
M A N N I N G

Mark Tielens Thomas

IN ACTION

React in Action
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

React in Action

MARK TIELENS THOMAS

M A N N I N G
SHELTER ISLAND
Licensed to Samir Mashlum <smashlum@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Nickie Bruckner
PO Box 761 Project manager: Janet Vail
Shelter Island, NY 11964 Copy editor: Corbin Collins

Technical proofreader: German Frigerio
Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617293856
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18
Licensed to Samir Mashlum <smashlum@gmail.com>

www.manning.com

 This book is dedicated to my wife, Haley. Stay forever.
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

brief contents
PART 1 MEET REACT...1

1 ■ Meet React 3

2 ■ <Hello World />: our first component 22

PART 2 COMPONENTS AND DATA IN REACT57
3 ■ Data and data flow in React 59

4 ■ Rendering and lifecycle methods in React 77

5 ■ Working with forms in React 111

6 ■ Integrating third-party libraries with React 129

7 ■ Routing in React 151

8 ■ More routing and integrating Firebase 170

9 ■ Testing React components 192

PART 3 REACT APPLICATION ARCHITECTURE..........................219
10 ■ Redux application architecture 221

11 ■ More Redux and integrating Redux with React 251

12 ■ React on the server and integrating React Router 277

13 ■ An introduction to React Native 313
vii

Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

PART 1 MEET REACT...1

1 Meet React 3
1.1 Meet React 4

Who this book is for 6 ■ A note on tooling 7
Who uses React? 7

1.2 What does React not do? 9
Tradeoffs of React 10

1.3 The virtual DOM 12
The DOM 13 ■ The virtual DOM 15 ■ Updates and
diffing 16 ■ Virtual DOM: Need for speed? 17

1.4 Components: The fundamental unit of React 17
Components in general 17 ■ Components in React: Encapsulated
and reusable 18

1.5 React for teams 19
ix

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSx
2 <Hello World />: our first component 22
2.1 Introducing React components 24

Understanding the application data 26 ■ Multiple components:
Composition and parent-child relationships 28 ■ Establishing
component relationships 28

2.2 Creating components in React 31
Creating React elements 31 ■ Rendering your first component 34
Creating React components 36 ■ Creating React classes 37
The render method 37 ■ Property validation via PropTypes 38

2.3 The life and times of a component 42
A React state of mind 43 ■ Setting initial state 44

2.4 Meet JSX 52
Creating components using JSX 53 ■ Benefits of JSX and
differences from HTML 55

PART 2 COMPONENTS AND DATA IN REACT57

3 Data and data flow in React 59
3.1 Introducing state 60

What is state? 60 ■ Mutable and immutable state 63

3.2 State in React 65
Mutable state in React: Component state 65 ■ Immutable state in
React: Props 69 ■ Working with props: PropTypes and default
props 70 ■ Stateless functional components 71

3.3 Component communication 73
3.4 One-way data flow 74

4 Rendering and lifecycle methods in React 77
4.1 Getting set up with the Letters Social repo 78

Getting the source code 80 ■ Which version of node should
I use? 80 ■ Note on tooling and CSS 81 ■ Deploying 81
The API server and database 81 ■ Running the app 82

4.2 The render process and lifecycle methods 82
Introducing lifecycle methods 82 ■ Types of lifecycle methods 84
Initial and “will” methods 88 ■ Mounting components 89
Updating methods 93 ■ Unmounting methods 96
Catching errors 98

4.3 Starting to create Letters Social 102
Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTS xi
5 Working with forms in React 111
5.1 Creating posts in Letters Social 112

Data requirements 112 ■ Component overview and
hierarchy 113

5.2 Forms in React 115
Getting started with forms 115 ■ Form elements and events 116
Updating state in forms 120 ■ Controlled and uncontrolled
components 121 ■ Form validation and sanitization 123

5.3 Creating new posts 126

6 Integrating third-party libraries with React 129
6.1 Sending posts to the Letters Social API 130
6.2 Enhancing your component with maps 132

Creating the DisplayMap component using refs 133
Creating the LocationTypeAhead component 139
Updating CreatePost and adding maps to posts 145

7 Routing in React 151
7.1 What is routing? 152

Routing in modern front-end web applications 153

7.2 Creating a router 154
Component routing 155 ■ Creating the <Route />
component 156 ■ Starting to build the <Router/>
component 157 ■ Matching URL paths and parameterized
routing 160 ■ Adding routes to the Router component 162

8 More routing and integrating Firebase 170
8.1 Using the router 171

Creating a page for a post 177 ■ Creating a <Link/>
component 178 ■ Creating a <NotFound/> component 182

8.2 Integrating Firebase 183
Ensuring a user is logged in 187

9 Testing React components 192
9.1 Types of testing 194

Why test? 195

9.2 Testing React components with Jest, Enzyme, and React-
test-renderer 197
Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSxii
9.3 Writing your first tests 199
Getting started with Jest 199 ■ Testing a stateless functional
component 201 ■ Testing the CreatePost component without
Enzyme 205 ■ Test coverage 213

PART 3 REACT APPLICATION ARCHITECTURE................219

10 Redux application architecture 221
10.1 The Flux application architecture 223

Meet Redux: A variation on Flux 226 ■ Getting set up for
Redux 227

10.2 Creating actions in Redux 229
Defining action types 230 ■ Creating actions in Redux 232
Creating the Redux store and dispatching actions 232
Asynchronous actions and middleware 235 ■ To Redux or
not to Redux? 242 ■ Testing actions 245 ■ Creating custom
Redux middleware for crash reporting 247

11 More Redux and integrating Redux with React 251
11.1 Reducers determine how state should change 252

State shape and initial state 253 ■ Setting up reducers to respond
to incoming action 254 ■ Combining reducers together in our
store 261 ■ Testing reducers 262

11.2 Bringing React and Redux together 264
Containers vs. presentational components 264 ■ Using
<Provider /> to connect components to the Redux store 267
Binding actions to component event handlers 272 ■ Updating
your tests 274

12 React on the server and integrating React Router 277
12.1 What is server-side rendering? 278

Digging into server-side rendering 280

12.2 Why render on the server? 282
12.3 You might not need SSR 285
12.4 Rendering components on the server 286
12.5 Switching to React Router 292

Setting up React router 293

12.6 Handling authenticated routes with React router 297
12.7 Server rendering with data-fetching 301
Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTS xiii
13 An introduction to React Native 313
13.1 Introducing React Native 314
13.2 React and React Native 317
13.3 When to use React Native 319
13.4 The simplest “Hello World” 321
13.5 Where to go next 324

index 327
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

preface
When I first started learning about and using React, the JavaScript community was just
beginning to settle down from a period of rapid innovation and disruption (read: tur-
bulence). React was gaining in popularity, but the JavaScript community still seemed
like the Wild West in many ways. I was excited about React as a technology because it
showed real promise. The mental model seemed solid, components made building
UIs easier, the API was flexible and expressive, and the whole project seemed like it
was “just right.” Postulations about its API surface, usability, and theoretical underpin-
nings aside, there was also the fact that it seemed really cool to me and I enjoyed work-
ing with it.

 Since then, quite a bit has changed—and at the same time not much has changed at
all. React has remained largely the same in terms of its fundamental concepts and API,
although a body of knowledge and best practices have emerged and evolved, and more
people use it. An open source ecosystem of libraries and related technologies has flour-
ished. There are conferences, meetups, and communities that involve React to one
degree or another. In version 16, the React core team rewrote the internal architecture
of React in a way that both maintained backward compatibility and paved the way for a
slew of future innovations. All these “changes without too much change” point to what I
believe is one of React’s greatest strengths: a maintained tension between stability and
innovation that drives adoption without leaving people in the dust.

 For all these reasons and more, React has continued to take hold as a technology
and has only become more popular. It’s in use in one way or another at many large
companies, at countless startups, and at every sort of company in between. And many
xv

Licensed to Samir Mashlum <smashlum@gmail.com>

PREFACExvi
companies that don’t currently use React are trying to switch over to it to modernize
their frontend applications.

 React hasn’t only grown in popularity with respect to the web—it’s also made
inroads into other platforms. React Native, the port of React to mobile platforms, has
also been a major innovation. It demonstrates React’s “learn once, write anywhere”
approach. This idea of React as a platform means you’re not limited to using it for
browser-based applications.

 Let’s forget the hype around React and focus on what this book should do for you.
My primary hopes for React in Action are that it equips you to understand and work
with React effectively and, even more, that it makes you better at building user inter-
faces overall, even if in a small way. My aim is not to engage in buzzword-driven devel-
opment or push you toward “magical” technologies. Rather, my wager is that a robust
mental model and deep understanding coupled with practical examples will put you
in a place to do incredible things with React, whether on your own or with others.
Licensed to Samir Mashlum <smashlum@gmail.com>

acknowledgments
Don’t wait for things to be perfect before you share them with others.
Show early and show often. It’ll be pretty when we get there, but it won’t
be pretty along the way.

—Ed Catmull, Creativity, Inc.: Overcoming the Unseen Forces That Stand
in the Way of True Inspiration

Few worthwhile endeavors are undertaken alone. In many cases, a single person or
handful of people is entirely credited with success, but this singular attribution belies
the larger network of contributors who work toward an end. Those who would claim
to have “done it alone” often fail to realize the ways in which others have helped them,
whether by example or by instruction. What’s more, failure to realize the strength of
working in a community pushes success and excellence even further out of reach.
Working alone means being limited to what you, and only you, can do. Collaboration
provides a path to excellence by opening us to humility, new ideas, different perspec-
tives, and invaluable feedback.

 I won’t be so foolish as to think, even for a second, that I’ve written this book by
myself. My fingers pushed keys, and my name will be on the cover, but that doesn’t
mean this was a one-person show. No, this book—like all the things in my life that I’m
grateful for—is the result of a rich community of smart, humble, loving people willing
to be patient, kind, and sometimes firm with me.

 First, I would like to thank my wife, Haley. She’s my joy, my best friend, my creative
partner. She’s put up with this book for a long time. Late nights, more late nights, and
endless talking about the book. She—the brilliant and better writer—helped me when
xvii

Licensed to Samir Mashlum <smashlum@gmail.com>

ACKNOWLEDGMENTSxviii
I had writer’s block. She encouraged me when I felt as if finishing the book was impos-
sible. She’s always constant in love and in prayer. She’s always comforted me in low
times, challenged me when I doubted myself, and celebrated with me in times of joy.
She’s been incredible through the entire process and I can’t wait to return the favor
and help her with the many books she’ll write in the future. I’m always and immeasur-
ably grateful for her.

 I would also like to thank the other people in my life who have supported me in
this process. I’m humbled and thankful to have an incredible family. My mom and
dad, Annmarie and Mitchell, have been encouraging throughout the writing of this
book (and my whole life). They’ve also promised to read it in its entirety, though I
won’t hold them to that. My brothers, David and Peter, have also been supportive and
encouraging. They haven’t promised to read the book, though, so I’ll be reading it
aloud to them for the next year (or however long it takes). My friends from church,
childhood, and work have also been incredibly helpful. They did me the great service
of always asking, “Is it done yet?” to spur me on, and they put up with my explanations
of React. I would also like to thank my professors, especially Dr. Diana Pavlac Glyer, for
teaching me to think and to write.

 The folks at Manning have been very helpful in this process. I want to extend a spe-
cial thank you to Marina Michaels (development editor), Nickie Bruckner (technical
development editor), and German Frigerio (technical proofer). They spent countless
hours reading and helping with my writing. This book wouldn’t exist without them. I
would also like to thank Brian Sawyer for reaching out to me about writing the book
and Marjan Bace for giving me the opportunity to write the book in the first place.
Everyone at Manning is committed to helping people everywhere learn important,
impactful skills and concepts in effective ways. I firmly believe in and am excited to
help further Manning’s educational mission.
Licensed to Samir Mashlum <smashlum@gmail.com>

about this book
React in Action is about React, the library for building user interfaces on the web. It
covers the core concepts and APIs involved in building React applications. You’ll build
a sample social networking application with React over the course of the book. This
app will cover a variety of topics, ranging from adding dynamic data to rendering on
the server.

Audience
This book is written for people who want to learn React. It doesn’t matter if you’re a
software engineer, a VP of engineering, a CTO, a designer, an engineering manager,
a university or coding boot camp student, or someone who’s just curious about React.
Depending on what your needs are, you can focus on different parts of the book, too.
I cover React from a high level during the first part of the book and get more specific
and advanced as we go.

 You’ll have a better experience reading the book if you have some basic familiarity
with JavaScript. This book uses a lot of JavaScript, but it isn’t about JavaScript. I don’t
cover fundamental concepts in JavaScript, although I do lightly touch on them if
they’re relevant to a discussion about React. You should be able to work through the
examples if you have a basic proficiency with JavaScript and understand how asyn-
chronous programming in JavaScript works.

 React in Action also assumes that you know some of the basics of building a front-
end web application from a technology perspective—knowing about the basic browser
APIs will be helpful. You’ll work with things like the Fetch API to make network
xix

Licensed to Samir Mashlum <smashlum@gmail.com>

ABOUT THIS BOOKxx
requests, set and get cookies, and work with user events (typing, clicks, and so on).
You’ll also interact heavily with libraries (although not too many!). Familiarity with
the basics of a modern frontend application will help you get the most out of this
book.

 Fortunately, I’ve abstracted away all the complexity around tooling and the build
process that’s also a requisite part of building modern web applications. The source
code for the project includes all the necessary dependencies and build tools, so you
don’t have to understand, for example, how Webpack and Babel work in order to
enjoy this book. All in all, you should have at least a basic proficiency with JavaScript
and some frontend web application concepts to fully enjoy React in Action.

Roadmap
React in Action’s 13 chapters are divided into 3 parts.

 Part 1, “Meet React,” introduces you to React. Chapter 1 covers core ideas of React
at a high level. It talks about some of the key points of React, shows how it might fit
into your development process, and looks at what React does and doesn’t do. Chapter
2 is the “show me the code” chapter. You’ll dive into React’s APIs and build a simple
comment box with React components.

 Part 2, “Components and data in React,” is where you’ll start to go deeper with
React. You’ll see how data flows in React in chapter 3 and look at the component life-
cycle API and start building the Letters Social sample project in chapter 4. This proj-
ect will take us through the remainder of the book. Chapter 4 goes over setting up the
project from the application source code and explains how to work with it for the rest
of the book.

 Chapters 5 through 9 are an even deeper dive into React. Chapter 5 covers work-
ing with forms and gives you another opportunity to work with data and data flow in
React. Chapter 6 follows in the same vein and builds on the work done in chapter 5 to
create a more complex React component for displaying maps.

 Chapters 7 and 8 tackle routing, a crucial part of almost any modern frontend
application. You’ll build a router from scratch and get your app set up to handle mul-
tiple pages. You’ll keep going with routing in chapter 8 and integrate the Firebase
platform so you can authenticate users. Chapter 9 closes out part 3 by introducing
testing React apps and components.

 Part 3, “React application architecture,” covers more advanced topics in React and
focuses especially on transitioning your application to use Redux. Chapters 10 and 11
introduce Redux, a state-management solution. Once your app is transitioned to use
Redux, we’ll explore server-side rendering in chapter 12. This chapter also covers
switching out your custom-built router for React Router. Chapter 13 briefly discusses
React Native, another React project that allows you to write JavaScript React apps for
mobile devices (iOS and Android).
Licensed to Samir Mashlum <smashlum@gmail.com>

ABOUT THIS BOOK xxi
About the code
React in Action uses two main groups of source code. For the first two chapters, you’ll
work with code outside the project repository. You’ll be able to run these code samples
on Codesandbox.io, an online code playground. It takes care of bundling your code
and running it in real time, so you don’t have to worry about setting up a build process.

 In chapter 4, you’ll get set up with the project source code. It’s available for down-
load at the book’s website, www.manning.com/books/react-in-action, and on GitHub
online at https://github.com/react-in-action/letters-social, and the final result of the
project is live at https://social.react.sh. Each chapter or range of chapters has its own
branch in Git, so you can easily switch into a later chapter or follow the progression of
the project throughout the book. The source code all lives on GitHub, so feel free to
ask questions on GitHub or on the book’s forum at https://forums.manning.com/
forums/react-in-action.

 The JavaScript for the app should all be formatted using Prettier (https://
github.com/prettier/prettier), written using the most current ECMAScript specifica-
tion (which is ES2017 at time of writing). Prettier uses concepts, syntax, and methods
available in that specification. The project includes an ESLint configuration, but if
you prefer to modify it to suit your own needs, feel free.

Software and hardware requirements
React in Action doesn’t have any strict hardware requirements. You’re free to use any
type of computer (physical or a virtual provider like Cloud9 https://c9.io), although I
won’t address inconsistencies caused by differences in development environments. If
these issues come up for individual packages, the repositories for those packages or
Stack Overflow (https://stackoverflow.com) are the best place to seek help.

 As for software, here are a few requirements and recommendations:

■ The build process for the sample project uses node.js (https://nodejs.org), so
you’ll need to install the latest stable version. See chapter 4 for more on getting
set up with node.js.

■ You’ll also need a text editor and a web browser. I recommend something like
Visual Studio Code (https://code.visualstudio.com), Atom (https://atom.io), or
Sublime Text (www.sublimetext.com).

■ You’ll use Chrome as the main browser for the course of the book, especially its
developer tools. Download it at www.google.com/chrome.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.manning.com/books/react-in-action
https://github.com/react-in-action/letters-social
https://social.react.sh
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://c9.io
https://stackoverflow.com
https://nodejs.org
https://code.visualstudio.com
https://atom.io
http://www.sublimetext.com
http://www.google.com/chrome
https://forums.manning.com/forums/react-in-action
https://forums.manning.com/forums/react-in-action

about the author
Mark Tielens Thomas is a full-stack software engineer and
author. He and his wife live and work in southern California.
Mark enjoys tackling large-scale engineering problems and lead-
ing teams to deliver high-impact, high-value solutions. He loves
Jesus, good coffee, too many books, fast APIs, and beautiful sys-
tems. He writes for Manning and on his personal blog at https://
ifelse.io.

xxii

Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io
https://ifelse.io

about the cover illustration
The caption for the illustration on the cover of React in Action is “The Capitan Pasha,
Derya Bey, admiral of the Turkish navy.” The capitan pasha was a high-admiral with
supreme command of the navy of the Ottoman Empire. The illustration is taken from
a collection of costumes of the Ottoman Empire published on January 1, 1802, by
William Miller of Old Bond Street, London. The title page is missing from the collec-
tion, and we have been unable to track it down to date. The book’s table of contents
identifies the figures in both English and French, and each illustration bears the
names of two artists who worked on it, both of whom would no doubt be surprised to
find their art gracing the front cover of a computer programming book ... two hun-
dred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase, and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire, and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
xxiii

Licensed to Samir Mashlum <smashlum@gmail.com>

ABOUT THE COVER ILLUSTRATIONxxiv
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.
Licensed to Samir Mashlum <smashlum@gmail.com>

Part 1

Meet React

If you’ve worked on frontend JavaScript applications in the past two years,
you’ve probably heard of React. You might have heard of it even if you’re just start-
ing out building user interfaces. Even if you’re hearing about React for the first
time in this book, I’ve still got you covered: there are many hugely popular appli-
cations that use React. If you use Facebook, watch Netflix, or learn about com-
puter science through Khan Academy, you’ve used an application built with React.

 React is a library for building user interfaces. It was created by engineers at
Facebook and since its release has made waves in the JavaScript communities. It’s
gained in popularity over the past few years and is the tool of choice for many
teams and engineers building dynamic user interfaces. In fact, the combination of
React’s API, mental model, and robust community have led to the development of
React for other platforms, including mobile and even virtual reality.

 In this book, you’ll explore React and see why it’s been such a successful and
useful open source project. In part 1, you’ll start with the basics of React and learn
them from the ground up. Because the tooling involved in building robust JavaS-
cript UI applications can be incredibly complex, we’ll avoid getting bogged down
in tools and focus on learning the ins and outs of the React API. We’ll also avoid
“magic” and work toward a concrete understanding of React and how it works.

 In chapter 1, you’ll learn about React at a high level. We’ll cover some
important ideas like components, the virtual DOM, and some of the tradeoffs of
React. In chapter 2, you’ll take a whirlwind tour through React’s APIs and build
a simple comment-box component to get your hands dirty with React.
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

Meet React
If you work as a web engineer in the tech industry, chances are you’ve heard of
React. Maybe it was somewhere online like Twitter or Reddit. Maybe a friend or col-
league mentioned it to you or you heard a talk about it at a meetup. Wherever it
was, I bet that what you heard was probably either glowing or a bit skeptical. Most
people tend to have a strong opinion about technologies like React. Influential and
impactful technologies tend to generate that kind of response. For these technolo-
gies, often a smaller number of people initially “get it” before the technology
catches on and moves to a broader audience. React started this way, but now enjoys
immense popularity and use in the web engineering world. And it’s popular for

This chapter covers
 Introducing React

 Some of React’s high-level concepts and
paradigms

 The virtual DOM

 Components in React

 React for teams

 Tradeoffs of using React
3

Licensed to Samir Mashlum <smashlum@gmail.com>

4 CHAPTER 1 Meet React
good reason: it has a lot to offer and can reinvigorate, renew, or even transform how
you think about and build user interfaces.

1.1 Meet React
React is a JavaScript library for building user interfaces across a variety of platforms.
React gives you a powerful mental model to work with and helps you build user inter-
faces in a declarative and component-driven way. We’ll unpack these ideas and much
more over the course of the book, but that’s what React is in the broadest, briefest sense.

 Where does React fit into the broader world of web engineering? You’ll often hear
React talked about in the same space as projects like Vue, Preact, Angular, Ember, Web-
pack, Redux and other well-known JavaScript libraries and frameworks. React is often a
major part of front-end applications and shares similar features with the other libraries
and frameworks just mentioned. In fact, many popular front-end technologies are more
like React in subtle ways now than in the past. There was a time when React’s approach
was novel, but other technologies have since been influenced by React’s component-
driven, declarative approach. React continues to maintain a spirit of rethinking estab-
lished best practices, with the main goal being providing developers with an expressive
mental model and a performant technology to build UI applications.

