peritoneal cells but not in the antibodydependent phagocytosis.³⁴ It would be interesting now to re-evaluate these results using the currently available selective EP and IP-receptor ligands.

3.4 Cytokine production

Early studies clearly indicated that LPS-stimulated resident murine macrophages produced similar amounts of both prostacyclin and PGE_2 , and that exogenous prostacyclin and PGE_2 could suppress macrophage interleukin-1 (IL-1) production.³⁵ Furthermore, addition of NSAIDs facilitated LPS-stimulated IL-1 production by both peripheral blood monocytes and resident peritoneal macrophages, implicating endogenous prostacyclin and/or PGE₂ as normal regulators of macrophage cytokine production. Thus the data support the conclusion that the cytokine IL-1, as

with classical hormones, can regulate its own production through a selfinduced inhibitor, PGE₂ (and/or prostacyclin?). One complicating factor comes from the observation that aspirin-pretreatment of mice differentially affects the release of cytokines by LPS-elicited and thioglycollate-elicited macrophages, and alters their morphology.¹⁰ This study found that mouse thioglycollate-elicited macrophages release more prostacyclin than PGE₂ whereas the converse was true for LPS-elicited peritoneal macrophages. If, as proposed in Section 2.1, decreased macrophage prostacyclin production increases the responsiveness of macrophages to subsequent activation by prostacyclin, then care is needed to standardise these factors in functional assays in order to properly assess the relative significance of prostacyclin and PGE₂ in controlling macrophage functions. In addition, the ability of aspirin to influence transcellular biosynthesis¹² (see Section 2.1) and generate 15-epi-LXA₄ may need to be considered here. Iloprost inhibited LPS-stimulated tumour necrosis factor- α (TNF_{α})

lloprost inhibited LPS-stimulated tumour necrosis factor-α (TNF_α) production by elicited mouse peritoneal macrophages with high potency (IC₅₀ value approximately 300 μM) by preventing TNF_α mRNA transcription.³⁶ In a similar experiment, the nonprostanoid prostacyclin mimetics octimibate and BMY 42393 also inhibited LPS-stimulated TNF_α production by elicited mouse peritoneal macrophages, with IC50 values of approximately 1 μM.³¹ It is difficult though to make any sound judgements on the relative potency of the IP agonists in these two studies because of the obvious variability between experiments performed by different groups. In vivo studies indicated that endotoxin-induced mortality in galactosamine-sensitised mice could be significantly reduced by iloprost administration, which suggests that prostacyclin modulates endotoxin-induced and TNF_α-mediated inflammation in septic shock.³⁶

The tumouricidal activity of all three differentiation states of macrophages (resident, elicited and activated) can be enhanced by the antitumour drug 5,6-dimethyl-xanthenone-4-acetic acid ((5,6-MeXAA).³⁷ This enhanced macrophage tumouricidal activity can be completely inhibited by iloprost and PGE₂, with IC₅₀ values of approximately 1 nM and 1 μ M, respectively, by a mechanism thought to involve the inhibition of TNF α production. The growth of tumour cells themselves (e.g. mouse myelomonocytic leukaemia cells, WEHI-3B) can be influenced by prostaglandins, with DDH-carbacyclin and PGE₂ showing a synergistic cytostatic effect with IL-1, and with DDH-carbacyclin itself being cytostatic at concentrations >30 nM.³⁸

In human peripheral blood monocytes, cicaprost inhibited LPSstimulated TNF_{α} generation with an IC₅₀ value of 10 nM, being almost 10fold more potent than PGE₁ and PGE_{2.39} Iloprost (50 nM) abolished TNF_{α} secretion and inhibited IL-1 β secretion by 45% in LPS-stimulated THP-1 cells.⁴⁰ Iloprost also abolished the LPS-induced increase in TNF, mRNA and reduced that of IL-1 β mRNA, suggesting that iloprost exerts its effect, at least in part, at the level of gene transcription. The U937 cell line is an alternative source of monocyte-like cells, and as seen with THP-1 cells, both prostacyclin and PGE₂ inhibited IL-1 expression by endotoxin-stimulated U937 cells.⁴¹ Furthermore, this study showed that IL-1 production by peripheral blood monocytes was also inhibited by PGE₂; unfortunately prostacyclin was not tested. In addition though, cyclic AMP mimetics also inhibited IL-1 production by U937 cells, and the inhibitory effect of prostacyclin and PGE₂ was potentiated by IBMX. More detailed analysis of the site of action of cyclic AMP suggests that it acts posttranscriptionally.

We have also done some work with another human monocytic cell line known as Mono Mac 6. When stimulated with LPS, these cells secrete TNF, and this response can be inhibited by iloprost, PGE₂ and the adenosine A2-receptor agonist NECA with IC50 values of approximately 30 nM, 3 nM and 30 µM respectively,30 (Fig. 50). Octimibate failed to inhibit LPSstimulated TNF, production, but clearly antagonised the effects of iloprost and PGE₂, but not NECA. The effect of octimibate on LPS-stimulated TNF_{α} production was mirrored by its effect on cyclic AMP production by Mono Mac 6 cells. The ability of octimibate to antagonise iloprost in Mono Mac 6 cells presumably reflects the partial agonist nature of octimibate, and would suggest that IP-receptor-mediated inhibition of LPS-stimulated TNFa production is a poorly coupled system. As anticipated, one would not expect octimibate to inhibit the activity of a nonprostanoid receptor agonist such as NECA. Similarly, there is no other evidence that octimibate interacts with the EP₂/EP₄-receptor system, therefore its ability to antagonise PGE₂ is somewhat surprising.

Figure 50. Effect of octimibate on LPS-stimulated secretion of TNF_{α} from the human monocytic cell line, Mono Mac 6. Reprinted from Wise et al.,³⁰ with permission.

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a multifunctional cytokine which has been suggested to contribute to the pathogenesis of various inflammatory disorders by raising the functional responsiveness of effector cells, particularly neutrophils. Incubation of human peripheral blood monocytes with LPS produces more than a 10-fold increase in GM-CSF release which was significantly inhibited by cicaprost with an IC₅₀ value of approximately 20 nM, and which appears to result from inhibition of GM-CSF mRNA expression.⁴² Therefore, IP agonists may have therapeutic application in septic shock and other forms of acute lung injury in which neutrophils are believed to play a central role. All the data presented above points to a role of prostacyclin and/or PGE₂ in the autoregulation of monocyte expression of cytokine activity that may then modulate inflammatory and immunologic reactions.

3.5 Tissue factor procoagulant activity

Tissue factor (thromboplastin, factor III) is a membrane-bound glycoprotein that plays a critical role in initiating blood coagulation, and can be synthesised by monocytes and cells of the vascular endothelium in response to inflammatory stimuli and injury. Exposure to LPS leads to transcription of the tissue factor gene^{43,44} and expression of procoagulant activity⁴⁵⁻⁴⁷ by both cell types. In addition, endothelial tissue factor expression is also stimulated by exposure to the cytokines IL-1 β and TNF_{α},⁴⁸⁻⁵¹ both of which are secreted by activated monocytes.^{52,53} Crutchley et al.⁴⁰ have shown that the prostacyclin analogues iloprost,

Crutchley et al.⁴⁰ have shown that the prostacyclin analogues iloprost, carbacyclin and ciprostene (10 nM to 1 μ M), had no direct effect on human umbilical vein endothelial tissue factor expression in response to LPS, IL-1 β or TNF α , but indirectly decreased expression due to the inhibition of monocyte cytokine secretion. As shown in Section 3.4 above, IP agonists can inhibit monocyte cytokine production. Thus pretreatment of THP-1 cells with 50 nM iloprost before the addition of LPS led to a marked inhibition of the ability of the THP-1 cell-conditioned medium to induce endothelial tissue factor expression.⁴⁰ Although TNF α -stimulated endothelial cells showed a slight increase in prostacyclin production, incubation with indomethacin had no effect on tissue factor expression, indicating that endogenous prostacyclin does not modulate tissue factor expression by endothelial cells.⁴⁰

Iloprost and other IP agonists can inhibit endotoxin-stimulated procoagulant activity in both human peripheral blood mononuclear cells (monocytes plus lymphocytes; iloprost IC_{50} value of 20 nM⁵⁴), and in THP-1 cells (Table 17).⁵⁵ When experiments are performed in whole blood, monocyte procoagulant activity is amplified by T lymphocyte cooperation.

However, because iloprost can directly inhibit endotoxin-induced activity in THP-1 cells, these results suggest that iloprost acts primarily on the monocyte and not at the level of lymphocyte cooperation.⁵⁴ The order of potency of IP agonists to inhibit endotoxin-induced procoagulant activity in THP-1 cells (cicaprost = iloprost > PGE_1 > carbacyclin = ciprostene) strongly suggests that this effect is mediated by activation of the IP₁receptor, and as such might be expected to involve the production of cyclic AMP. Iloprost produced a concentration-dependent increase in THP-1 cell cyclic AMP production, with a 27-fold increase at 5 nM.55 Iloprost therefore appears to increase cyclic AMP levels in THP-I cells over the same concentration range at which it inhibited tissue factor expression. The PDE inhibitor IBMX enhanced both iloprost-stimulated cyclic AMP production, and potentiated the inhibitory effects of iloprost on THP-1 cell tissue factor The effects of iloprost could be mimiked by forskolin and expression. dibutyryl cyclic AMP, but not by dibutyryl cyclic GMP or sodium butyrate; results which strongly suggest that IP agonists inhibit monocyte tissue factor expression by stimulating adenylate cyclase. Because the combination of iloprost and IBMX was more potent in inhibiting tissue factor expression than would be predicted from their effects on cyclic AMP, it was suggested that possible additional mechanisms should be considered.55

Procoagulant-inducer	IC_{50} values (nM)					
	Iloprost	Cicaprost	Carbacyclin	Ciprostene		
IL-1β (2 U ml-1)	5	nd	500	500		
$\text{TNF}_{\alpha}(5 \text{ ng ml-1})$	5	nd	500	500		
Endotoxin (100 ng ml-1)	5	5	500	500		

Table 17. Inhibition of induced monocyte (THP-1 cell) procoagulant activity by IP agonists in vitro

Data from Crutchley et al.⁵⁵ nd = not determined.

Increased tissue factor expression by monocytes may contribute to the disseminated intravascular coagulation associated with disorders such as allograft rejection, bacterial infection, carcinoma, and immune disease (for reviews see Edwards & Rockles,⁵⁶ and Lyberg⁵⁷). It has also been suggested that increased monocyte tissue factor expression may contribute to the postoperative thrombotic state. Thus IP agonists may have clinical potential for the treatment of thrombotic disorders in which elevated monocyte procoagulant activity plays a role; especially since iloprost can significantly blunt further development of procoagulant activity in cells that are already expressing elevated levels of activity.⁵⁴

3.6 Atherosclerosis

Atherosclerosis is a complex disorder characterised by thickening of the arterial intima, and there is evidence that prostacyclin may function as an important regulatory factor in aortic cholesteryl ester metabolism, with an inverse correlation between prostacyclin and sterol accumulation.⁵⁸ Vascular smooth muscle cells are an important element of an atherosclerotic lesion, and their role in atherosclerosis has been discussed in Chapter 6. Here we will concentrate on the relationship betweem macrophages and prostacyclin in atherosclerosis. For example, as a result of the accumulation of low density lipoproteins (LDLs) and liposomes in arteries, we see monocyte adhesion to the endothelium and migration into the subendothelial space.⁵⁹⁻⁶² These monocyte-derived macrophages collect modified arterial LDL via the scavenger receptor, are transformed into foam cells,⁶³ and appear to be modulated by prostaglandins.

When stimulated by acetyl-LDL, murine peritoneal macrophages increase their levels of prostacyclin and TXA₂ and decrease PGE₂, but these changes are minor compared to the increased eicosanoid production in response to zymosan or A23187.⁶⁴ Furthermore, the major [³H]-arachidonic acid metabolite released in response to acetyl-LDL were LOX products, whereas COX products were dominant in zymosan or A23187-stimulated macrophages. In contrast, another study found that activated cholesterol-rich (i.e. acetyl-LDL treated) mouse peritoneal macrophages released less prostacyclin and PGE₂ than control cells, and that LOX products predominated in PMA, A23187 or zymosan-stimulated macrophages.⁶⁵ Mathur et al.⁶⁵ proposed that the decreased production of prostacyclin by cholesterol-rich macrophages would be unable to counterbalance the increased TXA₂ production by cholesterol-rich platelets, resulting in an increased propensity for vessel spasm and thrombosis. To confuse the picture further, we should note that another study found that oxidised LDL doubled the production of prostacyclin and trebled PGE₂ in mouse peritoneal macrophages, but acetyl-LDL had no effect on PGE₂ (prostacyclin was not measured in this part of the experiment).⁶⁶ Overall we see that with regard to the increase in prostaglandins, acetyl-LDL stimulated macrophages behave similarly to zymosan-activated macrophages although the former have a slower time course.

In mouse peritoneal macrophages, octimibate (5 μ M) significantly decreased the uptake of acetyl-LDL by the scavenger receptor.³¹ Therefore, when tested in vivo, the IP agonists octimibate and BMY 42393 may have reduced the size of foam cells by inhibiting the uptake of oxidised LDL.³¹ Although octimibate was originally identified as an inhibitor of acyl coenzyme A cholesterol acyltransferase (ACAT), this property cannot

entirely account for the effectiveness of these nonprostanoid prostacyclin mimetics in models related to atherosclerosis. It has therefore been proposed that because the IP agonists octimibate and BMY 42393 suppressed monocyte-macrophage atherogenic activity and cytokine production, they would be useful in inhibiting the development of early atherosclerosis.³¹

4. LYMPHOCYTES

Although prostaglandins may be important in various disease states, their role in the immune system of normal individuals has been suggested as relatively minor because the immune responses of humans and animals given longterm and sometimes high-dose COX inhibitors appears to be quite normal.⁶⁷ By the early 1980's, it became clear that in addition to the well known role of prostaglandins as mediators of inflammation, they had a less well recognised role as negative regulators of humoral and cellular immunity (for reviews see Goodwin & Webb,⁶⁷ and Morley²⁷) By the early 1990's, it was apparent that PGE₂ was the important prostanoid involved with cells of the immune system; showing both stimulatory and inhibitory properties. Therefore, PGE₂ is now considered as a regulatory modulator of immunity (for reviews see Phipps et al.,⁶⁸ Plescia & Rack,⁶⁹ and Ninnemann⁷⁰).

As a consequence of the cloning of the IP1-receptor in 1994, it became apparent that IP₁-receptors may have some role to play in lymphocytes with the discovery of IP₁-receptor mRNA in the mouse⁷¹ and rat spleen and thymus;⁷² (see Chapter 4, Tables 6 and 7). Surprisingly, no IP_1 -receptor mRNA was detected in human thymus⁷³ although IP1-receptor cDNA clones have been isolated from this source.⁷⁴ It has therefore been suggested that the differences between IP₁-receptor mRNA levels in human and mouse spleen and thymus reflect different stages of maturation of thymocytes in different lymphatic organs of rodent and human specimens.⁷⁵ Further experiments using in situ hybridisation techniques demonstrated that hybridisation signals were visible only in the medulla and not the cortex of rat thymus, and were predominantly in thymocytes and not stromal cells.⁷⁶ The IP₁-receptor mRNA is therefore exclusively present in the thymic medulla where CD4+8- and CD4-8+ thymocytes are harboured. Since prostacvclin is produced by thymic stromal cells and IP1-receptor mRNA is localised to thymocytes and is distributed in lymphocytes in the white pulp of the spleen,76 then we should look further now for the functional significance of these unexpected observations.

4.1 **Prostacyclin production**

Early conflicting results suggested that normal lymphocytes alone do not produce prostaglandins, and any apparently positive results were due to contamination by monocytes or platelets.⁷⁷ It seems that lymphocytes can utilise PGH₂ from other cell sources and transform it into prostacyclin using their own prostacyclin synthase,¹¹ and this transcellular metabolism may complicate the picture. For example, human lymphocytes labelled with [¹⁴C]-arachidonic acid failed to form 6-oxo PGF_{1α} when stimulated with phytohemagglutinin (PHA) or A23187. However, when incubated with activated platelets, or with PGH₂, lymphocytes produced 6-oxo PGF_{1α} which presumably indicates that prostacyclin was responsible for the anti-aggregatory activity of lymphocytes when co-incubated with platelets.¹¹

The human leukaemic T cell line Jurkat produces about 10-times as much prostacyclin as PGE_2 under basal conditions, but cell activation by exposure to PHA or concanavalin A decreased the total release of [³H]-prostaglandins from [³H] -arachidonic acid -labelled cells.⁷⁷ Therefore, Aussel et al.⁷⁷ suggested that endogenous prostaglandin synthesis by lymphocytes might serve to keep them in a quiescent state, while a reduction in prostaglandin synthesis is required as part of the activation sequence. You will note that we could draw a similar conclusion with regard to macrophages, as cell activation was often accompanied by decreased prostacyclin and PGE_2 synthesis (see Section 2.1 above).

4.2 Adenylate cyclase activity

As seen for activated (elicited) macrophages (Table 16), cyclic AMP production in response to PGE_2 also increases in activated human T lymphocytes when compared to resting cells,⁷⁸ but there is no equivalent data for prostacyclin or other IP agonists. Certainly in the T-cell line Jurkat, resting cells are at least 10,000-fold more sensitive to PGE_2 than to carbacyclin,⁷⁹ thus in the absence of a PDE inhibitor, carbacyclin showed little activation of adenylate cyclase at concentrations < 100 μ M.

5. FUNCTIONAL EFFECTS OF IP AGONISTS ON LYMPHOCYTES

5.1 Activation and differentiation

PGE₂ can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines (e.g., IL-4, IL-10), while inhibiting production of T-helper type 1 cytokines (e.g., interferon-y (IFNy), IL-12). In an extensive study to determine the EP-receptor subtypes involved in these processes, it was shown that 10 µM cicaprost and iloprost failed to mimic the ability of PGE₂ to inhibit class II MHC hyperexpression by mouse B lymphocytes.⁸⁰ Cicaprost and iloprost also failed to prevent B lymphocyte enlargement and proliferation when stimulated with LPS and IL-4, and did not enhance IgE production.⁸⁰ Because the effect of PGE_2 appeared to be mediated by EP_2 and/or EP4-receptors, and since the effect seemed to be cyclic AMPdependent, then we might conclude that mouse B lymphocytes lack functional IP-receptors. In contrast, there is one study supporting an inhibitory role for IP-receptors in mouse T lymphocytes. Thus, 100 nM iloprost inhibited the secretion of IL-2, IL-4 and IFNy from mouse T lymphocytes primed with the contact-sensitising agent picryl chloride.⁸¹

Again in a study primarily aimed at defining the EP-receptor subtype mediating the activity of PGE_2 , we are able to find further negative data for IP agonists and lymphocytes. Thus, 1 μ M prostacyclin failed to increase the cytosolic level and secretion of matrix metalloproteinase (MMP)-9 by the human leukaemic T cell line HSB.2;⁸² MMPs degrade diverse components of the extracellular matrix and therefore aid the migration of T-cells out of blood vessels.

In contrast to these negative studies, the antimetastatic effect of iloprost appears to rely on its immunomodulatory action in addition to its antiplatelet activity.⁸³ In their mouse model of experimental metastasis, Costantini et al.⁸³ showed that iloprost had a far more potent and persistent antimetastatic activity compared with prostacyclin, lasting up to 6 h after tumour cell challenge. Iloprost treatment increased natural killer (NK) lytic activity of spleen cells and T lymphocyte mediated cytotoxicity ex vivo, but had no major modulation of the humoral antibody (B lymphocyte) responses. It is important to note though that the immunomodulating effects of iloprost were highly dependent on the drug concentration and dosing routes used. In addition, there is further data which suggests a role for IP-receptors in T lymphocytes. For example, the benzindene prostacyclin analogue 15 AU8 1 inhibits human mixed lymphocyte culture responses in a concentration-

dependent manner; thus inhibiting both PHA- and anti-CD3-activated human lymphocytes with IC_{50} values of approximately 300 nM and 14 nM, respectively.⁸⁴

5.2 Organ rejection

Prostacyclin, PGE_2 and PGD_2 are recognised as antirejection metabolites.^{1,85} They share an ability to increase cyclic AMP with resulting stabilisation of inflammatory cells, vasodilation (thus maintaining blood flow), and for PGE_2 additional suppression of immunological recognition and rejection of the transplanted tissue. In contrast, TXA_2 , which is vasoconstrictor and can aggregate platelets, will reduce graft survival.

The human foetus exists in an environment rich in prostaglandins.⁸⁶ The concentration of 6-oxo PGF_{1 α} in foetal plasma at midterm is much higher than in the maternal peripheral plasma, suggesting an important role for this antirejection metabolite during early pregnancy.⁸⁷ MacKenzie et al.⁸⁷ suggested that prostacyclin maintains the ductus arteriosus and the tone of the placental and umbilical vasculature. However, Narumiya's IP₁-receptor knockout mice seem to have no problems in bringing their pups to full term,⁸⁸ suggesting that there is redundancy in the system and the role played by prostacyclin can be taken by another player.

Prostacyclin can prolong allograft survival, possibly via an antiplatelet effect and/or vascular effect. In acute kidney rejection, cortical prostacyclin formation is significantly enhanced, suggesting that this might be a self-protecting mechanism; unfortunately this process is subsequently overwhelmed by irreversible rejection.⁸⁹ The accumulation of platelets in transplanted organs undergoing acute rejection is therefore critical, and this problem may be countered by prostacyclin. In addition, prostacyclin may reduce the extent of organ rejection by an immunosuppressive effect; OP-41483 (15-cyclopentylω-pentanor carbacyclin) alone provides some protection against canine renal allograft rejection,⁹⁰ and as shown in Section 5.1 above, the prostacyclin analogue 15 AU81 is a potent inhibitor of human T lymphocyte activation and can potentiate the immunosuppressive activity of cyclosporine and prolong the survival of rabbit renal allografts by an as yet unclear mechanism.⁸⁴ Iloprost also synergises with cyclosporine, prolonging the survival of rat cardiac allografts.⁹¹ This synergistic effect of IP agonists on cyclosporine could be used to broaden its therapeutic window by potentiating immunosuppression and mitigating nephrotoxic effects.

6. **DISCUSSION**

Elicited macrophages clearly lose their capacity to produce prostacyclin, and this in turn may render them more susceptible to regulation by exogenous IP agonists. It is possible that the decreased production of prostacyclin by macrophages upregulates IP-receptors (or conversely, prevents prostacyclin-mediated IP-receptor downregulation), thus making the macrophages more responsive to subsequent prostacyclin challenge. It is time to recognise that PGE₂ is not the only important prostaglandin involved in inflammatory conditions. Although much of the early work in this field of research noted interesting similarities and dissimilarities between PGE₂ and prostacyclin, few of these observations on macrophage function have been pursued. Limited data on human THP-I cells suggests that the IP-receptors on macrophages are similar to the platelet IP₁-receptor; perhaps now that we have a better selection of IP agonists to work with, it is time to reevaluate to role of IP-receptors in regulating macrophage function in particular. For example, it has been suggested that the general cytoprotective action of IP agonists could probably be explained in part as a consequence of IP agonist-induced macrophage modulation.³⁶ and we have seen here that IP agonists can inhibit many macrophage functions such as chemotaxis, phagocytosis and cytokine production. As such we might expect IP agonists to be useful in the treatment of septic shock and coagulation disorders, and in the prevention of atherosclerosis. The studies reported here highlight the need to understand the distinction between resident and elicited macrophages, since these phenotypes clearly influence the ability of macrophages to respond to prostacyclin.

Of the limited data examining lymphocyte responses to IP agonists, we could tentatively conclude that IP-receptors are unimportant for mouse B lymphocytes. In contrast, mouse T lymphocytes and human T lymphocytes, but not human T lymphocyte cell lines, are responsive to IP agonists. Again, with the better selection of IP and EP agonists currently available, it is time to more thoroughly characterise the role of lymphocyte IP-receptors, and to monitor their responsiveness during different stages of lymphocyte activation. The significance of the discovery of IP₁-receptor cDNA in rat thymocytes is yet to be appreciated but may be relevant to the ability of IP agonists to potentiate the immunosuppressive effect of cyclosporine. Because of their multifunctional properties, IP agonists may ultimately find a place in facilitating organ transplants.