 What makes React’s mental model powerful? It draws on deep areas of computer
science and software engineering techniques. React’s mental model draws broadly on
functional and object-oriented programming concepts and focuses on components as
primary units for building with. In React applications, you create interfaces from com-
ponents. React’s rendering system manages these components and keeps the applica-
tion view in sync for you. Components often correspond to aspects of the user
interface, like datepickers, headers, navbars, and others, but they can also take
responsibility for things like client-side routing, data formatting, styling, and other
responsibilities of a client-side application.

 Components in React should be easy to think about and integrate with other React
components; they follow a predictable lifecycle, can maintain their own internal state,
and work with “regular old JavaScript.” We’ll dive into these ideas over the course of
the rest of the book, but we can look at them at a high level right now. Figure 1.1 gives
you an overview of the major ingredients that go into a React application. Let’s look at
each part briefly:

 Components—Encapsulated units of functionality that are the primary unit in
React. They utilize data (properties and state) to render your UI as output; we’ll
explore how React components work with data later in chapter 2 onward. Cer-
tain types of React components also provide a set of lifecycle methods that you
can hook into. The rendering process (outputting and updating a UI based on
your data) is predictable in React, and your components can hook into it using
React’s APIs.

 React libraries—React uses a set of core libraries. The core React library works
with the react-dom and react-native libraries and is focused on component
Licensed to Samir Mashlum <smashlum@gmail.com>

5Meet React
specification and definition. It allows you to build a tree of components that a
renderer for the browser or another platform can use. react-dom is one such
renderer and is aimed at browser environments and server-side rendering. The
React Native libraries focus on native platforms and let you create React appli-
cations for iOS, Android, and other platforms.

Components

Other JavaScript
(other modules, custom methods)

<Component
display
userID={12}>

<OtherComponent/>
<Component>

{"user": {name: "Mark"}}

componentWillMount

componentDidMount

componentWillReceiveProps

shouldComponentUpdate

componentWillUpdate

componentDidUpdate

componentWillUnmount

Application

Application code (components, styles, utilities, business logic)

React
React DOM / React-
Native / React VR

Other libraries

Native devices
(iOS, Android)

VR Devices
(React VR)

Server
(node.js)

Desktop &
Mobile

Props

Internal component state Lifecycle methods

Target environments/platforms

Figure 1.1 React allows you to create user interfaces from components.
Components maintain their own state, are written in and work with “vanilla”
JavaScript, and inherit a number of helpful APIs from React. Most React apps
are written for browser-based environments, but can also be used in native
environments like iOS and Android. For more about React Native, see Nader
Dabit’s React Native in Action, also available from Manning.
Licensed to Samir Mashlum <smashlum@gmail.com>

6 CHAPTER 1 Meet React
 Third-party libraries—React doesn’t come with tools for data modeling, HTTP
calls, styling libraries, or other common aspects of a front-end application. This
leaves you free to use additional code, modules, or other tools you prefer in
your application. And even though these common technologies don’t come
bundled with React, the broader ecosystem around React is full of incredibly
useful libraries. In this book, we’ll use a few of these libraries and devote chap-
ters 10 and 11 to looking at Redux, a library for state management.

 Running a React application—Your React application runs on the platform you’re
building for. This book focuses on the web platform and builds a browser and
server-based application, but other projects like React Native and React VR
open the possibility of your app running on other platforms.

We’ll spend lots of time exploring the ins and outs of React in this book, but you
may have a few questions before getting started. Is React something for you? Who
else is using React? What are some of the tradeoffs of using React or not? These are
important questions about a new technology that you’ll want answered before
adopting it.

1.1.1 Who this book is for

This book is for anyone who’s working on or interested in building user interfaces.
Really, it’s is for anyone who’s curious about React, even if you don’t work in UI engi-
neering. You’ll get the most out of this book if you have some experience with using
JavaScript to build front-end applications.

 You can learn how to build applications with React as long as you know the basics
of JavaScript and have some experience building web applications. I don’t cover the
fundamentals of JavaScript in this book. Topics like prototypal inheritance, ES2015+
code, type coercion, syntax, keywords, asynchronous coding patterns like async/await,
and other fundamental topics are beyond the scope of this book. I do lightly cover
anything that’s especially pertinent to React but don’t dive deep into JavaScript as a
language.

 This doesn’t mean you can’t learn React or won’t get anything from this book if
you don’t know JavaScript. But you’ll get much more if you take the time to learn
JavaScript first. Charging ahead without a working knowledge of JavaScript will make
things more difficult. You might run into situations where things might seem like
“magic” to you—things will work, but you won’t understand why. This usually hurts
rather than helps you as a developer, so ... last warning: get comfortable with the
basics of JavaScript before learning React. It’s a wonderfully expressive and flexible
language. You’ll love it!

 You may already know JavaScript well and may have even dabbled in React before.
This wouldn’t be too surprising given how popular React has become. If this is you,
you’ll be able to gain a deeper understanding of some of the core concepts of React.
But I don’t cover highly specific topics you may be looking for if you’ve been working
Licensed to Samir Mashlum <smashlum@gmail.com>

7Meet React
with React for a while. For those, see other React-related Manning titles like React
Native in Action.

 You may not fit into either group and may want a high-level overview of React. This
book is for you, too. You’ll learn the fundamental concepts of React and you’ll have
access to a sample application written in React—check out the running app at
https://social.react.sh. You’ll be able to see the basics of building a React application
in practice and how it might be suited to your team or next project.

1.1.2 A note on tooling

If you’ve worked extensively on front-end applications in the past few years, you won’t
be surprised by the fact that the tooling around applications has become as much a
part of the development process as frameworks and libraries themselves. You’re likely
using something like Webpack, Babel, or other tools in your applications today. Where
do these and other tools fit into this book, and what you need to know?

 You don’t need to be a master of Webpack, Babel, or other tools to enjoy and read
this book. The sample application I’ve created utilizes a handful of important tools,
and you can feel free to read through the configuration code for these in the sample
application, but I don’t cover these tools in depth in this book. Tooling changes
quickly, and more importantly, it would be well outside the scope of this book to cover
these topics in depth. I’ll be sure to note anywhere tooling is relevant to our discus-
sion, but besides that I’ll avoid covering it.

 I also feel that tooling can be a distraction when learning a new technology like
React. You’re already trying to get your head around a new set of concepts and para-
digms—why clutter that with learning complex tooling too? That’s why chapter 2
focuses on learning "vanilla” React first before moving on to features like JSX and
JavaScript language features that require build tools. The one area of tooling that
you’ll need to be familiar with is npm. npm is the package management tool for Java-
Script, and you’ll use it to install dependencies for your project and run project com-
mands from the command line. It’s likely you’re already familiar with npm, but if not,
don’t let that dissuade you from reading the book. You only need the most basic termi-
nal and npm skills to go forward. You can learn about npm at https://docs.npmjs
.com/getting-started/what-is-npm.

1.1.3 Who uses React?

When it comes to open source software, who is (and who isn’t) using it is more than just
a matter of popularity. It affects the experience you’ll have working with the technology
(including availability of support, documentation, and security fixes), the level of innova-
tion in the community, and the potential lifetime of a certain tool. It’s generally more
fun, easier, and overall a smoother experience to work with tools that have a vibrant com-
munity, a robust ecosystem, and a diversity of contributor experience and background.

 React started as a small project but now has broad popularity and a vibrant com-
munity. No community is perfect, and React’s isn’t either, but as far as open source
Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm

8 CHAPTER 1 Meet React
communities go, it has many important ingredients for success. What’s more, the
React community also includes smaller subsets of other open source communities.
This can be daunting because the ecosystem can seem vast, but it also makes the
community robust and diverse. Figure 1.2 shows a map of the React ecosystem. I
mention various libraries and projects throughout the course of the book, but if
you’re curious to learn more about the React ecosystem, I’ve put together a guide at
https://ifelse.io/react-ecosystem. I’ll keep this updated over time and ensure it evolves
as the ecosystem does.

The primary way you might interact with React is probably in open source, but you
likely use apps built with it every day. Many companies use React in different and
exciting ways. Here are a few of the companies using React to power their products:

Portal to Preact Mirror World

JavaScript Ocean

Bay of Jest

The United State(s)

of Management

Fluxville
Reduxopolis

Mobxton

JavaScript

Fatigue Cove

Upper GraphQLton
Relay Town

Utilitopia

The Monadic

Kingdom of FP

Immutable City

Tutorialandia

React VR
WebAssembly

Future Reconciler Research

Uncharted territory

Tooling Town

Babel Transpilation

Institutes

The Great

Bundle Forges

CSS Plains

Styled Components

CSS Modules

Glamor(ous)

Aphrodite

Styletron

Radium forest

Downtown React

TC39 Embassy

Center for Twitter

Thought-leadership React High Council

Conference

Center

Reconciler

Research

Center

Large DOM

Reconciler

Central Github

Repository

Serverland

The Testing NarrowsEnzyme

Bend

Component

Canyon

React Native

Bridge

The React Ecosystem

Copyright Mark Thomas 2017

Figure 1.2 A map of the React ecosystem is diverse—even more so than I can represent here. If you’d like to
learn more, check out my guide at https://ifelse.io/react-ecosystem, which will help you find your way in the
React ecosystem when starting out.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io/react-ecosystem
https://ifelse.io/react-ecosystem

9What does React not do?
These companies aren’t blindly following the trends of the JavaScript community.
They have exceptional engineering demands that impact a huge number of users and
must deliver products on hard deadlines. Someone saying, “I heard React was good;
we should React-ify everything!” won’t fly with managers or other engineers. Compa-
nies and developers want good tools that help them think better and move quickly so
they can build high-impact, scalable, and reliable applications.

1.2 What does React not do?
So far, I’ve been talking about React at a high-level: who uses it, who this book is for,
and so on. My primary goals in writing this book are to teach you how to build applica-
tions with React and empower you as an engineer. React isn’t perfect, but it’s genu-
inely been a pleasure to work with, and I’ve seen teams do great things with it. I love
writing about it, building with it, hearing talks about it at conferences, and engaging
in the occasional spirited debate about this or that pattern.

 But I would be doing you a disservice if I didn’t talk about some of the downsides
of React and describe what it doesn’t do. Understanding what something can’t do is as
important as understanding what it can do. Why? The best engineering decisions and
thinking usually happen in terms of tradeoffs instead of opinions or absolutes (“React
is fundamentally better than tool X because I like it more”). On the former point:
you’re probably not dealing with two totally different technologies (COBOL versus
JavaScript); hopefully you’re not even considering technologies that are fundamentally
unsuited to the task at hand. And to the latter point: building great projects and solv-
ing engineering challenges should never be about opinions. It’s not that people’s
opinions don’t matter—that’s certainly not true—it’s that opinions don’t make things
work well or at all.

■ Facebook ■ Asana
■ Netflix ■ ESPN
■ New Relic ■ Walmart
■ Uber ■ Venmo
■ Wealthfront ■ Codecademy
■ Heroku ■ Atlassian
■ PayPal ■ Asana
■ BBC ■ Airbnb
■ Microsoft ■ Khan Academy
■ NFL ■ FloQast
■ And more!
Licensed to Samir Mashlum <smashlum@gmail.com>

10 CHAPTER 1 Meet React
1.2.1 Tradeoffs of React

If tradeoffs are the bread and butter of good software evaluation and discussion, what
tradeoffs are there with React? First, React is sometimes called just the view. This can be
misconstrued or misunderstood because it can lead you to think React is just a tem-
plating system like Handlebars or Pug (née Jade) or that it has to be part of an MVC
(model-view-controller) architecture. Neither is true. React can be both of those
things, but it can be much more. To make things easier, I’ll describe React more in
terms of what it is than what it’s not (“just the view,” for example). React is a declarative,
component-based library for building user interfaces that works on a variety of platforms:
web, native, mobile, server, desktop, and even on virtual reality platforms going for-
ward (React VR).

 This leads to our first tradeoff: React is primarily concerned with the view aspects
of UI. This means it’s not built to do many of the jobs of a more comprehensive frame-
work or library. A quick comparison to something like Angular might help drive this
point home. In its most recent major release, Angular has much more in common
with React than it previously did in terms of concepts and design, but in other ways it
covers much more territory than React. Angular includes opinionated solutions for
the following:

 HTTP calls
 Form building and validation
 Routing
 String and number formatting
 Internationalization
 Dependency injection
 Basic data modeling primitives
 Custom testing framework (although this isn’t as important a distinction as the

other areas)
 Service workers included by default (a worker-style approach to executing

JavaScript)

That’s a lot, and in my experience there are generally two ways people tend to react1

to all these features coming with a framework. Either it’s along the lines of “Wow, I
don’t have to deal with all those myself” or it’s “Wow, I don’t get to choose how I do
anything.” The upside of frameworks like Angular, Ember, and the like is that there’s
usually a well-defined way to do things. For example, routing in Angular is done with
the built-in Angular Router, HTTP tasks are all done with the built-in HTTP routines,
and so on.

 There’s nothing fundamentally wrong with this approach. I’ve worked on teams
where we used technologies like this and I’ve worked on teams where we went the

1 Pun not intended but, hey, it’s a book about React, so there it is.
Licensed to Samir Mashlum <smashlum@gmail.com>

11What does React not do?
more flexible direction and chose technologies that “did one thing well.” We did great
work with both kinds of technologies, and they served their purposes well. My per-
sonal preference is toward the choose-your-own, does-one-thing-well approach, but
that’s really neither here nor there; it’s all about tradeoffs. React doesn’t come with
opinionated solutions for HTTP, routing, data modeling (although it certainly has
opinions about data flow in your views, which we’ll get to), or other things you might
see in something like Angular. If your team sees this as something you absolutely can’t
do without in a singular framework, React might not be your best choice. But in my
experience, most teams want the flexibility of React coupled with the mental model
and intuitive APIs that it brings.

 One upside to the flexible approach of React is that you’re free to pick the best
tools for the job. Don’t like the way X HTTP library works? No problem—swap it out
for something else. Prefer to do forms in a different way? Implement it, no problem.
React provides you with a set of powerful primitives to work with. To be fair, other
frameworks like Angular will usually allow you to swap things out too, but the de
facto and community-backed way of doing things will usually be whatever is built-in
and included.

 The obvious downside to having more freedom is that if you’re used to a more
comprehensive framework like Angular or Ember, you’ll need to either come up with
or find your own solution for different areas of your application. This can be a good
thing or a bad thing, depending on factors like developer experience on your team,
engineering management preferences, and other factors specific to your situation.
There are plenty of good arguments for the one-size-fits-all as well as the does-one-
thing-well approaches. I tend to be more convinced by the approach that lets you
adapt and make flexible, case-by-case decisions about tooling over time in a way that
entrusts engineering teams with the responsibility to determine or create the right
tools. There’s also the incredibly broader JavaScript ecosystem to consider—you’ll be
hard-pressed to find nothing aimed at a problem you’re solving. But at the end of the
day, the fact remains that excellent, high-impact teams use both sorts of approaches
(sometimes at the same time!) to build out their products.

 I’d be remiss if I didn’t mention lock-in before moving on. It’s an unavoidable fact
that JavaScript frameworks are rarely truly interoperable; you can’t usually have an
app that’s part Angular, part Ember, part Backbone, and part React, at least not with-
out segmenting off each part or tightly controlling how they interact. It doesn’t usu-
ally make sense to put yourself in that sort of situation when you can avoid it. You
usually go with one and maybe temporarily, at most, two primary frameworks for a par-
ticular application.

 But what happens when you need to change? If you use a tool with wide-ranging
responsibilities like Angular, migrating your app is likely going to be a complete
rewrite due to the deep idiomatic integration of your framework. You can rewrite
smaller parts of the application, but you can’t just swap out a few functions and expect
everything to work. This is an area where React can shine. It employs relatively few
Licensed to Samir Mashlum <smashlum@gmail.com>

12 CHAPTER 1 Meet React
“magic” idioms. That doesn’t mean it makes migration painless, but it does help you
to potentially forgo incurring the cost of a tightly integrated framework like Angular if
you migrate to or from it.

 Another tradeoff you make when choosing React is that it’s primarily developed
and built by Facebook and is meant to serve the UI needs of Facebook. You might
have a hard time working with React if your application is fundamentally different
than the UI needs of Facebook’s apps. Fortunately, most modern web apps are in
React’s technological wheelhouse, but there are certainly apps that aren’t. These
might also include apps that don’t work within the conventional UI paradigms of
modern web apps or apps that have very specific performance needs (such as a high-
speed stock ticker). Yet even these can often be addressed with React, though some sit-
uations require more-specific technologies.

 One last tradeoff we should discuss is React’s implementation and design. Baked
into the core of React are systems that handle updating the UI for you when the data
in your components change. They execute changes that you can hook into using cer-
tain methods called lifecycle methods. I cover these extensively in later chapters. React’s
systems that handle updating your UI make it much easier to focus on building modu-
lar, robust components that your application can use. The way React abstracts away
most of the work of keeping a UI up-to-date with data is a big part of why developers
enjoy working with it so much and why it’s a powerful primitive in your hands. But it
shouldn’t be assumed that there are no downsides or tradeoffs made with respect to
the “engines” that power the technology.

 React is an abstraction, so the costs of it being an abstraction still remain. You
don’t get as much visibility into the system you’re using because it’s built in a particu-
lar way and exposed through an API. This also means you’ll need to build your UI in
an idiomatically React way. Fortunately, React’s APIs provide “escape hatches” that let
you drop down into lower levels of abstraction. You can still use other tools like
jQuery, but you’ll need to use them in a React-compatible way. This again is a tradeoff:
a simpler mental model at the cost of not being able to do absolutely everything how
you’d like.

 Not only do you lose some visibility to the underlying system, you also buy into
the way that React does things. This tends to impact a narrower slice of your applica-
tion stack (only views instead of data, special form-building systems, data modeling,
and so on), but it affects it nonetheless. My hope is that you’ll see that the benefits
of React far outweigh the cost of learning it and that the tradeoffs you make when
using it generally leave you in a much better place as a developer. But it would be
disingenuous for me to pretend that React will magically solve all your engineering
challenges.

1.3 The virtual DOM
We’ve talked a little bit about some of the high-level features of React. I’ve posited that
it can help you and your team become better at creating user interfaces and that part
Licensed to Samir Mashlum <smashlum@gmail.com>

13The virtual DOM
of this is due to the mental model and APIs that React provides. What’s behind all
that? A major theme in React is a drive to simplify otherwise complex tasks and
abstract unnecessary complexity away from the developer. React tries to do just
enough to be performant while freeing you up to think about other aspects of your
application. One of the main ways it does that is by encouraging you to be declarative
instead of imperative. You get to declare how your components should behave and look
under different states, and React’s internal machinery handles the complexity of man-
aging updates, updating the UI to reflect changes, and so on.

 One of the major pieces of technology driving this is the virtual DOM. A virtual
DOM is a data structure or collection of data structures that mimics or mirrors the
Document Object Model that exists in browsers. I say a virtual DOM because other
frameworks such as Ember employ their own implementation of a similar technology.
In general, a virtual DOM will serve as an intermediate layer between the application
code and the browser DOM. The virtual DOM allows the complexity of change detec-
tion and management to be hidden from the developer and moved to a specialized
layer of abstraction. In the next sections, we’ll look from a high level at how this works
in React. Figure 1.3 shows a simplified overview of the DOM and virtual DOM rela-
tionship that we’ll explore shortly.

1.3.1 The DOM

The best way to ensure that we understand React’s virtual DOM is to start by checking
our understanding of the DOM. If you already feel you have a deep understanding of

JavaScript Interpreter

Browser

Browser “native” engine

Actual DOMVirtual DOM

Synthetic

Event system

Optimized

updates

Input,

events,

status

Figure 1.3 The DOM and virtual DOM. React’s virtual DOM handles change detection in data as
well as translating browser events into events that React components can understand and react
to. React’s virtual DOM also aims to optimize changes made to the DOM for the sake of
performance.
Licensed to Samir Mashlum <smashlum@gmail.com>

14 CHAPTER 1 Meet React
the DOM, feel free to move ahead. But if not, let’s start with an important question:
what is the DOM? The DOM, or Document Object Model, is a programming interface
that allows your JavaScript programs to interact with different types of documents
(HTML, XML, and SVG). There are standards-driven specifications for it, which
means that a public working group has created a standard set of features it should
have and ways it should behave. Although other implementations exist, the DOM is
mostly synonymous with web browsers like Chrome, Firefox, and Edge.

 The DOM provides a structured way of accessing, storing, and manipulating differ-
ent parts of a document. At a high level, the DOM is a tree structure that reflects the
hierarchy of an XML document. This tree structure is comprised of sub-trees that are
in turn made of nodes. You’ll probably know these as the divs and other elements that
make up your web pages and applications.

 You’ve probably used the DOM API before—but you may not have known you
were using it. Whenever you use a method in JavaScript that accesses, modifies, or
stores information related to something in an HTML document, you’re almost cer-
tainly using the DOM or its related APIs (see https://developer.mozilla.org/en-
US/docs/Web/API for more on web APIs). This means that not all the methods
you’ve used in JavaScript are necessarily part of the JavaScript language itself (docu-
ment.findElemenyById, querySelectorAll, alert, and so on). They’re part of the
bigger collection of web APIs—the DOM and other APIs that go into a browser—that
allow you to interact with documents. Figure 1.4 shows a simplified version of the
DOM tree structure you’ve probably seen in your web pages.

Common methods or properties you may have used to update or query a web page
might include getElementById, parent.appendChild, querySelectorAll, innerHTML,

Element:

<title>

Element

<head>

innerText:

“React”

Document

Root element

<html>

Element:

<a>

innerText:

“React is cool”

Element:

<h1>

innerText:

“Welcome”

Element

<body>

Figure 1.4 Here’s a simple version of the DOM tree structure, using elements
you’re probably familiar with. The DOM API that’s exposed to JavaScript lets
you performs operations on these elements in the tree.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API

15The virtual DOM
and others. These are all provided by the host environment (in this case, the browser)
and allow JavaScript to interact with the DOM. Without this ability, we’d have far less
interesting web apps to use and perhaps no books about React to write!