REFERENCES

- 1, Ninnemann JL. "Monocytes and macrophages." In *Prostaglandins, Leukotrienes, and The Immune Response,* Cambridge: Cambridge University Press, 1988;34-52.
- 2. Dougherty GJ, McBride WH. "Monocyte differentiation *in vitro*." In *Human Monocytes,* Zembala M, Asherson GL, eds. London: Academic Press, 1989;50-58.
- Bonta IL, Parnham MJ. Macrophages as targets of inhibitory effects of E-type prostaglandins in immune-related inflammation. Agents Actions 1981;11594-597.
- 4. Wenzel SE, Trudeau JB, Riches DW et al. Peritoneal lavage fluid alters patterns of eicosanoid production in murine bone marrow-derived and peritoneal macrophages: dependency on inflammatory state of the peritoneum. Inflammation 1993; 17:743-756.
- Elliott GR, Swaak A, Bonta IL. The adenylate cyclase of rheumatoid synovial fluid macrophages is more sensitive for dl-5E, 19,14-di dehydro-carbo-prostacyclin, a stable prostacyclin analogue, than for prostaglandin E₂. Prostaglandins Leukot Essent Fatty Acids 1988;33:105-110.
- Foegh M, Maddox YT, Winchester J et al. Prostacyclin and thromboxane release from human peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1983;12:45-49.
- Bonta IL, Adolfs MJP, Fieren MWJA. Infectious-inflammatory environment alters prostaglandin regulation of cyclic AMP levels in human peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1985; 15:373-375.
- Bonta IL, Adolfs MJP, Fieren MWJA. Cyclic AMP levels and their regulation by prostaglandins in peritoneal macrophages of rats and humans. Int J Immunopharmac 1984;6:547-555.
- 9. Pawlowski NA. "Arachidonic acid metabolism by human monocytes." In *Human Monocytes*, Zembala M, Asherson GL, eds. London: Academic Press, 1989;273-289.
- 10. Marcinkiewicz J. In vitro cytokine release by activated murine peritoneal macrophages: role of prostaglandins in the differential regulation of tumor necrosis factor alpha, interleukin 1, and interleukin 6. Cytokine 1991;3:327-332.
- 11. Wu KK, Papp AC, Manner CE et al. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. J Clin Invest 1987;79:1601-1606.
- Chiang N, Takano T, Clish CB et al. Aspirin-triggered 15-epi-lipoxin A₄ (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA₄ ELISA. J Pharmacol Exp Ther 1998;287:779-790.
- 13. Humes JL, Bonney RJ, Pelus L et al. Macrophages synthesise and release prostaglandins in response to inflammatory stimuli. Nature 1977;269:149-151.
- 14. Tripp CS, Leahy KM, Needleman P. Thromboxane synthase is preferentially conserved in activated mouse peritoneal macrophages. J Clin Invest 1985;76:898-901.
- Rouzer CA, Scott WA, Hamill AL et al. Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages. J Exp Med 1982;155:720-733.

- Fels AOS, Pawlowski NA, Abraham EL et al. Compartmentalized regulation of macrophage arachidonic acid metabolism. J Exp Med 1986; 163:752-757.
- 17. Tissot M, Strzalko S, Thuret A et al. Prostanoid release by macrophages at a distance from an inflammatory site. Br J Exp Pathol 1989;70:525-531.
- Lim WH, Stewart AG. Macrophage activation reduces mobilization of arachidonic acid by guinea-pig and rat peritoneal macrophages *in vitro*. Agents Actions 1990;31:290-297.
- Makhlouf MA, Fernando LP, Gettys TW et al. Increased prostacyclin and PGE₂ stimulated cAMP production by macrophages from endotoxin-tolerant rats. Am J Physiol 1998;274:C1238-C1244.
- Bonney RJ, Burger S, Davies P et al. Prostaglandin E₂ and prostacyclin elevate cyclic AMP levels in elicited populations of mouse peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1980;8:1691-1693.
- Bonta IL, Adolfs MJP, Parnham MJ. Distinction between responsiveness of macrophages to cyclic-AMP elevation by prostaglandin E₂ and prostacyclin. Scand J Rheumatol 1981;(Suppl40):58-61.
- 22. Pang L, Hoult JRS. Repression of inducible nitric oxide synthase and cyclooxygenase-2 by prostaglandin E₂ and other cyclic AMP stimulants in J774 macrophages. Biochem Pharmacol 1997;53:493-500.
- 23. Opmeer FA, Adolfs MJP, Bonta IL. Competition for adenyl cyclase coupled $({}^{3}H)$ prostacyclin binding sites with prostaglandin E_{2} in rat peritoneal macrophages. Prostaglandins 1983;26:467-476.
- Coleman RA, Kennedy I, Humphrey PPA et al. "Prostanoids and their receptors." In Membranes and their Receptors Vol. 3, Hansch C, Sammes PG, Taylor JB, eds. Oxford: Pergamon Press, 1990;643-676.
- Bonta IL, Adolfs MJP. Interactions between prostaglandin E₂ and prostacyclin in regulating levels of cyclic AMP in elicited populations of peritoneal macrophages. Adv Prostaglandin Thromboxane Leukot Res 1983;12:13-17.
- Houdijk APJ, Van Leeuwen PAM, Adolfs MJP et al. GTP-related difference in cyclic AMP production between resident and inflammatory human peritoneal macrophages. Int J Tissue React 1991;13:279-285.
- 27. Morley J. Prostaglandins and lymphokines in arthritis. Prostaglandins 1974;8:315-326.
- Beusenberg FD, Adolfs MJP, Van Schaik A et al. Antigen challenge modifies the cyclic AMP response of inflammatory mediators and β-adrenergic drugs in alveolar macrophages. Eur J Pharmacol 1989;174:33-41.
- Tanaka H, Minoshima T, Endo N. The effect of a synthetic 7-thiaprostaglandin E₁ derivative, TEI-6122, on monocyte chemoattractant protein-1 induced chemotaxis in THP-1 cells. Br J Pharmacol 1995;116:2298-2302.
- 30. Wise H, Bridge DA, Hallam TJ. The activity of octimibate at prostanoid receptors on human monocytes. Br J Pharmacol 1991;104:167P.
- 31. Kowala MC, Mazzucco CE, Hartl KS et al. Prostacyclin agonists reduce early atherosclerosis in hyperlipidemic hamsters. Arterioscler Thromb 1993;13:435-444.

- 32. Bath PMW, Hassall DG, Gladwin A-M et al. Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991;11:254-260.
- Gallin JI, Sandler JA, Clyman RI et al. Agents that increase cyclic AMP inhibit accumulation of cGMP and depress human monocyte locomotion. J Immunol 1978;120:492-496.
- 34. Coquette A, Boeynaems J-M, Vray B. Eicosanoids modulate CR1- and Fc-dependent bacterial phagocytosis. Eur J Pharmacol 1992;226:1-4.
- 35. Kunkel SL, Chensue SW, Phan SH. Prostaglandins as endogenous mediators of interleukin 1 production. J Immunol 1986;136:186-192.
- Grundmann H-J, Hähnle U, Hegenscheid B et al. Inhibition of endotoxin-induced macrophage tumor necrosis factor expression by a prostacyclin analogue and its beneficial effect in experimental lipopolysaccharide intoxication. J Infect Dis 1992;165:501-505.
- 37. Ching LM, Joseph WR, Baguley BC. Stimulation of macrophage tumouricidal activity by 5,6-dimethyl-xanthenone-4-acetic acid, a potent analogue of the antitumour agent flavone-8-acetic acid. Biochem Pharmacol 1992;44:192-195.
- Ben-Efraim S, Tak C, Bonta IL. Macrophage cytokines render WEHI-3B tumor cells susceptible to cytostasis by prostaglandins. Prostaglandins Leukot Essent Fatty Acids 1990;40:163-167.
- Meja KK, Barnes PJ, Giembycz MA. Characterization of the prostanoid receptor(s) on human blood monocytes at which prostaglandin E₂ inhibits lipopolysaccharide-induced tumour necrosis factor- α generation. Br J Pharmacol 1997;122: 149-157.
- Crutchley DJ, Conanan LB, Toledo AW et al. Effects of prostacyclin analogues on human endothelial cell tissue factor expression. Arterioscler Thromb 1993;13:1082-1089.
- Knudsen PJ, Dinarello CA, Strom TB. Prostaglandins posttranscriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. J Immunol 1986;137:3189-3194.
- 42. Luttmann W, Herzog V, Virchow J-CJr et al. Prostacyclin modulates granulocyte/macrophage colony-stimulating factor release by human blood mononuclear cells. Pulm Pharmacol 1996;9:43-48.
- 43. Gregory SA, Morrissey JH, Edgington TS. Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Mol Cell Biol 1989;9:2752-2755.
- 44. Crossman DC, Carr DP, Tuddenham EGD et al. The regulation of tissue factor mRNA in human endothelial cells in response to endotoxin or phorbol ester. J Biol Chem 1990;265:9782-9787.
- 45. Rivers RPA, Hathaway WE, Weston WL. The endotoxin-induced coagulant activity of human monocytes. Br J Haematol 1975;30:311-316.
- 46. Lyberg T, Galdal KS, Evensen SA et al. Cellular cooperation in endothelial cell thromboplastin synthesis. Br J Haematol 1983;53:85-95.

- 47. Colucci M, Balconi G, Lorenzet R et al. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 1983;71:1893-1896.
- Bevilacqua MP, Pober JS, Majeau GR et al. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984;160:618-623.
- Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 1986;163:740-745.
- Bevilacqua MP, Pober JS, Majeau GR et al. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: Characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 1986;83:4533-4537.
- Scarpati EM, Sadler JE. Regulation of endothelial cell coagulant properties. J Biol Chem 1989;264:20705-20713.
- 52. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991;77:1627-1652.
- 53. Jäättelä M. Biologic activities and mechanisms of action of tumor necrosis factor- α /cachectin. Lab Invest 1991;64:724-742.
- Crutchley DJ, Hirsh MJ. The stable prostacyclin analog, iloprost, and prostaglandin E₁ inhibit monocyte procoagulant activity in vitro. Blood 1991;78:382-386.
- Crutchley DJ, Solomon DE, Conanan LB. Prostacyclin analogues inhibit tissue factor expression in the human monocytic cell line THP-1 via a cyclic AMP-dependent mechansim. Arterioscler Thromb 1992;12:664-670.
- 56. Edwards RL, Rickles FR. Macrophage procoagulants. Prog Hemost Thromb 1984;7:183-209.
- 57. Lyberg T. Clinical significance of increased thromboplastin activity on the monocyte surface. Haemostasis 1984;14:430-439.
- Hajjar DP, Weksler BB. Modulation of arterial cholesteryl ester metabolism by prostacyclin and prostaglandin E₂. Adv Prostaglandin Thromboxane Leukot Res 1985;15:249-252.
- 59. DuffGL, McMillan GC, Ritchie AC. The morphology of early atherosclerotic lesions of the aorta demonstrated by the surface technique in rabbits fed cholesterol together with a description of the anatomy of the intima of the rabbit's aorta and the "spontaneous" lesions which occur in it. Am J Pathol 1957;33:845-873.
- 60. Gerrity RG, Naito HK, Richardson M et al. Dietary induced atherogenesis in swine: Morphology of the intima in prelesion stages. Am J Pathol 1979;95:775-792.
- Joris I, Zand T, Nunnari JJ et al. Studies on the pathogenesis of atherosclerosis: I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 1983;113:341-358.
- 62. Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate: I. Changes that lead to fatty streak formation. Arteriosclerosis 1984;4:323-340.
- Steinberg D, Parthasarathy S, Carew TE et al. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915-924.

- 64. Diez E, Fernandez B, Martin C et al. Acetylated low density lipoproteins promote the release and metabolism of arachidonic acid by murine macrophages. Biochem Biophys Res Commun 1989;161:461-467.
- 65. Mathur SN, Albright E, Field FJ. Decreased prostaglandin production by cholesterolrich macrophages. J Lipid Res 1989;30:1385-1395.
- 66. Yokode M, Kita T, Kikawa Y et al. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. J Clin Invest 1988;81:720-729.
- 67. Goodwin JS, Webb DR. Regulation of the immune response by prostaglandins. Clin Immunol Immunopathol 1980;15:106-122.
- 68. Phipps R, Stein SH, Roper RL. A new view of prostaglandin E regulation of the immune response. Immunol Today 1991;12:349-351.
- Plescia OJ, Racis S. Prostaglandins as physiological immunoregulators. Prog Allergy 1988;44:153-171.
- 70. Ninnemann JL. "Lymphocyte response." In *Prostaglandins, Leukotrienes, and The Immune Response,* Cambridge: Cambridge University Press, 1988;53-96.
- 71. Sasaki Y, Usui T, Tanaka I et al. Cloning and expression of a cDNA for rat prostacyclin receptor. Biochim Biophys Acta 1994;1224:601-605.
- Nakagawa O, Tanaka I, Usui T et al. Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation 1994;90:1643-1647.
- 73. Boie Y, Rushmore TH, Darmon-Goodwin A et al. Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 1994;269:12173-12178.
- 74. Hirata M, Ushikubi F, Narumiya S. Prostaglandin I receptor and prostaglandin D receptor. J Lipid Mediators Cell Signal 1995; 12:393-404.
- Oida H, Namba T, Sugimoto Y et al. *In situ* hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995;116:2828-2837.
- Aussel C, Mary D, Fehlmann M. Prostaglandin synthesis in human T cells: its partial inhibition by lectins and anti-CD3 antibodies as a possible step in T cell activation, J Immunol 1987;138:3094-3099.
- Holter W, Spiegel AM, Howard BH et al. Expression of GTP-binding proteins and prostaglandin E₂ receptors during human T cell activation. Cell Immunol 1991;134:287-295.
- 78. De Vries GW, Guarino P, McLaughlin A et al. An EP receptor with a novel pharmacological profile in the T-cell line Jurkat. Br J Pharmacol 1995;115:1231-1234.
- Fedyk ER, Phipps RP. Prostaglandin E₂ receptors of the EP₂ and EP₄ subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proc Natl Acad Sci USA 1996;93:10978-10983.
- Marcinkiewicz J, Chain BM. Differential cytokine regulation by eicosanoids in T cells primed by contact sensitization with TNP. Cell Immunol 1993; 149:303-314.
- 81. Zeng L, An S , Goetzl EJ. Regulation of expression of matrix metalloproteinase-9 in early human T cells of the HSB.2 cultured line by the EP₃ subtype of prostaglandin E_2 receptor. J Biol Chem 1996;271:27744-27750.
- Costantini V, Fuschiotti P, Giampietri A et al. Effects of a stable prostacyclin analogue on platelet activity and on host immunocompetence in mice. Prostaglandins 1990;39:581-599.
- Dumble LJ, Gibbons S, Tejpal N et al. 15 AU81, a prostacyclin analog, potentiates immunosuppression and mitigates renal injury due to cyclosporine. Transplantation 1993;55:1124-1128.
- Foegh ML, Alijani MR, Helfrich GB et al. "Eicosanoids and allograft rejection." In Prostaglandins, Leukotrienes, and Lipoxins, Bailey JM, ed. New York: Plenum Press, 1985;417-422.
- 85. Ninnemann JL. "Tissue and organ transplantation." In *Prostaglandins, Leukotrienes, and The Immune Response,* Cambridge: Cambridge University Press, 1988;136-156.
- 86. MacKenzie IZ, MacLean DA, Mitchell MD. Prostaglandins in the human fetal circulation in mid-trimester and term pregnancy. Prostaglandins 1980;20:649-654.
- 87. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678-682.
- 88. Leithner C, Sinzinger H, Silberbauer K et al. Enhanced prostacyclin synthesis in acute human kidney transplant rejection. Proc EDTA 1980; 17:424-428.
- 89. Tobimatsu M, Ueda Y, Toyoda K et al. Effect of a stable prostacyclin analogue on canine renal allograft rejection. Ann Surg 1987;205:199-202.
- 90. Rowles JR, Foegh ML, Khirabadi BS et al. The synergistic effect of cyclosporine and iloprost on survival ofrat cardiac allografts. Transplanation 1986;42:94-96.

Chapter 9

IP-receptors on sensory neurones

1. INTRODUCTION

In addition to demonstrating that vascular IP-receptors were not involved in homeostatic regulation of blood pressure, the IP₁-receptor knockout mice of Murata et al.¹ provided a much greater surprise in highlighting the role of IP₁-receptors in inflammatory pain. Thus, the inflammatory pain responses of IP₁-receptor knockout mice were reduced to the levels seen in indomethacin-treated animals and these results clearly identify prostacyclin as an important mediator of inflammation and pain, challenging the supremacist role of prostaglandin E_2 (PGE₂). These results came at a time when we were beginning to appreciate that IP-receptors had a function in neuronal systems, and were becoming increasingly aware that the role of prostacyclin in sensory systems had long been overlooked in favour of PGE₂.²³ It has been pointed out previously that if prostaglandins produce their sensitising effects by a common mechanism, then we would expect a common order of potency for the arachidonic acid metabolites.⁴ Indeed this is the case; in many instances prostaglandin E_1 (PGE₁) and other IP agonists are more potent than PGE₂. In this chapter we aim to bring to the fore the data on prostacyclin, with reference to studies using PGE₂ where appropriate.

One characteristic of inflammation is hyperalgesia in which there is an enhanced response to a painful stimulus and a decrease in pain threshold. Inflammatory mediators can be released from a variety of sites such as the injured tissue, the microvasculature or the primary afferent terminals,⁴ and can sensitise or excite peripheral nerve endings and contribute to the

phenomenon of hyperalgesia. It is possible that different cyclo-oxygenase (COX) products sensitise skin to nonmechanical, noxious stimuli (e.g. chemical or thermal). Nevertheless, while it is possible that different COX products selectively modulate different hyperalgesic stimuli, results suggest that prostacyclin and PGE_2 are the most significant hyperalgesic arachidonic acid metabolites for mechanical stimuli.⁵

Although prostaglandins alone rarely produce a pain response in man, they clearly potentiate the pain response to other stimuli.⁶ Furthermore, Crunkhorn & Willis⁷ showed that nanogram doses of PGE₁ and PGE₂ injected intradermally into the human forearm induced weal and flare responses, clearly implicating PGEs in inflammatory responses in humans. Even though prostacyclin alone may not produce overt pain, it does appear crucial in mediating some of the algogenic effects of bradykinin, which is a well-characterised inflammatory agent.⁸⁻¹¹

The major metabolite of prostacyclin, 6-oxo PGF_{1ce} is found in high concentrations in inflammatory exudates, indicating that prostacyclin is synthesised and released in areas of inflammation.¹²⁻¹⁴ Prostaglandin levels are increased in the synovial effusions of patients with rheumatoid or psoriatic arthritis, and since both steroids (e.g. methylprednisolone) and COX inhibitors (e.g. indoprofen) can decrease synovial prostacyclin, but only indoprofen decreased PGE₂ in these circumstances, then prostacyclin may be seen as a major prostaglandin involved in synovial inflammation.¹⁴ Presently the source of this prostacyclin is unclear as it could derive from vascular or synovial cells.

In most studies examining the effects of prostacyclin on sensory neurones, the primary action of prostacyclin is to sensitise the neurones to the excitatory effects of other agents.^{4,15-17} This sensitising action of prostacyclin is seen at nanomolar concentrations, i.e. the same range as the concentrations of prostacyclin found in inflammatory exudates.¹²⁻¹⁴ Geppetti et al.18 also showed that prostacyclin increased the outflow of calcitonin gene-related peptide (CGRP) from isolated guinea-pig heart; this increase was blocked by capsaicin pretreatment, suggesting that the release was from capsaicin-sensitive sensory neurones. Thus we see that IP-receptors may be involved in both sensitising the terminals of primary sensory afferents and additionally may act on these same terminals to release inflammatory Furthermore, it has been suggested that in spite of the neuropeptides. specialisations of the peripheral and central presynaptic functional terminations, the primary sensory neurones associated with inflammation respond as an integral unit.¹⁹ Thus, any biophysical or biochemical membrane event associated with a lowering of the peripheral threshold triggered at one neuronal terminal may be rapidly spread throughout the neurone to influence functioning at other terminals of the same neurone.

Whether or not IP agonists release neuropeptides/neurotransmitters from both the peripheral and central terminals of primary afferent nociceptive fibres remains to be clarified. In addition to causing hyperalgesia in the periphery, prostaglandins may therefore be involved in regulation of nociceptive sensory input at the level of the spinal cord.²⁰ Whether prostacyclin can be included here remains unknown, but since spinal cord levels of prostacyclin exceed those of PGE₂ after injection of Freund's adjuvant into the rat paw,^{21,22} then the possibility is high.

2. BIOCHEMICAL EVIDENCE

2.1 [³H]-iloprost binding

Autoradiographic studies of [3H]-iloprost binding in the rat central nervous system (CNS) show that the regions with the highest density of specific binding sites (nucleus tractus solitarius (NTS), area postrema and spinal trigeminal nucleus caudalis) possess a common feature in that they receive the primary sensory afferents.²³ Furthermore, with respect to vagal afferent fibres, removal of the nodose ganglion (Fig. 51) significantly reduced [³H]-iloprost binding in the NTS, suggesting that the binding sites are located presynaptically on the central terminals of the primary sensory neurones. Ligation studies of the vagus nerve also support the conclusion that [³H]-iloprost binding sites are on the presynaptic terminals of the primary viscerosensory neurones, showing that [³H]-iloprost binding sites in the NTS are transported there by axoplasmic flow from the nodose ganglion. Sectioning of the dorsal root of the spinal nerve (dorsal rhizotomy) resulted in significant loss of [³H]-iloprost binding in the superficial layers of the dorsal horn on the operated side, again indicating a presynaptic location on the central terminals of the peripheral unmyelinated or finely myelinated primary sensory fibres (Fig. 52). Additionally, [³H]-iloprost binding sites were also detectable in intact nodose ganglia (25 fmol mg tissue-1) and intact dorsal root ganglia (DRG: 4 fmol mg tissue¹), whereas [³H]-PGE₂ binding was less than 1.5 fmol mg tissue⁻¹ in these ganglia.

Figure 51. Distribution of IP-receptors in viscerosensory neurones.

In addition to $[{}^{3}H]$ -iloprost, $[{}^{3}H]$ -isocarbacyclin also bound strongly in the NTS and spinal trigeminal nucleus,²⁴ but its distribution in the CNS in general was otherwise quite distinct from that of $[{}^{3}H]$ -iloprost. Together these results suggest that the classical platelet IP₁-receptor is the subtype involved in inflammatory pain.

Figure 52. Distribution of IP-receptors and IP₁-receptor mRNA in primary nociceptive neurones.

2.2 Distribution of IP₁-receptor mRNA

Following from the successful cloning of the IP₁-receptor, Oida et al.²⁵ were able to probe various mouse organs to look for expression of IP₁-receptor mRNA. Matching the data from the autoradiographical studies described above (Section 2.1), they found little IP₁-receptor mRNA expression in mouse CNS and spinal cord, but the highest density of all signals was on neurones of the DRG (see Chapter 4, Table 7). IP₁-receptor mRNA was highly expressed in about 40% of the neurones in the DRG, including both small and large diameter neurones. The small diameter neurones in the DRG are capsaicin-sensitive and therefore belong to peripheral C- and A δ -nociceptive fibres.²⁶ This was confirmed by the demonstration that about 70% of the DRG neurones co-expressed both IP₁-receptor mRNA and PPTA (substance P precursor) mRNA. Approximately 20 - 40% of the IP₁-receptor mRNA (EP₂-receptor mRNA was not examined).

Evidence presented elsewhere in this chapter would suggest that IP₁-receptors derived from this mRNA are expressed in both the peripheral and central endings of the primary afferent neurones (see Figs. 51 and 52). There is extensive evidence that prostacyclin acts in the periphery as a hyperalgesic agent (see Section 4.2). There is also evidence that intrathecal administration of COX inhibitors can block substance P and glutamate-induced hyperalgesia,²⁷ and that [³H]-iloprost binding sites exist on the presynaptic terminals of nociceptive fibres terminating in the rat dorsal horn,²³ suggesting that prostacyclin or other prostaglandins may act within the spinal cord.