 Interacting with the DOM is usually straightforward but can get complicated in the
context of a large web application. Fortunately, we don’t often need to directly inter-
act with the DOM when building applications with React—we mostly leave that to
React. There are cases when we want to reach out past the virtual DOM and interact
with the DOM directly, and we’ll cover those in future chapters.

1.3.2 The virtual DOM

The web APIs in browsers let us interact with web documents with JavaScript via the
DOM. But if we can already do this, why do we need something else in between? I
want to first state that React’s implementation of a virtual DOM doesn’t mean that the
regular web APIs are bad or inferior to React. Without them, React can’t work. There
are, however, certain pain points of working directly with the DOM in larger web
applications. Generally, these pain points arise in the area of change detection. When
data changes, we want to update the UI to reflect that. Doing that in a way that’s effi-
cient and easy to think about can be difficult, so React aims to solve that problem.

 Part of the reason for that problem is the way browsers handle interactions with
the DOM. When a DOM element is accessed, modified, or created, the browser is
often performing a query across a structured tree to find a given element. That’s just
to access an element, which is usually only the first part of an update. More often than
not, it may have to reperform layout, sizing, and other actions as part of a mutation—
all of which can tend to be computationally expensive. A virtual DOM won’t get you
around this, but it can help updates to the DOM be optimized to account for these
constraints.

 When creating and managing a sizeable application that deals with data that
changes over time, many changes to the DOM may be required, and often these
changes can conflict or are done in a less-than-optimal way. That can result in an
overly complicated system that’s difficult for engineers to work on and likely a subpar
experience for users—lose-lose. Thus performance is another key consideration in
React’s design and implementation. Implementing a virtual DOM helps address this,
but it should be noted that it’s designed to be just “fast enough.” A robust API, simple
mental model, and other things like cross-browser compatibility end up being more
important outcomes of React’s virtual DOM than an extreme focus on performance.
The reason I make this point is that you may hear the virtual DOM talked about as a
sort of silver bullet for performance. It is performant, but it’s no magic performance
bullet, and at the end of the day, many of its other benefits are more important for
working with React.
Licensed to Samir Mashlum <smashlum@gmail.com>

16 CHAPTER 1 Meet React
1.3.3 Updates and diffing

How does the virtual DOM work? React’s virtual DOM has a few similarities to another
software world: 3D gaming. 3D games sometimes employ a rendering process that
works very roughly as follows: get information from the game server, send it to the
game world (the visual representation that the user sees), determine what changes
need to be made to the visual world, and then let the graphics card determine the
minimum changes necessary. One advantage of this approach is that you only need
the resources for dealing with incremental changes and can generally do things much
quicker than if you had to update everything.

 That’s a gross oversimplification of the way 3D games are rendered and updated,
but the general ideas give us a good example to think of when looking at how React
performs updates. DOM mutation done poorly can be expensive, so React tries to be
efficient in its updates to your UI and employs methods similar to 3D games.

 As figure 1.5 shows, React creates and maintains a virtual DOM in memory, and a
renderer like React-DOM handles updating the browser DOM based on changes.
React can perform intelligent updates and only do work on parts that have changed
because it can use heuristic diffing to calculate which parts of the in-memory DOM
require changes to the DOM. Theoretically, this is much more streamlined and ele-
gant than “dirty checking” or other more brute-force approaches, but a major practi-
cal implication is that developers have less complicated state tracking to reason about.

Real DOM

Updated DOM

Diff Patch

In-memory DOM

Model

Figure 1.5 React’s diffing and update procedure. When a change happens, React
determines differences between the actual and in-memory DOMs. Then it performs an
efficient update to the browser’s DOM. This process is often referred to as a diff (“what
changed?”) and patch (“update only what changed”) process.
Licensed to Samir Mashlum <smashlum@gmail.com>

17Components: The fundamental unit of React
1.3.4 Virtual DOM: Need for speed?

As I’ve noted, there’s more to the virtual DOM than speed. It’s performant by design
and generally results in snappy, speedy applications that are fast enough for modern
web application needs. Performance and a better mental model have been so appreci-
ated by engineers that many popular JavaScript libraries are creating their own ver-
sions or variations of a virtual DOM. Even in these cases, people tend to think that the
virtual DOM is primarily focused on performance. Performance is a key feature of
React, but it’s secondary to simplicity. The virtual DOM is part of what enables you to
defer thinking about complicated state logic and focus on other, more important
parts of your application. Together, speed and simplicity mean happier users and hap-
pier developers—a win-win!

 I’ve spent some time talking about the virtual DOM, but I don’t want to give you the
idea that it will be an important part of working with React. In practice, you won’t need
to be thinking extensively about how the virtual DOM is accomplishing your data
updates or making your changes to your application. That’s part of the simplicity of
React: you’re freed up to focus on the parts of your application that need the most focus.

1.4 Components: The fundamental unit of React
React doesn’t just use a novel approach to dealing with changing data over time; it
also focuses on components as a paradigm for organizing your application. Compo-
nents are the most fundamental unit of React. There are several different ways you
can create components with React, which future chapters will cover. Thinking in
terms of components is essential for grasping not only how React was meant to work
but also how you can best use it in your projects.

1.4.1 Components in general

What is a component? It’s a part of a larger whole. The idea of components is likely
familiar to you, and you probably see them often even though you might not realize it.
Using components as mental and visual tools when designing and building user inter-
faces can lead to better, more intuitive application design and use. A component can
be whatever you determine it to be, although not everything makes sense as a compo-
nent. For example, if you decide that the entirety of an interface is a component, with
no child components or further subdivisions, you’re probably not helping yourself.
Instead, it’s helpful to break different parts of an interface into parts that can be com-
posed, reused, and easily reorganized.

 To start thinking in terms of components, we’ll look at an example interface and
break it down into its constituent parts. Figure 1.6 shows an example of an interface
you’ll be working on later in the book. User interfaces often contain elements that are
reused or repurposed in other parts of the interface. And even if they’re not reused,
they’re at least distinct. These different elements, the distinct elements of an inter-
face, can be thought of as components. The interface on the left in figure 1.6 is bro-
ken down into components on the right.
Licensed to Samir Mashlum <smashlum@gmail.com>

18 CHAPTER 1 Meet React
1.4.2 Components in React: Encapsulated and reusable

React components are well encapsulated, reusable, and composable. These character-
istics help enable a simpler and more elegant way of thinking about and building user
interfaces. Your application can be comprised of clear, concise groups instead of
being a spaghetti-code mess. Using React to build your application is almost like

Exercise 1.1 Component thinking
Visit a popular site that you enjoy and use often (like GitHub, for example) and break
down the interface into components. As you go, you’ll probably find yourself dividing
things into separate parts. When does it make sense to stop breaking things down?
Should an individual letter be a component? When might it make sense for a compo-
nent to be something small? When would it make sense to consider a grouping of
things as one component?

David commented

SJ was too mainstream for me.

Peter commented

Who was Samuel Johnson?

Peter commented

Mitchell commented

"@Peter get off Letters and do your homework!

What we hope ever to do with ease, we must

first learn to do with diligence.

— Samuel Johnson

Mark posted 4 comments

Comment

Haley & Annmarie like this

Comment here…

Letters |Social

@mitchell ok dad :P

Comment-box Component

Post Component

Comment Component

Create Comment Component

Figure 1.6 An example of an interface broken into components. Each distinct section can be thought of as a
component. Items that repeat in a uniform nature can be thought of as one component that gets reused over
different data.
Licensed to Samir Mashlum <smashlum@gmail.com>

19React for teams
building your project with LEGOs, except that you can’t run out of pieces. You’ll
encounter bugs, but thankfully there are no pieces to step on.

 In exercise 1.1, you practiced thinking with components and broke an interface
into some constituent components. You could have done it any number of ways, and
it’s possible you might not have been especially organized or consistent. That’s fine.
But when you work with components in React, it will be important to consider orga-
nization and consistency in component design. You’ll want to design components
that are self-contained and focus on a particular concern or a handful of related
concerns.

 This lends itself towards components that are portable, logically grouped, and easy
to move around and reuse throughout your application. Even if it takes advantage of
other libraries, a well-designed React component should be fairly self-contained.
Breaking your UI into components allows you to work more easily on different parts
of the application. Boundaries between components mean that functionality and
organization can be well-defined, whereas self-contained components mean they can
be reused and moved around more easily.

 Components in React are meant to work together. This means you can compose
together components to form new composite components. Component composition is
one of the most powerful aspects of React. You can create a component once and
make it available to the rest of your application for reuse. This is often especially help-
ful in larger applications. If you’re on a medium-to-large team, you could publish
components to a private registry (npm or otherwise) that other teams could easily pull
down and use in new or existing projects. This might not be a realistic scenario for all
sizes of teams, but even smaller teams will benefit from the code reuse that React com-
ponents promote.

 A final aspect of React components is lifecycle methods. These are predictable, well-
defined methods you can use as your component moves through different parts of its
lifecycle (mounting, updating, unmounting, and so on). We’ll spend a lot of time on
these methods in future chapters.

1.5 React for teams
You now know a little bit more about components in React. React can make your life
easier as an individual developer. But what about on a team? Overall, what makes
React so appealing to individual developers is also what can make it a great fit for
teams. Like any technology, React isn’t a perfect solution for every use case or project,
no matter the hype or what fanatical developers may try to convince you of. As you’ve
already seen, there are many things that React doesn’t do. But the things it does do, it
does extremely well.

 What makes React a great tool for larger teams and larger applications? First,
there’s the simplicity of using it. Simplicity is not the same thing as ease. Easy solutions
are often dirty and quick, and worst of all, they can incur technical debt. Truly simple
technology is flexible and robust. React provides powerful abstractions that can still
Licensed to Samir Mashlum <smashlum@gmail.com>

20 CHAPTER 1 Meet React
be worked with along with ways to drop down into the lower-level details when neces-
sary. Simple technology is easier to understand and work with because the difficult
work of streamlining and removing what’s not necessary has been done. In many ways
React has made simple easy, providing an effective solution without introducing harm-
ful “black magic” or an opaque API.

 All this is great for the individual developer, but the effect is amplified across larger
teams and organizations. Although there’s certainly room for React to improve and
keep growing, the hard work of making it a simple and flexible technology pays off for
engineering teams. Simpler technologies with good mental models tend to create less
of a mental burden for engineers and let them move faster and have a higher impact.
As a bonus, a simpler set of tools is easier to learn for new employees. Trying to ramp
up a new team member to an overly complex stack will not only cost time for the train-
ing engineers, it will also probably mean that the new developer will be unable to
make meaningful contributions for some time. Because React seeks to carefully rethink
established best practices, there’s the initial cost in paradigm switch, but after that it’s
often a big, long-term win.

 Although it’s certainly a different tool than others in the same space, React is a
fairly lightweight library in terms of responsibility and functionality. Where something
like Angular may require you to “buy in” to a more comprehensive API, React is only
concerned with the view of your application. This means it’s much more trivial to inte-
grate it with your current technologies, and it will leave you room to make choices
about other aspects. Some opinionated frameworks and libraries require an all-or-
nothing adoption stance, but React’s “just the view” scope and general interoperabil-
ity with JavaScript mean this isn’t always the case.

 Instead of going all-in, you can incrementally transition different projects or tools
over to React without having to make a drastic change to your structure, build stack,
or other related areas. That’s a desirable trait for almost any technology, and it’s how
React was first tried out at Facebook—in one small project area. From there it grew
and took hold as more and more teams saw and experienced its benefits. What does
all this mean for your team? It means you can evaluate React without having to take
the risk of completely rewriting the product using React.

 The simplicity, un-opinionated nature, and performance of React make it a great
fit for projects small and large alike. As you keep exploring React, you’ll see how it can
be a good fit for your team and projects.

1.6 Summary
React is a library for creating user interfaces that was initially built and open
sourced by Facebook. It’s a JavaScript library built with simplicity, performance, and
components in mind. Rather than provide a comprehensive set of tools for creating
applications, it allows you to choose how to implement your data models, server
calls, and other application concerns, and what to implement them with. These key
reasons and others are why React can be a great tool for small and large applications
Licensed to Samir Mashlum <smashlum@gmail.com>

21Summary
and teams alike. Here are some of the benefits of React briefly summarized for a few
typical roles:

 Individual developer—Once you learn React, your applications can be easier to
rapidly build out. They will tend to be easier to work on for larger teams, and
sophisticated features can be easier to implement and maintain.

 Engineering manager—There’s an initial cost for developers as they learn React,
but eventually they’ll be able to more easily and quickly develop complex appli-
cations.

 CTO or upper management—React, like any technology, is an investment with
risks. But the eventual gains in productivity and reduced mental burdens often
outweigh time sunk into ramping up. That’s not the case for every team, but it’s
true for many.

All in all, React can be relatively easy for onboarding engineers to learn, can reduce
the total amount of unnecessary complexity in an application, and can reduce techni-
cal debt by promoting code reuse. Take a second to review some of what you’ve
learned about React so far:

 React is a library for building user interfaces, originally created by engineers at
Facebook.

 React provides a simple, flexible API that’s based around components.
 Components are the fundamental unit of React, and they’re used extensively in

React applications.
 React implements a virtual DOM that sits between your program and the

browser DOM.
 The virtual DOM allows for efficient updates to the DOM using a fast diffing

algorithm.
 The virtual DOM allows for excellent performance, but the biggest win is the

mental model that it affords.

Now that you know a little more about the background and design of React, we can
really dive in. In the next chapter, you’ll create your first component and take a closer
look at how React works. You’ll be learning more about the virtual DOM, components
in React, and how you can create components of your own.
Licensed to Samir Mashlum <smashlum@gmail.com>

<Hello World />:
our first component
Chapter 1 talked about React in mostly theoretical terms. If you’re a “show me the
code!” kind of person, this chapter is for you. We’ll start looking at React up close
in this chapter. As we get into some of React’s API, you’ll build a simple comment
box that will help you see the mechanics of React in action and start to solidify a
mental model of how React works. We’ll start by building React components with-
out any “syntactic sugar” or conveniences that might obscure the underlying tech-
nology. We’ll explore JSX (a lightweight markup language that helps us build React
components more easily) at the end of the chapter. In later chapters, we’ll get
more complex and see how to create a full app out of React components (Letters
Social—check it out at https://social.react.sh), but in this chapter, we’ll keep our
scope limited to just a few related components.

This chapter covers
 Thinking about user interfaces with components

 Components in React

 How React renders components

 Different ways of creating components in React

 Using JSX in React
22

Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh

23
Before diving in, let’s take a brief, high-level look at React again to orient ourselves.
Figure 2.1 gives you an overview of the core aspects of most React applications. Let’s
look at each part:

 Components—Encapsulated units of functionality that are the fundamental unit
of React. These are what your views are made from. They’re JavaScript functions

Components

Other JavaScript
(other modules, custom methods)

<Component
display
userID={12}>

<OtherComponent/>
<Component>

{"user": {name: "Mark"}}

componentWillMount

componentDidMount

componentWillReceiveProps

shouldComponentUpdate

componentWillUpdate

componentDidUpdate

componentWillUnmount

Application

Application code (components, styles, utilities, business logic)

React
React DOM / React-
Native / React VR

Other libraries

Native devices
(iOS, Android)

VR Devices
(React VR)

Server
(node.js)

Desktop &
Mobile

Props

Internal component state Lifecycle methods

Target environments/platforms

Figure 2.1 This is React at a very high level, which you may recognize from
chapter 1. With React you can use components to build user interfaces that
can run on browsers and native platforms like iOS and Android. It isn’t a
comprehensive framework—it leaves you the freedom to choose what
libraries you use for data modeling, styling, HTTP calls, and more. You can run
React apps in browsers and, with the help of React Native, on mobile devices.
Licensed to Samir Mashlum <smashlum@gmail.com>

24 CHAPTER 2 <Hello World />: our first component
or classes that receive properties as inputs and maintain their own internal
state. React provides a set of lifecycle methods for certain types of components
so you can hook into the different component-management steps.

 React libraries—React applications run using the React libraries. The core React
library (react) is supported by the react-dom and react-native libraries.
React DOM handles rendering in browser or server-side environments, whereas
React Native provides native bindings that mean you can create React applica-
tions for iOS or Android.

 Third-party libraries—React doesn’t enforce opinions on you with regard to data
modeling, HTTP calls, specific areas of styling such as look and feel, or other
aspects of your application. For these, you’ll integrate other technologies to
build out your application as you see fit. Not all libraries are compatible with
React, but there are ways you can integrate most of them with React. We’ll
explore using non-React code in React apps in chapters 4, 10, and 11.

 Running a React application—Your React application, created from components,
runs on a platform of your choice: web, mobile, or native.

2.1 Introducing React components
Components are the fundamental unit of a client-side application written in React.
You’ll definitely be creating lots of components! In this chapter, you’ll build a simple
comment box from components to get your hands dirty and take a whirlwind tour of
React. But first let’s take a little time to explore “thinking in components” and see how
that might shake out with regard to your comment box. For most of the book, we’ll
usually dive into the code without spending too much time planning things out, but
for this first foray into React we’ll do a little bit of planning to get our mindset right.
Have a look at figure 2.2.

Components

Other JavaScript
(other modules, custom methods)

<Component
display
userID={12}>

<OtherComponent/>
<Component>

{"user": {name: "Mark"}}

componentWillMount

componentDidMount

componentWillReceiveProps

shouldComponentUpdate

componentWillUpdate

componentDidUpdate

componentWillUnmount

Props

Internal component state Lifecycle methods

Figure 2.2 Overview of a React component. We’ll be exploring each of these key parts for
the rest of the book.
Licensed to Samir Mashlum <smashlum@gmail.com>

25Introducing React components
In this book, we’ll pretend that we’re employees of a fictional startup called Letters.
You’ll build a next-generation social network (where you can post, comment, and
like—truly ground-breaking). In this chapter, we’re exploring React as a potential
technology choice for your company. You’ve been tasked with creating a simple set of
components to get a feel for the technology. You have some really rough mockups
that the design team gave you, but that’s about it. Figure 2.3 shows a pretty version of
what you’ll be building.

How should you get started building this? Let’s begin with understanding the data
your application needs and then seeing how you can turn that into components. How
should you translate the mockup into components? You could just dive in and start
trying to create components without knowing anything about React, but without
understanding how they work or what purpose they’d serve, you could end up creat-
ing something messy or not idiomatic to React. We’ll do some planning in the next
few sections so you have a better idea about how to structure and design your com-
ment box.

David commented

SJ was too mainstream for me.

Peter commented

Who was Samuel Johnson?

Peter commented

Mitchell commented

"@Peter get off Letters and do your homework!

What we hope ever to do with ease, we must

first learn to do with diligence.

— Samuel Johnson

Mark posted 4 comments

Comment

Haley & Annmarie like this

Comment here…

Letters |Social

@mitchell ok dad :P

Figure 2.3 Rough comment box
mockup. You’ll create a UI where users
can add comments to a post and view
previous comments.
Licensed to Samir Mashlum <smashlum@gmail.com>

26 CHAPTER 2 <Hello World />: our first component
2.1.1 Understanding the application data

Besides the mockup, we need something else before we can plan how your compo-
nents will be organized. We need to know what information the API will provide to
your application. Based on the mockup, you can probably already guess some of the
data that you might be getting back. Getting a sense of the shape of your application
data will be an important part of the planning we’re doing before starting to create
your UI.

Exercise 2.1 Revisit your interface breakdown
Before moving on, take some time to revisit an exercise from the last chapter. You
looked at a web interface and took some time to break it down on your own. Take a
minute to revisit the same interface and see if you’d do anything differently now that
you know more about components in React. Would you group things together differ-
ently? Here’s the same marked-up GitHub profile interface from chapter 1 to jog your
memory:
Licensed to Samir Mashlum <smashlum@gmail.com>

27Introducing React components
The following listing shows an example of data you’ll receive from the API for your
comment box and how it might match up to your mockup.

{
 "id": 123,
 "content": "What we hope ever to do with ease, we must first learn to do

with diligence. — Samuel Johnson",
 "user": {
 "name": "Mark Thomas",
 "id": 1
 },
 "comments": [{
 "id": 0,
 "user": "David",
 "content": "too. mainstream."
 }, {
 "id": 1,
 "user": "Peter",
 "content": "Who was Samuel Johnson?"
 }, {
 "id": 2,
 "user": "Mitchell",
 "content": "@Peter get off Letters and do your homework!"
 }, {

Web APIs
You may have heard the term API used frequently in your job or in your learning. If
you’re already familiar with this concept, feel free to move on. If not, this section
might help you. What is an API? An API, or, application programming interface, is a
set of routines and protocols for building software. That might sound vague, and it is
a pretty general definition. API is a broad term, applying to everything from company
platforms to open source libraries.

In web development and engineering, API has become almost synonymous with a
remote, web-based public API. This means that an API is usually a way of exposing
defined ways to interact with a program or platform, usually over the internet, and for
people to use and consume. There are many examples, but two of the more familiar
ones are the Facebook and Stripe APIs. They provide a set of methods to interact with
their programs and data over the web.

The back-end infrastructure team at Letters, our fictional company, has created such
an API for you to use. There are many different forms and types of web-based APIs,
but the one that you’ll work with in this book is that of a RESTful JSON API. This means
that a server will give you data in the JSON format and the available data organized
around resources like users, posts, comments, and so on. RESTful JSON APIs are a
common style of remote API, so this likely won’t be the only time you work with one
if you haven’t already.

Listing 2.1 Sample JSON API

This didn’t appear in the visual
mockup, but that doesn’t mean
you don’t need this piece of data.

You’ve received a collection
of comment objects.

Comments have
IDs too.
Licensed to Samir Mashlum <smashlum@gmail.com>

28 CHAPTER 2 <Hello World />: our first component
 "id": 3,
 "user": "Peter",
 "content": "@mitchell ok dad :P"
 }]
}

The API returns a JSON response containing a single post. It has some important
properties, including id, content, author, and comments. id is a number, content and
author are strings, and comments is an array of objects. Each comment has its own ID,
a user who made the comment, and the content of the comment.

2.1.2 Multiple components: Composition and parent-child relationships

You have the data we need and a mockup, but how do you go about forming compo-
nents to use that data? For one, you need to know how components can be organized
with other components. React components are organized into tree structures. Like
DOM elements, React components can be nested and can contain other components.
They can also appear “next to” other components, which means that they occur at the
same level as other components (see figure 2.4).

 That brings up an important question: what sort of relationships can components
have? You might think there would be quite a few different types of relationships that
can be created using components, and in one sense, you’re right. Components can be
used in flexible ways. Because they’re self-contained and tend not to carry around any
“baggage,” they’re said to be composable.

 Composable components are often easily moved around and can be reused to cre-
ate other components. You can think of them almost like LEGO bricks. Each LEGO
brick is self-contained, so it can be easily moved around—you don’t have to bring a
whole set with the one brick—and it easily fits in with other components. Portability
isn’t the be-all, end-all, but it’s often a feature of well-designed React components.

 Because components are composable, they can be used in many places throughout
your application. Wherever a component is used, it probably helps form a certain type
of relationship: parent and child. If a component contains another component, it’s said
to be the parent. A component within another component is said to be a child. Com-
ponents that exist at the same level don’t share any sort of direct relationship, even
though they might be right next to each other. They only “care” about their parents
and children.

 Figure 2.4 shows how components can relate to each other in a parent-child way
and be composed together to create new components. Note the lack of direct rela-
tionship between the two sibling components despite a direct parent-child relation-
ship. I’ll cover more on this when we explore data flow in React.

2.1.3 Establishing component relationships

We have a sense of the data and visual appearance of your interface as well as the par-
ent-child relationship components can form. Now you can get started on defining
Licensed to Samir Mashlum <smashlum@gmail.com>

29Introducing React components
your component hierarchy, which is the process of applying what you’ve learned so
far. You’ll establish what will be a component and where it will go. This process of
establishing component relationships won’t look the same for every team or every
project. Component relationships are also likely to change over time, so don’t expect
perfection your first time around. Easier iteration in a UI is part of what makes React
pleasant to work with.

 Take a minute or two to try breaking down the mockup into components before
we move on. You’ve done this a couple times now, but practicing thinking with com-
ponents will only make working with React easier. As you practice, remember the
following:

 Ensure that components are grouped together in a way that makes sense; com-
ponents should be organized around related functionality. If it’s untenable to
move components around in your application, you might be creating too rigid
a hierarchy. This isn’t always the case, but it’s good to watch out for.

 If you see an interface element repeated multiple times, that’s usually a good
candidate for becoming a component.

 You won’t get everything perfect the first time, and that’s okay. It’s normal to
iteratively improve your code. The initial planning isn’t meant to eliminate
future change, but to set the proper starting direction.

With these guidelines in mind, you can look at the available data and mockup and
start by breaking things up into a few components. Figure 2.5 shows one way of break-
ing up the interface into components.

Composing a new component

Standalone

Standalone component

Composite component

Parent

Component

ChildChild

Parent

ChildChild

Figure 2.4 Components can have different types of relationships
(parent and child), can be used to create other components, or
can even stand alone. They can often be easily moved around
because they’re self-contained and don’t carry any baggage when
moved. As such, they’re said to be composable.
Licensed to Samir Mashlum <smashlum@gmail.com>

30 CHAPTER 2 <Hello World />: our first component
With React you can be flexible in designing your application. We’ve come up with
four components, but there are many ways that you might have gone about dividing
things up. React enforces a parent-child relationship between components, but
beyond that you’re free to define your hierarchy in whatever way makes the most
sense to you and your team. There might be, for example, cases where you break a
small section of the UI into many different parts. The size of the UI isn’t directly
related to how many or how few components it should be comprised from.

 Now that we’ve gone through some initial planning, you’re ready to dive in and
start creating your comment box UI. In the next section, you’ll start creating React
components. You won’t use any syntactic helpers like JSX. Instead, we’ll focus on “raw”
React and you’ll get a feel for the core mechanics of the technology before moving on
to use such helpers.

David commented

SJ was too mainstream for me.

Peter commented

Who was Samuel Johnson?

Peter commented

Mitchell commented

"@Peter get off Letters and do your homework!

What we hope ever to do with ease, we must

first learn to do with diligence.

— Samuel Johnson

Mark posted 4 comments

Comment

Haley & Annmarie like this

Comment here…

Letters |Social

@mitchell ok dad :P

Comment-box Component

Post Component

Comment Component

Comment section component

Create Comment Component

Figure 2.5 You can break your interface up into just a few components. Note that you don’t necessarily need to
create components for every single element of the interface, although it might make sense to decompose more
parts into components as an application grows. Also, you’ll notice that the same comment component will be used
for each of the comments attached to a post. And note that I’ve diagrammed things here on the side for readability;
you might have instead drawn lines right on top of everything.
Licensed to Samir Mashlum <smashlum@gmail.com>

31Creating components in React
 You might get frustrated by having to forgo some of the helpers that you’d use
during normal React development. I’m glad about that, because it will probably mean
that you’ll more genuinely appreciate and understand the abstractions you’ll be work-
ing with. It’s not always the case, but in my experience starting with the lower-level ele-
ments of a new technology will generally better equip you to work with it for the long
term. We don’t need to write our JavaScript programs in assembly code, certainly, but
we also don’t want to use a technology with an incomplete understanding of the core
mechanics.

2.2 Creating components in React
In this section, you’ll create some React components and run them in a browser. For
now, you won’t need to use node.js or any anything else to get everything set up and
running. You’ll run code in the browser via CodeSandbox (https://codesandbox.io).
If you’d prefer to edit the files locally, you can click Download in the CodeSandbox
code editor and get the code for that example.

 You’ll use three libraries for your first components: React, React DOM, and prop-
types. React DOM is a renderer for React that was split off from the main React library
to better separate concerns; it handles rendering components to the DOM or to a
string for server-side rendering. The prop-types library is a development library that
will help you do some typechecking on data passed to your components.

 You’ll start creating the comment box component by creating some of the constit-
uent parts first. This will help you get a better sense of what’s going to happen overall
when React creates and renders your components. You need to add a new DOM ele-
ment with an ID of root as well as some basic code that uses React DOM. The following
listing shows the bare-bones starting place for your component. For each listing, I’ll
include a link to an online running version of the code you can easily edit and play
around with.

//... index.js
const node = document.getElementById("root");

//... index.html
<div id="root"></div>

Code for listing 2.2 is available online at https://codesandbox.io/s/vj9xkqzkvy.

2.2.1 Creating React elements

So far, your code won’t do much of anything except download the React libraries and
find the root DOM element. To make something substantial happen, you need to use
React DOM. You’ll need to call its render method for React to create and manage your
component. You’ll call this method with a component to render and container

Listing 2.2 Starting out

Store a reference to the root
element—you’ll render your React
app into this DOM element.

In the index.html file you’ve
created a div with the id ‘root’.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io
https://codesandbox.io/s/vj9xkqzkvy

32 CHAPTER 2 <Hello World />: our first component
(which will be the DOM element you stored in a variable earlier). The signature of
ReactDOM.render looks like this:

ReactDOM.render(
 ReactElement element,
 DOMElement container,
 [function callback]
) -> ReactComponent

React DOM needs an element of type ReactElement and a DOM element. You’ve cre-
ated a valid DOM element that you can use, but now you need to create a React ele-
ment. But what’s a React element?

DEFINITION A React element is a light, stateless, immutable primitive in React.
There are two types: ReactComponentElement and ReactDOMElement. React-
DOMElements are virtual representations of DOM elements. ReactComponent-
Elements reference either a function or a class corresponding to a React
component.

Elements are the descriptors we use to tell React what we want to see on the screen and
are a central concept in React. Most of your components will be collections of React
elements; they’ll create a “boundary” of sorts around a portion of your UI so you can
group functionality, markup, and styles together. But what does it mean for a React
element to be a virtual representation of a DOM element? This means that React ele-
ments are to React what DOM elements are to the DOM—the basic primitives that
compose a UI. When you’re creating plain old HTML markup, you use a variety of ele-
ment types (div, span, section, p, img, and so on) to contain and structure informa-
tion. In React, you can use React elements—which tell React about either React
components or regular DOM elements you want rendered—to compose and build
your UI.

 Maybe the parallel between DOM elements and React elements didn’t click for
you immediately. That’s okay. Remember how React is supposed to help you by creat-
ing a better mental model to work with? The parallel between DOM elements and
React elements is one way in which it does that. It means that you get a familiar mental
structure to work with: a tree structure of elements that are like regular DOM ele-
ments. Figure 2.6 will help you visualize some of the similarities between React ele-
ments and DOM elements.

 Another way to think of React elements is as a set of basic instructions for React to
use, like a blueprint for a DOM element. React elements are what React DOM will take
and use to update the DOM. In figure 2.7 React elements are being used in the overall
process of a React application.

 You now know a little more about React elements in general, but how do they get
created and what goes into creating them? You create React elements with React
Licensed to Samir Mashlum <smashlum@gmail.com>

33Creating components in React
.createElement—go figure! Let’s look at its function signature to find out how you
should use it:

React.createElement(
 String/ReactClass type,
 [object props],
 [children...]
) -> React Element

React.createElement takes a string or component (either a class extending
React.Component or a function), a props object, and children and returns a React
element. Remember, a React element is a lightweight representation of something
you want React to render. It can indicate either a DOM element or another React
component.

 Let’s look more closely at each of these basic instructions:

 type—You can pass in either a string that is the tag name of the HTML element
to be created ("div", "span", "a", and so on) or a React class, which we’ll look

Virtual DOM DOM

Comprised of

DOMElements

Comprised of

ReactElements

Figure 2.6 The virtual and “real” DOM share a similar tree-like
structure, which makes it easy for you to think about the structure
of your components and overall application in React in similar ways.
The DOM is comprised of DOMElements (HTMLElements and
SVGElements), whereas React’s virtual DOM is comprised of React
elements.

Virtual DOM

ReactReactElement

Actual DOM

React DOM

Figure 2.7 React elements are what React uses to create a virtual DOM that React DOM will
manage and use to reconcile and update the actual DOM. They are simple blueprints for React to
use in creating and managing elements.
Licensed to Samir Mashlum <smashlum@gmail.com>

34 CHAPTER 2 <Hello World />: our first component

ingle
ou’ll

W
t
b

you’
Rea

calls
child
at shortly. Think of this argument as React asking, “What type of thing am I
going to be creating?”

 props—Short for properties. The props object provides a way of specifying which
attributes will be defined on the HTML element (if in the context of a React-
DOMElement) or will be available to a component class instance.

 children...—Remember how I said React components are composable? This is
where you can do some composing. Using children..., the arguments passed
after type and props let you nest, order, and even further nest other React ele-
ments. As you can see in listing 2.3, you can nest React elements by nesting calls
to React.createElement in children....

React.createElement asks, “What am I creating?”, “How should I configure it?”,
and “What does it contain?” The following listing shows how you might use React
.createElement.

...
 import React, { Component } from 'react';
 import { render } 'react-dom';
 const node = document.getElementById('root');
 const root =
 React.createElement('div', {}, //
 React.createElement('h1', {}, "Hello, world!", //
 React.createElement('a', {href: 'mailto:mark@ifelse.io'},
 React.createElement('h1', {}, "React In Action"),
 React.createElement('em', {}, "...and now it really is!")
)
)
);
 render(root, node); //
...

Code for listing 2.3 is available online at https://codesandbox.io/s/qxx7z86q4w.

2.2.2 Rendering your first component

You should now be able see something besides a blank page, as shown in figure 2.8.
You just created your first React component! Using the developer tools for your
browser, try opening up the page and inspecting the HTML. You should see HTML
elements that correspond to what you created using React. Note that the properties
you passed have made it through, too, so you can click the link and send me an email
telling me how much you’re loving learning about React.

 This is great, but you may be wondering how React turns your many React
.createElements into what you see on the screen. React uses the React elements you
provide to create a virtual DOM that React DOM can use as it manages the browser

Listing 2.3 Using React.createElement

Import React and
React DOM for use.

React.createElement returns a s
React element, so that’s what y
store in root for later use.

hitespace shows
he nesting better,
ut don’t miss how
re nesting several
ct.createElement

 within respective
ren... parameters.

Creating an anchor link—
note the mailto property
you’ve set, like how you
might in regular HTML.

Inner text can also be
passed in children....

Call the render
method we talked
about earlier.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/qxx7z86q4w

35Creating components in React
DOM. Remember from figure 2.4 that the virtual and real DOMs share similar struc-
tures? Well, React needs to form its own virtual DOM tree structure from your React
elements before it can do its work.

 To do that, React will recursively evaluate all of the children... properties of
every React.createElement call, passing the result up to the parent element. You can
think of React doing this as being like a small child asking, “What is X?” repeatedly
until they understand every little thing about X. Figure 2.9 shows how you might think
about React evaluating nested React elements. Follow the arrows down and across to
the right to see how React examines the children... of every React element until it
can form a complete tree.

Figure 2.8 Your first component.
It’s not much, but you’ve
successfully created a
component using React.

React.createElement(string | ReactClass, props, children)

React.createElement(string | ReactClass, props, children)

React.createElement(string | ReactClass, props, children)

React.createElement(string | ReactClass, props, children)

React.createElement(string | ReactClass, props, children)

React.createElement(string | ReactClass, props, children)

“What am I creating?” “How do I configure it?" “What does it contain?”

Figure 2.9 React will recursively evaluate a series of React elements to determine how it should form a virtual
DOM tree structure for your components. It will also check for more React elements in children... to
evaluate. React will go through every possible path, like a child asking, “What is X?” until they know everything.
You can follow the arrows down and across to the right to get a sense of how React might evaluate nested React
elements as well as what each parameter is asking.
Licensed to Samir Mashlum <smashlum@gmail.com>

36 CHAPTER 2 <Hello World />: our first component
Now that you’ve created your first component, you may have a few questions and even
some concerns. Even with some formatting help, it’s clear that it will be difficult to
read through components that are nested even a few levels deep. We’ll explore better
ways to write components, so don’t worry—you won’t be nesting React.create-
Element hundreds of times. Using it now will give you a better sense of what React
.createElement does and will hopefully help you appreciate JSX when you start using
it that much more.

 You also may be concerned that what you’ve created seems too simple. So far,
React seems like it might be a verbose JavaScript templating system. But there’s much
more that React can do: enter components.

2.2.3 Creating React components

As you can probably already tell, using only React elements and React.createElement
to create parts of your UI doesn’t do much for you beyond managing the DOM. You
could still pass in event handlers as props to handle clicks or input changes, pass in
other data to display, and even nest elements. But you’d still be missing the persistent
state provided by React, lifecycle methods that would give you predictable ways to work
with a component, and, for that matter, any sort of logical grouping together that a
component could give you. You definitely want to find a way to group React elements
together.

 You can do that through components. Components serve to bundle up and group
functionality, markup, styles, and other related bits of your UI together. They act as a
sort of boundary around parts of your UI that can also contain other components. Com-
ponents can then be independent, reusable pieces that allow you think about each
piece in isolation.

Exercise 2.2 React elements
Before moving on to components, check your understanding of React elements.
Either on paper or in your mind, list out a few of the characteristics of a React ele-
ment. Here are a few characteristics of React elements to refresh your memory
before moving on:

 React elements take a string to create a type of DOM element (div, a, p, and
so on).

 You can provide configuration to the React element via a props object; these
are analogous to attributes DOM elements can have (,
for example).

 React elements are nestable and you can provide other React elements as
the children of an element.

 React uses React elements to create a virtual DOM that React DOM can use
as it updates the browser DOM.

 React elements are what components are made from in React.
Licensed to Samir Mashlum <smashlum@gmail.com>

37Creating components in React
 You can create two primary types of components using functions and JavaScript
classes. I’ll cover the first type, stateless functional components, in future chapters. For
now we’ll talk about the second type: stateful React components created with Java-
Script classes. From here on, when I refer to a React component, I’m referring to a
component that’s a created from either a class or a function.

2.2.4 Creating React classes

To start really building something, you need more than just React elements; you need
components. As mentioned, React components (components created from functions)
are like React elements but with more features. Components in React are classes that
help group together React elements and functionality. They can be created as classes
that extend the React.Component base class or functions. This section explores React
classes and how to use this type of component in React. Let’s look at how you create a
React class:

class MyReactClassComponent extends Component {
 render() {}
}

Rather than invoke a specific method from the React library as you did with
React.createElement, creating a component from React.Component is done by
declaring a JavaScript class that inherits from the React.Component abstract base class.
That inheriting class will typically need to define at least a render method that will
return a single React element or an array of React elements. The old way to create
React classes was with the createClass method. This has since changed with the
advent of classes in JavaScript and is now discouraged, although you can still use the
create-react-class module, available on npm. For more on using React without
ES2015+ JavaScript, check out https://reactjs.org/docs/react-without-es6.html.

2.2.5 The render method

We’ll start our exploration of creating components as React classes with the render
method mentioned earlier. This is one of the most common methods you’ll see in
React applications, and almost any component that renders something to a screen will
have a render method. We’ll eventually explore components that don’t directly ren-
der anything but instead modify or enhance other components (known sometimes as
higher-order components).

 The render method needs to return exactly one React element. In this way, the
render method is similar to how React elements are created—they can be nested but
at the topmost level there’s a single node. However, unlike React elements, the render
methods of React classes have access to embedded data (persisted internal compo-
nent state) as well as component methods and additional methods inherited from the
React.Component abstract base class (all of which I’ll cover). The persistent state I
mentioned is available to the entire component because React creates a “backing
Licensed to Samir Mashlum <smashlum@gmail.com>

https://reactjs.org/docs/react-without-es6.html

38 CHAPTER 2 <Hello World />: our first component
instance” for this type of component. That’s also why you’ll hear these sorts of compo-
nents referred to as stateful components.

 All this means that React will create and keep track of a special data object for an
instance of a React class (not the blueprint itself) that stays around over time and can
be updated through special React functions. I’ll cover this more in future chapters,
but figure 2.10 illustrates how React classes get backing instances and React elements
don’t.

When using a React class to create a component, you also have access to props—data
that you can pass to your component and that it can in turn pass to child components.
You may remember this props data as a parameter you passed to React.create-
Element. As before, you can use it to specify properties of components at the time of
creation. Props shouldn’t be modified within a component, but you’ll soon discover
ways for updating data in React components.

 In listing 2.5 in the next section you’ll see a React class component in action and
how you’ve created more nested React elements and passed in your custom data using
this.props. When you see props being used with React classes, it’s as if you were cre-
ating a custom HTML element like Jedi and giving it a custom attribute like “name”:
<Jedi name="Obi Wan"/>. I’ll cover the this JavaScript keyword more in future chap-
ters, but note that in this case the reserved JavaScript keyword this points to the com-
ponent instance.

2.2.6 Property validation via PropTypes

You know that React class components are free to use custom properties, and this
sounds great; it’s as if you can create your own custom HTML elements but with
even more functionality. Remember that with great power comes great responsibil-
ity. You need to provide some sort of way to validate which properties you’ll be using
so you can prevent bugs and plan the sorts of data your components will use. To do
that, you can use validators available from a namespace within React: PropTypes.
The PropTypes set of validators used to be included with the React core library, but

Virtual DOM

Backing

instance
ReactClass

ReactElement

Figure 2.10 React will create a backing instance
in memory for components created as React
component classes. As you can see, React
component classes get one, and React elements
and non-React class components don’t. Remember
that React elements are mirrors of the DOM and
components are ways to group them together. The
backing instance is a way of providing data storage
and access for a specific component. The data
stored in the instance will be made available to the
component’s render method through specific API
methods. This means that you get access to data
that you can change and that will persist over time.
Licensed to Samir Mashlum <smashlum@gmail.com>

39Creating components in React
was later broken out and deprecated within React in version 15.5. To use PropTypes,
you’ll need to install the prop-types package, which is still part of the React tool-
chain but is no longer included in the core library. This package will be included in
the application source code and the CodeSandbox examples that you’ve been using
in this chapter.

 The prop-types library provides a set of validators that will let you specify what
props your component needs or expects. For example, if you were going to build a
ProfilePicture component, it wouldn’t be of much use without a picture (or the
logic to handle not having one available). You could use PropTypes to specify which
props your ProfilePicture component would need to work and what those props
would look like.

 You can think of PropTypes as providing a sort of contract that can be fulfilled or
broken by other developers and your future self. Using PropTypes isn’t strictly neces-
sary for React to work, but should be used for bug prevention and ease of debugging.
Another benefit of using PropTypes is that if you specify what props you expect first,
you get a chance to think through what your component will need to work.

 When using PropTypes, you need to add a propTypes property to the React
.Component class via a static class property or by simple property assignment after the
class definition. Note the lowercasing of the property on the class but not the one
from the React object, as it can be easy to mix them up. Listing 2.4 shows how you can
use PropTypes, as well as return React elements from React class components. In this
listing, you’ll bring together a few things: creating a React class that you can pass to
createElement, adding a render method, and specifying propTypes.

import React, { Component } from "react";
import { render } from "react-dom";
import PropTypes from "prop-types";

const node = document.getElementById('root');
class Post extends Component {
 render() {
 return React.createElement(
 'div',
 {
 className: 'post'
 },
 React.createElement(
 'h2',
 {
 className: 'postAuthor',
 id: this.props.id
 },
 this.props.user,
 React.createElement(
 'span',
 {

Listing 2.4 Using PropTypes and the render method

Import React,
React DOM, and
prop-types.

Create a React class as your Post
component. In this case, you’re only
specifying propTypes and a render method.

Create a div element
that has a class 'post'.

What this refers to can sometimes be
confusing in JavaScript—here it will
refer to the component instance, not
your React class blueprint.
Licensed to Samir Mashlum <smashlum@gmail.com>

40 CHAPTER 2 <Hello World />: our first component
 className: 'postBody'
 },
 this.props.content
)
)
);
 }
}

Post.propTypes = {
 user: PropTypes.string.isRequired,
 content: PropTypes.string.isRequired,
 id: PropTypes.number.isRequired
};

const App = React.createElement(Post, {
 id: 1,
 content: ' said: This is a post!',
 user: 'mark'
});

render(App, node);

...