3. IP-RECEPTORS IN SPINAL CORD AND SENSORY GANGLIA

3.1 Spinal cord

While there is evidence for [³H]-iloprost binding sites on the central terminals of primary afferent sensory fibres,²³ there have been few studies to determine the function of these IP-receptors in areas such as the superficial dorsal horn of the spinal cord. The neonatal rat spinal cord can be maintained in culture with a functionally connected tail and when bradykinin is applied to the tail, it activates capsaicin-sensitive peripheral fibres and thus evokes a depolarisation recordable from the spinal ventral root.²⁸ This

response to bradykinin is inhibited by COX inhibitors, mimicked by phorbol ester, is not affected by mepacrine (phospholipase A2 inhibitor) and furthermore involves activation of pertussis toxin-insensitive bradykinin B₂receptors. Responses of nociceptors in the rat tail, when activated by chemical or thermal stimuli, were enhanced in the presence of prostacyclin, cicaprost and cyclic AMP.²⁹ Results indicated that prostacyclin could sensitise peripheral nerve endings to noxious stimulation without directly activating the nociceptors. Despite these observations that prostacyclin and cicaprost could sensitise rat nociceptors to thermal stimulation,²⁹ IP₁-receptor knockout mice responded normally to the hot-plate and tail-flick tests,¹ suggesting that IP₁-receptors have no role in facilitating pain transmission at the spinal or supraspinal levels since the hot-plate test is a model of central nociceptive pathways.³⁰ Contrary to this evidence for a lack of role for IP₁receptors in spinal processing, nonsteroidal anti-inflammatory drugs (NSAIDs) appear to exert a direct spinal action by blocking the heightened sensitivity to pain induced by activation of spinal glutamate and substance P receptors.²⁷ These results would then suggest that spinal prostaglandins are critical for the augmented processing of pain information at the spinal level, but of course this might be mediated by prostaglandins other than prostacyclin. Moreover, this study indicates that the analgesic effects of NSAIDs can be dissociated from their anti-inflammatory actions, and therefore that the spinal action of NSAIDs is independent of changes in peripheral terminal sensitivity.27

From studies on the release of CGRP from rat spinal cord following dorsal root stimulation, it was concluded that bradykinin acting on B₂receptors in the spinal cord caused the formation of prostaglandins, which in turn caused an enhancement of neuropeptide release from primary afferent nerve terminals in the dorsal horn.³¹ This enhanced release may be secondary to activation of adenylate cyclase forskolin and as phosphodiesterase inhibition also enhanced the bradykinin-evoked release of CGRP. Because B_2 -receptors are mainly associated with primary afferent nerve terminals, it was suggested that prostaglandin production is also a function of these structures. In this example, neither prostacyclin nor PGE_2 were able to evoke neuropeptide release alone, but prostacyclin was much more potent than PGE_2 in potentiating bradykinin-evoked release. Although Wenrich³² showed that bradykinin inhibits a Ca²⁺-dependent, slowly developing and long-lasting spike afterhyperpolarisation (AHP_{slow}) in vagal afferent C-fibres, it was thought that inhibition of AHP_{slow} could not entirely account for the effect of bradykinin seen here on neuropeptide release.³¹

Although prostacyclin and PGE₂ alone failed to evoke the release of CGRP from rat spinal cord following dorsal root stimulation,³¹ PGE₂ was able to release substance P from rat spinal cord slices, at 43% the response

evoked by KCl.³³ The PGE₂-evoked release of substance P was Ca²⁺dependent and similar to results obtained from embryonic rat DRG neurones in culture.³³ In rat spinal cord synaptosomes, PGE₂ increases glutamate and aspartate release by a Ca2+-dependent mechanism, being maximally effective at 1 nM.³⁴ While this increased release of excitatory amino acids may be statistically significant, it was again small at 118% control compared to 162% control release for KC1. If we look further at the data available for PGE₂, we see that intrathecal PGE₂ itself may cause spinal sensitisation of the primary afferent neurones by the release of glutamate which in turn activates N-methyl-D-aspartate (NMDA)-receptors,¹⁹ and in voltageclamped neurones in rat NTS slices, PGE₂ increased the mean size of evoked excitatory postsynaptic currents, possibly by facilitating evoked and spontaneous release of glutamate vesicles.³⁵ We can also see that excitatory amino acids may in turn affect prostaglandin production, thus kainic acid can evoke the release of PGE₂ from rat spinal cord, and this release is inhibited by indomethacin.³⁶ In superfused rat spinal cord slices, capsaicin-evoked release of PGE₂ is partially blocked by COX inhibitors, results which further highlight the relative importance of prostaglandins in spinal nociceptive processing evoked by primary afferent activation.³⁷

3.2 Dorsal root ganglia

Because of the difficulties of studying fine unmyelinated nociceptive fibres in vivo, studies of nociception have tended to rely more on the use of tissues and cells maintained in vitro. Sensory neurones from the DRG have been well studied and these can be divided into two broad populations: (1) neurones with large-diameter cell bodies and fast-conducting myelinated axons (A-fibres), and (2) neurones with small-diameter cell bodies and unmyelinated slowly conducting axons (C-fibres). Most of the small diameter neurones are activated by tissue-damaging stimuli whereas the larger neurones are principally involved in mechanonociception or proprioreception (although A δ -fibres have a nociceptive role).^{4,38}

In embryonic rat DRG neurones, carbacyclin causes a Ca²⁺-dependent release of substance P and CGRP and potentiates capsaicin, bradykinin and KC1-evoked release of neuropeptides.^{39,40} In addition, prostacyclin itself also potentiates capsaicin-evoked neuropeptide release. The dose-response relationship for carbacyclin suggests that low concentrations of prostacyclin would sensitise sensory neurones to other stimuli, while higher concentrations evoke release directly. Despite the evidence that bradykinin-evoked nociceptor responses are partially mediated via generation of prostacyclin (see Section 4.3), there is no evidence for cyclic AMP production by the capsaicin-sensitive population of cultured sensory

neurones in rat DRG in response to bradykinin; only cyclic GMP production.⁴¹ In fact, only in the non-neuronal cells derived from DRG cell preparation did bradykinin increase cyclic AMP. In adult rat DRG neurones, cicaprost increases cyclic AMP production with an EC₅₀ value of 14 nM, and is approximately 10-fold more potent than PGE₂.⁴² At concentrations producing near maximal stimulation of adenylate cyclase activity, these agonists also stimulate the accumulation of [³H]-inositol phosphates, again with cicaprost apparently more potent than PGE₂. In light of the coupling of the IP₁-receptor to G_s and G_q-proteins (see Chapter 4), it is interesting to note that the IP agonist-stimulated increase in phosphoinositide hydrolysis was not dependent on cyclic AMP accumulation since forskolin was unable to increase [³H]-inositol phosphates despite increasing cyclic AMP to a greater extent than the prostanoids.

A few studies on F-11 cells (rat DRG x mouse N18TG2 neuroblastoma) indicate a cyclic AMP response to prostacyclin which increases 2-fold in cells differentiated to a more neuronal phenotype.⁴³ Although cyclic AMP elevations in response to prostacyclin can inhibit bradykinin-stimulated IP₃ release from F-11 cells, the inhibitory effect was never more than 50% and considered unlikely to be of functional significance.⁴⁴ With hindsight we can now question whether it was the DRG cell, the neuroblastoma cell, or both cell phenotypes which were responsible for the prostacyclin-mediated responses of F-11 cells. Neuroblastoma cells derive from cells of the neural crest,⁴⁵ as do the sensory neurones of the peripheral nervous system.³⁸

In adult DRG neurones, PGE_2 induces a Ca^{2+} -dependent, N-type channel-dependent release of substance P,⁴⁶ yet its potentiation of bradykinin-induced release of substance P and CGRP was apparently not via L-, N- or P-type voltage-sensitive calcium channels.⁴⁷ Inhibition of a slow Ca²⁺-dependent K^+ current (I_{KCa}) is generally thought to underlie the AHP_{slow}, resulting in nociceptor sensitisation, however most evidence comes from studies using the nodose ganglia. When examined in adult rat DRG, patch-clamp electrophysiology techniques suggest that PGE₂-induced sensitisation must involve the modulation of ionic currents in addition to that underlying Although PGE₂ could release substance P from adult DRG AHP_{slow}.⁴⁸ neurones, in neonatal rat DRG neurones PGE₂ has no effect alone yet potentiates bradykinin-induced release of substance P and CGRP,⁴⁹ and potentiates the slow depolarisation and burst of action potentials in response to bradykinin by a cyclic AMP-dependent mechanism.⁵⁰ When bradykinin, capsaicin or PGE₂ were applied to the processes of cultured mouse DRG cells, they all led to the generation of a tetrodotoxin-sensitive action potential in the cell body;51 obviously it would be interesting to determine how prostacyclin compares with PGE_2 in this regard.

3.3 Viscerosensory ganglia

³H]-iloprost binding sites have been described on rat nodose ganglia, and these binding sites migrate in both directions away from the cell body by axoplasmic flow.²³ These $[^{3}H]$ -iloprost binding sites presumably represent the IP-receptors which can be readily identified on desheathed vagus nerve preparations using extracellular recording techniques; 42,52,53 see Figure 53. Of the standard prostanoid agonists studied, prostacyclin and carbacyclin were clearly the most potent with EC_{50} values of 4 nM and 13 nM, respectively, for depolarising C-fibres of rat isolated vagus nerve.⁴² The order of potency of prostanoids and high potency of cicaprost (EC₅₀ 631 pM) typical of an receptor.^{42,53} Although prostacyclin-induced is depolarisations were slow in onset when compared with those induced by 5-HT acting on ligand-gated ion channels (see Fig. 53A), the maximal response (400 µV) was quite comparable.^{42,52} Responses to cicaprost were unaffected by either tetrodotoxin or removal of calcium from the bathing fluid, suggesting that they did not depend on the secondary release of another neurotransmitter.⁵³ We would expect these IP-receptors to couple to adenylate cyclase, and indeed forskolin can also depolarise the vagus nerve, and desensitise the nerve to the effects of prostacyclin.⁴² Furthermore, phorbol dibutyrate displays similar effects as forskolin which could mean that we are also seeing one of the few examples of IP-receptor coupling to G_a in normal tissues. Although cyclic AMP contributes to primary afferent hyperalgesia for agents such as prostacyclin, no contribution of protein kinase C (PKC) was noted in the rat paw pressure response to prostacyclin.⁵⁴

One important question to consider is why one can record IP agonistmediated depolarisations along the length of the vagus nerve in vitro. То answer this question we can look at other receptors associated with sensory neurones. For example, primary sensory neurones respond to capsaicin along their entire extent (cell bodies, peripheral and central fibres and their respective endings) implying vanilloid receptor expression throughout these In a discussion on the role of 5-HT3-receptors in emesis, neurones.26,55 Reynolds⁵⁶ concluded that the presence of apparently functional receptors along the length of the vagus nerve trunk was unlikely to provide a significant site of action for 5-HT₃-receptor antagonist drugs in vivo. After all, it is assumed that under pathophysiological conditions, 5-HT released from gastrointestinal mucosal enterochromaffin cells activates, and possibly sensitises, adjacent C-fibre terminals.⁵⁷ However for practical reasons, most studies on 5-HT have tended to concentrate upon the receptor populations located on vagal afferents and the visceral primary afferent cell bodies contained within the nodose ganglion, rather than those present at vagal terminals;57 clearly the same conditions will apply to studies of IP-receptor

function in sensory systems. But if Preceptor activation depolarises the vagus nerve,^{42, 52, 53} and if the bradykinin-mediated inhibition of AHP_{slow} is partially dependent on prostacyclin synthesis,⁵⁸ then it is conceivable that the intraneuronally-synthesised prostacyclin diffuses out of the neurone to activate IP-receptors located along the length of a sensory afferent fibre. The resulting depolarisation may serve to enhance the release of transmitter at the central terminals and thus facilitate nociceptive processing.

Figure 53. Depolarisation of isolated rat vagus nerve by IP agonists. A: Depolarisation responses to 5-HT and cicaprost. The undershoot on the 5-HT trace is a hyperpolarisation due to activation of 5-HT_{1A}-receptors. Jones & Rudd, unpublished observations. B: Log concentration curves for depolarisation induced by IP agonists.⁵⁹

In rabbit vagal afferent (nodose) neurones in vitro, bradykinin inhibits AHP_{slow} resulting in increased excitability of C-fibre neurones, which can be mimicked by cyclic AMP mimetics.³² Furthermore, pretreatment of nodose ganglia cells with indomethacin completely prevented this bradykinin-induced inhibition of AHP_{slow}. The ability of indomethacin to block the bradykinin-mediated inhibition of AHP_{slow} was examined further by Weinreich et al.⁵⁸ in a quite demanding set of experiments. Using guinea-pig and rabbit nodose neurones they demonstrated that not only did bradykinin-mediated inhibition of AHP_{slow} depend on COX activation, it was also

inhibited by the prostacyclin synthase inhibitor tranylcypromine. Exogenous prostacyclin inhibited AHP_{stow} in the presence of either enzyme inhibitor (see Fig. 54). From these studies one can conclude that bradykinin stimulates the release of prostacyclin, but not PGD₂, PGE₂, PGF_{2α} or TXA₂, from nodose neurones via activation of the B₂ subtype of bradykinin receptor. Although bradykinin-evoked release of neuropeptides from DRG neurones is also inhibited by COX inhibitors, the primary prostaglandin mediating this particular response is less clear cut (see Section 4.3).

Figure 54. Schematic representation of bradykinin-mediated activation of an isolated nodose ganglion neurone.

Prostacyclin can stimulate vagal cardiac C-fibres in vivo.⁶⁰ When prostacyclin is injected into the coronary artery, it elicits vagal reflex bradycardia and hypotension due to withdrawal of sympathetic tone to peripheral vessels (see Chapter 6). When given intravenously to anaesthetised dogs prostacyclin, at doses which produce a substantial fall in systemic arterial blood pressure, also produced marked bradycardia instead of the expected reflex tachycardia in response to a hypotensive agent.⁶¹ These vagal afferent receptors are termed "chemically sensitive receptors" and differ from the classical chemosensitive fibres which respond to changes in pO_2 , pH, pCO_2 etc. It is also possible that the action of prostacyclin on cardiac receptors is indirect as epicardial or intracoronary prostacyclin can sensitise cardiac receptors to the actions of nicotine.⁶² One interpretation of the data is that the action of prostacyclin involves a reflexly mediated increase in vagal efferent discharge to the heart, rather than a direct effect of prostacyclin on cardiac pacemaker cells, because the bradycardia induced by prostacyclin is abolished by atropine.⁶² Alternatively, prostacyclin could sensitise the cardiac pacemaker cells to acetylcholine released from vagal postganglionic nerve endings; this effect would also be abolished by

atropine. This latter sensitising action of prostacyclin on cardiac receptors could relate to the production of hyperalgesia discussed in Section 4. When the heart is studied in isolation, PGE_1 can increase heart rate and contractile force, and independently cause the release of CRGP from sensory nerrones.⁶³

4. NOCICEPTION

Activation of primary afferent C-fibres by noxious stimuli gives rise to spinal release of the excitatory amino acids, glutamate and aspartate, and neuropeptides including substance P and CGRP, and these mediators may facilitate the cascade of nociceptive processing.⁶⁴ Indeed the hyperalgesia induced by injection of PGE₂ into the mouse intrathecal space is blocked by NMDA antagonists and nitric oxide synthase inhibitors, and is lost in mice lacking either the $\varepsilon 1$ or $\varepsilon 4$ subunits of the ionotrophic NMDA-receptor.⁶⁵ At first it would seem surprising to find that PGD₂-induced hyperalgesia (hotplate test) is maintained in these NMDA-receptor subunit knockout mice, but this is because substance P rather than excitatory amino acids appears to be the mediator of PGD_2 activity,⁶⁶ and despite the observation that the release of excitatory amino acids in the spinal dorsal horn is enhanced by substance P and CGRP.⁶⁷ Results such as these should perhaps caution against extrapolating too much from the actions of one prostaglandin to another, for even though PGD₂ and PGE₂ predominantly mediate their effects through activation of adenvlate cyclase, their effector pathways in hyperalgesia are quite distinct. It would be fascinating now to see whether prostacyclin is more like PGE₂ or PGD₂ in this regard.

4.1 Source of prostacyclin in nociceptive pathways

A closer look at models of inflammation reveals that prostacyclin rather than PGE₂ is often the predominant prostaglandin produced. For example, zymosan injected intraperitoneally produces 20-fold more prostacyclin compared with PGE₂ in mice; both the prostaglandin production and consequent writhing response are blocked by COX inhibitors.⁶⁸ It is most likely that the resident peritoneal cells or the peritoneum itself, and not leukocytes, are the source of prostacyclin in response to zymosan injection because the concentrations of prostaglandins are already falling by the time inflammatory cells migrate into the peritoneal cavity. Similarly, in carrageenin-induced inflammation, the concentration of prostacyclin in the inflammatory exudate is already falling before infiltration by inflammatory cells occurs.¹² Besides, resident macrophages are a rich source of COX metabolites, and elicited macrophages release much less prostacyclin than do resident macrophages (see Chapter 8). Certainly in kaolin-induced pleurisy, there is a biphasic exudation of plasma, peaking at 20 min and 3 - 5 h, with a rapid 12-fold increase in prostacyclin production during the first phase, and a smaller increase in PGE₂ corresponding to the second phase.⁶⁹ The exudate volume in carrageenin-induced pleurisy and in carrageenin-induced paw oedema were both significantly reduced in IP₁-receptor knockout mice, down to the level seen with indomethacin-pretreatment of wild-type mice, despite being no change in prostacyclin production.¹ Therefore, the pathway for prostacyclin production is not dependent on activation of IP₁-receptors.

If we look at prostaglandin levels in the spinal cord following induction of inflammation in the periphery, we see that intraplantar injection of rats with carrageenin led to hyperalgesia at 4 h with increased COX-2 mRNA in the lumbar spinal cord.⁷⁰ Although the COX-2 inhibitor DuP 697 was able to reduce the hyperalgesic response, it paradoxically potentiated COX-2 mRNA induction suggesting the existence of a potential regulatory mechanism to overcome blockade of enzyme activity. Messenger RNA of both COX isoforms is expressed constitutively in the rat spinal cord with COX-2 as the predominant form.⁷¹ Injection of Freund's adjuvant into the rat paw led to swelling accompanied by increased expression of COX-2 mRNA, with no change in COX-1 mRNA, therefore COX-2 might be regarded as the COX isozyme responsible for spinal prostaglandin release in nociceptive processing under a peripheral inflammatory stimulus. Other studies have also noted an increase in COX-2 mRNA expression, but not in COX-1 mRNA, in the lumbar spinal cord 2 - 4 h after injection of Freund's complete adjuvant into the rat paw, with greater increases in prostacyclin compared to PGE2.22 This latter study showed that while selective COX-2 inhibitors attenuated allodynia (a state of discomfort and pain evoked by innocuous tactile stimuli), they had no effect on oedema or hyperalgesia, in contrast to the nonselective COX inhibitor indomethacin which attenuated both allodynia and the oedema response. So the surprising conclusion here was that prostaglandins are directly involved in the development of allodynia but not mechanical hyperalgesia.

In the rat, an intradermal formalin injection characteristically evokes a biphasic flinching behaviour but this does not seem to be paralleled by changes in the spinal release of PGE_2 when measurements are taken directly from the dorsal lumbar region using microdialysis methods.⁷² NSAIDs tend to reduce nociceptive behaviour more during the second phase of response to formalin, therefore Scheuren et al.⁷² have proposed that NSAIDs may in fact influence the flinching behaviour of rats during the second phase by inhibiting spinal release of prostaglandins during the first phase. Intrathecal COX-2 inhibitors did not alter the second phase of the formalin test or K⁺-

evoked PGE_2 release from rat spinal cord in vitro - only nonspecific COX inhibitors such as (+)-S-ibuprofen were effective.⁷³ Therefore, Dirig et al.⁷³ suggested that COX-2 might not be associated with spinal prostaglandin synthesis acutely or with facilitated nociception which occurs within the limited time frame (1 h) of the formalin test. What is clear from all these studies is that there is a long way to go before we truely understand the sequential consequences of inflammatory stimuli.

4.2 Hyperalgesia

If agents which are released from tissue in response to injury are essential intermediaries in the pain response to an injury, then they should activate small diameter afferent fibres and produce pain when applied locally;⁴ bradykinin' and capsaicin²⁶ are two such examples of chemical stimuli frequently used in models to detect hyperalgesia. Prostacyclin and PGE₂ are presumed to act directly on primary afferent nociceptors and can be considered as direct-acting hyperalgesic agents.⁵⁴ However unlike bradykinin and capsaicin, prostaglandins do not produce pain when applied locally.⁶ This distinction between the hyperalgesic and nonalgesic action of prostaglandins is the theme of this section.

Hyperalgesia is measured in a variety of animal models, and it is clear that the role of prostaglandins in hyperalgesia is highly specific to the response being measured, and particularly to the time point at which the response is determined. Although a range of compounds produce hyperalgesia in the rat paw pressure test, prostaglandins tend to have the highest potency, and given that cyclic AMP mimetics also produce hyperalgesia, it was concluded very early on that the interactions of PGE₂ with a receptor at the peripheral nociceptive terminal activates adenylate cyclase.⁷⁴ Furthermore, intraplantar injection of morphine blocked this hyperalgesic response of prostacyclin and PGE₂ confirming a local effect of the prostaglandins.⁷⁵ Ferreira et al.⁷⁶ concluded that aspirin-like drugs prevent the triggering of hyperalgesia by inhibiting PGE₂ synthesis, whereas opiates increase the threshold of the nociceptive system lowered by prostaglandins. Further studies confirmed that injection of prostacyclin and PGE₂ directly into the rat paw induces rapid hyperalgesia, 5,77,78 and that this response is unaffected by COX inhibition, by depletion of transmitter in sympathetic postganglionic nerves or by removal of neutrophils.78 The activation and sensitisation of the primary afferent nociceptive fibres by prostacyclin and PGE₂ appears linked to a cyclic AMP pathway,^{54,79} and for PGE₂ is apparently mediated via G_s-proteins.⁸⁰

Injection of PGE_2 decreases mechanical threshold and increases the number of action potentials elicited by the test stimuli in most C-fibre

nociceptors, resulting in sensitisation. Results from studies using single fibre electrophysiology of C-fibres innervating the dorsum of rat hind paw support the hypothesis that primary afferent sensitisation by PGE₂ is responsible for hyperalgesia, and is dependent on cyclic AMP.⁸¹ It is possible that prostaglandins play a similar role in the CNS, directly activating and sensitising central neurones involved in nociceptive signalling. Indeed prostaglandins such as PGE₂ have been shown to activate neurones by causing increased cation influx.⁸² PGE₂ is thought to block endogenous opioid-mediated analgesia systems by inhibiting the bulbospinal noradrenaline component of this analgesic pathway, as the hyperalgesia produced by intrathecally-administered PGE₂ is reversed by morphine.⁸³ From these studies it was concluded that tonic production of prostaglandins in the spinal cord can inhibit normal pain control circuits in the CNS by blocking the release of noradrenaline from spinal terminals of brainstem projection neurones.

PGE₂ has only weak excitatory effects on canine testicular polymodal receptors in vitro but both prostacyclin and PGE₂ can augment bradykinin responses.⁸⁴ Similarly, prostacyclin was able to increase the sensitivity of cat articular afferents to both mechanical and chemical stimuli.¹⁷ Intraarterial injection of bradykinin into the spleen produces a reflex increase in blood pressure (pseudo-affective response) and the release of prostacyclin, and this response has been used as a model of pain reflexes.⁸⁵ The response to bradykinin can be blocked by indomethacin, with prostacyclin being 3-fold more potent than PGE₂ in potentiating bradykinin-induced nociceptive responses in indomethacin-treated dogs, thus, prostacyclin may mediate the pain producing activity of bradykinin in this model.^{86,87}

In addition to sensitising rat DRG neurones to release neuropeptides in response to capsaicin, bradykinin and KC1, carbacyclin also has a direct releasing action,³⁹ and in the isolated, perfused guinea-pig heart, prostacyclin and PGE₂ dose-dependently release CGRP from cardiac sensory neurones.¹⁸ However in this latter example, the precise site of action of prostacyclin and PGE₂ is uncertain.

So far we have seen that there are many similarities between the hyperalgesic action of prostacyclin and PGE₂ yet they often display quite distinct profiles of activity when tested for direct effects using electrophysiological techniques. When studying the afferent discharge of rat ankle joint mechanonociceptors, it was found that prostacyclin and cicaprost, but not PGE₂, caused both sensitisation to mechanical stimulation and direct excitation of the majority of mechanonociceptors.¹⁶ In normal rats, cicaprost excited more joint mechanonociceptors than PGE₂, and in rats with modified adjuvant arthritis, the response of mechanonociceptors was attenuated by salicylate.⁸⁸ It was thought likely therefore that IP agonists and PGE₂ act

differentially to sensitise joint mechanoceptors, since cicaprost, but not PGE_2 , induced spontaneous activity in units from both control and inflamed joints. These results support the concept that endogenous prostacyclin plays an important role in lowering nociceptive thresholds.

But not all nociceptors behave similarly. Thus, although cicaprost, capsaicin, bradykinin and PGE₂ all excited chemosensitive units in rat ankle joint, only cicaprost and capsaicin excited the mechanonociceptors.89 Bradykinin would normally be expected to excite mechanonociceptors, but in this preparation the isolated hindlimb was perfused with Krebs buffer and presumably lacked the necessary factors such as prostacyclin needed to potentiate the response to bradykinin. It was therefore concluded that prostaglandin-induced excitation of articular mechanonociceptors is mediated by prostacyclin activation of an IP-receptor. When extracellular recordings were made from single units dissected from the medial articular nerve of the cat knee joint, prostacyclin clearly both excited and sensitised (to bradykinin) a greater proportion of articular afferents than PGE₂.¹⁷ Because all the afferents which were sensitive to prostacyclin were also sensitive to PGE₂, and not vice versa, it was suggested that prostacyclin binds both to its own receptor and with lower affinity to an EP-receptor. Furthermore, prostacyclin was able to increase the sensitivity of articular afferents to both mechanical and chemical stimuli.