Code for listing 2.4 is available online at https://codesandbox.io/s/3yj462omrq.
 You should see some text appear: “mark said: This is a post!” If you hadn’t pro-

vided any of the required props, you’d see a warning in the developer console. Failure
to provide certain props might break your app because of what components need to
work, but the validation step won’t. In other words, if you forget to provide a crucial
piece of data to your application, it might break, but using PropTypes validation
won’t—it’ll just let you know that you forgot the prop. Because PropTypes only does
type evaluation in development mode, your app running in production won’t expend
the extra effort to do the work of PropTypes.

 Now that you’re creating a component and passing in some data, you can try nest-
ing components. I’ve mentioned this possibility before, and it’s part of what makes
React a pleasure to work with and so powerful: you can create components from other
components. Listing 2.5 illustrates this and shows a special use of the children prop-
erty. I’ll cover this more in future chapters when you work with routing and higher-
order components. When you use the this.props.children prop, it’s like an outlet
for nested data to come through. In this case, you’ll create a Comment component, pass
it as the argument, and achieve nesting it.

//...
 this.props.user,
 React.createElement(
 "span",
 {

Listing 2.5 Adding a nested component

Using className instead of
class for the Dom element’s
CSS class name

Again, the content prop is the
inner content of a span element
you’re creating.

Properties can be optional or required,
have a type, and can even be required to
have a certain “shape” (an object with
certain properties, for example).

Pass the Post React Class to
React.createElement along with some
props to create something. React DOM
can render—try changing the data to
see how the render for your component
output changes.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/3yj462omrq

41Creating components in React
 className: "postBody"
 },
 this.props.content
),
 this.props.children
//...
class Comment extends Component {
 render() {
 return React.createElement(
 'div',
 {
 className: 'comment'
 },
 React.createElement(
 'h2',
 {
 className: 'commentAuthor'
 },
 this.props.user,
 React.createElement(
 'span',
 {
 className: 'commentContent'
 },
 this.props.content
)
)
);
 }
}

Comment.propTypes = {
 id: PropTypes.number.isRequired,
 content: PropTypes.string.isRequired,
 user: PropTypes.string.isRequired
};

const App = React.createElement(
 Post,
 {
 id: 1,
 content: ' said: This is a post!',
 user: 'mark'
 },
 React.createElement(Comment, {
 id: 2,
 user: 'bob',
 content: ' commented: wow! how cool!'
 })
);

ReactDOM.render(App, node);

Code for listing 2.5 is available online at https://codesandbox.io/s/k2vn448pn3.

Add this.props.children to
the Post component so it
can render children.

Create a Comment component,
similarly to how you created a
Post component.

Declare
propTypes.

Nest the Comment
component within the
Post component.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/k2vn448pn3

42 CHAPTER 2 <Hello World />: our first component
 Now that you’ve created a nested component, you should be able to see more in
your browser. Next, we’ll see how you can use the embedded state mentioned earlier
that comes with React classes to create dynamic components.

2.3 The life and times of a component
In this section, you’re going to add to your Post and Comment components to make
them interactive. Earlier, we discovered that components created as React classes get
some special ways to store and access data through “backing instances.” To under-
stand how, let’s revisit the big picture of how React works. Figure 2.11 sums up what
you’ve learned so far. You can create components from React classes that are made
from React elements (elements that map to the DOM). What I’m calling React classes
are sub-classes of React.Component that React.createElement can use.

 Components created from React classes have backing instances that let you store
data and need to have a render method that returns exactly one React element. React
will take React elements and create an in-memory virtual DOM from them, and it will
handle managing and updating the DOM.

 You’ve added a render method and some PropTypes validation to your React
classes. But you’re going to need more than that to create dynamic components.
React classes can have some special methods that will be called in a certain order as
React manages the virtual DOM. render, which you’ve used to return React elements,
is just one of those methods.

 In addition to the reserved lifecycle methods, you can add your own methods.
React gives you the freedom and flexibility to add whatever functionality you need to

Exercise 2.3 Reverse engineering a component tree
Before moving on, check your understanding by reverse-engineering a component
tree from a site like GitHub. Open your developer tools, pick a DOM element that’s
not too deeply nested, and reconstruct a React class from it. Consider the following
DOM element:

How would you structure a similar component structure but in React? (Feel free to not
add every CSS class name.)
Licensed to Samir Mashlum <smashlum@gmail.com>

43The life and times of a component
your components. Pretty much anything that’s valid JavaScript is useable in React. If
you look back at figure 1.1 in chapter 1, you’ll notice that lifecycle methods, special
properties, and custom code make up most of a React component. What’s left?

2.3.1 A React state of mind

Along with custom methods and lifecycle methods, React classes also gives you state
(data) that can persist with the component. This comes from the backing instance I’ve
mentioned. State is a big topic—I won’t cover it all in this chapter, but you can learn
enough about it for now to be able to make your components interactive and lively.
What’s state? Another way to think about it is as information about something at a given time.
You could, for example, get the “state” of your friend by asking “How are you today?”

 There are two general types of state: mutable and immutable. A simple way to think
about the difference between them is to think in terms of time. Can something
change after being created? If so, it can be called mutable. If not, it can be called
immutable. There are in-depth academic areas of study on these topics, so I won’t go
into depth on them here.

 In React, components created as JavaScript classes (https://developer.mozilla
.org/en-US/docs/Web/JavaScript/Reference/Classes) that extend React.Component
may have both mutable and immutable state, whereas components created from func-
tions (stateless functional components) only have access to immutable state (props).
I’ll cover these in future chapters; for now I’ll stick to components that inherit from
React.Component and get state and additional methods. In these sorts of components,
state is accessible from the this.state property of the instance of the class. The
immutable state made available to you is accessed with this.props, which you’ve been
using already to create static components.

Component Component

Component

React libraries

Browser

JavaScript

interpreter

Synthetic

event

system

Browser “native” engine

Optimized

updates

Input,

events,

status

Virtual DOM Actual DOM

Creates

virutal DOM

with

components

React Element {

type: React Element | String,

props: ...props

}

ReactClass {

propTypes: object

render: func,

...

}

Figure 2.11 Zooming in on rendering in React. React classes and React elements are used by React to create
an in-memory virtual DOM that manages the real DOM. It also creates a “synthetic” event system so that you can
still react to events from the browser (such as clicks, scrolls, and other user-caused events).
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

44 CHAPTER 2 <Hello World />: our first component
 this.props shouldn’t be modified from within the component. You’ll see ways to
provide data that changes over time to components in future chapters. For now, all
you need to know is that you can’t directly mutate this.props.

 You may be wondering how you might use state and props in React. The answer is
pretty much how you would use data passed to or used in a function. That includes
calculations, display, parsing, business logic, and any other data-related tasks. In fact,
props and state are the primary ways that you can utilize dynamic or static data in your
UI (showing user information, passing data to event handlers, and so forth).

 State and props are vehicles for the data that make up your app and make it useful.
If you’re creating a social network application (and you will in future chapters), you’ll
often use a combination of props and state to build components that display and
update user information, updates, and more. If you’re using React for data visualiza-
tion, you might use props and state as inputs for visualization libraries like D3.js.
Whatever you’re building, you’ll probably use state and props to manage and funnel
information within your React application.

2.3.2 Setting initial state

When should you use state and how do you get started using it? For now, the simple
answer is when you want to make changes to data stored within a component. I said props
were immutable (not modifiable), so if you need to change data, you need mutable
state. In React, data that tends to need to be mutable often comes from or is the result
of user input (often text, files, toggled options, and so on), but could be many other
things. To keep track of user interactions with form elements, you need to provide an
initial state and then change that state over time. You can use the constructor of the
component to set the initial state for your component, a comment box component
that builds on the ideas and concepts from earlier code listings. It will allow you to add
comments to a post via a simple form. The following listing shows how to set up the
component and set initial state.

Exercise 2.4 Mutable vs. immutable
Before moving on, check your understanding by thinking about the differences
between the two main types of data in React: mutable and immutable. Mark each
statement as true or false:

 Mutable means that data can change over time: T | F
 State is accessed with the this.state property in React: T | F
 props is a mutable object provided by React: T | F
 Immutable data doesn’t change over time: T | F
 Props are accessed via this.props: T | F
Licensed to Samir Mashlum <smashlum@gmail.com>

45The life and times of a component
//...
class CreateComment extends Component {
 constructor(props) {
 super(props);
 this.state = {
 content: '',
 user: ''
 };
 }
 render() {
 return React.createElement(
 'form',
 {

 className: 'createComment'
 },
 React.createElement('input', {
 type: 'text',
 placeholder: 'Your name',
 value: this.state.user
 }),
 React.createElement('input', {
 type: 'text',
 placeholder: 'Thoughts?'
 }),
 React.createElement('input', {
 type: 'submit',
 value: 'Post'
 })
);
 }
}
CreateComment.propTypes = {
 content: React.PropTypes.string
};
//...
const App = React.createElement(
 Post,
 {
 id: 1,
 content: ' said: This is a post!',
 user: 'mark'
 },
 React.createElement(Comment, {
 id: 2,
 user: 'bob',
 content: ' commented: wow! how cool!'
 }),
 React.createElement(CreateComment)
);

The code for listing 2.6 is available online at https://codesandbox.io/s/p5r3kwqx5q.

Listing 2.6 Setting initial state

Call super in the class constructor and
assign the initial state object to the instance
of the class’s state property—note that you
won’t normally assign state like this except
in the constructor of the component class.

Create a component as a
React class that will have
some input fields for the
user—I’ll cover forms in
more detail in future
chapters.

Add CreateComment to
the App component.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/p5r3kwqx5q

46 CHAPTER 2 <Hello World />: our first component
 To update the state that you initialized in the component class’s constructor, you
need to use a special method; you can’t just overwrite this.state like you might in a
non-React situation. That’s because React needs to keep track of state and ensure that
the virtual DOM and real DOM are kept in sync. To update state within a React class
component, you’ll use this.setState; look at the basic usage. It takes an updater
function to use for updating state and doesn’t return anything:

setState(
 function(prevState, props) -> nextState,
 callback
)-> void

this.setState takes an updater function that returns object that will get shallowly
merged into state. For example, if you had initially set a property of username to be an
empty string, you’d use this.setState to set a new username value for your compo-
nent’s state. React will take that value and update the backing instance and DOM with
your new value.

 One key difference between updating or reassigning a value in JavaScript and
using setState is that React can choose to batch updates based on state changes to
maximize efficiency. This means that when you call setState to perform a state
update, it won’t necessarily happen right away. Think of it more as an acknowledge-
ment that React will update the DOM based on new state in the most efficient way pos-
sible, as soon as possible.

 What would cause React to update? JavaScript is event-driven, so it’ll probably be
in response to some sort of user input (at least in the browser). That might be a click,
key press, or many of the other events supported by browsers. How do events work
with React? React implements a synthetic event system as a part of the virtual DOM
that will translate events in the browser into events for your React application. You can
set up event handlers that can respond to events from the browser, as you normally
would in JavaScript. One difference is that React event handlers are set up on React
elements or components themselves (as opposed to using addEventListener). You
can update the state of your component using the data from these events (text from
an input, a radio button value, or even the target of the event).

 Listing 2.7 shows how to put into practice what you’ve learned about setting initial
state and setting up event handlers. There are many different events you can listen for
in the browser, encompassing virtually every possible user interaction (clicking, typ-
ing, forms, scrolling, and so on). Here we’re most concerned with two main ones:
when the form input values change, and when the form is submitted. By listening for
those events, you can receive and use data to create new comments.

...
class CreateComment extends Component {
 constructor(props) {

Listing 2.7 Setting up event handlers
Licensed to Samir Mashlum <smashlum@gmail.com>

47The life and times of a component

t

u

 in

ctor.

su
 super(props);
 this.state = {
 content: '',
 user: ''
 };
 this.handleUserChange = this.handleUserChange.bind(this);
 this.handleTextChange = this.handleTextChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }
 handleUserChange(event) {
 const val = event.target.value;
 this.setState(() => ({
 user: val
 }));
 }
 handleTextChange(event) {
 const val = event.target.value;
 this.setState(() => ({
 content: val
 }));
 }
 handleSubmit(event) {
 event.preventDefault();
 this.setState(() => ({
 user: '',
 content: ''
 }));
 }
 render() {
 return React.createElement(
 'form',
 {
 className: 'createComment',
 onSubmit: this.handleSubmit
 },
 React.createElement('input', {
 type: 'text',
 placeholder: 'Your name',
 value: this.state.user,
 onChange: this.handleUserChange
 }),
 React.createElement('input', {
 type: 'text',
 placeholder: 'Thoughts?',
 value: this.state.content,
 onChange: this.handleTextChange
 }),
 React.createElement('input', {
 type: 'submit',
 value: 'Post'
 })
);
 }
}
CreateComment.propTypes = {

Because
components
created with
classes don’
auto bind
component
methods, yo
need to bind
them to this
the construAssign an event handler to

handle changes to the
author field—you get the
value of the input element
with event.target.value and
use this.setState to update
the component’s state.

Create an event handler
with similar functionality
for the comment content.

Event
handler
for form
bmission

event

Reset the input field
after submission so the
user can submit further
comments.
Licensed to Samir Mashlum <smashlum@gmail.com>

48 CHAPTER 2 <Hello World />: our first component
 onCommentSubmit: PropTypes.func.isRequired,
 content: PropTypes.string
};
...

The code for listing 2.7 is available online at https://codesandbox.io/s/x9mxo31pxp.
 Did you notice how you used .bind in the constructor of the component class? In

previous versions of React, React would auto bind methods to the instance of your com-
ponent for you. With the switch to JavaScript classes, though, you need to bind meth-
ods yourself. If you define a component method and it’s not working, confirm that
you’ve correctly bound your methods—it can be easy to forget when first starting out
with React.

 Next, try leaving out the onChange event handlers and see if you can type anything
into the form inputs. You won’t be able to because React is ensuring that the DOM
stays in sync with the virtual DOM, which isn’t being updated and thus won’t let the
DOM change. If this doesn’t make perfect sense right now, don’t worry—chapters 5
and 6 cover forms more extensively.

 Now that you have a way of listening for events and modifying the component’s
state, you can implement a way to create new comments using unidirectional data
flow. In React, data flows top-down, as an input from parents to children. When you
create composite components, you can pass information to child components via
props and make use of it in child components. That means you could store the data
from the CreateComment component in a parent component and from there pass the
data to child components. But how can you get the data from a new comment (in the
form that the user types text into) in a child component back into the parent and into
the child? Figure 2.12 shows an example of the sort of data flow you need.

How can you make this happen? One kind of data we haven’t looked at passing via
props is functions. Because functions can be passed as arguments to other functions
in JavaScript, you can use this to your advantage. You can define a method on a parent
component and give it to the child component as a property. That way, the child com-
ponent can send data back up to its parent without having to know how the parent
will handle the data. If you needed to change what happened with the data, you

Parent Component

Comments

User input

State in parent component

comments([Comment,Comment])

Iterate over state,

provide data to

comment component(s)

Figure 2.12 To add a post, you
need to capture the data from
input fields and somehow send it
to the parent component, and then
that updated data will be used to
render out the posts.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/x9mxo31pxp

49The life and times of a component
wouldn’t need to do anything to the CreateComment component. To execute a func-
tion passed as a prop, the child only needs to call the method and pass any data to it.
The following listing shows how to use functions as props.

//...
class CreateComment extends Component {
 constructor(props) {
 super(props);
 this.state = {
 content: '',
 user: ''
 };
 this.handleUserChange = this.handleUserChange.bind(this);
 this.handleTextChange = this.handleTextChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }
 handleUserChange(event) {
 this.setState(() => ({
 user: event.target.value
 }));
 }
 handleTextChange(event) {
 this.setState(() => ({
 content: event.target.value
 }));
 }
 handleSubmit(event) {
 event.preventDefault();
 this.props.onCommentSubmit({
 user: this.state.user.trim(),
 content: this.state.content.trim()
 });
 this.setState(() => ({
 user: '',
 text: ''
 }));
 }
 render() {
 return React.createElement(
 'form',
 {
 className: 'createComment',
 onSubmit: this.handleSubmit
 },
 React.createElement('input', {
 type: 'text',
 placeholder: 'Your name',
 value: this.state.user,
 onChange: this.handleUserChange
 }),
 React.createElement('input', {
 type: 'text',

Listing 2.8 Using functions as props

Call the onCommentSubmit
function that’s been passed as a
prop by the parent—you’re
passing in data from the form
and resetting the form so the
user knows their action was
successful.

Don’t forget to bind the
method you’ve set up to the
onSubmit event—without it,
there won’t be any connection
between the right event and
your method.
Licensed to Samir Mashlum <smashlum@gmail.com>

50 CHAPTER 2 <Hello World />: our first component
 placeholder: 'Thoughts?',
 value: this.state.content,
 onChange: this.handleTextChange
 }),
 React.createElement('input', {
 type: 'submit',
 value: 'Post'

 })
);
 }
}

//...

The code for listing 2.8 is available online at https://codesandbox.io/s/p3mk26v3lx.
 Now that your component can pass new comment data to a parent, you’ll need to

include some mock data so you can get started commenting. In future chapters, you’ll
work with the Fetch API and a RESTful JSON API, but using some fake data you create
will be fine for now. The following listing shows how you might go about mocking out
some basic post data with associated comments.

...
const data = {
 post: {
 id: 123,
 content:
 'What we hope ever to do with ease, we must first learn to do

with diligence. — Samuel Johnson',
 user: 'Mark Thomas',
 },
 comments: [
 {
 id: 0,
 user: 'David',
 content: 'such. win.',
 },
 {
 id: 1,
 user: 'Haley',
 content: 'Love it.',
 },
 {
 id: 2,
 user: 'Peter',
 content: 'Who was Samuel Johnson?',
 },
 {
 id: 3,
 user: 'Mitchell',

Listing 2.9 Mocking out API data

Set up the mock data
for your CommentBox
component.

You’ll use
these
comment
objects as
the existing
comments.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/p3mk26v3lx

51The life and times of a component
 content: '@Peter get off Letters and do your homework',
 },
 {
 id: 4,
 user: 'Peter',
 content: '@mitchell ok :P',
 },
],
};
...

Next, you need a way to show all the comments. In React, that’s easy to do. You already
have a component that will display a comment. Because all you need to work with
React components is regular JavaScript, you can use the .map() function to return a
new array of React elements. You can’t use .forEach() in-line because it doesn’t
return an array and would leave React.createElement() with nothing to use. You
could, however, build an array using forEach and then pass that in.

 Aside from iterating over the existing comments, you need to define a method you
can pass to the CreateComment component. It needs to modify the list of comments
in its state by receiving data from the child component. Both the submission method
and the state need to go in a new parent component: CommentBox. The following
listing shows how to create the component and set up these methods.

...
class CommentBox extends Component {
 constructor(props) {
 super(props);
 this.state = {
 comments: this.props.comments
 };
 this.handleCommentSubmit = this.handleCommentSubmit.bind(this);
 }
 handleCommentSubmit(comment) {
 const comments = this.state.comments;
 // note that we didn't directly modify state
 comment.id = Date.now();
 const newComments = comments.concat([comment]);
 this.setState({
 comments: newComments
 });
 }
 render() {
 return React.createElement(
 'div',
 {
 className: 'commentBox'
 },
 React.createElement(Post, {

Listing 2.10 Handling comment submissions and iterating over elements

You’ll use these comment
objects as the existing
comments.

Pass in the comments
data at the topmost
level to CommentBox.

Never directly
modify state—
instead, make
a copy.
Licensed to Samir Mashlum <smashlum@gmail.com>

52 CHAPTER 2 <Hello World />: our first component

t

.

 id: this.props.post.id,
 content: this.props.post.content,
 user: this.props.post.user
 }),
 this.state.comments.map(function(comment) {
 return React.createElement(Comment, {
 key: comment.id,
 id: comment.id,
 content: comment.content,
 user: comment.user
 });
 }),
 React.createElement(CreateComment, {
 onCommentSubmit: this.handleCommentSubmit
 })
);
 }
}

CommentBox.propTypes = {
 post: PropTypes.object,
 comments: PropTypes.arrayOf(PropTypes.object)
};

const App = React.createElement(CreateComment);

ReactDOM.render(
 React.createElement(CommentBox, {

 comments: data.comments,
 post: data.post
 }),
 node
);

...

The code for listing 2.10 is available online at https://codesandbox.io/s/z6o64oljn4.
 At this point you have an unsightly, untested, but functional component that will

perform validation on props, update state, and enable you to add new comments. It
doesn’t look like much, so I leave it as a challenge to you to make the comment box
worthy of our fictional company, Letters.

2.4 Meet JSX
You’ve created your first dynamic React component. If you found it easy, great! If you
found parts of the code hard to read through with all the nested React.create-
Elements, that’s fine, too. We’re about to discuss some easier ways to create compo-
nents, but needed to focus on the fundamentals first. Learning almost anything else
in the reverse way (“magic” and ease first, fundamentals and details later) is usually
much easier, but it can inhibit you in the long run because you haven’t done the hard

As before, pass in the data
variable at the topmost level
to access the post data.

Map over the
comments in
this.state.comments
and return a React
element for each one.

Give the parent’s
handleComment-
Submit method to
the CreateCommen
component to use

Pass in the mock data
to the CommentBox
component as a prop.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/z6o64oljn4

53Meet JSX
work of understanding how an underlying mechanism works. If you look back at your
mock data, you may remember this quote, which is timely:

What we hope ever to do with ease, we must first learn to do with diligence.

—Samuel Johnson

2.4.1 Creating components using JSX

It’s important to master the fundamentals, but that doesn’t mean we have to make
things difficult for ourselves. There are, it turns out, easier and better ways to create
React components than only using React.createElement. Meet JSX: the better way.

 What is JSX? It’s an XML-like syntax extension to ECMAScript without any defined
semantics, intended specifically for use by preprocessors. In other words, JSX is an
extension of JavaScript that’s similar to XML and is only intended for use by code-
transformation tools. It’s not something you’ll see incorporated into the ECMAScript
specification at any point.

 JSX helps by allowing you to write XML-style (think HTML) code in place of using
React.createClass. In other words, it lets you write code that looks like HTML but
isn’t. A JSX preprocessor program like Babel—a transpiler that turns your JavaScript
code into code that’s compatible with older browsers—will go through and convert all
your JSX code to regular JavaScript like we’ve written so far. One implication is that
running untransformed JSX code natively in the browser won’t work—you’ll get all
sorts of syntax errors when your JavaScript is parsed.

 Writing XML-style, HTML-like code in your JavaScript might set your warning
instincts off, but there are plenty of good reasons to use JSX, and I’ll cover them. For
now, look at listing 2.11 to see what your comment box component might look like
with JSX. I’ve omitted some code to make it easier to focus on the JSX syntax. Note
that Babel is included as part of the environment on CodeSandbox. Normally, you’ll
use a build tool like Webpack to transpile your JavaScript, but you can also import
Babel and have it work without a build step. That’s much slower, though, and should
never be done in production. You can learn more at https://babeljs.io.

...
 class CreateComment extends Component {
 constructor(props) {
 super(props);
 this.state = {
 content: '',
 user: ''
 };
 this.handleUserChange = this.handleUserChange.bind(this);
 this.handleTextChange = this.handleTextChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }
 //...

Listing 2.11 Rewriting components using JSX
Licensed to Samir Mashlum <smashlum@gmail.com>

https://babeljs.io

54 CHAPTER 2 <Hello World />: our first component

t-

 render() {
 return (
 <form onSubmit={this.handleSubmit} className="createComment">
 <input
 value={this.state.user}
 onChange={this.handleUserChange}
 placeholder="Your name"
 type="text"
 />
 <input
 value={this.state.content}
 onChange={this.handleTextChange}
 placeholder="Thoughts?"
 type="text"
 />
 <button type="submit">Post</button>
 </form>
);
 }
}

class CommentBox extends Component {
//...
 render() {
 return (
 <div className="commentBox">
 <Post
 id={this.props.post.id}
 content={this.props.post.content}
 user={this.props.post.user}
 />
 {this.state.comments.map(function(comment) {
 return (
 <Comment
 key={comment.id}
 content={comment.content}
 user={comment.user}
 />
);
 })}
 <CreateComment
 onCommentSubmit={this.handleCommentSubmit}
 />
 </div>
);
 }
}

CommentBox.propTypes = {
 post: PropTypes.object,
 comments: PropTypes.arrayOf(PropTypes.object)
};

ReactDOM.render(
 <CommentBox

Instead of creating
props on an object, in
JSX you create them like
you would in HTML—to
pass in expressions, you
use the {} syntax.

This is the Post React
class you created
before—note now it’s
much clearer that it’s a
custom component you
created and looks like it
would belong right at
home in HTML.

Use regular
JavaScript inside
of {} to iterate
over comments
and create a
comment
component for
each.

Pass in the
handleCommen
Submit handler
as a property.
Licensed to Samir Mashlum <smashlum@gmail.com>

55Meet JSX
 comments={data.comments}
 post={data.post}
 />,
 node
);

The code for listing 2.11 is available online at https://codesandbox.io/s/vnwz6y28x5.

2.4.2 Benefits of JSX and differences from HTML

Now that you’ve seen JSX in action, you may feel a little less skeptical about it. If
you’re still wary, it’s important to consider the many benefits it brings to working with
components in React. Here are two of those benefits:

 Similarity to HTML and simpler syntax—If writing React.createElement repeat-
edly felt tedious or if you found the nesting hard to follow, you’re not alone.
JSX’s similarity to HTML makes declaring your component’s structure in a
familiar way much easier and dramatically improves readability.

 Declarative and encapsulated—By including the code that will make up your view
alongside any related methods, you create a group of functionality. Essentially
everything you need to know about the component is in one place. Nothing is
unnecessarily hidden from you, which means you can reason about your com-
ponents more easily and be more fully aware of how it works as a system.

It may feel like a trip back to the late 90s to be writing your markup right alongside
your JavaScript, but that doesn’t mean it’s a bad idea.

 It’s important to note that JSX is not HTML (or XML)—it will only transpile into
regular React code just like you’ve used so far, and it doesn’t share the exact same
syntax and conventions. There are subtle differences that you’ll need to look out
for. Future chapters will go into these differences more fully, but I’ll note a few of
them briefly:

 HTML tags versus React components—Custom React components you created
using React.createClass are by convention capitalized so you can determine
the difference between custom and native HTML components.

 Attribute expressions—When you want to use a JavaScript expression as an attri-
bute value, wrap the expression in a pair of curly braces (<Comment a={this
.props.b}/>) instead of quotes (<User a=”this.props.b”/>) as shown in list-
ing 2.8.

 Boolean attributes—Omitting the value of an attribute (<Plan active/>, <Input
checked/>) causes JSX to treat it as true. To pass a false value, you have to use
an attribute expression (attribute={false}).

 Nested expressions—To insert the value of an expression inside an element, you
also use a pair of curly braces (<p>{this.props.content}</p>).

At the top level, CommentBox is
also a custom component you
give props to and pass to React
DOM to render.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/vnwz6y28x5

56 CHAPTER 2 <Hello World />: our first component
There are subtle differences in JSX and even the occasional “gotcha,” but later chap-
ters will cover all that and more. You’ll be using JSX extensively in your components,
and now that you’ve started using JSX, you’ll be able to create, read through, and
think about your components that much more easily.

2.5 Summary
We spent a lot of time talking about components in this chapter, so let’s review some
of the key points:

 There are two main types of elements that we work with to create components
in React: React elements and React classes. React elements are “what you want
to see on the screen” and are comparable to DOM elements. React classes, on
the other hand, are JavaScript classes that inherit from the React.Component
class. These are what we normally call components in general. They’re created
from either classes (usually extending React.Component) or functions (stateless
functional components, covered in later chapters).

 React classes get access to state that can change over time (mutable state), but
all React elements get access to props that shouldn’t be modified (immutable
state).

 React classes also have special methods called lifecycle methods that will be called
by React in a particular order during the rendering and update process. This
makes your components more predictable to work with and allows you to easily
hook into the component update process.

 React classes can have custom methods defined on them to perform tasks such
as mutating state.

 React components communicate via props and have child-parent relationships.
Parent components can pass data to children, but children can’t modify par-
ents. They can pass data back to parents via callbacks, but don’t have direct
access to parents.

 JSX is an XML-like extension of JavaScript that lets you write components in a
much easier and more familiar way. It may feel strange at first to write what
looks like HTML in your JavaScript, but JSX can make writing markup in React
more familiar and is generally easier to read than React.createElement calls.

You created your first component, but you’ve only brushed the surface of what’s possi-
ble with React. In the next chapter, you’ll start to explore how to work with more com-
plicated data, learn about different types of components, and delve further into state
as we expand your React horizons.
Licensed to Samir Mashlum <smashlum@gmail.com>

Part 2

Components and
data in React

In part 1, you looked at React at a high level, took a whirlwind tour through
some of its APIs, and built a handful of components. Hopefully this gave you a
better overall sense of what React is and how it works as a technology. But a
quick tour won’t allow you to take full advantage of React so you can build
robust, dynamic user interfaces with it.

 That’s where part 2 comes in. In part 2, you’ll start to explore React more
thoroughly and take a careful look at its APIs. We’ll look at how you can create
components and some of the different types of components that you can create.
In chapter 3, we’ll look at how data flows through a React application. This will
help you understand how React works with data in components.

 In chapter 4, you’ll look at lifecycle methods in React and start to build a
project that you’ll focus on for the rest of the book: a social networking app
called Letters Social. If you want to peek ahead at the final project you can visit
https://social.react.sh. Chapter 4 will help you understand the React Compo-
nent API and show you how to get set up to build the Letters Social project.

 In chapters 5 and 6, we’ll look at forms in React. Forms are an important part
of most web applications, and we’ll explore how they can work in React. You’ll
add forms to Letters Social and create a user interface that allows users to create
posts and integrate Mapbox to add mapped locations to posts.

 In chapters 7 and 8, we’ll dive into routing. Routing is another critical part of
modern front-end web applications. You’ll build a router from scratch with
Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh

React and add multiple pages to Letters Social. Towards the end of the chapter, you’ll
integrate Firebase so users can log into your application.

 As we wrap up part 2 in chapter 9, we’ll focus on testing. Testing is an important
part of all software and React is no different. You’ll explore using Jest and Enzyme,
among other tools, to test your React components.
Licensed to Samir Mashlum <smashlum@gmail.com>

Data and
data flow in React
Chapter 2 was a whirlwind tour of React. We spent some time learning about React
at a high level, looked at some of the concepts behind its design and API, and we
even went through building a simple comment box with React components. In
chapter 4 you’ll start to work more extensively with components and start building
the Letters Social sample project. But before you do that, you need to know a little
bit more about how to work with data in React and understand how it flows in
React applications. That’s what this chapter is about.

This chapter covers
 Mutable and immutable state

 Stateful and stateless components

 Component communication

 One-way data flow
59

Licensed to Samir Mashlum <smashlum@gmail.com>

60 CHAPTER 3 Data and data flow in React
3.1 Introducing state
Chapter 2 gave you a few glimpses of working with data in React components, but
we’ll need to spend more time focusing on it if you want to build more substantial
React applications. In this section, you’ll learn about the following:

 State
 How React handles state
 How data flows through components

Modern web applications are usually built as data-first applications. Granted, there are
many static sites (my blog is one—https://ifelse.io), but even these are updated over
time and generally considered to be in a different category from modern web applica-
tions. Most web apps that people use on a regular basis are highly dynamic and filled
with data that changes over time.

 Think of an application like Facebook. As a social network, data is the lifeblood of
everything it’s useful for. It provides a variety of ways to interact with other people over
the internet, and all these ways are done via modifying and receiving data in your
browser (or other platforms). Many other applications contain incredibly complex
data which needs to be represented in a UI that people can understand and easily use.
Developers also need to be able to maintain and reason about these interfaces and
how data flows through them, so how an application deals with data is as important as
its ability to handle changing data over time. The sample application you’ll start build-
ing in the next chapter, Letters Social (check it out at https://social.react.sh), will use
lots of changing data, though it won’t be nearly as complex as most consumer or busi-
ness apps. I’ll be more explicit about it in this chapter, but we’ll continue to learn
about working with data in React for the rest of the book.

3.1.1 What is state?

Let’s take a brief and simplified look at state so you can have a better understanding
of it when we look at state in React. If you’ve never explicitly thought or heard about
state in a program before, you’ve probably at least seen it before. Most of the pro-
grams you’ve written probably had some kind of state to them. If you’ve ever worked
with a front-end framework like Vue, Angular, or Ember, you’ve almost certainly writ-
ten UIs that had some aspect of state to them. React components can have state, too.
But what exactly are we talking about when we say state? Try this definition:

STATE All the information a program has access to at a given instant in time.

That’s a simplified definition that probably ignores some academic nuances, but it’s
good enough for our purposes. Many papers have been written by scholars dedicated
to precisely defining state in computer systems, but for us state is the information at
an instant in time that a program has access to. This includes, among other things, all
the values you can reference without doing any further assignment or calculation at a
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io
https://social.react.sh

61Introducing state
given moment in time—in other words, it’s a snapshot of what you know about a pro-
gram at an instant.

 For example, this might include any variables you previously created or other avail-
able values. When you change a variable (and aren’t just using it to get at a value), you
change the state of a program, and it’s no longer the same as it was before. You can
retrieve state at a given moment by only fetching or getting values, but when you
change something over time, the state of a program has changed. Technically, the
underlying state of your machine is changing every moment you’re using it, but we’re
only concerned with the state of your program here.

 Let’s look at some code and step through simplified program state in the nest list-
ing. We won’t go into all the underlying allocations or processes that happen behind
the scenes—we’re just trying to think more explicitly about the data in our programs
so that thinking about React components will be easier.

const letters = 'Letters';
const splitLetters = letters.split('');
console.log("Let's spell a word!");
splitLetters.forEach(letter => console.log(letter));

Listing 3.1 shows a simple script that does some basic assignment and manipulation of
data and logs it out. It’s boring, but we can use it to learn more about state. JavaScript
employs what are called run to completion semantics, meaning that programs will be
executed from top to bottom, in the order that you think they would be. JavaScript
engines will often optimize your code in a way that you might not expect, but it should
still run in a way consistent with your original code.

 Try reading the code in listing 3.1 from top to bottom, one line at a time. If you
want to use the browser debugger to do this, head to https://codesandbox.io/s/
n9mvol5x9p. The dev tools for your browser should open up, and you can step through
each line of the code and see all the variable assignments and more.

 For our purposes, let’s consider each line of code to be a moment in time. Work-
ing with our simplified definition of state as “all the information available to a pro-
gram at a given moment in time,” how would you describe the state of the application
at each given moment? Note that we’re keeping things simple and omitting things like
closures, garbage collection, and so on:

1 letters is a variable with a string “Letters” assigned to it.
2 splitLetters is created by splitting every character from letters, which is still

available.
3 All information from steps 1 and 2 is still available; a message is sent to the console.

Listing 3.1 Simple program state

Store a string in a
variable called letters. Split the letters into an

array of strings.

Print out a
message.

Print out
each letter.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/n9mvol5x9p
https://codesandbox.io/s/n9mvol5x9p
https://codesandbox.io/s/n9mvol5x9p
https://codesandbox.io/s/n9mvol5x9p

62 CHAPTER 3 Data and data flow in React
4 Our program iterates over each item in the array and logs out a character. This
process will probably occur over several moments in time, so the program also
has the information available from the Array.forEach method available to it.

As the program moved forward in execution, the state changed over time, and more
information became available because you haven’t deleted anything or changed refer-
ences. Table 3.1 shows how the available information increases as the program moves
forward in time.

Try walking through some of your own code and thinking about what information is
available to the program at each line. We tend to simplify our code—and rightly so,
because we don’t have to think about every possible dimension of it at once—but
there can be a nontrivial amount of information available even for simpler programs.

 One takeaway we can reflect on is that when a running program becomes reasonably
complex (as even most simple UIs can tend to be), reasoning about it can become diffi-
cult. By that I mean that the complexity of a system can be hard to keep in your head all
at once, and the logic in a system can make it hard to think through. This is true for
most programs, but when it comes to building UIs, it can be especially difficult.

 The UI for modern browser apps often represents the intersection of a multitude
of technologies, including servers providing data, styling and layout APIs, JavaScript
frameworks, browser APIs, and so on. Advances in UI frameworks have aimed to sim-
plify this problem, but it remains a challenge. The challenge often only increases with
the greater expectations people have for web apps as these apps become more and
more widespread and embedded in society and daily life. If React is to be useful, it will
need to help us by reducing or shielding us from the immensely complex state of
some modern UIs. I hope you’ll come to see that React does do this. But how? One
way is by providing two specific APIs to work with data: props and state.

Table 3.1 State step-by-step

Step State available to program

1 letters = "Letters"

2 letters = "Letters"
splitLetters = ["L", "e", "t", "t", "e", "r", "s"]

3 letters = "Letters"
splitLetters = ["L", "e", "t", "t", "e", "r", "s"]

4 letters = "Letters"
splitLetters = ["L", "e", "t", "t", "e", "r", "s"]
for sub-steps 0 through the length of splitLetters:
 letter = "L" (then “e”, “t”, etc.)
Licensed to Samir Mashlum <smashlum@gmail.com>

63Introducing state
3.1.2 Mutable and immutable state

In React applications, there are two primary ways that you can work with state in com-
ponents: through state that you can change, and through state that you shouldn’t.
We’re oversimplifying here: there are many types of data and state that will exist in
your application. You could represent data in many different ways, like binary trees,
Maps or Sets, or regular JavaScript objects. But the way that you can communicate and
interact with state in your React components fall into these two categories. In React,
these are known as state (data you can change within a component) and props (data a
component receives that shouldn’t be changed by the component).

 You may have heard of state and props referred to as being mutable and immutable.
That’s partly true, because JavaScript doesn’t natively support truly immutable objects
(outside of, maybe, Symbols). In React components, state is generally mutable, and
props shouldn’t be changed. Let’s explore the ideas of mutability and immutability a
little more before we dive all the way into React-specific APIs.

 You saw in chapter 2 that when we call state mutable we mean we can overwrite or
update that data (for example, a variable that you can overwrite). Immutable state, on the
other hand, can’t be changed. There are also immutable data structures, which can be
changed but only in controlled ways (this is sort of how the state API works in React). When
you work with Redux in chapters 10 and 11, you’ll emulate immutable data structures.

 We can slightly expand our notions of mutable and immutable to include their
corresponding data structure types:

 Immutable—An immutable, persistent data structure supports multiple versions
over time but can’t be directly overwritten; immutable data structures are gen-
erally persistent.

 Mutable—A mutable, ephemeral data structure supports only a single version
over time; mutable data structures are overwritten when they change and don’t
support additional versions.

Figure 3.1 visualizes these ideas.

(No versioning)

Immutable (persistent) data structuresMutable (ephemeral) data structures

Current

v1
v2

v3
v4

v5

Figure 3.1 Persistence and ephemerality in immutable and mutable data structures.
Immutable or persistent data structures usually record a history and don’t change but
rather make versions of what changed over time. Ephemeral data structures, on the
other hand, usually don’t record history and get wiped out with each update.
Licensed to Samir Mashlum <smashlum@gmail.com>

64 CHAPTER 3 Data and data flow in React
Another way to think of the difference between immutable and mutable data struc-
tures is to think of each as having different capacities or memories. Ephemeral data
structures only have the capacity to store a moment’s worth of data, whereas persistent
data structures can keep track of changes over time. This is where the immutability of
immutable data structures becomes clearer: only copies of state are made—they’re
not replaced. The old state is replaced by the new one, but the data isn’t replaced. Fig-
ure 3.2 shows how changes are made.

TIP Another way you can think of immutability versus mutability is by think-
ing of the difference between Save and Save As. With many computer pro-
grams, you can save a file as it is at the moment or save a copy of the current
file under a different name. Immutability is similar in that when you save to it,
you’re saving a copy, whereas mutable data can be overwritten in-place.

Even though JavaScript doesn’t support truly immutable data structures natively,
React exposes component state in a mutable way (changeable via setState) and
props as read-only. There’s a lot more to immutability and immutable data structures
in general, but we don’t need to concern ourselves with them much more than we
already have. If you’re still curious to learn more, an entire body of academic research
is focused on this sort of question. There are also ways you can use immutable data

Immutable (persistent) data structuresMutable (ephemeral) data structures

Old data

New data New Old
Replaces

Current

Merge in

new data

v1
v2

v3
v4

v5

New

Current

v1
v2

v3
v4

v6
v5

Figure 3.2 Handling changes with mutable and immutable data. Ephemeral data structures don’t
have versions, so when you make changes to them, all previous state is gone. You could say that
they live in the moment, whereas immutable data structures are able to persist over time.
Licensed to Samir Mashlum <smashlum@gmail.com>

65State in React

Pr
ini

co

att
ac

don
u

throw
structures extensively throughout your JavaScript apps (React or not) with libraries
like Immutable JS (see https://facebook.github.io/immutable-js/ for more informa-
tion), but in React we’ll only deal with the props and state APIs.

3.2 State in React
You’ve learned a little bit more about state and (im)mutability. How does all this fit
into React? Well, we’ve already seen a little of the props and state APIs in the last chap-
ter, so you can probably guess that they must be important parts of how you build
components. In fact, they’re the two main ways that React components deal with data
and communicate with each other.

3.2.1 Mutable state in React: Component state

Let’s start with the state API. Although we can say that all components have some kind
of “state” (the general concept) to them, not all components in React have local com-
ponent state. From here on out, when I refer to state I’m talking about the React API,
not the general concept. Components that inherit from the React.Component class
will get access to this API. React will create and keep track of a backing instance for
components created in this way. These components will also get access to a series of
lifecycle methods discussed in the next chapter.

 You can access state in your components that inherit from React.Component via
this.state. In this case, this refers to the instance of the class, and state is the spe-
cial property that React will keep track of for you. You might think you can update
state just by assigning to it or by mutating a property in it, but that’s not the case.
Let’s look at an example of component state in a simple React component in the fol-
lowing listing. You can create this code on your local machine or, even more easily, at
https://codesandbox.io/s/ovxpmn340y.

import React from "react";
import { render } from "react-dom";
class Secret extends React.Component{
 constructor(props) {
 super(props);
 this.state = {
 name: 'top secret!',
 };
 this.onButtonClick = this.onButtonClick.bind(this);
 }
 onButtonClick() {
 this.setState(() => ({
 name: 'Mark'
 }));
 }
 render() {
 return (
 <div>

Listing 3.2 Using setState to modify component state

Create a React
component that will
have access to
persistent component
state over time—don’t
forget to bind your class
methods to the
component instance.

ovide an
tial state

for the
mponent

so that
empts to
cess it in
render()
’t return
ndefined
values or

 errors.

Our first look at setState, the
special API for modifying
component state; call setState
with a callback function that
returns a new state object for
React to use.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://facebook.github.io/immutable-js/
https://codesandbox.io/s/ovxpmn340y
https://facebook.github.io/immutable-js/

66 CHAPTER 3 Data and data flow in React

t
.

 <h1>My name is {this.state.name}</h1>
 <button onClick={this.onButtonClick}>reveal the secret!</button>
 </div>
)
 }
}

render(
 <Secret/>,
 document.getElementById('root')
);

Listing 3.2 creates a simple component that will reveal a secret name when you click a
button using setState to update the component state. Notice that setState is avail-
able on this because the component inherits from the React.Component class.

 When you click the button, a click event will be fired, and the function you’ve told
React to respond with will be executed. When it’s executed, it will call the setState
method with an object as a parameter. That object has a property, name, that points to
a string. React will schedule an update to state. When this work has occurred, React
DOM will update the DOM if necessary. Your render function will be called again, but
this time with a different value available to the JSX expression syntax ({}) that con-
tains this.state.name. It will read “Mark” instead of “top secret!” and my secret iden-
tity will be blown!