If we look for prostacyclin-mediated activation of nociceptors in vivo, then we see that prostacyclin can produce a response in the absence of other stimuli, and this profile of response often differs from that of PGE_2 . PGE_1 is 10-times more potent than PGE_2 in the mice writhing test; this pain response is blocked by morphine but not by aspirin, and is lost on the second challenge with prostaglandin.90 Furthermore, bradykinin-induced writhing was blocked by indomethacin, clearly indicating a role for prostaglandins here. At this time it was assumed that PGE₁ and PGE₂ were acting at similar receptors and it was not understood that PGE₁, but not PGE₂, was an IP agonist. As a consequence, prostacyclin seemed to be ignored in favour of PGE₂ which then featured in many more studies on nociception. With the advent of more stable analogues of prostacyclin it became apparent that prostacyclin, and not PGE₂, was the significant prostaglandin here. In fact, carbacyclin is a potent inducer of writhing behaviour in mice, with as little as 10 µg k-1 i.p. producing an immediate effects³⁰ Intraperitoneal injection of 2 µg prostacyclin produced a writhing response in 60% of mice tested, but less than 25% of mice responded to the same dose of PGE₂.¹

Zymosan injected intraperitoneally produces 20-fold more prostacyclin compared with PGE_2 in mice; both the prostaglandin production and consequent writhing response are blocked by COX inhibitors.⁶⁸ However, it is only prostacyclin that can reverse the indomethacin-analgesia in zymosan-

treated mice, and only centrally-acting agents such as morphine and clonidine can block this nociceptive action of prostacyclin. Doherty et al.⁶⁸ therefore proposed that prostacyclin may have the ability to stimulate nociceptors directly in the mouse peritoneal cavity, in addition to its previously recognised ability to sensitise nociceptors to other pain-producing stimuli. In this study, PGE₂ failed to induce writhing in normal mice, and failed to potentiate writhing in zymosan-injected mice. While one could easily presume that prostacyclin injection is causing a direct nociceptive effect, it remains possible that the trauma of the injection process itself releases nociceptive factors whose action is then potentiated by prostacyclin to a now measurable level.

The writhing response in mice can be induced by intraperitoneal injection of a variety of agents, yet they may have different mechanisms of action. For example, kaolin-induced writhing depends on bradykinin production whereas zymosan-induced writhing depends directly on prostacyclin, with no involvement of bradykinin.⁹¹ However, responses to both kaolin and bradykinin are inhibited by COX-inhibitors. Although prostacyclin production was unchanged in IP₁-receptor knockout mice, their writhing response to intraperitoneal injection of acetic acid was significantly reduced, to the same level seen in indomethacin-treatment wild-type mice;¹ further supporting the concept that prostacyclin production and the consequent activation of IP₁-receptors is the main cause for the writhing behaviour in response to intraperitoneal injection of inflammatory agents.

4.3 Prostacyclin as mediator of bradykinin activity

Bradykinin activates canine testicular polymodal nociceptors in vitro and this effect is clearly mediated by prostaglandins as it is blocked by aspirin.84 Bradykinin-evoked responses in the rat tail-spinal cord preparation, but not the response to thermal stimulation, were also inhibited by COX inhibitors.²⁹ Results suggest a more important role for prostaglandins in mediating bradykinin-induced hyperalgesia to mechanical stimulation than in bradykinin-induced sensitisation to chemical and thermal stimulation.⁵ Using the rat paw pressure test, it was thought that bradykinin hyperalgesia is mediated by PGE_2 whereas it is noradrenaline hyperalgesia which is mediated by prostacyclin.92 The bradykinin-induced nociceptive response in dogs (reflex increase in blood pressure following splenic artery injection) is also blocked by indomethacin, and these studies noted that prostacyclin must be a major candidate involved in bradykinin-induced nociception.⁸⁶ Perhaps now therefore a more convincing case for prostacyclin as the prime mediator ofbradykinin reponses can be made.

Uncertainty exists about the source of prostaglandins generated by bradykinin that are able to release sensory neuropeptides as there is conflicting evidence supporting sensory nerves as the source of these prostaglandins.¹⁰ But when using isolated sensory neurones such as neonatal rat DRG neurones, we see that PGE₂ potentiates bradykinin-induced release of substance P and CGRP,⁴⁹ and that this response to bradykinin is inhibited by indomethacin; results which clearly suggest that bradykinin stimulation leads to activation of COX enzymes in sensory neurones with the consequent production of prostaglandins (see Fig. 55).

Figure 55. Schematic representation of neuropeptide release from an isolated dorsal root ganglion neurone.

In many tissues, bradykinin B2-receptor activation leads to enhanced eicosanoid synthesis: potentially by release of arachidonic acid from the diacylglycerol (DAG) produced by inositol lipid hydrolysis.93 In nonsensory tissues however, inositol lipid hydrolysis is pharmacologically independent of arachidonic acid release, which instead has been proposed to result from activation of phospholipase A_2 . In addition, bradykinin B2-receptor activation often leads to enhanced cellular accumulation of cyclic AMP, due indirectly to stimulation of prostaglandin synthesis and the subsequent activation of G_s-coupled receptors. In contrast, when we examine the effects of bradykinin in sensory tissues, we see a slightly different profile of activity. For example, when bradykinin is applied to the neonatal rat spinal cord-tail preparation, it activates capsaicin-sensitive peripheral fibres and thus evokes a depolarisation recordable from the spinal ventral root.²⁸ This response to bradykinin is inhibited by COX inhibitors but is not affected by the phospholipase A2 inhibitor mepacrine. Bradykinin does appear to stimulate the production of arachidonic acid in sensory neurones, with the arachidonic acid possibly deriving from the breakdown of DAG by DAG

lipase. For example, in foetal rat DRG cells, mepacrine did not block the arachidonic acid release in response to bradykinin, suggesting that there might be a phospholipase A_1 -lysophospholipase pathway which releases arachidonic acid.⁹⁴ In addition, and somewhat surprisingly, bradykinin does not cause an increase in cyclic AMP in rat DRG neurones.⁴¹

In visceral sensory neurones such as rabbit vagal afferent (nodose) neurones in vitro, bradykinin preferentially activates unmyelinated C-fibres and A δ --myelinated fibres and indirectly increases excitability via inhibition of AHP_{slow}.³² This effect of bradykinin allows the cell to fire repetitively following a stimulus and therefore may be one of the mechanisms underlying nociceptor sensitisation.⁹ Bradykinin-induced inhibition of AHP_{slow} was mimicked by cyclic AMP mimetics, and was completely prevented by pretreatment of nodose ganglia cells with indomethacin.³² The ability of indomethacin to block the bradykinin-mediated inhibition of AHP_{slow} has been examined further by Weinreich et al.⁵⁸ using guinea-pig and rabbit nodose neurones where they demonstrated that not only did bradykinin-mediated inhibition of AHP_{slow} depend on COX activation, it also depended on the activity of prostacyclin synthase, and that exogenous prostacyclin had a direct effect alone (see Fig. 54). From these studies they concluded that bradykinin stimulates the release of prostacyclin in preference to other prostanoids from nodose neurones following activation of the bradykinin B₂-receptor.

Both arachidonic acid and bradykinin promote the release of CGRP from cardiac capsaicin-sensitive afferents of guinea-pig heart by a common mechanism involving prostaglandin production, and their mechanism is distinct from that activated by capsaicin.¹⁸ For both arachidonic acid and bradykinin, the most likely candidate prostaglandin is prostacyclin as this was the only product of bradykinin infusion and was *per se* able to release CGRP. Geppetti et al.¹⁸ considered that if there was an adequate stimulus to increase PGE₂, then this may also activate the "efferent" function of primary sensory neurones in guinea-pig heart. Thus, there is considerable evidence suggesting that prostacyclin mediates some of the nociceptive functions of bradykinin, but the intracellular pathways linking these two inflammatory agents remain to be clarified.

4.4 Mechanism of action of prostacyclin

Prostacyclin tends to have a different time course of action compared with PGE_2 , but whether or not this reflects a different mechanism of action in sensory neurones is unclear. Prostacyclin has a more rapid onset of action and is more potent than other prostaglandins in producing hyperalgesia in animal models of pain.^{15,77,86} Hyperalgesia induced by intradermal prostacyclin is of shorter duration than that of PGE_2 in the rat paw pressure test,⁹² and in the dog knee joint.¹⁵ Data from such studies support the concept that prostacyclin, rather than PGE_2 , participates in early inflammatory hyperalgesia seen in the carrageenin model of inflammation, with PGE_2 contributing later.

In contrast, the excitation of chemosensitive units by cicaprost and PGE₂ in the isolated rat hindlimb preparation tends to be delayed in onset, with cicaprost having a longer duration of action than PGE₂.⁸⁹ Prostacyclin and its mimetics have a direct depolarising action on the rat vagus nerve, 42 52,53,59 see Figure 53, and the slow onset of response suggests IP-receptor signalling via a G-protein. Prostacyclin also directly influences neuronal activity in rabbit and guinea-pig nodose neurones by inhibiting AHP_{slow}.³² In vascular tissues IP-receptors may couple directly to ion channels, with iloprostmediated hyperpolarisation of canine and rabbit carotid artery being partially inhibited by the KATP channel blocker glibenclamide.95,96 Therefore, one possible mechanism for the hyperalgesic effect of prostacyclin is its ability to inhibit AHP_{slow} by a cyclic AMP-dependent K⁺ conductance mechanism, thus allowing the cell to fire repeatedly.¹¹ Indeed recent evidence suggests that both carbacyclin and PGE₂ can suppress potassium currents (I_k) in rat embryonic DRG cells which may, in part, account for the increased membrane excitability underlying the hyperalgesic effect of these prostaglandins.97

Hingtgen & Vasko³⁹ remind us though that carbacyclin needs a 30 min incubation time to cause the direct release of neuropeptides from DRG neurones, which is much longer than needed to observe sensitisation by prostacyclin as measured by altered excitability of sensory neurones in situ.¹⁷ Enhancing phosphorylation (by inhibiting phosphatase activity with okadaic acid) in DRG sensory neurones is an important component in augmenting neuropeptide release,⁹⁸ but it remains to be seen if phosphorylation contributes to the mechanism of action of prostacyclin. It is quite conceivable that this is indeed the case because we know that the IP-receptor can increase production of IP₃ (and presumably DAG) by coupling to G,proteins,^{99,100} and we know that phorbol esters can mimic the depolarising action of IP agonists on the rat vagus nerve.⁴²

In trying to understand the mechanism of action of IP agonists in rat DRG cells, Hingtgen & Nicol¹⁰¹ noted that pretreatment with carbacyclin produced a three-fold enhancement in the number of neurones that were cobalt-labelled by capsaicin. The uptake of cobalt is via a receptor/ion channel complex that is activated specifically by capsaicin. Results suggest that the transduction pathway(s) activated by carbacyclin, which mediates the sensitisation, somehow modulates the permeability of the receptor/ion

channel complex to cobalt or alters the sensitivity of this complex so that it is now activated by lower concentrations of capsaicin.

The ability of carbacyclin and PGE₂ to potentiate bradykinin and capsaicin-evoked release of substance P and CGRP from rat DRG neurones is attenuated by inhibition of adenylate cyclase and is mimicked by cyclic AMP mimetics. Together with the marked ability of carbacyclin and PGE₂ to increase cyclic AMP production in these cells suggests that the cyclic AMP transduction cascade mediates the sensitising actions of prostaglandins on peptide release from sensory neurones.⁴⁰ Although we have seen before that IP agonists can directly release neuropeptides from DRG neurones, at least when used at higher concentrations than needed to potentiate bradykinin for example,^{39,40} the cyclic AMP mimetics forskolin, 8-bromo cyclic AMP and cholera toxin had no effect alone despite clearly facilitating stimulus-evoked release. Bradykinin is probably one of the best studied algesic agents, and it is thought to release neuropeptides consequent to activation of phospholipase C (PLC) and subsequent stimulation of PKC by DAG in sensory neurones.¹⁰² In addition to coupling to adenylate cyclase, IP1-receptors can also couple to PLC (see Chapter 4). It is therefore conceivable that the sensitising/potentiating action of IP agonists is mediated via adenylate cyclase, while any direct effect on neuropeptide release is mediated via PLC.

5. DISCUSSION

In a recent commentary on the landmark paper by Ferreira et al.,⁸⁵ Sir John Vane noted how this paper reinforced very strongly the idea that a prostaglandin sensitised sensory nerve endings to the nociceptive activity of bradykinin.¹⁰³ More importantly he stated "In those days we used PGE₁ but now know that the main prostaglandin released in inflammation is PGE₂". How correct this statement is in light of the IP₁-receptor knockout mice data, and the information presented herein, remains to be seen.

It should be apparent from the information presented above that prostaglandins are hyperalgesic agents and COX inhibitors are effective analgesic agents in part because of their ability to inhibit prostaglandin production. However questions concerning which particular prostaglandin mediates a particular hyperalgesic response remains complicated by the range of different experimental paradigms used. As it becomes clearer that prostacyclin has an additional direct action on nociceptors, it in turn becomes more difficult to interpret data from in vivo studies using multifactorial stimuli, such as arthritis induced by Freund's adjuvant or carrageenin injection. This is perhaps where we can make best use of the IP₁-receptor knockout mice - at least until the advent of an IP antagonist. We should also remember that while the IP₁-receptor knockout mice studies indicate that the IP-receptor involved in inflammatory pain is the same as the classical platelet IP₁-receptor, the question of a role for IP-receptor subtypes remains largely unanswered. It is also worth noting that since prostacyclin and PGE₂ show many nociception properties in common, then deletion of the IP₁-receptor gene may lead to compensatory overexpression of EP-receptors and the resulting possibilities of data misinterpretation. Despite these complexities, there is overwhelming evidence that IP-receptors are involved in pain responses, and that blocking these receptors should result in an effective analgesic agent for disorders involving inflammatory pain.

REFERENCES

- 1. Murata T, Ushikubi F, Matsuoka T et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678-682.
- 2. Wise H. Neuronal prostacyclin receptors. Progress Drug Res 1997;49:123-154.
- 3. Bley KR, Hunter JC, Eglen RM et al. The role of IP prostanoid receptors in inflammatory pain. Trends Pharmacol Sci 1998;19:141-147.
- 4. Yaksh TL, Hammond DL. Peripheral and central substrates involved in the rostrad transmission ofnociceptive information. Pain 1982;13:1-85.
- 5. Taiwo YO, Levine JD. Effects of cyclooxygenase products of arachidonic acid metabolism on cutaneous nociceptive threshold in the rat. Brain Res 1990;537:372-374.
- 6. Kindgen-Miles D. Effects of prostaglandin E₂ on the intensity of bradykinin-evoked pain from skin and veins of humans. Eur J Pharmacol 1995;294:491-496.
- Crunkhorn P, Willis AL. Cutaneous reactions to intradermal prostaglandins. Br J Pharmacol 1971;41:49-56.
- 8. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992;44:1-80.
- Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci 1993;16:99-104.
- Geppetti P. Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications. Regul Pept 1993;47:1-23.
- Dray A. Chemosensitivity of cultured dorsal root ganglia cells. News Physiol Sci 1996;11:288-292.
- Higgs GA, Salmon JA. Cyclo-oxygenase products in carrageenin-induced inflammation. Prostaglandins 1979;17:737-746.
- 13. Brodie MJ, Hensby CN, Parke A et al. Is prostacyclin the major pro-inflammatory prostanoid injoint fluid? Life Sci 1980;27:603-608.

- 14. Bombardieri S, Cattani P, Ciabattoni G et al. The synovial prostaglandin system in chronic inflammatory arthritis: differential effects of steroidal and nonsteroidal antiinflammatory drugs. Br J Pharmacol 1981;73:893-901.
- 15. Ferreira SH, Nakamura M, Castro MSA. The hyperalgesic effects of prostacyclin and prostaglandin E₂. Prostaglandins 1978;16:31-37.
- 16. Birrell GJ, McQueen DS, Iggo A et al. PGI₂-induced activation and sensitization of articular mechanonociceptors. Neurosci Lett 1991;124:5-8.
- Schepelmann K, Meβlinger K, Schaible H-G et al. Inflammatory mediators and nociception in the joint: excitation and sensitization of slowly conducting afferent fibers of cat's knee by prostaglandin I₂. Neuroscience 1992;50:237-247.
- Geppetti P, Del Bianco E, Tramontana M et al. Arachidonic acid and bradykinin share a common pathway to release neuropeptide from capsaicin-sensitive sensory nerve fibers of the guinea pig heart. J Pharmacol Exp Ther 1991;259:759-765.
- Ferreira SH, Lorenzetti BB. Intrathecal administration of prostaglandin E₂ causes sensitization of the primary afferent neuron via the spinal release of glutamate. Inflamm Res 1996;45:499-502.
- 20. Mansour A, Fox CA, Akil H et al. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 1995;18:22-29.
- de Belleroche J, Adams J, Collago-Moraes Y. Cyclooxygenase-2 induction in cerebral cortex in response to synaptic excitation. Prostaglandins Leukot Essent Fatty Acids 1996;55:p32.
- 22. Hay CH, Trevethick MA, Wheeldon A et al. The potential role of spinal cord cyclooxygenase-2 in the development of Freund's complete adjuvant-induced changes in hyperalgesia and allodynia. Neuroscience 1997;78:843-850.
- 23. Matsumura K, Watanabe Yu, Onoe H et al. Prostacyclin receptor in the brain and central terminals of the primary sensory neurons: an autoradiographic study using a stable prostacyclin analogue [³H]loprost. Neuroscience 1995;65:493-503.
- 24. Takechi H, Matsumura K, Watanabe Y et al. A novel subtype of the prostacyclin receptor expressed in the central nervous system. J Biol Chem 1996;271:5901-5906.
- Oida H, Namba T, Sugimoto Y et al. *In situ* hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995;116:2828-2837.
- 26. Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 1991;43:143-201.
- 27. Malmberg AB, Yaksh TL. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 1992;257:1276-1279.
- Dray A, Patel IA, Perkins MN et al. Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation *in vitro*. Br JPharmacol 1992;107:1129-1134.
- 29. Rueff A, Dray A. Sensitization of peripheral afferent fibres in the *in vitro* neonatal rat spinal cord-tail by bradykinin and prostaglandins. Neuroscience 1993;54:527-535.

- Smith TW, Follenfant RL, Ferreira SH. Antinociceptive models displaying peripheral opioid activity. Int J Tiss Reac 1985;7:61-67.
- Andreeva L, Rang HP. Effect of bradykinin and prostaglandins on the release of calcitonin gene-related peptide-like immunoreactivity from the rat spinal cord *in vitro*. Br J Pharmacol 1993;108:185-190.
- 32. Weinreich D. Bradykinin inhibits a slow spike afterhyperpolarization in visceral sensory neurons. Eur J Pharmacol 1986;132:61-63.
- Vasko MR, Zirkelbach SL, Waite KJ. Prostaglandins stimulate the release of substance P from rat spinal cord slices. Prog Pharmacol Clin Pharmacol 1993;10:69-89.
- 34. Nishihara I, Minami T, Watanabe Y et al. Prostaglandin E₂ stimulates glutamate release from synaptosomes ofrat spinal cord. Neurosci Lett 1995; 196:57-60.
- 35. Sekiyama N, Mizuta S, Hori A et al. Prostaglandin E₂ facilitates excitatory synaptic transmission in the nucleus tractus solitarii ofrats. Neurosci Lett 1995;188:101-104.
- 36. Yang LC, Marsala M, Yaksh TL. Effect of spinal kainic acid receptor activation on spinal amino acid and prostaglandin E₂ release in rat. Neuroscience 1996;75:453-461.
- 37. Malmberg AB, Yaksh TL. Capsaicin-evoked prostaglandin E₂ release in spinal cord slices: relative effect of cyclooxygenase inhibitors. Eur J Pharmacol 1994;271:293-299.
- Wood JN, Docherty R. Chemical activators of sensory neurons. Annu Rev Physiol 1997;59:457-482.
- 39. Hingtgen CM, Vasko MR. Prostacyclin enhances the evoked-release of substance P and calcitonin gene-related peptide from rat sensory neurons. Brain Res 1994;655:51-60.
- Hingtgen CM, Waite KJ, Vasko MR. Prostaglandins facilitate peptide release from rat sensory neurons by activating the adenosine 3',5'-cyclic monophosphate transduction cascade. JNeurosci 1995;15:5411-5419.
- Burgess GM, Mullaney I, McNeill M et al. Activation of guanylate cyclase by bradykinin in rat sensory neurones is mediated by calcium influx: possible role of the increase in cyclic GMP. J Neurochem 1989;53:1212-1218.
- 42. Smith JAM, Amagasu SM, Eglen RM et al. Characterization of prostanoid receptorevoked responses in rat sensory neurones. Br J Pharmacol 1998;124:513-523.
- 43. France1 PC, Harris K, Smith M et al. Neurochemical characteristics of a novel dorsal root ganglion x neuroblastoma hybrid cell line, F-11. JNeurochem 1987;48:1624-1631.
- France1 PC, Miller RJ, Dawson G. Modulation of bradykinin-induced inositol trisphosphate release in a novel neuroblastoma x dorsal root ganglion sensory neuron cell line (F-11). J Neurochem 1987;48:1632-1639.
- 45. Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 1983;71:741-749.
- 46. White DM. Mechanism of prostaglandin E₂-induced substance P release from cultured sensory neurons. Neuroscience 1996;70:561-565.
- 47. Evans AR, Nicol GD, Vasko MR. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res 1996;712:265-273.

- Gold MS, Shuster MJ, Levine JD. Role of Ca²⁺-dependent slow afterhyperpolarization in prostaglandin E₂-induced sensitization of cultured rat sensory neurons. Neurosci Lett 1996;205:161-164.
- Vasko MR, Campbell WB, Waite KJ. Prostaglandin E₂ enhances bradykinin-stimulated release of neuropeptides from sensory neurons in culture. J Neurosci 1994;14:4987-4997.
- Cui M, Nicol GD. Cyclic AMP mediates the prostaglandin E₂-induced potentiation of bradykinin excitation in rat sensory neurons. Neuroscience 1995;66:459-466.
- 51. Noda K, Ueda Y, Suzuki K et al. Excitatory effects of algesic compounds on neuronal processes in murine dorsal root ganglion cell culture. Brain Res 1997;751:348-351.
- Jones RL, Rudd JA. "Neuronal stimulant actions of prostacyclin and its mimetics." In Essential Fatty Acids and Eicosanoids, Riemersma RA, Armstrong RA, Kelly RW, et al. eds. Champaign, Illinois: AOVS Press, 1998;84-87.
- 53. Jones RL, Rudd JA, Tsui KKC. Excitation of rat isolated vagus nerve by prostacyclin mimetics. Br J Pharmacol 1997;122:293P.
- Taiwo YO, Levine JD. Further confirmation of the role of adenyl cyclase and of cAMPdependent protein kinase in primary afferent hyperalgesia. Neuroscience 1991;44:131-135.
- 55. Szallasi A, Nilsson S, Farkas-Szallasi T et al. Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 1995;703:175-183.
- Reynolds DJM. "Where do 5-HT₃ receptor antagonists act as anti-emetics?" In Serotonin and The Scientific Basis of Anti-Emetic Therapy, Andrews PLR, Davis CJ, eds. Oxford: Oxford Clinical Communications, 1995;111-126.
- Peters JA, Lambert JJ, Hope AG et al. "The electrophysiology of vagal and recombinant 5-HT₃ receptors." In *Serotonin and The Scientfic Basis of Anti-Emetic Therapy*, Andrews PLR, Davis CJ, eds. Oxford: Oxford Clinical Communications, 1995;95-105.
- Weinreich D, Koschorke GM, Undem BJ et al. Prevention of the excitatory actions of bradykinin by inhibition of PGI₂ formation in nodose neurones of the guinea-pig. J Physiol 1995;483.3:735-746.
- 59. Rudd JA, Qian YM, Tsui KKC et al. Comparison of non-prostanoid prostacyclin mimetics as neuronal stimulants in the vagus nerve and colon of the rat. Br J Pharmacol 1999;submitted.
- 60. Hintze TH. Reflex regulation of the circulation after stimulation of cardiac receptors by prostaglandins. Fed Proc 1987;46:73-80.
- 61. Whittle BJR, Moncada S, Mullane K et al. Platelet and cardiovascular activity of the hydantoin BW245C, a potent prostaglandin analogue. Prostaglandins 1983;25:205-223.
- 62. Staszewska-Barczak J. Prostanoids and cardiac reflexes of sympathetic and vagal origin. Am J Cardiol 1983;52:36A-45A.
- 63. Franco-Cereceda A. Prostaglandins and CGRP release from cardiac sensory nerves. Naunyn-Schmied Arch Pharmacol 1989;340:180-184.

- Malmberg AB, Yaksh TL. The effect of morphine on formalin-evoked behaviour and spinal release of excitatory amino acids and prostaglandin E₂ using microdialysis in conscious rats. Br J Pharmacol 1995;114:1069-1075.
- Minami T, Sugatani J, Sakimura K et al. Absence of prostaglandin E₂-induced hyperalgesia in NMDA receptor ε subunit knockout mice. Br J Pharmacol 1997;120:1522-1526.
- Uda R, Horiguchi S, Ito S et al. Nociceptive effects induced by intrathecal administration of prostaglandin D₂, E₂ or F_{2α} to conscious mice. Brain Res 1990;510:26-32.
- 67. Dubner R, Ruda MA. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 1992;15:96-103.
- Doherty NS, Beaver TH, Chan KY et al. The role of prostaglandins in the nociceptive response induced by intraperitoneal injection of zymosan in mice. Br J Pharmacol 1987;91:39-47.
- Hori Y, Jyoyama H, Yamada K et al. Time course analyses of kinins and other mediators in plasma exudation of rat kaolin-induced pleurisy. Eur J Pharmacol 1988;152:235-245.
- 70. Hay C, de Belleroche J. Carrageenan-induced hyperalgesia is associated with increased cyclo-oxygenase-2 expression in spinal cord. Neuroreport 1997;8:1249-1251.
- 71. Beiche F, Scheuerer S, Brune K et al. Up-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Lett 1996;390:165-169.
- 72. Scheuren N, Neupert W, Ionac M et al. Peripheral noxious stimulation releases spinal PGE₂ during the first phase in the formalin assay of the rat. Life Sci 1997;60:PL295-PL300.
- Dirig DM, Konin GP, Isakson PC et al. Effect of spinal cyclooxygenase inhibitors in rat using the formalin test and in vitro prostaglandin E₂ release. Eur J Pharmacol 1997;331:155-160.
- 74. Ferreira SH, Nakamura M. I Prostaglandin hyperalgesia, a cAMP/Ca²⁺ dependent process. Prostaglandins 1979;18:179-190.
- Ferreira SH, Nakamura M. II Prostaglandin hyperalgesia: the peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 1979;18:191-200.
- 76. Ferreira SH, Nakamura M. III Prostaglandin hyperalgesia: relevance of the peripheral effect for the analgesic action of opioid-antagonists. Prostaglandins 1979; 18:201-208.
- Higgs EA, Moncada S, Vane JR. Inflammatory effects of prostacyclin (PGI₂) and 6-oxo-PGF_{1α} in the rat paw. Prostaglandins 1978;16:153-162.
- Taiwo YO, Levine JD. Prostaglandin effects after elimination of indirect hyperalgesic mechanisms in the skin of the rat. Brain Res 1989;492:397-399.
- 79. Taiwo YO, Bjerknes L, Goetzl EJ et al. Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 1989;32:577-580.
- Taiwo YO, Levine JD. Contribution of guanine nucleotide regulatory proteins to prostaglandin hyperalgesia in the rat. Brain Res 1989;492:400-403.

- Wang J-F, Khasar SG, Ahlgren SC et al. Sensitization of C-fibres by prostaglandin E2 in the rat is inhibited by guanosine 5'-O-(2-thiodiphosphate), 2',5'-dideoxyadenosine and Walsh inhibitor peptide. Neuroscience 1996;71:259-263.
- 82. Matsumura K, Watanabe Y, Onoe H et al. Prostaglandin E_2 excites neurons of the nucleus tractus solitarius by activating cation channels. Brain Res 1993;626:343-346.
- 83. Taiwo YO, Levine JD. Prostaglandins inhibit endogenous pain control mechanisms by blocking transmission at spinal noradrenergic synapses. J Neurosci 1988;8:1346-1349.
- Mizumura K, Sato J, Kumazawa T. Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflügers Archiv - Eur J Physiol 1987;408:565-572.
- 85. Ferreira SH, Moncada S, Vane JR. Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs. Br J Pharmacol 1973;49:86-97.
- 86. Hori Y, Katori M, Harada Y et al. Potentiation of bradykinin-induced nociceptive response by arachidonate metabolites in dogs. Eur J Pharmacol 1986;132:47-52.
- 87. Katori M, Hori Y, Uchida Y et al. Different modes of interaction of bradykinin with prostaglandins in pain and acute inflammation. Adv Exp Med Biol 1986;198:393-398.
- Birrell GJ, Grubb BD, Iggo A et al. Actions of PGE₂ and cicaprost on the sensitivity of high-threshold mechanoreceptors in normal and inflamed ankle joints of the anaesthetized rat. J Physiol 1990;420:33P.
- Birrell GL, McQueen DS. The effects of capsaicin, bradykinin, PGE₂ and cicaprost on the discharge of articular sensory receptors in vitro. Brain Res 1993;611:103-107.
- 90. Collier HOJ, Schneider C. Nociceptive response to prostaglandins and analgesic actions of aspirin and morphine. Nature New Biol 1972;236:141-143.
- Tanaka K, Shimotori T, Makino S et al. Pharmacological studies on 3-formylamino-7methylsulfonylamino-6-phenoxy-4*H*-1-benzopyran-4-one (T-614), a novel antiinflammatory agent. J Pharmacobio-Dyn 1992;15:641-647.
- 92. Taiwo YO, Levine JD. Characterization of the arachidonic acid metabolites mediating bradykinin and noradrenaline hyperalgesia. Brain Res 1988;458:402-406.
- Farmer SG, Burch RM. Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol 1992;32:511-536.
- Gammon CM, Allen AC, Morell P. Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons. J Neurochem 1989;53:95-101.
- Siegel G, Carl A, Adler A et al. Effect of prostacyclin analogue iloprost on K⁺ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 1989;2:213-222.
- Jackson WF, König A, Dambacher T et al. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol 1993;264:H238-H243.
- 97. Nicol GD, Vasko MR, Evans AR. Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. J Neurophysiol 1997;77:167-176.

- Hingtgen CM, Vasko MR. The phosphatase inhibitor, okadaic acid, increases peptide release from rat sensory neurons in culture. Neurosci Lett 1994;178:135-138.
- 99. Katsuyama M, Sugimoto Y, Namba T et al. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 1994;344:74-78.
- 100. Namba T, Oida H, Sugimoto Y et al. cDNA cloning of a mouse prostacyclin receptor. J Biol Chem 1994;269:9986-9992.
- 101. Hingtgen CM, Nicol GD. Carba prostacyclin enhances the capsaicin-induced cobaltloading of rat sensory neurons grown in culture. Neurosci Lett 1994;173:99-102.
- 102. Burgess GM, Mullaney I, McNeill M et al. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 1989;9:3314-3325.
- 103. Vane JR. Prostaglandins and the mechanism of analgesia produced by aspirin-like drugs: A commentary. Br J Pharmacol 1997;120(Suppl):399-400.

Chapter 10

IP-receptors in the enteric nervous system

1. INTRODUCTION

The primary prostaglandins, including prostacyclin, have powerful effects on gastrointestinal function. Early studies in laboratory animals showed that PGE_2 and $PGF_{2\alpha}$ caused "enteropooling", that is, diarrhoea typified by secretion of a large volume of mucosal fluid.^{1,2} On the other hand, prostacyclin,³ its stable analogue iloprost,⁴ and PGD_2^3 inhibited enteropooling. In man, prostacyclin and iloprost infusions tend to have stimulant effects, causing nausea, abdominal cramping and diarrhoea in some individuals.⁵⁻⁸

There is good evidence that the actions of IP agonists on the gut are mainly exerted through the enteric nervous system as opposed to directly on the end-organ (smooth muscle or mucosa). We will review this evidence and also discuss the subtypes of IP-receptors involved based on the potency rankings of prostacyclin analogues. In addition, the possible roles of endogenous prostacyclin in the normal and diseased enteric system will be described.

Four isolated enteric systems have received most attention: longitudinal muscle motility in guinea-pig ileum and rat colon, and mucosal secretion in guinea-pig and rat colon. The anatomical arrangements of the enteric nervous systems are shown in Figure 56, based on information in Jodal's review.⁹ For convenience, neuronal prostanoid receptors have been assumed to exist on the soma and/or generator region of the axon as opposed to the axon proper and/or nerve terminals; in most cases the exact location has not

been demonstrated. In this context, it is important to appreciate the potential limitations of one of our main pharmacological tools, the Na⁺-channel blocker tetrodotoxin (TTX). At concentrations between 10 nM and 1 μ M, TTX selectively inhibits nerve impulse conduction thus permitting a between neuronal (TTX-sensitive) and non-neuronal (TTXdistinction resistant) drug actions. However, a false picture may arise in two situations. Firstly, modulation of transmitter release by a drug that acts on presynaptic receptors linked to Ca2+ influx channels may be resistant to TTX; for example, 5-HT activates 5-HT₃-receptors on juxtamucosal terminals to generate ω -conotoxin-sensitive, but TTX-resistant, action potentials.¹⁰ Secondly, a drug whose sole action on the end-organ is enhanced or inhibited by tonic neuronal input will have a TTX-sensitive component.

Figure 56. Scheme showing the proposed sites of action of IP agonists on four enteric neurone systems. Neurotransmitters are shown in italics; excitatory receptors (filled symbols), inhibitory receptors (open symbols). \parallel represents a gap junction linking the pacemaker cell to the smooth muscle cell. ACh (acetylcholine), β_3 (β_3 -adrenoceptor), CysLT (cysteinyl leukotriene), NANC (nonadrenergic-noncholinergic), NK₃ (neurokinin-3), NO (nitric oxide), NT (neurotensin), SP (substance P), V (vasoactive intestinal peptide).

2. INTESTINAL MOTILITY

2.1 Guinea-pig ileum

Gaion & Trento^{11,12} were the first to study the action of prostacyclin on the enteric nervous system of the guinea-pig ileum. They showed that contraction of the longitudinal muscle elicited by 20 nM prostacyclin was abolished by TTX and by the muscarinic antagonist atropine (30 nM), but was little affected by the ganglionic nicotinic blocker hexamethonium. In addition, prostacyclin enhanced twitch responses of the ileum to electrical field stimulation (EFS), but had no effect on direct contractions induced by They concluded that prostacyclin activated cholinergic acetvlcholine. neurones in the myenteric plexus. A few years later, Jones & Lawrence¹³ showed that the contractile action of cicaprost was abolished by either TTX or morphine (which activates presynaptic opioid receptors to suppress transmitter release), but only partially inhibited by atropine (200 nM). However, a combination of atropine and a selective neurokinin NK1-receptor antagonist (e.g. CP-96,345) produced complete block. Thus, IP-receptor activation induces the neuronal release of both acetylcholine and a substance P-like agonist; the NK3 agonist senktide acts on enteric neurones in a similar manner¹⁴

A cicaprost-like profile on the guinea-pig ileum was also seen with another prostacyclin analogue, 10,10-difluoro- 13,14-didehydro PGI_2 (see Chapter 2). In contrast, with iloprost, carbacyclin or high concentrations of prostacyclin (0.1 - 1 µM), TTX or morphine produced only partial block and the remaining contractile component was antagonised by the EP1 antagonist 6809.15 It is likely that these three agents directly contract the AH longitudinal smooth muscle by activating EP1-receptors, rather than IPreceptors as originally suggested by Gaion & Gambaratto.¹⁶ EP₃-receptors are also present on the muscle cells, but it was not clear whether these were activated by the prostacyclin analogues.¹⁵ In addition, TTX or morphine partially inhibited the contractile action of PGE₂ and abolished that of the selective EP₂ agonist butaprost, indicating the presence of excitatory EPreceptors on enteric neurones in the ileum. In the case of PGE₁, we would expect morphine to annul its neuronal EP_2 and IP agonist actions, leaving its direct (and potent) EP_1 and EP_3 actions intact. However, in an early study on the guinea-pig ileum,¹⁷ the contractile effect of quite a high concentration of PGE₁(280 nM) was abolished by morphine.

There are no reports of the actions of IP agonists on guinea-pig ileum studied by intracellular electrode recording on a conventional longitudinal muscle-myenteric plexus preparation. In the case of PGE_2 (1 nM - 1 μ M),

this technique showed slow membrane depolarisations in both AH- and Stype neurones, which were unaffected by TTX, accompanied by bursting fast excitatory post-synaptic potentials in S neurones, which were TTX-sensitive (i.e. due to input from adjacent neurones).¹⁸ Rengel et al.¹⁹ showed binding sites for PGE₁ accompanied by elevation of cyclic AMP in both somataenriched and nerve terminal-enriched fractions from the myenteric plexus of the guinea-pig ileum, but whether these represented EP- or IP-receptors was not determined. Interestingly, μ -opioid receptors were also identified on both somata and nerve endings, but only the former were linked to inhibition of adenylate cyclase.¹⁹

There is however some data on the role of endogenous prostacyclin and PGE₂ in maintaining the excitatory sensitivity of the soma of cholinergic neurones in the ileum.^{20,21} In the plexus preparation, the cyclo-oxygenase (COX) inhibitor indomethacin suppressed the spontaneous release of acetylcholine and that induced by nicotine and substance P acting on acetylcholine and NK3-receptors on the soma of enteric neurones.²² Interestingly, indomethacin did not inhibit acetylcholine release induced by either EFS or 5-HT. The authors proposed that these stimuli activate axons/nerve terminals, rather than somata, and prostanoids have little excitatory action on axons/nerve terminals; alternatively, it is possible that nicotine and substance P-induced acetylcholine release is mediated by prostanoids, whereas acetylcholine release induced by EFS and 5-HT is not. The inhibitory action of indomethacin could be almost completely overcome by 15-cyclopentyl-ω-pentanor carbacyclin (OP-41483, 100 nM), whereas PGE₂ (150 nM) was only partially effective, and PGD₂, PGF_{2 α} and the TP agonist STA₂ (all 100 nM) had no significant effect.²¹ In view of the fact that prostacyclin generation by the plexus preparation was about four times higher than that of PGE₂ and also better maintained throughout the course of the experiment, the authors concluded that prostacyclin is an important modulator of the excitability of cholinergic enteric neurones.

2.2 Rat colon

Prostacyclin and its analogues can abolish the spontaneous motility of the rat isolated colon,^{23,24} and in our laboratory, we were using this preparation to screen for potential IP-receptor antagonists using the partial agonism shown by the nonprostanoid prostacyclin mimetic BMY 42393 as a lead (see Chapter 3). However, we obtained highly variable effects with some highly lipophilic analogues which led us to question whether the IP-receptors were located on the pacemaker/smooth muscle system as had been long assumed. When we found that the inhibitory action of cicaprost was abolished by TTX, a neuronal location seemed likely.²⁵ In fact, IP agonists activate

nonadrenergic-noncholinergic (NANC) neurones in the colon. One inhibitory transmitter is nitric oxide (NO); the identity of the second remains unknown, but its action is abolished by apamin, a blocker of small-conductance calcium-activated K⁺-channels.

3. MUCOSAL SECRETION

3.1 Guinea-pig colon

On submucosa-mucosa preparations of the guinea-pig colon set up in Ussing chambers, prostacyclin (10 nM to 10 pM) increased the short-circuit current (I_{sc}), indicative of an increase in electrogenic C1⁻ secretion.²⁶ The I,, response was virtually abolished by TTX, markedly suppressed by atropine, but unaffected by hexamethonium and the COX inhibitor piroxicam. The authors concluded that prostacyclin activates submucosal neurones, resulting in the release of ACh and a noncholinergic transmitter onto epithelial cells. PGD₂, PGE₂ and PGF_{2α} also induce TTX-sensitive increases in I_{sc}²⁶⁻²⁸ and it is likely that other prostanoid receptors besides the IP-receptor are present on the submucosal neurones.

3.2 Rat colon

Using the Ussing chamber technique, prostacyclin induced a TTXsensitive increase in I_{sc} of rat colon submucosa-mucosa (EC₅₀ = 10 nM), again indicative of C1⁻ secretion, and was much more potent the PGE₂ (EC₅₀ = 500 nM).^{29,30} In later experiments, it was shown that PGD₂ (5 pM) markedly inhibited increases in I,, induced by prostacyclin, iloprost, neurotensin and DMPP (a nicotinic agonist), without affecting responses to PGE₂ and vasoactive intestinal peptide.^{31,33} It was concluded that the former agonists excite mucosal / submucosal neurones and are susceptible to inhibition by PGD₂, which also has a neuronal site of action (Fig. 56). In contrast, the latter two agonists activate receptors on the colonocyte, which are linked to C1⁻ secretion through adenylate cyclase.³⁴

The increase in I_{sc} in rat colon induced by leukotriene D_4 (LTD₄), a cysLT-receptor agonist, is completely inhibited by the COX inhibitor piroxicam, and it is likely that the prostanoid biosynthesis occurs in the lamina propia rather than the epithelial layer.³⁵ However, neither TTX nor atropine affected the LTD₄ response and this suggests that if prostacyclin mediates the action of LTD₄ it is not via activation of enteric neurones. An

involvement of PGE_2 acting on the epithelium is more likely, although one still has to explain the observation that 5-HT₂ and 5-HT₃ antagonists also blocked the LTD₄ response.

4. IP-RECEPTOR CHARACTERISATION

Accurate comparisons of the potencies of prostacyclin analogues at neuronal IP-receptors in the gut are confounded by activation of EP-receptor systems on neurones and smooth muscle, which oppose or add to/synergise with the IP action.^{15,24} We can however obtain a crude measure of IP agonist potency by using the concentration range corresponding to the lower portion of the concentration-response curve (say 10 - 30% of the cicaprost maximum), where the effect is TTX/morphine-sensitive and interference by the EP agonist action is likely to be small (Fig. 57, inset). Figure 57 shows this approach applied to the previously discussed motility measurements in guinea-pig ileum and rat colon. There are two rankings on guinea-pig ileum, one for PGE analogues defining the neuronal EP₂-receptor, the other for prostacyclin analogues defining the neuronal IP-receptor. We have also included a ranking for potentiation of EFS responses in guinea-pig vas deferens, where IP agonists enhance transmitter release from sympathetic nerve endings. It should be noted that interference from presynaptic EP₃receptors linked to inhibition of transmitter release results in bell-shaped log concentration-response curves for many prostacyclin analogues.³⁶ Finally, a ranking for depolarisation of the rat vagus nerve is shown;^{37,38} this is a simple system to analyse since it is likely that only IP-receptors are present.

Not all prostacyclin analogues were tested on the four preparations, but several important trends can still be seen. Firstly, cicaprost is a highly potent agonist. Secondly, the potency ranking is cicaprost \geq iloprost \geq prostacyclin > carbacyclin/isocarbacyclin. This would strongly suggest the presence of IP1-receptors in all four neuronal preparations. The IP₂-receptor has been shown to have a completely different ranking: isocarbacyclin > iloprost > cicaprost, with cicaprost only showing activity in the micromolar range.³⁹

Turning to nonprostanoid prostacyclin mimetics (see Chapter 3), BMY 42393 and BMY 45778 proved to be unexpectedly weak at inhibiting the spontaneous motility of the rat colon (<10 and 15% inhibition at 10 μ M). This contrasted with their higher potencies as inhibitors of rat neutrophil activation, and we have suggested that this within-species difference is more likely due to the existence of different IP-receptor subtypes as opposed to efficacy-related phenomena.⁴⁰ However, when we subsequently found that BMY 45778 and other nonprostanoids were moderately potent, full agonists for depolarisation of the rat isolated vagus nerve, which is highly responsive

Figure 57. Rankings for agonist potency at neuronal prostanoid receptors. The solid bars show the lower portion of the concentration range over which each prostanoid shows neuronal stimulant activity (see inset). On the left \downarrow and \uparrow represent inhibitory and excitatory responses of each preparation respectively. TEI-9063 = 17α ,20-dimethyl isocarbacyclin, benzo-PGI = benzodioxane prostacyclin. Based on data in Ref. No. 15,24,36-38,60.
to cicaprost (EC₅₀ = 0.23 nM; Fig. 57)³⁸ (see Chapter 9), we reinvestigated the rat colon. We found that the neuronal stimulant actions of the nonprostanoids on the colon are surprisingly slow in onset. After 30 - 60 min exposure, BMY 45778 shows IP partial agonist activity between 0.1 and 3 μ M with a maximum inhibition of about 35%.³⁸ Thus the difference in the profiles of BMY 45778 on the rat vagus and rat colon may simply reflect the low efficacy of BMY 45778; on the higher sensitivity preparation it behaves as a full agonist, on the lower sensitivity preparation as a partial agonist. Although the rat neutrophil profile is still different, our original proposal for IP-receptor subtypes is now less secure.

5. MODULATION OF IN VIVO FUNCTIONS

Modulatory influences on the enteric nervous system may come from the gut lumen (food products and mechanical stress), the vascular supply and the autonomic innervation. Enteric reflexes are initiated by activation of receptor cells in the villous surface causing release of 5-HT and neurotensin onto sensory afferent nerve endings (Figure 56). These agents may also induce prostanoid biosynthesis in the lamina propria and submucosa, potentially leading to activation of enteric neurones or end-organ cells.

5.1 Physiological functions

In guinea-pig colon submucosa/mucosa preparations, distension by reduction of pressure in the submucosal half of the Ussing chamber induced both rapid and longer-acting increases in I_{sc} .⁴¹ Both phases were partially inhibited by TTX and atropine. However, the COX inhibitor piroxicam did not affect either the full distension response or the TTX-resistant component.

Everted sac preparations of the rat colon are much more sensitive than Ussing chamber preparations to the inhibitory action of PGD_2 , and this has been attributed to better preservation of the neuronal plexus.³³ It has been further suggested that endogenous PGD_2 functions to suppress colonic secretion in vivo, and this would account for the observation that iloprost does not induce net secretion in the rat colon unless prostanoid biosynthesis is first inhibited by indomethacin.⁴²

5.2 Contribution to purgative action

The well-known purgative action of senna anthraquinones is due to stimulation of both intestinal fluid secretion and motility.⁴³ In the rat,

indomethacin alone delayed the onset of and partially inhibited rhein anthrone-induced diarrhoea. The combination of indomethacin and the Ca²⁺-channel blocker nifedipine completely inhibited the diarrhoea, whereas indomethacin / verapamil was less effective.⁴⁴

5.3 Disease states

Diarrhoea is a common finding in infectious and inflammatory conditions of the gut. The watery diarrhoea typical of some enteropathogen infections may be due to luminal stimuli (heat-stable *E. coli* toxins, cholera toxin) dramatically accentuating the release of 5-HT and other transmitters. Inflammatory cytokines may be crucial intermediaries through their ability to induce the biosynthesis of prostanoids and other mediators in the lamina propria and submucosa, with resident lymphocytes and phagocytes playing an important role.^{9,45-48}

In isolated systems, the final secretory responses to the various stimuli are often inhibited by TTX and/or lignocaine, indicating a neuronal involvement? For example, in a myenteric plexus-longitudinal muscle preparation from the rat jejunum, a combination of interleukin-1 (IL-1β) and IL-6 produced a delayed decrease in $[^{3}H]$ -noradrenaline release from sympathetic nerves.⁴⁹ The effect was largely suppressed by the COX inhibitor piroxicam and partially inhibited by cycloheximide. Since PGE₂ levels were raised by the cytokine mixture, it was suggested that induction of COX leads to an inhibitory (EP₃) action of PGE₂ on sympathetic nerve endings, resulting in enhanced contractility. These observations do not however rule out a contribution from prostacyclin acting to enhance excitatory nervous pathways; the appropriate experiments have yet to be done. In human isolated colonic mucosa, the increase in Isc (mainly C1secretion) induced by tumour necrosis factor- α (TNF $_{\alpha}$) was abolished by indomethacin and partially inhibited by removal of subepithelial tissue.⁵⁰ However, TTX did not affect the TNF_{α} response and the investigators concluded that a neuronal action of prostacyclin was unlikely. A direct action of PGE_2 generated in subepithelial cells seemed more probable since its levels were raised six-fold following TNF_{α} challenge.

Turning to disease of the human gut, there are comparable increases in the levels of PGE₂, TXB₂ (metabolite of TXA₂) and 6-oxo PGF_{α} (metabolite of prostacyclin) in inflamed duodenal mucosa tissue from patients with active coeliac disease (gluten-sensitive enteropathy)^{s1} and in cultured rectal mucosa cells from patients in the active, but not remission, phases of ulcerative colitis.⁵² In a more detailed study, Zifroni et al.⁵³ showed that cultures of intestinal mononuclear cells from patients with Crohn's disease synthesised more prostanoids than control cultures; in mononuclear cell

cultures from ulcerative colitis patients, prostanoid levels were only elevated in the one patient who was not being treated with high doses of corticosteroid. More recently, Balint et al.⁵⁴ reported that 6-oxo PGF₁ levels in the colonic mucosa of newly developed, untreated ulcerative colitis patients were not different from controls. From these studies, a unique pathogenic role for prostacyclin is not apparent. Indeed, indomethacin offers no clinical benefit in ulcerative colitis⁵⁵ and has been associated along with other COX inhibitors with flare-up of the colitis leading to hospital admission.⁵⁶⁻⁵⁸ Perhaps we should be thinking of an anti-inflammatory or cytoprotective role for prostanoids, including prostacyclin, in these conditions.

In the acute phase of human cholera, aspirin, indomethacin and ibuprofen have little effect on the massive purgation present.⁵⁹ This is not to say that prostanoids are not involved; Jodal⁹ has suggested that the local release of prostanoids is so vast that incomplete inhibition of COX would still leave a substantial stimulus, and this could interact with the high levels of other secretory mediators which are almost certainly present.