 Usually, you want to use setState sparingly when possible due to the performance
and complexity hit you incur (React has to keep track of something else for you, and
you have to mentally keep track of another piece of data). There are patterns that
enjoy significant popularity in the React community that allow you to rarely use com-
ponent state at all (including Redux, Mobx, Flux, and others), and these are great to
explore as options for your application—in fact, we’ll look at Redux in chapters 10
and 11. Although it’s better to usually use a stateless functional component, or rely on
a pattern like Redux, using the setState API isn’t a bad practice by itself—it’s still the
main API in React for changing data in a component.

 Before moving on, it’s important to note that you should never directly modify
this.state in React components. If you try to modify this.state directly, call-
ing setState() afterwards could replace the mutation you made, and—even worse—
React won’t have any idea about the change you made to state. Even though you can
think about component state as something you can change, you should treat the
this.state objects as if they’re immutable within your components (like props).

 This is also important because setState() doesn’t immediately mutate this.state.
Instead, it creates a pending state transition (more on rendering and change detection
in the next chapter). Accessing this.state after calling this method can potentially
return the existing value. All these things make for potentially tricky debugging situa-
tions, so just use setState() to mutate component state.

 Even in a small interaction like the one in listing 3.2, there’s quite a bit going on.
We’ll keep breaking down all the various steps that occur when React performs

Bind the name-revealing
function to the click even

emitted by the button

Render top-level components to an
HTML element at the topmost level of an
application—identify your container however
you like, as long as ReactDOM can find it.
Licensed to Samir Mashlum <smashlum@gmail.com>

67State in React
updates on your components in future chapters, but for the moment it’s important to
look more closely at your component’s render method. Note that even though you
performed a state mutation and changed data around, it happened in a relatively
understandable and predictable way.

 Even better, you could declare what you wanted your component’s appearance and
structure to look like once. You didn’t have to do tons of extra work for the two differ-
ent states it could exist in (with or without the top-secret name revealed). React han-
dled all underlying state binding and update procedures, and you only had to say,
“The name should go here.” React helped by not forcing you to think about every
piece of state at every point in time, like you had to in section 3.1.1.

 Let’s look at the setState API a little more closely. It’s the primary way for changing
dynamic state in React components, and you’ll use it often in your application. Let’s
look at the method signature to see what you need to pass to it:

setState(
 updater,
 [callback]
) -> void

setState takes a function to use to set the new state for the component and an
optional callback function. The updater function has this signature:

(prevState, props) => stateChange

With past versions of React you could pass an object instead of a function as the first
argument to setState. A key difference from current versions of React (16 and up) is
that it could imply that setState was synchronous in nature, whereas what happens
is that React will schedule a change to state. The callback format better communi-
cates this idea and is generally more consistent with React’s overall declarative asyn-
chronous paradigms: you allow the system (React) to schedule updates where order
but not time are guaranteed. This is in line with a more declarative approach to UI
and is generally much easier to think about than having to imperatively specify
updates to data at different times (often a source of race conditions).

 If you need to make an update to state that depends on the current state or props,
you can access those through the prevState and props arguments. That’s often useful
when you want to do something like toggle a Boolean and need to know the exact last
value before performing an update.

 Let’s focus on the mechanics of setState a little more. Using the object returned
from your updater function, it performs a shallow merge into current state. This
means you can yield an object and React will merge top-level properties on the object
into state. For example, say you have an object with properties A and B. B has some
deeply nested properties to it, and A is just a string ('hi!'). Because a shallow merge
is being performed, only the top-level properties and what they reference will get pre-
served, not every part of B. React won’t find some deeply nested property of B for you
Licensed to Samir Mashlum <smashlum@gmail.com>

68 CHAPTER 3 Data and data flow in React
to update. One way around this is to make a copy of the object, deeply update it, and
then use that. You can also use a library like immutable.js (https://facebook.github
.io/immutable-js/) to make working with data structures in React easier.

 setState is a straightforward API to use; you give your ReactClass component some
data to merge into the current state, and React will handle it for you. And if you need
to listen for the completion of the process for some reason, you can hook into it with
the optional callback function. Listing 3.3 shows an example of a setState shallow
merge in action. As before, you can easily create and run your React component on
CodeSandbox at https://codesandbox.io/s/0myo6ny4ww. This should save you the
trouble of having to set everything up on your machine.

import React from "react";
import { render } from "react-dom";
class ShallowMerge extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 user: {
 name: 'Mark', //
 colors: {
 favorite: '',
 }
 }
 };
 this.onButtonClick = this.onButtonClick.bind(this);
 }
 onButtonClick() {
 this.setState({
 user: { //
 colors: {
 favorite: 'blue'
 }
 }
 });
 }
 render() {
 return (
 <div>
 <h1>My favorite color is {this.state.user.colors.favorite} and my

name is {this.state.user.name}</h1>
 <button onClick={this.onButtonClick}>show the color!</button>
 </div>
)
 }
}

render(
 <ShallowMerge />,
 document.getElementById('root')
);

Listing 3.3 Shallow merging with setState

name exists in the
initial state under
the user property...

...but not in the state you’re
setting—if it had been a level
up, a shallow merge wouldn’t
have worked.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/
https://codesandbox.io/s/0myo6ny4ww

69State in React
Forgetting about shallow merges can be a common source of bugs when first learning
React. In this example, when you click the button the name property nested within the
user key of the initial state will be overwritten because it doesn’t exist in the new state.
You wanted to keep both pieces of state, but one ended up overwriting the other.

3.2.2 Immutable state in React: Props

We’ve talked about how React lets you work with data in a mutable way via state and
setState, but what about immutable data in React? In React, props are the primary
way to pass immutable data. Any component can receive props (not just those that
inherit from React.Component) and use them in their constructor, render, and
lifecycle methods.

 Props in React are more or less immutable. You can use libraries and other tools to
emulate immutable data structures in your components, but the React props API is
semi-immutable by itself. React uses the native JavaScript Object.freeze (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object/freeze) method if available to prevent new properties from being added to it
or existing properties from being removed. Object.freeze also prevents existing
properties (or their enumerability, configurability, or writability) from being changed
and prevents the prototype from being changed, too. This goes a long way toward pre-
venting you from mutating the props object, but it’s not technically a truly immutable
object (although you can essentially think of it that way).

 Props are data that gets passed to React components, either from a parent or
from the defaultProps static method on the component itself. Whereas component
state is localized to a single component, props are usually passed from a parent com-
ponent. If you’re thinking, “Can I use state in a parent component to pass props to a
child component?” you’re onto something. State in one component can be props
for another.

 Props are usually passed in JSX as attributes, but if you’re using React.create-
Element you can pass them directly into a child component via that interface. You can
pass any valid JavaScript data as a prop to another component—even other compo-
nents (which are only classes after all). Once props are passed into a component for
use, you shouldn’t change them from within the component. You can try, but you’ll
probably get a nice error like Uncaught TypeError: Cannot assign to read-only
property '<myProperty>' of object '#<Object>'—or worse, your React app won’t
work as expected because you’re violating the expected use.

Exercise 3.1 Thinking about the setState API
This chapter has talked about React’s component API for managing state in compo-
nents. One of the things mentioned has been that you need to modify state through
the setState API, not directly. Why do you think that would be a problem and why
won’t that work? Try it out at https://codesandbox.io/s/j7p824jxnw.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://codesandbox.io/s/j7p824jxnw

70 CHAPTER 3 Data and data flow in React
 Listing 3.4 in the next section shows some ways you can access props and how not
to assign to them. As noted before, properties can change over time, but not from
within the component. This is part of one-way data flow—a topic covered in later
chapters. In short, one-way means changing data flows down through components
from parent components to children. A parent component using state (inheriting
from React.Component) can change its state, and that changed state can be what is
passed down as properties to child components, thus changing properties.

3.2.3 Working with props: PropTypes and default props

When working with props, you have a few APIs available to you that can help you
during development: PropTypes and default props. PropTypes provides a typecheck-
ing functionality in which you can specify what sort of props your component will
expect to receive when used. You can specify data types and even tell the component
consumer what sort of shape of data they need to provide (an object with a user
property that has certain keys, for example). In past versions of React, PropTypes
was part of the core React library, but now lives alone as the prop-types package
(https://github.com/facebook/prop-types).

 The prop-types library isn’t magic—it’s a set of functions and properties that can
help do typechecking on inputs. It’s also not specific to React—you could just as easily
use it in another library where you wanted to do typechecking on inputs. You could,
for example, bring prop-types into another component-driven framework similar to
React, like Preact (https://preactjs.com), and use it similarly.

 To set PropTypes for a component, you provide a static property on the class called
propTypes. Notice in listing 3.4 that the name of the static property you set on a com-
ponent class is lowercase, whereas the name of the object you access from the prop-
types library is uppercase (PropTypes). To specify which props your component
needs, you add the name of the prop you want to validate and assign it a property
from the prop-types library’s default export (import PropTypes from 'prop-types').
Using PropTypes, you can declare just about any type, shape, and requirement type
(optional or mandatory) for your props.

 Another tool you can use to make your development experience easier is default
props. Remember how you can provide an initial state to your component using the
class constructor? You can do something similar for props, too. You can provide a
static property called defaultProps to provide default props to your component.

Exercise 3.2 Calling setState in a render method
We’ve established that setState is how you can update a component’s state. Where
can you call setState? We’ll look at which points of the component lifecycle allow
you to call setState in the next chapter, but for now let’s focus on just the render
method. What do you think happens when setState is called in a component’s
render method? Try it at https://codesandbox.io/s/48zv2nwqww.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/facebook/prop-types
https://codesandbox.io/s/48zv2nwqww
https://preactjs.com

71State in React
Using default props can be helpful to ensure that your component will have what it
needs to run, even if someone using the component forgets to provide a prop to it.
The following listing shows an example of using PropTypes and default props in a
component. Run the code at https://codesandbox.io/s/31ml5pmk4m.

import React from "react";
import { render } from "react-dom";
import PropTypes from "prop-types";

class Counter extends React.Component {
 static propTypes = {
 incrementBy: PropTypes.number,
 onIncrement: PropTypes.func.isRequired
 };
 static defaultProps = {
 incrementBy: 1
 };

 constructor(props) {
 super(props);
 this.state = {
 count: 0
 };
 this.onButtonClick = this.onButtonClick.bind(this);
 }
 onButtonClick() {
 this.setState(function(prevState, props) {
 return { count: prevState.count + props.incrementBy };
 });
 }
 render() {
 return (
 <div>
 <h1>{this.state.count}</h1>
 <button onClick={this.onButtonClick}>++</button>
 </div>
);
 }
}

render(<Counter incrementBy={1} />, document.getElementById("root"));

3.2.4 Stateless functional components

What do you do if you want to create a simple component that only uses props and no
state? It turns out this is a common use case, especially with some of the common
React-friendly application architectural patterns that we’ll explore later in the book,
like Flux and Redux. In these cases, you often want to keep state in a centralized loca-
tion and not distributed across your components. But only using props is also useful in

Listing 3.4 Immutable props in React components

Specify an object
with a “shape.”

You can chain any propTypes
with isRequired to make sure a
warning is shown if the prop
isn’t shown.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/31ml5pmk4m

72 CHAPTER 3 Data and data flow in React
other situations. It would be nice to incur less of a resource usage penalty for your app
if React didn’t have to manage a backing instance for you.

 As it turns out, there is a type of component you can create that only uses props: a
stateless functional component. These components are sometimes called stateless com-
ponents, functional components, and other similar names by developers, which can
make it hard to keep track of what’s being talked about. They usually mean the same
thing: a React component that doesn’t inherit from React.Component and therefore
doesn’t get access to component state or other lifecycle methods.

 A stateless functional component is, not surprisingly, just that: a component that
doesn’t have access to or use the React state API (or the other methods inherited from
React.Component). It is stateless not because it doesn’t have any kind of (general)
state whatsoever, but because it doesn’t get a backing instance that React will manage
for you. This means no lifecycle methods (covered in Chapter 4), no component
state, and potentially less memory.

 Stateless functional components are functional because they can be written as
named functions or anonymous function expressions assigned to a variable. They only
take props and, because they return the same output based on a given input, are
essentially considered pure. This makes them fast, as React will potentially be able to
make optimizations by avoiding unnecessary lifecycle checks or memory allocations.
The following listing shows a simple example of a stateless functional component.
Run the code at https://codesandbox.io/s/l756002969.

import React from "react";
import { render } from "react-dom";
import PropTypes from "prop-types";

function Greeting(props) {
 return <div>Hello {props.for}!</div>;
}

Greeting.propTypes = {
 for: PropTypes.string.isRequired
};

Greeting.defaultProps = {
 for: 'friend'
};

render(<Greeting for="Mark" />, mountNode);

// Or using an arrow function
// const Greeting = (props) => <div>Hello {props.for}</div>;
//... specify props and default props same as before
// render(<Greeting name="Mark" />, document.getElementById("root"));

Stateless functional components can be powerful, especially when used in combina-
tion with a parent component that has a backing instance. Rather than having to set

Listing 3.5 Stateless functional components

Stateless
functional
components
can be created
with functions
or anonymous
functions.

For either form of
stateless functional
component, you can
specify propTypes
and default props as
properties on the
function or variable.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/l756002969

73Component communication
state across multiple components, you can create a single stateful parent component
and use lightweight child components for the rest. In chapters 10 and 11, we’ll look
at using Redux to take this pattern to a whole new level. In React applications that
use Redux, you usually end up creating fewer stateful components (although there
are still cases where this makes sense) and instead centralize state in a single location
(the store).

3.3 Component communication
When you built your simple comment box component, you saw that you can create
components from other components. That’s one reason why React is great. You can
easily build other components from subcomponents while keeping things nicely bun-
dled up. You’re also easily able to express is-a and has-a relationships between compo-
nents. That means you can think about components as having a part to them as well as
being a certain thing.

 It’s great that you can mix and match components and flexibly build things, but
how do you get them to talk to each other? Many frameworks and libraries offer a
framework-specific method to get different parts of the application to talk to each
other. In Angular.js or Ember.js, you may have heard of or used a service to communi-
cate between different parts of your application. Usually these are broadly available,
long-lived objects that you can store state in and access from different parts of your
application.

 Does React use services or something similar? No. In React, if you want compo-
nents to communicate with each other, you pass props, and when you pass props,
you’re doing two simple things:

 Accessing data in the parent (either state or props)
 Passing that data to a child component

The following listing shows an example of both the parent-child relationship you’re
familiar with and the owner-ownee relationship. Run it at https://codesandbox.io/s/
pm18mlz8jm.

import React from "react";
import { render } from "react-dom";
import PropTypes from "prop-types";

Exercise 3.3 Using state in one component to modify props in another
This chapter has talked about props and state as the primary ways you can work with
and pass around data in React components. You should never directly modify either
state or props, but with setState you can tell React to update a component’s state.
How would you use state in one component to modify the props in another? Head to
https://codesandbox.io/s/38zq71q75 to try it out.

Listing 3.6 Passing props from parent to child
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/38zq71q75
https://codesandbox.io/s/pm18mlz8jm
https://codesandbox.io/s/pm18mlz8jm
https://codesandbox.io/s/pm18mlz8jm

74 CHAPTER 3 Data and data flow in React

Cr
sta

func
comp

that r
an ex
const UserProfile = props => {
 return ;
};
UserProfile.propTypes = {
 pagename: PropTypes.string
};

UserProfile.defaultProps = {
 pagename: "erondu"
};

const UserProfileLink = props => {
 return <a href={`https://ifelse.io/${props.user-

name}`}>{props.username};
};

const UserCard = props => {
 return (
 <div>
 <UserProfile username={props.username} />
 <UserProfileLink username={props.username} />
 </div>
);
};

render(<UserCard username="erondu" />, document.getElementById("root"));

3.4 One-way data flow
If you’ve developed web applications using frameworks before, you may be familiar
with the term two-way data binding. Data binding is the process that establishes a con-
nection between the application UI and other data. In practice, this is often mani-
fested as something like a library or framework connecting app data like models (a
user) to the user interface and keeps them in sync. They’re synchronized and are
therefore bound together. Another way to think of this that’ll be more helpful in
React is as a projection: UI is the data projected into a view, and when the data changes,
the view changes, as illustrated in figure 3.3.

eate a
teless
tional
onent

eturns
ample
image.

Remember, you can still
specify default props and
propTypes even on stateless
functional components.

UserCard is a parent
to UserProfile and
UserProfileLink.

View

(DOM)

Model Figure 3.3 Data binding usually
refers to the process of setting up
a connection between data in your
app and the view (the display of
that data). Another way to think of
this is as a projection of the data
into something the user can see
(for example, a view).
Licensed to Samir Mashlum <smashlum@gmail.com>

75One-way data flow
Another way to think about data binding is as data flow: how does data move through
different parts of your application? Essentially, you’re asking, “What can update what,
from where, and how?” It’s important to understand how the tools you’re using shape,
manipulate, and move data around if you want to use them well. Different libraries
and frameworks take different approaches to data flow (React is no different in having
its own opinion about how to do this).

 In React, data flows in one direction. That means that rather than flow between
entities in a horizontal way where each can update the other, a hierarchy is estab-
lished. You can pass data through components but can’t reach out and modify the
state or props of other components without passing props. You also can’t modify the
data in a parent.

 But you can pass data back up the hierarchy via callbacks. When a parent receives a
callback from a child component, it can change its data and send the changed data
back down to the child components. Even in this scenario with callbacks, data still
flows downwards in aggregate and remains determined by the parent passing that
data down. That’s why we say that in React data flows unidirectionally, as shown in fig-
ure 3.4.

Unidirectional flow is especially helpful in building UIs because it tends to make it
easier to think about the way data moves through an application. Thanks to the hier-
archy of components and the way props and state are localized to components, it’s
generally easier to predict how data moves through an application.

 It might sound nice in some ways to eschew this hierarchy and have the freedom to
modify whatever you want from any part of your application, but in practice that tends
to lead to applications that are hard to think about and can result in difficult debug-
ging situations. Later chapters will explore architectural patterns like Flux and Redux
that allow you to maintain a unidirectional data flow paradigm while coordinating
actions that can occur across components or across your application.

Component tree

PropsProps

Props

Props

Props

setState()

setState()

Figure 3.4 Data flows one way in React. Props
are passed from parent to child (from owner to
ownee), and children can’t edit the state or props
of a parent component. Each component that has
a backing instance can modify its own state but
can’t modify anything outside itself apart from
setting the props of one of its children.
Licensed to Samir Mashlum <smashlum@gmail.com>

76 CHAPTER 3 Data and data flow in React
3.5 Summary
This chapter discussed the following topics:

 State is the information available to a program at a given moment in time.
 Immutable state doesn’t change, whereas mutable state does change.
 Persistent, immutable data structures don’t change—they only record their

changes and make copies of themselves.
 Ephemeral, mutable data structures are wiped out when they’re updated.
 React uses both mutable (local component state) and pseudo-immutable data

(props).
 Props are pseudo-immutable and should not be modified once set.
 Component state is tracked by a backing instance and can be modified with

setState.
 setState performs a shallow merge of data and updates your component’s

state, preserving any top-level properties that aren’t overwritten.
 Data flows one way in React, from parents to children. Children can yield back

data to a parent via a callback, but they can’t directly modify the parent’s state,
and a parent can’t directly modify a child’s state. Component interaction is
done via props instead.

In chapter 4, we’ll build on your knowledge of state in React and look at how to use
lifecycle methods to hook into React’s render and update process. We’ll also start to
explore change detection in React and you’ll start to build out the Letters Social app
using your newly learned React skills!
Licensed to Samir Mashlum <smashlum@gmail.com>

Rendering and
lifecycle methods in React
In this chapter, you’re going to start to pull together some of the concepts and
skills we’ve covered so far to create your first React app. In past chapters, we’ve
talked about dealing with data in React and the different ways that you can work
with mutable (changeable) and immutable (unchangeable) data. But to build even
more robust components, you need to take advantage of the full component API,
dive into lifecycle methods, and learn about the rendering process in React.

 We’ll take a look at rendering, the process that React uses to turn your data into a
user interface, and some ways to interact with a component over its lifecycle, called
lifecycle methods. You’ll combine this with some of what you already know about

This chapter covers
 Getting set up with the application repository

 The rendering process

 Lifecycle methods

 Updating React components

 Creating a newsfeed using React
77

Licensed to Samir Mashlum <smashlum@gmail.com>

78 CHAPTER 4 Rendering and lifecycle methods in React
reading and modifying data in React (props and state), updating your component
state, and passing data to different components.

4.1 Getting set up with the Letters Social repo
In this chapter, you’re going to start building the application Letters Social. We’ll
pretend that we’re a startup focusing on creating the next great social networking
application. Our company, Letters—ingeniously named to differentiate us from web
giants like Alphabet—is working on Social. You’ll use React to build this application
over the course of the book. By the end of the book, Letters Social will be using
server-side rendering, Redux, and React. The application, shown in figure 4.1, sup-
ports a few features worth noting here so you know what you’ll be building over the
course of the book:

 Creating posts that have text
 Adding locations to posts with Mapbox
 Liking and commenting on posts
 Providing OAuth authentication via GitHub and Firebase
 Displaying posts in a newsfeed
 Using basic pagination

We’ll go through each of these features in this and the following chapters. To make
things easier for you, I’ve created a Git branch for chapters 4 through 12. Each chap-
ter (or paired chapters in some cases) represents the code as it stands at the end of
that chapter. For example, if you check out the Git branch for chapters 5 and 6, you’ll
have the code for the end of those chapters. This will let you look ahead if you like,
and you can start from any chapter. If you wanted to work through chapter 9 (cover-
ing testing React applications), for instance, you could check out the code for chap-
ters 7 and 8 and start from there. I’ve tried to make it as easy as possible for you to
check out code, but you can use the Git repository and branches however you’d like.
Feel free to open pull requests with questions or fork it to use as a starting place for
new features you want to add to the app.