6. CONCLUDING REMARKS

Prostanoids are clearly able to modulate activity of the gastrointestinal tract, but identifying their site of action and inferring a physiological/pathophysiological role presents a considerable challenge. To date, IP-receptors would appear to be located primarily on enteric neurones, but their precise location on these neurones and the signal transduction pathways involved have yet to be investigated in detail.

REFERENCES

- 1. Robert A, Nezamis JE, Lancaster C et al. Enteropooling assay: A test for diarrhoea produced by prostaglandins. Prostaglandins 1976;11:809-829.
- 2. Riviere PJ, Farmer SC, Burks TF et al. Prostaglandin E₂-induced diarrhoea in mice: importance of colonic secretion. J Pharmacol Exp Ther 1991;256:547-552.
- Robert A, Hanchar JA, Lancaster C et al. "Prostacyclin inhibits enteropooling and diarrhea." In *Prostacyclin*, Vane JR, Bergström S, eds. New York: Raven Press, 1979;147-157.
- Vischer P, Casals-Stenzel J. Pharmacological properties of ciloprost, a stable prostacyclin analogue on the gastrointestinal tract. Prostagland Leukot Med 1982;9:517-529.

- 5. Pickles H, O'Grady J. Side effects occurring during administration of epoprostenol (prostacyclin, PGI₂) in man. Br J Clin Pharmacol 1982;14:177-185.
- 6. Darius H, Hossmann V, Schrör K. Antiplatelet effects of intravenous iloprost in patients with peripheral obliterative arterial disease. Klin Woch 1986;64:545-551.
- McHugh NJ, Csuka M, Watson H et al. Infusion of iloprost, a prostacyclin analogue, for treatment of Raynaud's phenomenon in systemic sclerosis. Annal Rheumatol Dis 1988;47:43-47.
- 8. Pessi T, Kaukinen S, Ylitalo P et al. Iloprost, a prostacyclin analog in the treatment of advanced peripheral arterial disease. Vasc Surg 1986;20:301-307.
- 9. Jodal M. Neuronal influence on intestinal transport. J Internal Med 1990;228(Suppl 1):125-132.
- Hansen MB, Scadhauge E. Signal transduction pathways for serotonin as an intestinal secretagogue. Comp Biochem Physiol 1997;118A:283-290.
- Gaion RM, Trento M. The role of prostacyclin in modulating cholinergic transmission in the guinea-pig ileum. Br J Pharmacol 1983;80:279-286.
- Gaion RM, Trento M. The role of adrenergic, purinergic and opiate receptors in the control of prostacyclin-induced contraction in the guinea-pig ileum. Arch Int Pharmacodyn 1984;271:33-44.
- Jones RL, Lawrence RA. The NK₁-receptor antagonist CP-96,345 partially inhibits cicaprost-induced contractions of the guinea-pig ileum. Pharmacol Commun 1993;3:147-155.
- 14. Guard S, Watson SP. Evidence for neurokinin-3 receptor-mediated tachykinin release in the guinea-pig ileum. Eur J Pharmacol 1987;144:409-412.
- Lawrence RA, Jones RL, Wilson NH. Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on guinea-pig ileum. Br J Pharmacol 1992;105:271-278.
- 16. Gaion RM, Gambaratto L. Target sites for the inhibition of prostacyclin effects in the guinea-pig ileum. Naunyn-Schmied Arch Pharmacol 1987;336:445-452.
- Jaques R. Morphine as inhibitor of prostaglandin E₁ in the guinea-pig intestine. Experientia 1969;25:1059-1060.
- Dekkers JAJM, Akkermans LMA, Kroese ABA. Effects of the inflammatory mediator prostaglandin E₂ on myenteric neurons in guinea-pig ileum. Am J Physiol 1997;272:G1451-G1456.
- 19. Rengel I, Sinowatz F, Schultz R. Opioid-controlled adenylate cyclase in the guinea-pig myenteric plexus is confined to nerve somata. Eur J Pharmacol 1992;227:385-390.
- Takeuchi T, Okuda M, Yagasaki O. The differential contribution of endogenous prostaglandins to the release of acetylcholine from the myenteric plexus of the guineapig ileum. Br J Pharmacol 1991;102:381-385.
- 21. Fukunaga Y, Mine Y, Yoshikawa S et al. Role of prostacyclin in acetylcholine release from myenteric plexus of guinea-pig ileum. Eur J Pharmacol 1993;233:237-242.
- 22. Yagasaki 0, Funaki H, Yanagiya I. Contribution of endogenous prostaglandins to excitation of the myenteric plexus of guinea-pig ileum. Eur J Pharmacol 1984;103:1-8.

- 23. Gryglewski RJ, Bunting S, Moncada S et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they makefrom prostaglandin endoperoxides. Prostaglandins 1976;12:685-713.
- 24. Dong YJ, Jones RL, Wilson NH. Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol 1986;87:97-107.
- 25. Qian YM, Jones RL. Inhibition of rat colon contractility by prostacyclin (IP-) receptor agonists: involvement of NANC neurotransmission. Br J Pharmacol 1995;115:163-171.
- Frieling T, Rupprecht C, Dobreva G et al. Effects of prostaglandin F_{2α} and prostaglandin I₂ (PGI₂) on nerve-mediated secretion in guinea-pig colon. Pflüger's Archiv Eur J Physiol 1995;431:212-220.
- Frieling T, Rupprecht C, Kroese ABA et al. Effects of the inflammatory mediator prostaglandin D₂ on submucosal neurons and secretion in guinea-pig colon. Am J Physiol 1994;266:G132-G139.
- 28. Frieling T, Rupprecht C, Dobreva G et al. Differential effects of mediators on ion secretion in the guinea-pig colon. Comp Biochem Physiol 1997;118A:341-343.
- Diener M, Bridges RJ, Knobloch SF et al. Neuronally-mediated and direct effects of prostaglandins in ion transport in rat colon descendens. Naunyn-Schmied Arch Pharmacol 1988;337:74-78.
- Moriarty KJ, Higgs NB, Tonge A et al. Prostacyclin regulates secretion in mammalian colon via dual calcium and cyclic AMP-dependent mechanisms - comparison with PGE₂. Gastroenterology 1990;98:A549.
- Goerg KJ, Diener C, Diener M et al. Antisecretory effect of prostaglandin D₂ in rat colon in vitro: action sites. Am J Physiol 1991;260:G904-G910.
- 32. Diener M, Nobles M, Schmitt C et al. Characterisation of the antisecretory action of prostaglandin D₂ in the rat colon. Acta Physiol Scand 1992;145:19-24.
- Goerg KJ, Wanitschke R, Diener M et al. Inhibition of neuronally mediated secretion in rat colonic mucosa by prostaglandin D2. Gastroenterology 1992;103:781-788.
- 34. Smith G, Warhurst G, Lees M et al. Evidence that PGE₂ stimulates intestinal epithelial adenylate cyclase by a receptor-mediated mechanism. Dig Dis Sci 1987;32:71-75.
- Hyun CS, Binder HJ. Mechanism of leukotriene D₄ stimulation of C1⁻ secretion in rat distal colon. Am J Physiol 1993;265:G467-G473.
- Tam SFF, Chan KM, Bourreau JP et al. The mechanisms of enhancement and inhibition of field stimulation responses of guinea-pig vas deferens by prostacyclin analogues. Br J Pharmacol 1997;121:1413-1421.
- 37. Smith JA, Amagasu SM, Eglen RM et al. Characterization of prostanoid receptorevoked responses in rat sensory neurones. Br J Pharmacol 1998;124:513-523.
- 38. Rudd JA, Tsui KKC, Jones RL. Non-prostanoid prostacyclin mimetics as neuronal stimulants in the vagus nerve and colon of the rat. Br J Pharmacol 1999;submitted.
- 39. Takechi H, Matsumura K, Watanabe Y et al. A novel subtype of the prostacyclin receptor expressed in the central nervous system. J Biol Chem 1996;271:5901-5906.
- Wise H, Qian YM, Jones RL. A study of prostacyclin distinguishes neuronal from neutrophil IP receptors. Eur J Pharmacol 1995;278:265-269.

- 41. Frieling T, Wood JD, Cooke HJ. Submucosal reflexes: distension-evoked ion transport in the guinea-pig colon. Am J Physiol 1992;263:G91-G96.
- 42. Goerg KJ, Wanitschke R, Becker U et al. Effect of the stable prostacyclin analogue iloprost on water and electrolyte transfer of the rat ileum and colon in vivo. Eur J Clin Invest 1988;18:124-127.
- 43. Leng-Peschlow E. Modes of action of senna. Pharmacology 1992;44(Suppl):16-19.
- 44. Yamauchi K, Yagi T, Kuwano S. Suppression of the purgative action of rhein anthrone, the active metabolite of sennosides A and B, by calcium channel blockers, calmodulin antagonists and indomethacin. Pharmacology 1993;47(Suppl 1):22-31.
- 45. Smith GS, Warhurst G, Turnberg LA. Synthesis and degradation of PGE_2 in the epithelial and subepithelial layers of the rat intestine. Biochim Biophys Acta 1982;713:684-687.
- 46. Lawson LD, Powel DW. Bradykinin-stimulated eicosanoid synthesis and secretion by rabbit ileal components. Am J Physiol 1987;252:G783-G790S
- Bern MJ, Sterbam CW, Karayalcin SS et al. Immune system control of rat and rabbit colonic electrolyte transport. Role of prostaglandins and enteric nervous system. J Clin Invest 1989;83:1810-1820.
- Rask-Madsen J, Bukhave K, Beubler E. Influence on intestinal secretion of eicosanoids. J Internal Med 1990;228(Suppl 1):137-144.
- Rühl A, Berezin I, Collins SM. Involvement of eicosanoids and macrophage-like cells in cytokine-mediated changes in rat myenteric nerves. Gastroenterology 1995;109:1852-1862.
- Schmitz H, Formm M, Scholz P et al. Tumour necrosis factor-α nduces C1⁻ and K⁺ secretion in human distal colon driven by prostaglandin E₂. Am J Physiol 1996;271:G669-G674.
- 51. Branski D, Karmeli F, Gross-Kieselstein E et al. Prostaglandins in small intestinal mucosa of children with celiac disease. J Ped Gastroenterol Nutrition 1984;3:672-675.
- 52. Ligumsky M, Karmeli F, Sharon P et al. Enhanced TXA₂ and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine. Gastroenterology 1981;81:444-449.
- 53. Zifroni A, Treves AJ, Sachar DB et al. Prostanoid synthesis by cultured intestinal epithelial and mononuclear cells in inflammatory bowel disease. Gut 1983;24:659-664.
- 54. Balint GA, Nagy F, Karacsony G. Endogenous mucosal prostacyclin levels in newly developed, untreated ulcerative colitis. J Clin Gastroenterol 1993;16:81-82.
- 55. Gould SR, Brash AR, Conolly ME et al. Studies of prostaglandins and sulphasalazine in ulcerative colitis. Prostaglandins Med 1981;6:165-182.
- 56. Rampton DS, McNeil NI, Sarner M. Analgesic ingestion and other factors preceding relapse in ulcerative colitis. Gut 1983;24:187-189.
- 57. Davies NM. Toxicity of nonsteroidal anti-inflammatory drugs in the large intestine. Dis Colon Rectum 1995;38:1311-1321.

- 58. Evans JM, McMahon AD, Murray FE et al. Non-steroidal anti-inflammatory drugs are associated with emergency admission to hospital for colitis due to inflammatory bowel disease. Gut 1997;40:619-622.
- 59. Rabbani GH, Butler T. Indomethacin and chloroquin fail to inhibit fluid loss in cholera. Gastroenterology 1985;89:53-57.

Chapter 11

IP-receptors in the central nervous system

1. INTRODUCTION

Although relatively little attention has been paid in the past to the role of prostacyclin in the central nervous system (CNS), we already know a great deal about the regulation of IP-receptors and their coupling to adenylate cyclase from studies using neuronal cell lines. At the present time though our attention is strongly drawn to the role of prostacyclin in the CNS following the discovery by Takechi et al.¹ of a novel IP-receptor subtype present in rat CNS; referred to here as the IP₂-receptor. One of the aims of the following chapter is to clarify why this CNS receptor remained unknown for so long, and to discuss its possible significance.

2. IP-RECEPTORS IN NEURONAL CELL LINES

2.1 Neuroblastoma cells

Regulation of adenylate cyclase activity by prostacyclin has been demonstrated in many tissues with several of the early detailed studies employing neuroblastoma cell lines,²⁴ (see Table 18). Additionally, some of the first studies using radiolabelled IP agonists were performed using neuroblastoma cell lines such as NCB-20^{5,6} and NG108-15^{.7} But whether these so-called neuronal cell lines truely represent neuronal cells in vivo is a crucial factor in our correct interpretation of the potential contribution of IP-

receptors to neuronal activity in the CNS. Twenty years ago it was noted that prostacyclin was a much more potent stimulator of adenylate cyclase activity in neuroblastoma cells (EC₅₀ 3 nM) than in astrocytoma cells (EC₅₀ 10μ M).² The neuroblastoma cells were of mouse origin while the astrocytoma cells were human, and although we should remain cautious when interpreting data across species, the difference in EC₅₀ values is more likely to represent a lack of functionally significant IP-receptors on astrocytoma cells, rather than a difference between mouse and human IPreceptors. The NCB-20 cell line has featured in many of the early studies of "neuronal" IP-receptors. This cell line derives from N18TG2 mouse neuroblastoma and foetal Chinese hamster brain cells, thus both parent cell lines are neuronal in origin and the hybrid expresses numerous functions of differentiated nerve cells.3 However, data in Table 18 and our current knowledge on the relative lack of [³H]-iloprost binding sites in the CNS^{1,8} might suggest that the adenylate cyclase stimulatory activity of prostacyclin in NCB-20 cells derives primarily from their neuroblastoma rather than their neuronal heritage.

	Adenylate cyclase activity EC_{30} or K_{act} (nM)			
Cell line				
	Prostacyclin	Iloprost		
1321N1 human astrocytoma ²	10,000			
SK-N-SH human neuroblastoma9		16		
N4TG3 mouse neuroblastoma ²	3			
N18TG2 mouse neuroblastoma (parent ofNCB-20 and NG108-15 cell lines) ⁴	22			
NCB-20 mouse neuroblastoma x foetal hamster brain cells ^{3,6,7,10,11}	25,28, 40, 64, 76	79		
NG108-15 mouse neuroblastoma x rat glioma hybrid ⁷		24		

Table 18. comparison of the adenylate cyclase stimulatory activity of IP agonists in neuronal cell lines

K_{act} is the concentration of agonist giving half-maximum enzyme activation.

The NCB-20 cells usually display a single class of [³H]-iloprost binding sites with a K_d of 5 - 30 nM and B_{max} of 183 - 347 fmol mg protein⁻¹, equivalent to about 80,000 sites per cell.^{6,12} It is interesting to note that very similar B_{max} values had been recorded earlier using [³H]-PGI ₂ as the radioligand.⁵ In contrast, Leigh & MacDermot¹¹ demonstrated the presence

of two binding sites for $[{}^{3}H]$ -iloprost in NCB-20 cells; there was a single population of high affinity receptors (K_d 9.55 nM and B_{max} 431 fmol mg protein⁻¹) and an additional second low affinity, nonsaturable, nonstereospecific site which appeared of no biological significance. It is likely that this second site is not often seen in other studies due to the need to use relatively high concentrations of radioligand.⁷

Iloprost and carbacyclin show similar potencies for competing with [³H]iloprost binding to NCB-20 cells (30 and 21 nM respectively in a study by Hall & Strange,⁶ and 100 and 210 nM respectively in a study by Armstrong et al.¹³). Although Hall & Strange⁶ concluded that there was a broad agreement between data from NCB-20 cells and human platelets, in hindsight we see the same signs of a species difference for carbacyclin compared to iloprost as seen in cells transfected with IP₁-receptor cDNA (see Chapter 4, Table 5).

NG108-15 cells (mouse N18TG2 neuroblastoma x rat-glioma hybrid) are another neuroblastoma cell line frequently used in the study of IP-receptors. As seen with NCB-20 cells, the K_d value for [³H]-iloprost binding to membranes of NG108-15 cells is also approximately 5 - 15 nM,7 which again is similar to the affinity of [³H]-iloprost binding in the nucleus tractus solitarius (NTS) rather than in the thalamus,¹ (see Table 20) suggesting that we are looking at the platelet-like IP1-receptor.

Early studies using NCB-20 cells clearly showed the high potency of prostacyclin in stimulating cyclic AMP production (EC₅₀ 25 nM), suggesting a direct neuronal effect of this prostanoid.³ By using 6P-PGI₁, a stable analogue of prostacyclin, Blair et al.³ showed that the increase in adenylate cyclase activity was mediated by a single receptor population; data which were later supported by radioligand binding studies.^{5,11} The parent cell line to NCB-20 and NG108-15 cells, i.e. N18TG2, shows the conventional order of potency for an IP-receptor of prostacyclin $> PGE_1 >> PGE_2$ for stimulation of adenylate cyclase activity, but at the time it was not known whether these agonists bound to the same or different receptors.⁴ Later that year (1981), Blair & MacDermot⁵ suggested that PGE₁ receptors should really be considered as prostacyclin receptors on the basis of [³H]-PGI₂ binding properties to NCB-20 cell membranes because PGE₁ displayed only 8-fold lower affinity than prostacyclin, whereas PGE₂ was 800-fold less potent. Nonprostanoid prostacyclin mimetics (see Chapter 3) frequently behave as partial agonists compared to cicaprost or iloprost when studied as activators of adenylate cyclase, as seen with EP 157 and EP 035 in NCB-20 cells and BMY 42393 and BMY 45778 in SK-N-SH cells (see Table 19).

Drug	NCB-20 cells ⁶	NCL	NCB-20 cell ¹³		SK-N-SH cells ⁹	
-	EC ₅₀ (nM)	EC ₂₀ (nM)	Maximum response (% iloprost)	EC ₅₀ (nM)	Maximum response (% cicaprost)	
Prostacyclin	76		•		· • /	
Cicaprost				12	100*	
Iloprost	79	12	100**	16	103	
Carbacyclin	100	95	78			
BMY 45778				18	48	
BMY 42393				1905	79	
Octimibate				1479	34	
EP 157		1660	49			
EP 035		7240	24			

Table 19. Comparison of the adenylate cyclase stimulatory activity of IP agonists in mouse/hamster (NCB-20) and human (SK-N-SH) neuroblastoma cells

*30 -fold increase, ** 15-fold increase.

NG108-15 cells are currently the favoured cell line for studying IPreceptor regulation. The IP-receptor in NG108-15 cells is present at approximately 100,000 copies per cell, whereas there are some 1,250,000 copies of $G_{s\alpha}$ but only 17,500 copies of adenylate cyclase per cell.¹⁴ Thus the amount of adenylate cyclase present is thought to form the rate-limiting component in the signal transduction pathway following IP-receptor stimulation in these NG108-15 cells. Iloprost causes a concentrationdependent increase in the formation of the complex between $G_{s\alpha}$ and adenylate cyclase (as measured by specific high affinity binding of [³H]forskolin) in NG108-15 cells, with an IC₅₀ value of 5 nM.¹⁵

Incubation of NCB-20 cells with 1 μ M carbacyclin for 16 h increased K_{act} (concentration of agonist giving half-maximum enzyme activation) and decreased the maximum rate of cyclic AMP production as seen by a decrease in both the K_d and B_{max} for [³H]-PGI₂ binding.¹⁰ Later studies failed to demonstrate any change in K_d,^{7,11} and now it would be accepted that downregulation of IP-receptor-mediated responses is due to loss of receptors rather than a change in receptor binding affinity. However in these and other studies,⁵ [³H]-PGI₂ was used as the radioligand and it exhibits a high level of nonspecific binding which may complicate data interpretation; therefore later studies have concentrated on the more useful radioligand [³H]-iloprost.

Cyclic AMP production by NCB-20 cells was downregulated following exposure to IP agonists such as prostacyclin, iloprost, carbacyclin and PGE₁, but unlike the effect of carbacyclin pretreatment in NG108-15 cells, there was no evidence for heterologous desensitisation.^{7,11,16} This is perhaps surprising given that preincubation of N18TG2 mouse neuroblastoma cells (i.e. one of the parental cells of both NCB-20 and NG108-15 cell lines) with

 $1~\mu M~PGE_1$ produced heterologous desensitisation.⁴ Therefore, why prolonged incubation of NCB-20 cells with IP agonists should only produce homologous desensitisation remains a mystery.

In the heterologous form of desensitisation seen in NG108-15 cells, there is loss of adenylate cyclase responsiveness not only to IP agonists, but also to adenosine A₂-receptor agonists and NaF.⁷ It was suggested that this homologous and heterologous desensitisation was most likely mediated by a single process such as co-internalisation of receptors and G-proteins.¹⁶ Kelly et al.⁷ proposed that the loss of responsiveness in NG108-15 cells is probably related to the functional loss of $G_{s\alpha}$ in these cells. In NG108-15 cells, IP a biphasic desensitisation of IP-receptor-stimulated agonists induce adenvlate cyclase with an initial phase coinciding temporally with loss of receptors and G_{see} whereas the second component appears to occur independently of $\overline{G}_{s\alpha}$ loss.¹⁷ The role of IP-receptor internalisation in the process of IP-receptor downregulation is still far from clear,18-20 although a major component may be due to loss of IP-receptors and $G_{s\alpha}$ 17 and the increased breakdown of existing receptors.²¹ In opposition to IP-agonistmediated downregulation of IP-receptors, the cyclic AMP response of NG108-15 cells and human neuroblastoma SH-SY5Y cells to PGE1 (presumably via activation of IP-receptors) can be increased in opioidtolerant/dependent cells due to enhanced coupling efficiency between the receptor and G_s.^{22,23}

Despite some confusion over the status of IP-receptors in neuronal cells, we should perhaps acknowledge here the major contribution which NCB-20 neuroblastoma cells have made to our understanding of the critical groups in the prostacyclin molecule which allow binding to the IP-receptor,³ see Chapter 4, Section 3.1. The IP-receptors present in neuroblastoma cells have been further characterised using some of the nonprostanoid prostacyclin mimetics related to octimibate.⁹ These studies showed that the IP-receptor coupled to adenylate cyclase in the human neuroblastoma cell line SK-N-SH was indeed similar to the human platelet IP₁-receptor. This is perhaps not unexpected because neuroblastoma cell lines derive from neural crest cells which ordinarily give rise to spinal ganglionic cells,²⁴ and as noted in Chapter 9, the dorsal horn and dorsal root ganglia (DRG) are well endowed with mRNA for the IP₁-receptor. Exactly what are the consequences of IPreceptor mediated increases in cyclic AMP in NG 108-15 cells remains to be clarified. We know that iloprost partially inhibits both L- and N-type calcium channel currents, and this effect can be attenuated with protein kinase A inhibitors such as Rp-cAMPS and H89, and by downregulation of Gs,25 thus one of the consequences of IP-receptor activation in NG108-15 cells is cyclic AMP-dependent inhibition of calcium channel currents.

2.2 Glial cells

Whether or not IP-receptors are important in the functioning of glial cells is unclear. The presence of EP-, FP- and TP-receptors has been detected on cultured glial cells, but no mention was made of IP-receptors.²⁶ Messenger RNA for EP₃-, FP- and TP-receptors is present in cultured rat astrocytes and oligodendrocytes, but only EP₃- and TP-receptor mRNA was found in microglia.²⁷ More recently, Oida et al.²⁸ found no evidence of IP₁-receptor mRNA in mouse glial cells. With the IP₁-receptor being the last of the prostanoid family of receptors to be cloned, we will have to wait a while to gain more information on the expression of IP₁-receptor mRNA in isolated cultures of glial cells.

Purified primary cultures of rat type-1 rather than type-2 astrocytes respond well to PGD₂ and PGE₂, but there is only a minimal cyclic AMP response to iloprost.²⁹ In conjunction with the low potency of prostacyclin in human astrocytoma cells (EC₅₀ 10 μ M)² it is therefore probable that astrocytes lack functionally significant IP-receptors.

Microglial cells are the resident macrophages of the brain and, like peripheral macrophages, can be stimulated by lipopolysaccharide (LPS) or cytokines to release prostanoids. LPS induces expression of cyclo-oxygenase-2 (COX-2), but not COX-1 mRNA in microglial cultures from neonatal rat cerebral cortex, producing PGE₂, PGD₂ and TXA₂ in greater amounts than in astrocytes.³⁰ In contrast, LPS-stimulated LTB₄ production was much greater in astrocytes than in microglial cells; sadly no measurements of prostacyclin production were made in this study.

3. IP-RECEPTORS IN NEURONAL TISSUES

3.1 Distribution of IP-receptors in the CNS

The expression of IP₁-receptor mRNA was not detected in mouse or human brains;^{31,32} these data match the relative lack of [³H]-iloprost binding in the higher centres of rat CNS and contrast with the distinct distribution of IP₁-receptor mRNA and [³H] -iloprost binding in the nucleus tractus solitarius (NTS), spinal trigeminal nucleus, dorsal horn and DRG.^{8,28} Although [³H]-iloprost shows little binding in the CNS, [³H]-isocarbacyclin binds well, Thus, in addition to binding in the rat NTS and spinaltrigeminal nucleus, [³H]-isocarbacyclin binding was observed in the thalamus, lateral septal nucleus, hippocampus, cerebral cortex, striatum, and dorsal cochlear nucleus.¹ [³H]-Isocarbacyclin did not appear to discriminate between IP-

receptors in the NTS and thalamus, whereas $[{}^{3}H]$ -iloprost bound with 23fold lower affinity in the NTS compared with the thalamus (Table 20). Furthermore, the distribution of $[{}^{3}H]$ -isocarbacyclin was quite different from that of $[{}^{3}H]$ -PGD₂, $[{}^{3}H]$ -PGE 1, $[{}^{3}H]$ -PGE₂ and $[{}^{3}H]$ -PGF_{2 α}.Thus $[{}^{3}H]$ isocarbacyclin recognises a distinct form of the IP-receptor in the CNS, and one that is poorly recognised by iloprost.

Tuble 20. Sedicitate analysis of [11] hopfost and [11] isocarbacyclin binang in fat brain						
Brain region	[3H]-iloprost		[3H]-isocarbacyclin			
	K _d (nM)	B _{max} fmoI mg protein ⁻¹)	K _d (nM)	B _{max} fmol mg protein ⁻¹)		
Nucleus tractus solitarius (NTS)	6.8	194	3.9	199		
Thalamus	159	163	7.8	230		
Descripted with normination from Wige ³³ using data from Takashi at al.						

Table 20. Scatchard analysis of [³H]-iloprost and [³H]-isocarbacyclin binding in rat brain

Reprinted with permission from Wise³³ using data from Takechi et al.¹

Earlier studies from Watanabe's group⁸ had revealed that [³H]-iloprost binding sites in sensory neurones were distributed presynaptically (see Chapter 9). In contrast, hemilesion studies of striatal neurones lesioned by kainate or of dopaminergic afferents lesioned by 6-hydroxydopamine revealed that the binding sites for [³H]-isocarbacyclin existed postsynaptically on neuronal cells in the striatum, but not on the presynaptic terminals of afferents or on glial cells.¹ Therefore Watanabe proposed to designate this new IP-receptor subtype in the CNS, i.e. the [³H]isocarbacyclin binding site, as the IP₂-receptor and refer to the classical platelet IP-receptor as the IP₁-receptor;¹ a system of nomenclature that we are also using in this monograph.

Having identified 15R-TIC (15R-16-*m*-tolyl isocarbacyclin, see Fig. 18) as a selective ligand for this neuronal IP₂-receptor (see Section 3.2 below), the next step was taken by Watanabe's group to prepare [³H]-15R-TIC and examine its binding distribution in rat brain. [³H]-15R-TIC binding in frozen sections of rat brain was similar to that of [³H]-isocarbacyclin, ¹ being high in thalamus, striatum, hippocampus, and piriform, entorhinal and some other cortices.³⁴ Two components of high affinity binding were found in the rostral regions with K_d values of < 1 nM and approximately 30 nM. In a positron emission tomography (PET) study, the methyl ester of [¹¹C]-15R-TIC showed higher uptake into normal rhesus monkey brain than did the free acid form, and also showed a similar distribution to that seen in rat brain.³⁴ Once the methyl ester form gets into the brain, it is deesterified and then binds to the IP₂-receptor, with the highest uptake in the thalamus, and lesser uptake in the striatum and some cortical areas.

3.2 Characterisation of IP-receptors in the CNS

Further support for the idea that [3 H]-isocarbacyclin recognised a novel IP-receptor in the CNS came from detailed characterisation studies and the discovery of 15R-TIC. The origin of 15R-TIC lies in attempts to convert isocarbacyclin into a ligand suitable for PET studies.³⁵ However, 15R-TIC turned out to be a selective ligand for the IP₂-receptor, able to compete with [3 H]-isocarbacyclin binding in rat thalamus and NTS with IC₅₀ values of 31 nM and 1.2 μ M respectively.³⁵ Specificity of [3 H]-isocarbacyclin binding in rat brain was distinctly different in the NTS compared with the thalamus; the order of potency for competition with [3 H]-isocarbacyclin binding in the NTS was isocarbacyclin = cicaprost = iloprost > carbacyclin > PGE₁ > 15R-TIC > PGE₂ > PGD₂ = PGF_{2α} compared with the thalamus where isocarbacyclin = 15R-TIC > carbacyclin > iloprost > PGE₂ > PGE₁ = cicaprost>PGD₂=PGF_{2α}¹.

agreement these binding experiments, In with 15R-TIC was approximately 100-fold less potent than cicaprost and isocarbacyclin in inhibiting platelet aggregation.³⁵ Although the 15 S-isomer also showed high affinity binding in the thalamus ($IC_{50} = 38$ nM), it did not discriminate between the platelet IP₁-receptor and neuronal IP₂-receptor (IC₅₀ = 23 nM in NTS).³⁵ Another distinction of this neuronal IP-receptor is that it does not appear to elicit changes in cyclic AMP production, phospholipid turnover, or calcium concentrations, but the authors make a cautionary note that further experiments are needed to make sure that this is not simply a reflection of low sensitivity assays in cell systems which may have a low level of receptor expression.

3.3 Function of IP-receptors in the CNS

In the 1960's, Avanzino et al.^{36,37} observed that PGE_1 had a selective excitatory action on brainstem neurones of the cat, but noted that the functional significance of these observations was unknown; amazingly we can still say the same thing some 30 years later. In terms of behavioural effects, PGE_1 tends to be depressant,³⁸ although this effect could be due to activation of EP-receptors. In addition, the effect of IP agonists is highly species dependent, e.g. prostacyclin injected into the third cerebral ventricle (i.c.v.) will increase locomotor activity in rabbits.³⁹ Although prostacyclin injected i.c.v. can cause a surprisingly long-lasting hyperthermic response, it is considerably less potent than PGE_2 and would not appear to be involved in the pathogenesis of fever.³⁹

Beraprost (0.3 mg kg⁻¹, orally) suppresses spontaneous activity and reduces body temperature in mice with similar pharmacological effects as

prostacyclin when administered intravenously.⁴⁰ Although this behavioural suppression by IP agonists was described as a CNS effect, it is unlikely that the decrease in spontaneous activity is truely a neuronal effect of beraprost. This is because the dose-response relationship for the hypothermia response, the decrease in spontaneous activity and the potentiation of hexabarbitone-induced sleeping time were similar, and the latter two responses could well be ascribed to the hypothermic effect of beraprost. Because flushing of the skin was noticeable at even the lowest dose of beraprost studied (0.3 mg/kg, orally), then the hypothermia could be due to the vasodilator action of beraprost. Cerebral blood flow will depend on the relative dilator capacities of other vascular beds (i.e. the steal phenomenon; see Haberey et al.⁴¹) and the ability of the heart to maintain cardiac output under conditions of arterial hypotension and reduced venous return.

The pharmacology of the isomeric pair FCE-22176 and FCE-22177 has already been described in Chapter 4 (Section 5). It is however worth pointing out here that while the 5E-isomer (FCE-22177; natural configuration) was depressive in mice following intravenous injection (5 - 400 μ g kg⁻¹), the 5Z-isomer (FCE-22176) was stimulant.⁴² Because FCE-22176 had been claimed to be a potent IP antagonist,⁴³ it was suggested that FCE-22 176-induced excitation was due to antagonism of the endogenous (depressive) prostacyclin, or indeed, that there was a different site of action.⁴² It will be interesting to see how this theory survives the recognition of a novel IP2-receptor in the rat CNS.

While the distribution of $[{}^{3}H]$ -iloprost binding sites in the CNS readily supports an involvement of IP-receptors in sensory pathways (see Chapter 9), a functional correlate with the distribution of $[{}^{3}H]$ -isocarbacyclin is harder to make. Therefore when considering the possible functions of neuronal IP₂-receptors, perhaps we should start to concentrate on their distinct cellular distribution. Thus the classical IP₁-receptor appears to be localised presynaptically in DRG neurones and visceral afferents,⁸ (as does the peripheral neuronal IP-receptor present in guinea-pig vas deferens^{44,45}) whereas the neuronal IP₂-receptor of Takechi et al.¹ is located postsynaptically. Electrophysiological studies in the CA1 region of the rat hippocampus revealed that prostacyclin itself, and some prostacyclin analogues, have a facilitatory effect on excitatory transmission through this novel IP₂-receptor, but that cicaprost shows little or no activity matching its inability to compete with [${}^{3}H$]-isocarbacyclin for binding in the rat CNS.¹

The blood-brain-barrier permeability of isocarbacyclin and related analogues can be increased by incorporating the prostanoids into lipid micros heres,^{46,47} and when the methyl ester form of isocarbacyclin (TEI-9090)⁴⁸ is incorporated into lipid microspheres, the resulting drug (TTC-909) can pass through the blood-brain-barrier where it changes to its active metabolite isocarbacyclin (TEI-7165). When given intravenously 10 min after transient forebrain ischaemia in stroke-prone spontaneously hypertensive rats, TTC-909 dose-dependently protected against pyramidal cell layer death in the hippocampus.⁴⁶ Although the attentuation of ischaemic neuronal cell death by TTC-909 may be due to improvement in post-ischaemic events in the local cerebral blood flow and blood-brainbarrier permeability, the authors speculate that there may also be a direct effect of TTC-909 on the CNS itself. This conclusion is looking increasingly attractive given that 15R-TIC and its more potent derivative, 15-deoxy-TIC, have an inhibitory effect on apoptosis of neuronal cells at nanomolar concentrations.⁴⁹

Furthermore, when patients with chronic cerebral infarction were treated with this lipid isocarbacyclin preparation, a significant improvement in neurological and mental symptoms was noted after merely seven days.⁵⁰ However, because lipid microspheres containing prostacyclin analogues tend to accumulate at the arteriosclerotic lesions in the vascular wall,⁵⁰ and because isocarbacyclin is nonselective for IP₁-receptor and IP₂-receptors, it is possible that we are primarily seeing a beneficial cardiovascular effect of IP agonists, rather than an effect mediated by neuronal IP₂-receptors.

When considering the potential role of the prostacyclin in the CNS, it is worth noting the results from clinical investigations of patients with Alzheimer's disease. There appears to be a beneficial effect for patients taking nonsteroidal anti-inflammatory drugs (NSAIDs) on the progression of the disease which may indicate an important role for prostanoids in neurodegenerative diseases;⁵¹ only time will tell if prostacyclin is one such prostanoid.

3.4 Cyclo-oxygenase activity in the CNS

We have already noted in the preceeding chapters that prostacyclin is involved in many biological functions in addition to simply inhibiting platelet aggregation. Perhaps what is surprising when trying to solve the puzzle of the role of prostacyclin (if any) in the CNS is the range of psychotropic drugs able to inhibit COX activity. Thus, monoamine oxidase inhibitors such as phenelzine and tranylcypromine, and the tricyclic antidepressant doxepin have comparable potency with indomethacin when tested in vitro,⁵² Additionally, tranylcypromine inhibits prostacyclin synthase activity.⁵³ Whether or not any of the prostanoids themselves play a role in depression though is another question altogether.

If we consider the sensory afferent nerves which respond to IP agonists, we can see that the source of endogenous prostacyclin is both the initial inflammatory event, e.g. prostacyclin generated at the site of inflammation,

and by prostacyclin generated intraneuronally as in the case of bradykininactivation of nodose ganglia neurones (see Chapter 9). But what is the source of prostacyclin in the CNS which will be needed to activate the postsynaptic IP₂-receptor? Sympathetic postganglionic neurones can produce prostacyclin in response to noradrenergic stimulation,^{54,55} therefore it has been presumed that prostacyclin production by other neuronal cells is possible, Definite proof of this though has been difficult to obtain due to the low level of prostanoid production by cultured neuronal cells,⁵⁶ which of course may not truly reflect the situation in vivo.

Eicosanoids, including 6-oxo PGF₁ α , can be released in micromolar concentrations from brain tissues under hypoxic stress.^{57,58} 6-Oxo PGF₁ α is detectable in the brain and is increased by pathological conditions such as convulsion,⁵⁹ and prostaglandins are released during tonic-clonic convulsions, possibly as part of an anticonvulsive action mediated primarily by PGD₂.⁶⁰ There are also a number of studies showing the release of prostaglandins from the CNS and from cultured neuroblastoma and glial cells, and in general the rate of release correlates with the level of neuronal activity/stimulation.⁶⁰⁻⁶² However the profile of synthesis reported varies markedly among tissues and species.⁶³ For example, the small blood vessels, choroid plexus, and the leptomeninges tend to synthesise more prostacyclin than PGE₂, PGF₂ α depending on the species; PGD₂ appears to be the major prostaglandin metabolite in rat brain.⁵⁷ On this basis it would seem that the neuronal IP-receptors are more likely to be activated by prostacyclin released from non-neuronal tissues, but more studies are needed here.

In inflammatory events, COX-2 is the inducible enzyme, but COX-2 mRNA in the CNS is constitutively expressed in rat telencephalic neurones even under normal unstimulated conditions.⁶⁴ Indeed, the expression of the COX-2 gene in the CNS appears to be activity-dependent, and increases in response to electroconvulsive seizure activity and natural synaptic activity.⁶⁵ Furthermore, COX-2 is a member of a growing family of immediate early genes (IEG) that are rapidly regulated in brain neurones by synaptic activity but do not appear to encode transcription factors. And as with other immediate early genes, COX-2 mRNA shows a distinct developmental pattern which parallels that of excitatory synapse formation in the rat brain.65 Because the increased expression of COX-2 would be expected to increase the generation of PGH_2 , we clearly need a better picture of the distribution of prostacyclin synthase in the brain to help understand the role for prostacyclin here. As pointed out by Yamagata et al.,65 PGH2 is highly lipid soluble and could diffuse from neurones to more remote regions of the same neurone, or to adjacent neurones and glial cells. Thus, PGH_2 might diffuse to adjacent oligodendroglia and be converted to PGD_2 , or to microvessels and be

converted to prostacyclin. Additionally, one could speculate that PGH_2 might diffuse intraneuronally to be converted to prostacyclin elsewhere in the neurone.

In experimental seizures in rats, COX-2 mRNA (but not COX-1 mRNA) is up-regulated in neurones, an effect which is blocked by N-methyl-Daspartate (NMDA)-receptor antagonists such as MK801.65 COX-2 expression also increases in response to high frequency stimili applied in the hippocampus (blocked by MK-801), and is induced by acute stress.⁶⁵ Excitotoxin injection into the rat nucleus basalis also causes a marked induction of COX-2 mRNA which is attenuated by MK-801 and by inhibition of glutamate release by lamotrigine.⁶⁶ This suggests that COX-2 expression may be induced by activation of NMDA-receptors as glutamate is released during cerebral ischaemia. There is also a correlation between the extent of COX-2 mRNA induction in cortical regions at 4 h (attenuated by MK-801) and the severity of tissue damage at 24 h following cerebral ischaemia resulting from permanent middle cerebral artery occlusion in the rat.⁶⁷ COX-2 immunoreactivity (COX-2-i.r.) was particularly prominent at the medial edge of an ischaemic area, and its absence in glial fibrillary acidic protein (GFAP)-positive cells suggested that COX-2 is located neuronally.⁶⁸ Furthermore, the COX-2 inhibitor NS-398 reduced cerebral ischeamic damage at the periphery of the infarct suggesting that COX-2 is involved in mechanisms of delayed neuronal death at the infarct border.

COX-2-i.r. is selectivity expressed in subpopulations of excitatory neurones in neo- and allocortices, hippocampus and amygdala, and is compartmentalised to dendritic arborisations.⁶⁹ Moreover, COX-2-i.r. is present in dendritic spines, which are specialised structures involved in synaptic signalling, and since COX-2 produces diffusible prostanoid products, it may play a role in postsynaptic signalling of excitatory neurones in cortex and associated structures. Since COX-2 expression is tightly regulated by neuronal activity, Kaufmann et al.⁶⁹ inferred that neurones regulate the production of prostanoids by controlling the availability of cox-2.

Double-labelling analyses demonstrated a lack of co-localisation of COX-2 and GFAP, suggesting that COX-2 is not present in glial cells, but is localised in neuronal cells.^{68,69} Despite these observations, there is some evidence for COX-2-i.r. induced by LPS in isolated glial cells.³⁰ Furthermore, when studied in isolation, microglial cultures display a distinct response to activation of adenosine A_{2a}-receptors which leads to an increase in COX-2 mRNA levels and the synthesis of PGE₂.⁷⁰ However when studied in mixed primary cultures, prostaglandin endoperoxide synthase protein (i.e. COX) was found predominantly in neurones, not in glial cells, and the results suggest that COX is induced mainly in the neurone during the developmental stage with the aid of a certain factor(s) derived from proliferating glial cells, and then is located in both neurones and glial cells in the mature brain.⁷¹

Injection of LPS in rats can induce COX-2 expression in nonparenchymal cells of blood vessels and leptomeninges, and in neuronal cells restricted to telencephalic areas. Thus Cao et al.⁶⁴ concluded that prostaglandins derived from induced COX-2 in the inner surface of blood vessels and leptomeninges were most likely responsible for fever generation in response to LPS, and later went on to identify endothelial cells as the major source of COX-2 induced in response to interleukin-1^β.⁷² In a model of closed head injury in rats, the 6-oxo $PGF_{1\alpha}$ concentration in cortical slices taken from the injured zone doubles after 15 min and returns to basal levels between 4 and 10 days following injury.⁷³ The most marked changes in cerebrospinal fluid prostacyclin and TXÅ₂ occur during the first 4 h after stroke onset, whereas they were undetectable in cerebrospinal fluid samples from non-neurologic patients,⁷⁴ and samples of ventricular fluid from patients with head injuries vield some of the highest prostanoid values, especially for prostacyclin.⁶³ Therefore, it is possible that vascular-derived prostacyclin is crucial in injuries to the head, with additional prostanoids being generated by activitydependent COX-2 in neurones under conditions resulting in high glutamate concentrations.75,76

In glutamate-induced cytotoxicity of primary cultures of rat cortical neurones, PGE₁ and EP₂ agonists were cytoprotective, but since PGE₁ was much less potent than PGE₂, it is probable that PGE₁ is not acting via IP-receptors to mediate this cytoprotective action.⁷⁷ In contrast, prostacyclin has a direct cytoprotective effect on rat brain cells subject to hypoxia/reoxygenation or glutamate-induced injury.⁷⁸ Curiously, this cytoprotective effect of prostacyclin and prostaglandins in general in the CNS may not be mediated by cell surface receptors,⁷⁹ or by cyclic AMP.⁷⁸ Given that carbacyclin can also function independently of a cell surface IP-receptor in adipocytes, possibly by activation of the nuclear peroxisome proliferator-activated receptor (PPAR) family,⁸⁰ then it would be interesting to look for a comparable relationship in the CNS.

NMDA stimulates phospholipase A₂ activity by a Ca²⁺-dependent mechanism in a variety of neuronal cell populations resulting in arachidonic acid release, and COX inhibitors block NMDA induction of *c*-*fos* mRNA.⁷⁵ Further studies demonstrated that NMDA receptor activation triggers synthesis of PGE₂ and PGF_{2α}, but not PGD₂ in rat cerebral cortical neurones in vitro, with PGF_{2α} being particularly important for the NMDA induction of *c*-*fos* mRNA in dentate gyrus cells.⁷⁶ Sadly for the current discussion, no measurements of prostacyclin were made in this study. Now *c*-*fos* is an intermediate early gene and as such is crucial in the development of activity-

dependent modifications in neuronal structure and function.⁷⁶ NMDA receptors are enriched in dendrites and are preferentially localised to dendritic spines of neurones,⁷⁵ which is exactly what we see for the localisation of COX-2-i.r.⁶⁹ With COX-2 now also recognised as an intermediate early gene,^{65,69} we await the future with keen interest once prostacyclin is included in such studies as these.

In line with the comments made by Yamagata et al.⁶⁵ concerning PGH₂, Lerea et al.⁷⁶ also noted that while these current studies have measured the release of prostaglandins from NMDA-stimulated neuronal cells, the concentration of intracellular prostaglandins remains unknown. Therefore in this particular example looking at PGF_{2α}, it is still possible the PGF_{2α} acts as an intracellular diffusible signal (intracrine) travelling from the site of synthesis to the nucleus and in this way it could serve a pivotal role in the spatial translocation of a signal from the surface NMDA-receptor located on distal dendrites to the nucleus. Alternatively, prostaglandins could diffuse to act extracellularly (autocrine/paracrine), or the arachidonic acid released after NMDA receptor activation could diffuse from neurone to glial cells for conversion. All these possibilities need careful consideration given the noncell surface receptor activity of carbacyclin in adipocytes,⁸⁰ and the cytoprotective action of IP agonists in the CNS.^{78,79}

4. **DISCUSSION**

The information presented in this chapter both challenges our understanding of neuronal IP-receptors and also begs the question: what makes an isolated cell line truely neuronal? For many years, IP-receptor function and regulation at the biochemical level has been studied using the so-called neuronal cell lines NCB-20 and NG108-15. With the currently available evidence, the IP-receptor expressed by these neuroblastoma cells has the characteristics of the platelet IP₁-receptor, i.e. it has high affinity for cicaprost and iloprost, and responds to these IP agonists by increasing cyclic AMP production. In contrast, the neuronal IP₂-receptor subtype described by Takechi et al.1 shows low affinity for cicaprost and iloprost, and does not appear to respond by increasing cyclic AMP production. Until definitive proof is provided by studies of 15R-[³H]-TIC binding to neuroblastoma cells, then it might be prudent to consider these cells as models for studying platelet rather than neuronal IP-receptors. Therefore, if a neuronal cell line has any neuroblastoma cell heritage, then we must be cautious in extending the results to a CNS site of action. Sadly this does limit the ease with which the neuronal IP₂-receptor subtype can be studied.

Another major implication from these studies on rat CNS tissue is our interpretation of data obtained using the standard IP agonists, cicaprost and iloprost. To date, activation by low concentrations of cicaprost has always been used as evidence for the role of IP-receptors in mediating a biological response. However, given the low potency of cicaprost at this neuronal IP₂-receptor, we will now have to be more cautious in dismissing the role of IP-receptors if cicaprost shows little activity. Under these circumstances, it would be advisable to check the activity of prostacyclin or carbacyclin as these are currently the only commercially available agonists for both IP₁ and IP₂-receptors. Prostacyclin in the CNS has long been overlooked on the assumption that its role is simply a cardiovascular one. It is time now to consider the potential role in the CNS for prostacyclin, in addition to other prostanoids, resulting from synaptically-induced COX-2 expression.

REFERENCES

- 1. Takechi H, Matsumura K, Watanabe Y et al. A novel subtype of the prostacyclin receptor expressed in the central nervous system. J Biol Chem 1996;271:5901-5906.
- 2. Ortmann R. Effect of PGI_2 and stable endoperoxide analogues on cyclic nucleotide levels in clonal cell lines of CNS origin. FEBS Lett 1978;90:348-352.
- Blair IA, Hensby CN, MacDermot J. Prostacyclin-dependent activation of adenylate cyclase in a neuronal somatic hybrid: prostanoid structure-activity relationships. Br J Pharmacol 1980;69:519-525.
- Howlett AC. Stimulation of neuroblastoma adenylate cyclase by arachidonic acid metabolites. Mol Pharmacol 1982;21:664-670.
- 5. Blair IA, MacDermot J. The binding of [³H]-prostacyclin to membranes of a neuronal somatic hybrid. Br J Pharmacol 1981;72:435-441.
- 6. Hall JM, Strange PG. The use of a prostacyclin analogue, [³H] iloprost, for studying prostacyclin-binding sites on human platelets and neuronal hybrid cells. Biosci Reports 1984;4:941-948.
- 7. Kelly E, Keen M, Nobbs P et al. Segregation of discrete $G_{s\alpha}$ -mediated responses that accompany homologous or heterologous desensitization in two related somatic hybrids, Br J Pharmacol 1990;99:309-316.
- Matsumura K, Watanabe Yu, Onoe H et al. Prostacyclin receptor in the brain and central terminals of the primary sensory neurons: an autoradiographic study using a stable prostacyclin analogue [³H] iloprost. Neuroscience 1995;65:493-503.
- Wise H, Chow BS. "The effect of non-prostanoid prostacyclin mimetics on cyclic AMP production by neuronal SK-N-SH cells." In *Recent Advances in Prostaglandin, Thromboxane, and Leukotriene Research,* Sinzinger H, Samuelsson B, Vane R et al., eds. New York: Plenum, 1998;197-200.

- 10. Blair IA, Leigh PJ, MacDermot J. Desensitization of prostacyclin receptors in a neuronal hybrid cell line. Br J Pharmacol 1982;77:121-127.
- Leigh PJ, MacDermot J. Desensitization of prostacyclin responsiveness in a neuronal hybrid cell line: selective loss of high affinity receptors. Br J Pharmacol 1985;85:237-247.
- 12. Leigh PJ, Cramp WA, MacDermot J. Identification of the prostacyclin receptor by radiation inactivation. J Biol Chem 1984;259:12431-12436.
- Armstrong RA, Jones RL, MacDermot J et al. Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol 1986;87:543-551.
- Kim GD, Adie EJ, Milligan G. Quantitative stoichiometry of the proteins of the stimulatory arm of the adenylyl cyclase cascade in neuroblastoma x glioma hybrid, NG108-15 cells. Eur J Biochem 1994;219:135-143.
- 15. Kim GD, Carr IC, Milligan G. Detection and analysis of agonist-induced formation of the complex of the stimulatory guanine nucleotide-binding protein with adenylate cyclase in intact wild-type and β 2-adrenoceptor-expressing NG108-15 cells. Biochem J 1995;308:275-281.
- Krane A, MacDermot J, Keen M. Desensitization of adenylate cyclase responses following exposure to IP prostanoid receptor agonists. Biochem Pharmacol 1994;47:953-959.
- 17. Williams RJ, Kelly E. G_{sα}-dependent and -independent desensitisation of prostanoidactivated adenylyl cyclase in NG108-15 cells. Eur J Pharmacol 1994;268:177-186.
- 18. Krane A, Keen M. The effect of iloprost pretreatment on the sub-cellular localization of IP prostanoid receptors and $G_{s\alpha}$ in NG108-15 cells. Br J Pharmacol 1995;115:137P.
- 19. Krane A, Keen M. The effect of inhibitors of internalization on IP prostanoid receptor down-regulation in NG108-15 cells. Br J Pharmacol 1995;115:138P.
- Keen M, Krane A. The effect of K*-depleted medium on iloprost- and forskolinmediated down-regulation of IP prostanoid receptors in NG108-15 cells. Br J Pharmacol 1996;117:72P.
- 21. Pearce D, Keen M. The effect of cycloheximide on IP prostanoid receptor downregulation in NG108-15 cells. Br J Pharmacol 1995;116:19P.
- Ammer H, Schulz R. Coupling of prostaglandin E₁ receptors to the stimulatory GTPbinding protein G_s is enhanced in neuroblastoma x glioma (NG-108-15) hybrid cells chronically exposed to an opioid. Mol Pharmacol 1993;43:556-563.
- 23. Ammer H, Schulz R. Morphine dependence in human neuroblastoma SH-SY5Y cells is associated with adaptive changes in both the quantity and functional interaction of PGE₁ receptors and stimulatory G proteins. Brain Res 1996;707:235-244.
- 24. Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 1983;71:741-749.
- 25. Luty J, Hepworth M, Kelly E et al. IP-Prostanoid receptor-mediated inhibition of calcium channel currents in NG108-15 neuroblastoma cells is mediated through G_s activation. Br J Pharmacol 1995;116:355P.

- Inagaki N, Wada H. Histamine and prostanoid receptors on glial cells. Glia 1995;11:102-109.
- 27. Kitanaka J, Hashimoto H, Gotoh M et al. Expression pattern of messenger RNAs for prostanoid receptors in glial cell cultures. Brain Res 1996;707:282-287.
- Oida H, Namba T, Sugimoto Y et al. *In situ* hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995;116:2828-2837.
- Ito S, Sugama K, Inagaki N et al. Type-1 and type-2 astrocytes are distinct targets for prostaglandins D₂, E₂, and F_{2α}. Glia 1992;6:67-74.
- Minghetti L, Levi G. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J Neurochem 1995;65:2690-2698.
- Namba T, Oida H, Sugimoto Y et al. cDNA cloning of a mouse prostacyclin receptor. J Biol Chem 1994;269:9986-9992.
- 32. Boie Y, Rushmore TH, Darmon-Goodwin A et al. Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 1994;269:12173-12178.
- 33. Wise H. Neuronal prostacyclin receptors. Progress Drug Res 1997;49:123-154.
- 34. Watanabe Y, Suzuki M, Björkman M et al. Brain uptake of ¹¹C-labelled stable prostacyclin receptor ligand studied by positron emission tomography. Neuroimage 1997;5:A1.
- 35. Suzuki M, Kato K, Noyori R et al. (15*R*)-16-*m*-tolyl-17,18,19,20-tetranorisocarbacyclin: a stable ligand with high binding affinity and selectivity for a prostacyclin receptor in the central nervous system. Angew Chem Int Ed Engl 1996;35:334-336.
- Avanzino GL, Bradley PB, Wolstencroft JH. Excitatory action of prostaglandin E₁ on brain-stem neurones. Nature 1966;209:87-88.
- 37. Avanzino GL, Bradley PB, Wolstencroft JH. Actions of prostaglandins E_1 , E_2 , and $F_{2\alpha}$ on brain stem neurones. Br J Pharmacol Chemother 1966;27:157-163.
- Horton EW, Main IHM. "Central nervous actions of the prostaglandins and their identification in the brain and spinal cord." In *Prostaglandin*, Horton EW, Main IHM, eds. Stockholm: Almqvist & Wiksell, 1967;253-260.
- 39. Milton AS. Thermoregulatory actions of eicosanoids in the central nervous system with particular regard to the pathogenesis of fever. Ann NY Acad Sci 1990;604:392-410.
- 40. Murata T, Sakaya S, Hoshino T et al. General pharmacology of beraprost sodium. Arzneim-Forsch / Drug Res 1989;39:860-866.
- Haberey M, Loge 0, Maaβ B et al. "Hemodynamic profile of iloprost in rats, rabbits and cats." In *Prostacyclin and its Stable Analogue Iloprost*, Gryglewski RJ, Stock G, eds. Berlin: Springer-Verlag, 1985;151-158.
- Caparrotta L, Ceserani R, Mongelli N et al. Depression and excitation induced in mice by two geometric isomers of (+)13,14-didehydro-20-methyl-carboprostacyclin, FCE 22177 and FCE 22176. Comparison with effects on blood pressure and platelet aggregation. Prostaglandins 1987;33:351-362.

- 43. Fassina G, Froldi G, Caparrotta L. A stable isosterically modified prostacyclin analogue, FCE-22176, acting as a competitive antagonist to prostacyclin in guinea-pig trachea and atria. Eur J Pharmacol 1985;113:459-460.
- 44. Tam FSF, Chan K, Bourreau J-P et al. On the mechanisms of enhancement and inhibition of field stimulation responses of guinea-pig vas deferens by prostacyclin analogues. Br J Pharmacol 1997;121:1413-1421.
- 45. Jones RL, Qian Y, Tam FSF et al. "Neuronal stimulant actions of prostacyclin and its novel mimetics." In *Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3*, Honn KV, Marnett LJ, Nigam S et al., eds. New York: Plenum Press, 1997:211-217.
- 46. Yamashita K, Kataoka Y, Nakashima M et al. Neuroprotective effect of TTC-909, an isocarbacyclin methyl ester incorporated in lipid microspheres, on hippocampal delayed neuronal death of stroke-prone spontaneously hypertensive rats. Jpn J Pharmacol 1996;71:351-355.
- Minagawa T, Sakanaka K, Inaba S et al. Blood-brain-barrier transport of lipid microspheres containing clinprost, a prostaglandin I₂ analogue. J Pharm Pharmacol 1996;48:1016-1022.
- Tanaka M, Kojima C, Muramatsu M et al. Binding affinities of isocarbacyclin methyl ester and its free acid to prostanoid receptors. Arzneim-Forsch / Drug Res 1995;45:967-970.
- 49. Suzuki M, Kato K, Watanabe Y et al. 15-Deoxy-16-(*m*-tolyl)-17,18,19,20tetranorisocarbacyclin: a simple TIC derivative with potent anti-apoptotic activity for neuronal cells. Chem Commun 1999;(4):307-308.
- Hoshi K, Mizushima Y. A preliminary double-blind cross-over trial of lipo-PGI₂, a prostacyclin derivative incorporated in lipid microspheres, in cerebral infarction. Prostaglandins 1990;40:155-164.
- 51. Breitner JCS. The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer's disease. Annu Rev Med 1996;47:401-411.
- 52. Lee RE. The influence of psychotropic drugs on prostaglandin biosynthesis. Prostaglandins 1974;5:63-68.
- 53. Hoyng PhFJ, van Alphen GWHM. Behaviour of IOP and pupil size after topical tranylcypromine in the rabbit eye. Doc Ophthalmol 1981;51:225-234.
- 54. Malik KU, Sehic E. Prostaglandins and the release of the adrenergic transmitter. Ann NY Acad Sci 1990;640:222-236.
- 55. Gonzales R, Sherbourne CD, Goldyne ME et al. Norepinephrine-induced prostaglandin production by sympathetic postganglionic neurons is mediated by α_2 -adrenergic receptors. J Neurochem 1991;57:1145-1150.
- 56. Hertting G, Seregi A. Formation and function of eicosanoids in the central nervous system. Ann NY Acad Sci 1990;604:84-99.
- 57. Huttemeier PC, Kamiyama Y, Su M et al. Microdialysis measurements of PGD_2 , TXB_2 , and 6-keto- $PGF_{1\alpha}$, in rat CAI hippocampus during transient cerebral ischemia. Prostaglandins 1993;45:177-187.

- Leffler CW, Parfenova H. Cerebral arteriolar dilation to hypoxia: role of prostanoids. Am J Physiol 1997;41:H418-H424.
- Hertting G, Seregi A. "Formation and function of eicosanoids in the central nervous system." In *Arachidonic Acid Metabolism in the Nervous System*, Hayaishi O, Yamamoto S, eds. New York: New York Academy of Science, 1989;559:84-99.
- Hertting G, Seregi A, Förstermann U. Formation and functions of prostaglandins in the central nervous system in rodents. Adv Prostaglandin Thromboxane Leukot Res 1985;15:573-576.
- Ramwell PW, Shaw JE. "Prostaglandin release from tissue by drug, nerve and hormone stimulation." In *Prostaglandins*, Bergström S, Samuelsson B, eds. Stockholm: Almqvist & Wiksell, 1967;283-292.
- Coceani F, Pace-Asci& CR. "Prostaglandins and the central nervous system." In *Prostaglandins: Physiological, Pharmacological and Pathological Aspects,* Karim SMM, ed. Baltimore: University Park Press, 1976;1-36.
- White RP. Cerebrospinal fluid eicosanoids as an index of cerebrovascular status. Ann NY Acad Sci 1990;604:131-145.
- Cao C, Matsumura K, Yamagata K et al. Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 1995;697:187-196.
- Yamagata K, Andreasson KI, Kaufmann WE et al. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993;11:371-386.
- de Belleroche J, Adams J, Collaço-Moraes Y. Cyclooxygenase-2 induction in cerebral cortex in response to synaptic excitation. Prostaglandins Leukot Essent Fatty Acids 1996;55:p32.
- 67. Colla**ço**-Moraes Y, Aspey B, Harrison M et al. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J Cerebral Blood Flow Metab 1996;16:1366-1372.
- 68. Nogawa S, Zhang FY, Ross ME et al. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 1997;17:2746-2755.
- 69. Kaufmann WE, Worley PF, Pegg J et al. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 1996;93:2317-2321.
- Fiebich BL, Biber K, Lieb K et al. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A_{2a}-receptors. Glia 1996;18:152-160.
- 71. Kawasaki M, Yoshihara Y, Yamaji M et al. Expression of prostaglandin endoperoxide synthase in rat brain. Mol Brain Res 1993;19:39-46.
- 72. Cao C, Matsumura K, Yamagata K et al. Endothelial cells of the rat brain vasculature express cyclooxygenase-1 mRNA in response to systemic interleukin-1 β : a possible site of prostaglandin synthesis responsible for fever. Brain Res 1996;733:263-272.
- 73. Shohami E, Shapira Y, Yadid G et al. Increased 5-HETE production in the brain following head injury. Ann NY Acad Sci 1990;604:485-487.

- Djuricic BM, Kostic VS, Mrsulja BB. Prostanoids and ischemic brain edema. Ann NY Acad Sci 1990;604:435-437.
- Lerea LS. Glutamate receptor and gene induction: signalling from receptor to nucleus. Cell Signal 1997;9:219-226.
- 76. Lerea LS, Carlson NG, Simonato M et al. Prostaglandin $F_{2\alpha}$ is required for NMDA receptor-mediated induction of *c-fos* mRNA in dentate gyrus neurons. J Neurosci 1997;17:117-124.
- Akaike A, Kaneko S, Tamura Y et al. Prostaglandin E₂ protects cultured cortical neurons against *N*-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 1994;663:237-243.
- Cazevieille C, Muller A, Bonne C. Prostacyclin (PGI₂) protects rat cortical neurons in culture against hypoxia/reoxygenation and glutamate-induced injury. Neurosci Lett 1993;160:106-108.
- 79. Cazevieille C, Muller A, Meynier F et al. Protection by prostaglandins from glutamate toxicity in cortical neurons, Neurochem Int 1994;24:395-398.
- 80. Aubert J, Ailhaud G, Negrel R. Evidence for a novel regulatory pathway activated by (carba)prostacyclin in preadipose and adipose cells. FEBS Lett 1996;397:117-121.

Index

³H]-iloprost binding central nervous system, 245 neuroblastoma cells, 286 platelets, 68, 114 sensory pathways, 245 viscerosensory ganglia, 251 ³H]-isocarbacyclin central nervous system, 44,290 15 AU81, 235 15-deoxy-16-m-tolyl isocarbacyclin (1 5-deoxy-TIC), 44,294 15-hydroperoxidase, 3 15-O-methyl prostacyclin, 44 16-m-tolyl isocarbacyclin (15R-TIC), 44,291 16-*m*-tolyl isocarbacyclin (15S-TIC), 44,292 17-phenyl-ω-trinor PGE₂, 15 5-lipoxygenase-activating protein (FLAP), 5 6-keto PGF1a. See 6-oxo PGF1a 6-oxo PGE₁, 46, 119

9β-methyl carbacyclin (ciprostene), 148,229 adhesion molecules, 194, 195, 225 adipocytes, 92 Adult Respiratory Distress Syndrome (ARDS), 204 AFP-07,51 AH 13205,15 AH23848, 15 AH 6809, 15 allodynia, 255 Alprostadil. See PGE₁ anti-IP-receptor antibody, 87, 116 antiplatelet activity of IP agonists mechanism of action, 120 antithrombotic drugs, 109 arteries, 138 aspirin, 19 astrocytoma cells, 286 atherosclerosis, 166,225,231 beraprost, 34 BMY 42393, 62 BMY 45778,66

receptor-active conformation, 66

306

bradykinin, 19 bradykinin B₂-receptors dorsal root ganglia, 260 nodose ganglia, 253 bradykinin nociception effects mediated by prostacyclin, 252, 259 butaprost, 15 BW 245C, 13 BW A868C, 13, 49

CAPD macrophages, 216,222 carbacyclin, 17,35 chimeric IP/DP-receptors, 90 cicaprost, 17, 50 cloned IP-receptors amino acid sequence, 83 characterisation, 82, 88 configuration, 84 G-protein coupling, 93 ligand binding domains, 90 cloprostenol (ICI 80996), 15 CMK cells, 125 colon, 271 cortical collecting ducts (rabbits), 91 CU602.70 cyclo-oxygenase (COX), 3 central nervous system, 294 COX-1, 19, 255 COX-2, 19, 206, 220, 255, 295 role in vasculature, 153 cytoprotection, 92, 206, 280, 297 DDH-carbacyclin, 221 dorsal root ganglia (DRG), 101, 245, 249 DP-receptor ligands, 13, 49

DP-receptors, 13,49

EDHF (endothelium-derived hyperpolarising factor), 153

EDRF (endothelium-derived relaxing factor), 137, 152 eicosanoid biosynthesis, 2 central nervous system, 295 colon. 275 monocytes/macrophages, 217 neutrophils, 190 endothelium-derived relaxing factors (EDRFs), 137, 152 endotoxemia, 127 endotoxic shock, 206,220,229 enteric nervous system, 271 EP 035, 61 EP 092, 47 EP 157, 61 epoprostenol. See prostacyclin EP-receptor ligands, 15,49 EP-receptors, 15,49

F-11 cells, 250 FCE-22 176, 95, 293 FCE-22 177, 96, 293 fluoro-substituted prostacyclins, 33 fluprostenol(ICI810O8), 15 FP-receptor ligands, 15 FP-receptors, 15

glial cells, 290 granuloma macrophages, 220, 224

HEL cells, 91, 125 hepoxilin A₃ and B₃, 5 HL-60 cells, 190 hyperalgesia, 256 distinction between prostacyclin and PGE₂,257 role of cyclic AMP, 256 hypoxic stress, 295

IC₂ (mast) cells, 94 ICI 79939, 15 ileum, 15, 271

iloprost, 17, 44, 49 partial EP_1 agonist, 50 immune system role of prostacyclin vs PGE₂, 232 inflammatory mediators bradykinin, 19 interleukin-1, 19, 126, 157, 226, 279,297 PGE₂, 254 platelet-activating factor, 19 prostacyclin, 195, 244, 254 TNF_α, 157, 227, 279 inflammatory pain, 243 interleukin-1 (IL-1), 19, 126, 157, 226, 279, 297 **IP** agonists antilymphocyte activity, 234 antimacrophage activity, 224 antimetastatic effect, 234 antimitogenic effects, 98 antiplateletactivity, 118 cardiovascular effects, 146 central nervous system effects, 292 clinical use as antithrombotic drugs, 127, 230 clinical use in ARDS, 204 clinical use in atherosclerosis, 166, 231 clinical use in congestive heart failure, 170 clinical use in hypertension, 161 clinical use in lupus nephritis, 171 clinical use in peripheral vascular disease, 168 clinical use in pulmonary hypertension, 169 conformation, 88 effect on gut motility, 273 effect on mucosal secretion, 275 organ rejection, 235 renal actions, 148

IP₁-receptor knockout mice, 80, 112, 151,243 IP₁-receptor mRNA distribution, 247 IP₂-receptors, 44, 285 IP-receptor ligands development of BMY-series, 62 development of EP-series, 61 development of ONO-series, 63 IP-receptor mRNA distribution, 100 DRG cells, 101 immune system, 232 kidney, 100 IP-receptor mRNA regulation, 126 IP-receptor regulation, 97 megakaryocytes, 100 monocytes/macrophages, 219 neuroblastoma cells, 97, 288 platelets, 98, 123 IP-receptor subtypes, 95 IP-receptors, 17 ³H]-iloprostbinding, 85 activation of K+-channels, 144 cardiovascular system, 137 central nervous system, 285 classification, 79 cloning,81 enteric nervous system, 271 evidence for species differences, 67 evidence for subtypes, 67, 95 glial cells, 290 G-protein coupling, 91, 126 heart, 206 isolation, 81 multiple signalling pathways, 91, 94, 126, 144 neuroblastoma cells, 285 neutrophils, 189 phosphorylation, 93 platelet-like cells, 125 platelets, 109 regulation, 97

sensory nerve endings, 151 sensory pathways, 243 spinal cord, 247 vasculature, 137 iris sphincter (bullock), 49 ischaemia-reperfusion injury, 205, 294,297 isocarbacyclin, 49 K⁺-channels, 143 kidney, 100 leukotrienes, 4, 198 lipid microspheres, 293 lipocortin, 20 lipoxins, 5 15-epi-LXA₄, 217, 227 lipoxygenases, 3-5 lymphocyte cyclic AMP, 233 lymphocytes, 215 eicosanoid production, 233 resting vs activated cells, 233 macrophage cyclic AMP cell state, 220 macrophage tissue factor, 229 MAP kinase, 19 mediators of inflammation PGE2,232 prostacyclin, 232 MEG-01 cells, 94, 125 megakaryocytes, 100, 125 methyl ester of isocarbacyclin, 147,293 ofprostacyclin, 32 misoprostol, 15 Mono Mac 6 cells, 224,228 monocyte chemotaxis, 225 monocyte/macrophage cyclic AMP cell state, 222 effect of IP agonists, 221 regulation, 222

monocytes/macrophages, 215 ³H]-prostacyclin binding, 220 cytokine production, 226 differentiation, 216 eicosanoid production, 217 granuloma, 220, 224 IP-receptor regulation, 219 phagocytosis, 226 rat vs human, 222 resident vs elicited cells, 216, 220 multiple signalling pathways, 91 NCB-20 cells, 285 neuroblastoma cell lines, 285 neutrophil [Ca²⁺]_i, 193 neutrophilactivation, 191 neutrophil aggregation, 195 neutrophil chemotaxis and adhesion, 194 neutrophil cyclic AMP effect of IP agonists, 191 neutrophil enzyme release, 197 neutrophil IP-receptors characterisation. 203 evidence for species differences, 203 mechanism of action, 199 neutrophil LTB₄ formation, 198 neutrophil respiratory burst, 196 neutrophils, 189 resting vs elicited cells, 191 NG108-15 cells, 285 nileprost, 34 nitric oxide (NO), 153 nitric oxide synthase (NOS), 220 nociceptors, 248, 254 nodose ganglia, 251 nonprostanoid prostacyclin mimetics BMY 42393, 62 BMY 45778, 66 chemical development, 59

conformational mobility of BMYseries, 66 EP₃ agonism, 74 evidence for IP-receptor subtypes, 67 evidence for species differences in IP-receptors, 67, 119 octimibate, 62 optimising IP agonist potency, 64 partial IP agonists, 68, 70, 118, 192,287 platelet selectivity, 71 receptor-active conformation, 66 TP antagonism, 73 nonsteroidal anti-inflammatory drugs (NSAIDs), 19, 255, 294

octimibate, 62 ONO 1206 (limaprost; Opalmon), 46 ONO-1301,71 ONO-41483, 148 ONO-AP-227,64

P-450 mono-oxygenases, 3 partial IP agonists effect on vasculature (in vitro), 70 effect on vasculature (in vivo), 71 peptidoleukotrienes, 4 peroxisome proliferator-activated receptor (PPAR) family, 92,297 PGE₁, 46, 140 PGE₂, 15 metabolism, 38 PGF2a metabolism, 38 PGH₂ analogues, 60 phospholipase A₂, 19 platelet aggregation, 109 platelet cyclic AMP effect of IP agonists, 68, 117 platelet IP-receptors characterisation, 114

platelet-activating factor (PAF), 19 platelets IP-receptor regulation, 94 species differences, 67 polymorphonuclear leukocytes. See neutrophils positron emission tomography, 291 prostacyclin acid instability, 32 biological stability, 3,31 discovery, 8 endogenous antithrombotic agent, 111 endogenous EDRF, 152 metabolism, 36 receptor-active conformation, 39 release from vasculature, 156 structure, 31 prostacyclin analogues C15-epimers, 44 carbacyclins, 35,43 cardiovascular effects, 146 in vivo activity, 146 nomenclature, 30 receptor specificity, 49 renal actions, 148 stabilisation of vinyl ether unit, 33 variation in ω -chain, 43 prostacyclin antagonists FCE-22176,95,293 prostacyclin in inflammation, 195, 279 prostacyclin nociception mechanism of action, 261 prostacyclin synthase, 11, 155, 168, 294 prostaglandin endoperoxides, 3 prostaglandin H synthase (PGHS), 3 prostanoid receptors characterisation. 80 classification. 11 mutagenesis, 89

phylogeny, 12, 80 prostanoids, 3 biosynthesis, 19 ridogrel, 72, 112 RS-93427, 49 RS-93520, 49 S145, 51 SC 19220,15,49 SC 25191,49 SC 46275, 15 slow-reacting substance of anaphylaxis (SRS-A), 4 spinal cord excitatory amino acids, 249 neuropeptide release, 248 SQ 26655, 47 SQ 27986, 47 STA₂, 17, 47 steroidal anti-inflammatory drugs, 20 stomach fundus (rat), 49 substrate channelling, 4 sulprostone, 15 taprostene, 50 TEI-3356, 50 TEI-9063, 50 TFC-612, 46 THP-1 cells, 224, 225 thrombosis, 111, 230 thromboxane A_2 biological stability, 3 thromboxane A2 analogues, 47 thymus, 101 **TP** antagonists

chemical development, 72 in BMY-series, 73 in EP-series, 72 in ONO-series, 73 TP-receptor ligands, 15, 47, 51,60 TP-receptors, 17, 47, 51,72, 138 trachea (guinea-pig), 49 transcellular biosynthesis, 5, 217, 233, 295 tranylcypromine prostacyclin synthase inhibitor, 155 trioxilin A₃ and B₃, 5 tumour necrosis factor- α (TNF α), 126, 157, 227, 279 TXA synthase inhibitors, 72, 75 U-46619, 17, 47 U937 cells, 228 Upshaw-Schulman syndrome, 129 vagus nerve, 245, 251, 276 vas deferens (guinea-pig), 15, 50, 74, 293 vasorelaxation role of cyclic AMP, 142 veins, 138 writhing test role of prostacyclin, 258 zafirlukast, 4 zileuton, 4 ZK 110841, 13 ZK 36374. See iloprost ZK 96480. See cicaprost