 You can also read some basic documentation about the files in the source code at
https://docs.react.sh. It’s not comprehensive, but if you’d like to get a sense of the
code and you like JSDoc-style documentation, the docs will be a good place to go. The
README for the repo also lists a number of helpful resources. As always, feel free to
reach out to me if you have questions (or if you just like the book!). You can do that
through the README.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.react.sh

79Getting set up with the Letters Social repo
Figure 4.1 Letters Social, the React app that you’ll be building in this book. You can check out its source code
at https://github.com/react-in-action/letters-social and the app at https://social.react.sh.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social
https://social.react.sh

80 CHAPTER 4 Rendering and lifecycle methods in React
4.1.1 Getting the source code

To get the source code, go to https://github.com/react-in-action/letters-social. This is
the repository where all the source code related to the book is stored. There are sev-
eral other repos in the React in Action GitHub Organization, so feel free to check
those out, too. The main source code is in the https://github.com/react-in-action/
letters-social. Head there and either download the source or use the following com-
mand to clone the repository:

git clone git@github.com:react-in-action/letters-social.git

git checkout chapter-4

That will clone the repository in the current directory and switch to the start branch
(the starting branch for the project). The next step is to install dependencies. We’ll
use npm (www.npmjs.com) in this book for the sake of consistency, but if you prefer to
use yarn (another dependency management library that wraps npm, at https://yarn-
pkg.com), you can do that, too. You’ll just need to ensure that you install with yarn,
not npm.

 All the modules you’ll need for the entire book should be included in pack-
age.json in the application source. To install, run the following command in the
source code directory:

npm install

That will install all the dependencies you’ll need. If you change versions of node (via
nvm or another means), you’ll need to reinstall your node modules because different
versions of node will compile different modules differently (like node-sass).

4.1.2 Which version of node should I use?

This is a good time to talk about which version of node to use. I recommend using the
latest stable version. At the time of writing, that was the 8.X release line. I won’t support
versions of node earlier than 6.X, and it makes more sense to support 8.X or greater
since this isn’t a business or production environment where you can’t easily switch
between versions without extensive testing. Node 8.X also uses a newer version of npm
and contains significant speed improvements made to the underlying V8 engine.

 If you don’t have one of these versions of node on your computer, head to
https://nodejs.org to download a copy of the latest stable version of node. Another
option is to use the nvm command-line tool to install copies of node locally and be
able to switch between them. You can check out the nvm tool at https://github
.com/creationix/nvm.

 Different versions of node support different features of JavaScript, so it’s important
to know what the version you’re using supports. If you’d like to know more about
which features yours supports and which versions others do (or will), check out
http://node.green to see feature implementation across versions.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social
https://yarnpkg.com
https://yarnpkg.com
https://nodejs.org
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
http://node.green
http://www.npmjs.com

81Getting set up with the Letters Social repo
4.1.3 Note on tooling and CSS

As I mention in other places in this book, tooling around JavaScript applications can
be a complex and fast-moving target. It’s also a domain that deserves its own treat-
ment. For these reasons, I won’t be covering how to set up things like Webpack, Babel,
or other tools. The application source code has a development and build process in
place, and you’re free to explore the configuration I’ve set up, but that’s outside the
scope of this book, so I won’t be covering it.

 Another point worth making is about CSS. I’ve already covered the ways you work
with inline styles in React, but CSS is also generally out of the scope of this book. For
that reason, I’ve created all the styles you’ll need. Any UI markup you see has styles
created for it. Some styles depend on certain types or hierarchies, so if you move dif-
ferent elements around or change CSS class names, you can expect the app to look
broken. My aim is to give you one less thing to think about while learning React, but if
you’re interested in playing around with the app’s styling, go right ahead.

4.1.4 Deploying

The app running at https://social.react.sh is deployed to https://zeit.co, but if, for
some reason in the future, circumstances arise that require a change, I’ll keep the app
running at whatever cloud solution makes the most sense at the time. You don’t need
to be concerned with what the app is hosted on. If at the end of the book you find
yourself wanting to fork and add to the app for your own learning and enjoyment,
you’ll need to determine the best way to deploy the app for yourself. Fortunately, the
build and runtime processes are straightforward, so you should find it relatively easy
to deploy somewhere else.

4.1.5 The API server and database

To prevent you from having to run a database like MongoDB or PostgreSQL, we’ll use
a simulated REST API via the JSON-server library (https://github.com/typicode/
json-server). I’ve made some modifications to the default server (which you can see in
the db folder of the repo) that help make the project a little bit easier. Rather than
work with a database, you’ll get a lightweight database that works by reading and mod-
ifying a JSON file. To create sample data or reset your application data, you can run
this command:

npm run db:seed

That will overwrite the existing JSON database and replace it with new sample data
(the users, posts, and comments are all Star Wars-themed—may the Force be with
you). In later chapters, you’ll be able to create a user in the database after you log in.
If you rerun the database seed command, your user will get overwritten, and you’ll
have to log out and log back in to get things fixed. That shouldn’t happen, and you
probably won’t need to run the database command more than once, but you should
be aware of what it means to reset your data just in case.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh
https://zeit.co
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server

82 CHAPTER 4 Rendering and lifecycle methods in React
 I’ve included a number of helpers to make it easier to make requests to the API.
You can see these functions in src/shared/http.js. I’m making use of the isomorphic-
fetch library (https://github.com/matthew-andrews/isomorphic-fetch) because it
mirrors the standard Fetch API available in browsers, but also runs on the server. I’ll
assume you have some experience with an HTTP library in the browser, but if not you
can use the included helper files as a way to start learning about the Fetch API
(https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).

4.1.6 Running the app

The easiest way to get started running the app in development mode will be to run
the following:

npm run dev

There are other commands you can use, too, but the main one you’ll want is dev. To
see the other available commands, you can run this:

npm run

That should list every available command for the repository. Feel free to try each of
them to see how they fit in. The main two you’ll be concerned with, though, are npm
run dev and npm run db:seed.

4.2 The render process and lifecycle methods
If you’ve cloned the repository and installed the dependencies, you should have every-
thing you need. Before you start building Letters Social, though, you’ll need to take a
look at rendering and lifecycle methods. These are key features of React, and once you
know them you’ll be better equipped to start building the Letters Social application.

4.2.1 Introducing lifecycle methods

In chapter 2, you saw that you can create and assign functions as handlers for events
(clicks, form submissions, and so on) inside your components. That’s useful because
you can create dynamic components that respond to user events (a key aspect of any
modern web application). But what if you want something more? With just this as a
feature, it seems like you’re still working with regular old HTML and JavaScript. Say
you want to get user data from an API or read a cookie for later use, all without wait-
ing for a user-initiated event. These are routine things you’ll need to do in web appli-
cations—you’ll want to do them automatically in some cases, so where would those
sorts of things happen? The answer is lifecycle methods.

DEFINITION Lifecycle methods are special methods attached to class-based React
components that will be executed at specific points in a component's lifecycle.
A lifecycle is a way of thinking about a component. A component with a lifecycle
has a metaphorical “life”—it has at least a beginning, middle, and end. This
mental model makes thinking about a component easier and gives you context
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/matthew-andrews/isomorphic-fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

83The render process and lifecycle methods
about where a component is in terms of its life. Lifecycle methods aren’t
unique to React; many UI technologies employ them due to their intuitive and
useful nature. The main parts of a React component’s life are mounting, updat-
ing, and unmounting. Figure 4.2 shows an overview of a component lifecycle
and the rendering process (how React manages your components over time).

I’ve mentioned lifecycle methods in past chapters, but now it’s time to really dive in to
them to get a sense of what they are and how you can use them. To get started, think
about React at a high level again. Take a look at the top of figure 4.2 to refresh your

Components

Other JavaScript
(other modules, custom methods)

<Component
display
userID={12}>

<OtherComponent/>
<Component>

{"user": {name: "Mark"}}

componentWillMount

componentDidMount

componentWillReceiveProps

shouldComponentUpdate

componentWillUpdate

componentDidUpdate

componentWillUnmount

Application

Application code (components, styles, utilities, business logic)

React
React DOM / React-
Native / React VR

Other libraries

Native devices
(iOS, Android)

VR Devices
(React VR)

Server
(node.js)

Desktop &
Mobile

Props

Internal component state Lifecycle methods

Target environments/platforms

Figure 4.2 Overview of React. React will render (create, manage)
components and create user interfaces from them.
Licensed to Samir Mashlum <smashlum@gmail.com>

84 CHAPTER 4 Rendering and lifecycle methods in React
memory. I’ve talked about state in React, creating components with React.create-
Element and JSX, but we still need to look at the lifecycle methods in depth.

 Let’s jog your memory from past chapters and review some concepts. What is ren-
dering? One definition of render is “to cause to be or become; to make.“ For our pur-
poses, you can think of rendering as what React does in creating and managing a user
interface for you. It’s the work of getting your application onto the screen. It’s React
taking your components and turning them into a UI.

 You can hook into this process using the lifecycle methods you’re learning about
in this chapter. These methods give you the flexibility to do what you need to at the
right moment of a component’s lifetime. They’re only available to components that
are created from classes that extend the React.Component abstract base class.

 Stateless functional components, discussed at the end of chapter 3, don’t have life-
cycle methods available to them. You also can’t use this.setState inside them
because they don’t have backing instances; React doesn’t keep track of any internal
state for them. They can still have their data updated by a parent via props, but you
don’t get access to lifecycle methods. That may seem like a hindrance or like they’re
less powerful, but in many cases they’re all you need.

4.2.2 Types of lifecycle methods

This section looks at the different lifecycle methods provided by React in different
groups and discusses what each one does. Lifecycle methods can be broken into two
main groups:

 Will methods—Called right before something happens
 Did methods—Called right after something happens

There are also a few other methods that don’t fit into either of these groups. They’re
related to initialization and error handling, and one is for updating. Most of the meth-
ods are did and will types, however.

 We can further break them down into several more types based on what part of the
lifecycle they’re related to (see figure 4.3). Components have four main parts of their
lifecycle and corresponding lifecycle methods for each:

 Initialization—When a component class is being instantiated.
 Mounting—A component is being inserted into the DOM.
 Updating—A component is being updated with new data via state or props.
 Unmounting—A component is being removed from the DOM.

Licensed to Samir Mashlum <smashlum@gmail.com>

85The render process and lifecycle methods
There are lifecycle methods that will be called during initialization as well as before
and after component mounting, updating, and unmounting. There aren’t that many
of these methods, especially when compared to other libraries and frameworks, but it
can be easy to mix them up when you’re learning React. Forming meaningful mental
groups for them will help you navigate the different parts of the render process. Fig-
ure 4.4 shows an overview of the whole rendering process in React, which we’ll look at
more closely over the course of this chapter.

 Remember, thinking of user interfaces and components in terms of a lifecycle isn’t
unique to React or JavaScript. Other technologies have adopted this idea with great
success and sometimes even after being inspired by React (http://componentkit.org,
for example). But these specific lifecycle methods are unique to React. To explore
these methods, you’ll create two simple components—a parent and child—that will
implement all the lifecycle methods we’ll look at. Head to https://codesandbox.io/s/
2vxn9251xy to see how to add these components. You can still download the code
from the CodeSandbox and use your browser’s developer tools to inspect the console.
Listing 4.1 shows the basic setup for these components.

vDOM DOM

React inserts your

component into

the actual DOM

Mounting Mounted Unmounting

React detects a

change in state and

updates the actual DOM to

sync it with the vDOM

React creates a

virtual DOM tree from

your components

(in-memory)

DOM

ReactClass

Component

or Stateless

functional

component

Figure 4.3 Overview of the rendering process and a component’s lifecycle. This is the process that
React uses as it manages your components for you. The three main parts of a component’s life are
when it’s mounting, mounted, and unmounting. A component is mounting when it’s being inserted
into the DOM, mounted once it is, and unmounting when it’s being removed.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://componentkit.org
https://codesandbox.io/s/2vxn9251xy
https://codesandbox.io/s/2vxn9251xy
https://codesandbox.io/s/2vxn9251xy

86 CHAPTER 4 Rendering and lifecycle methods in React
componentWillReceiveProps(nextProps)

Updating
While a component is mounted, it

“lives” in the actual DOM and can

be updated by React to keep it in

sync with your data.

Δ can use setState()

props

false

true setState()

Uncaught errors in

constructor, render, lifecyle methods

shouldComponentUpdate(nextProps, nextState)

componentWillUpdate(nextProps, nextState)

render()

componentDidUpdate(prevProps, prevState)Δ can use setState() componentDidCatch(error, errorInfo)

Mounted
Once mounted,

updates can occur

componentWillUnmount()

Unmounted, component

only exists in virtual DOM

ReactDOM.render()

ReactDOM.hydrate()

(for server-side rendering)

componentDidMount()

Props, intial state set in constructor

Mounting

Mounting and unmounting are controlled externally

by ReactDOM (a component can’t unmount itself

without the help of ReactDOM), but it can control

whether or not an update to the component should

occur via shouldComponentUpdate.

Unmounting

While a component is mounted, it

“lives” in the actual DOM and can

be updated by React to keep it

in sync with your data

componentWillMount()Δ can use setState()

(re-render won’t

be triggered)

Δ can use setState()

render()

Virtual DOM

Figure 4.4 Overview of a component lifecycle in React. ReactDOM renders a component and certain lifecycle
methods are called as React manages your component.
Licensed to Samir Mashlum <smashlum@gmail.com>

87The render process and lifecycle methods
import PropTypes from 'prop-types';
import React, { Component } from 'react';
import { render } from 'react-dom';

class ChildComponent extends Component {
 static propTypes = {
 name: PropTypes.string
 };
 static defaultProps = (function() {
 console.log('ChildComponent : defaultProps');
 return {};
 })();
 constructor(props) {
 super(props);
 console.log('ChildComponent: state');
 }
 render() {
 console.log('ChildComponent: render');
 return (
 <div>
 Name: {this.props.name}
 </div>
);
 }
};

class ParentComponent extends Component {
 constructor() {
 super(props);
 this.state = {
 name: ‘’
 }
 this.onInputChange = this.onInputChange.bind(this);
 }
 onInputChange(e) {
 this.setState({ text: e.target.value });
 }
 render() {
 console.log('ParentComponent: render');
 return [
 <h2 key="h2">Learn about rendering and lifecycle methods!</h2>,
 <input key="input" value={this.state.text}

onChange={this.onInputChange} />,
 <ChildComponent key="ChildComponent" name={this.state.text} />
];
 }
};

render(
 <ParentComponent />,
 document.getElementById('container')
);

Listing 4.1 Exploring lifecycle methods

Declare a child
component.

Set up propTypes as a static
method on the class.

Set default props—normally
you’d set this as an object
and not a function, but
you’re using an immediately
executing function to inject
the console.log statement.

Create a parent
component.

Bind the onInputChange
method in the
constructor so you can
reference the method
within render and have
it point to the class
instance, not definition.

Update state with the
data from the form input.

Render the child component
within the parent.

Use React DOM to render
the parent component.
Licensed to Samir Mashlum <smashlum@gmail.com>

88 CHAPTER 4 Rendering and lifecycle methods in React
You don’t need your components to do much for you to explore how lifecycle meth-
ods work. Here you’ve set up a parent and child. The parent component listens for
changes to an input field and provides new props to the child component via state.

4.2.3 Initial and “will” methods

The first group of lifecycle-related properties to explore are the initial properties of a
component. These include two properties you’ve already learned about: default-
Props and state (initial). These properties help provide initial data to your compo-
nent. Let’s revisit these quickly before moving on:

 defaultProps—A static property that provides the default props for a compo-
nent. Sets on this.props if that prop is not set by the parent component, is
accessed before any components are mounted, and can’t rely on this.props.
or this.state. Because defaultProps is a static property, it’s accessed from the
class, not instances.

 state (initial)—The value of this property in the constructor will be the initial
value set for the state of your component. That’s especially helpful when you
need to provide placeholder content, set default values, or the like. It’s similar
to default props with the exception that the data is expected to be mutated and
only available on components that inherit from React.Component.

Even though setting initial state and props isn’t done with special methods from the
React Component class (they use the JavaScript constructor method), they’re still part
of the component lifecycle. It’s easy to accidentally exclude them in your mind, but
they play an important role in providing data for your components.

 To help illustrate the order of rendering and the various lifecycle methods we’ll
look at, you’ll next create two simple components that you can specify lifecycle meth-
ods on. You’ll create a parent component and a child component so you can see not
only the order in which different methods are called, but also how that order is
worked out between parents and children. To keep things simple, you’ll only be log-
ging information out to the developer console. Figure 4.5 shows what you’ll be able to
see in your developer console once you’re done.

Licensed to Samir Mashlum <smashlum@gmail.com>

89The render process and lifecycle methods
4.2.4 Mounting components

Now that you’ve created your parent and child components, let’s look at mounting.
Mounting is the process of React inserting a component into the DOM. Remember,
components only exist in the virtual DOM until React creates them in the real DOM.
See figure 4.6 for an overview of mounting and the rendering process for the parent
and child components. Mounting methods will let you “hook” into the beginning and
end of a component’s life and are only fired once because, by definition, there can
only be one beginning and end to a component.

Figure 4.5 Output from the sample components once they’ve been fleshed out. A lifecycle method will trigger a
message being logged to the console at each step, along with any arguments available to those methods. You can
see the lifecycle methods in action at https://codesandbox.io/s/2vxn9251xy.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://codesandbox.io/s/2vxn9251xy

90 CHAPTER 4 Rendering and lifecycle methods in React
DEFINITION Mounting is the process of React inserting your components into
the real DOM. Once done, your component is “ready,” and it’s often a good
time to do things like perform HTTP calls or read cookies. At this point you’ll
also be able to access the DOM element via something called a ref, discussed
in future chapters.

If you look back at figure 4.3, you’ll notice that you only have one opportunity to
change state before a component is mounted. You can do that by using component-
WillMount, which will provide the opportunity to set state or perform other actions
before your component mounts. Any changes to state within this method won’t trig-
ger a rerender, unlike other updates to state that will trigger the update process seen

— onChange event fired —

state changes

in parent

new props

DOMvDOM

defaultProps

state

T
im

e

M
o

u
n

ti
n

g
M

o
u

n
te

d
U

p
d

a
ti
n

g
(s

ti
ll

m
o

u
n

te
d

)

defaultProps

state

componentWillMount()

render()

componentWillMount()

render()

Parent

Parent

Parent

Child

componentWillReceiveProps()

shouldComponentUpdate()

componentWillUpdate()

render()

componentDidUpdate()

Notice how many times render()

is called. A common mistake

people make when learning

React is putting things in render()

that shouldn’t be. You can’t know

exactly when React will call

render() because it batches

updates for performance reasons.

The parent won’t finish

mounting till its children have

mounted, so children call

componentDidMount first

Parent calls componentWillMount

first, but needs to wait for child

components to mount

Parent

Child

componentDidMount()

render() Once a component is

mounted, it exists in the

DOM and has a DOM

instance assigned to it

Child is updated with

new state passed via

props from the parent.

React updates the actual

DOM to keep it in sync

with the virtual DOM

componentDidMount()

render()

Child

Parent

Child

Parent

Parent

Child

Figure 4.6 The rendering process as it applies to the sample parent and child components
Licensed to Samir Mashlum <smashlum@gmail.com>

91The render process and lifecycle methods
earlier. It’s important to know which methods trigger a rerender and which don’t so
you can understand how your app will behave as well as debug it if something goes
wrong. Figure 4.7 shows the mounting methods in the context of the lifecycle over-
view we’ve been working with.

The next method I’ll cover is componentDidMount. When React calls this method, you
have the opportunity to use componentDidMount as well as access refs on components.
In this method, you have access to component state and props as well as the knowl-
edge that your component is ready for updates. That means it’s a good place to do
things like update your component state with data coming back from a network
request. It’s also a great place to work with third-party libraries that depend on the
DOM, like jQuery and others.

 If you execute handlers or other functions in other methods (like render()),
you’ll end up with unpredictable and unexpected results due to how React works.
Render methods need to be pure (consistent based on a given input) and are usually

Mounted
Once mounted,

updates can occur
componentDidCatch(error, errorInfo)

Uncaught errors in constructor,

render, lifecycle methods

ReactDOM.render()

ReactDOM.hydrate()

(for server-side rendering)

componentDidMount()

Props, intial state set in constructor

Mounting

Mounting and unmounting are controlled externally

by ReactDOM (a component can’t unmount itself

without the help of ReactDOM), but it can control

whether or not an update to the component should

occur via shouldComponentUpdate.

componentWillMount()Δ can use setState()

(re-render won’t

be triggered)

Δ can use setState()

render()

Virtual DOM

Figure 4.7 Mounting methods in the context of the larger lifecycle process. Components are added
to the DOM, and as they are, several specific methods are fired along the way.
Licensed to Samir Mashlum <smashlum@gmail.com>

92 CHAPTER 4 Rendering and lifecycle methods in React

nt.
called many times over the lifetime of a component. React may even batch updates
together, so you can’t guarantee that a render will happen at a given time.

 Now that we’ve looked at some of the methods related to mounting, you’ll add
them to your components so we can see the component lifecycle. The next listing
shows how you can add these mounting methods to your components.

import PropTypes from 'prop-types';
import React, { Component } from 'react';
import { render } from 'react-dom';

class ChildComponent extends Component {
 static propTypes = {
 name: PropTypes.string
 };
 static defaultProps = (function() {
 console.log('ChildComponent : defaultProps');
 return {};
 })();
 constructor(props) {
 super(props);
 console.log('ChildComponent: state');
 this.state = {
 name: 'Mark'
 };
 }
 componentWillMount() {
 console.log('ChildComponent : componentWillMount');
 }
 componentDidMount() {
 console.log('ChildComponent : componentDidMount');
 }
 render() {
 if (this.state.oops) {
 throw new Error('Something went wrong');
 }
 console.log('ChildComponent: render');
 return [
 <div key="name">Name: {this.props.name}</div>
];
 }
}

class ParentComponent extends Component {
 static defaultProps = (function() {
 console.log('ParentComponent: defaultProps');
 return {
 true: false
 };
 })();
 constructor(props) {
 super(props);

Listing 4.2 Mounting methods

Add component-
DidMount and
componentWillMount
to the child compone
Licensed to Samir Mashlum <smashlum@gmail.com>

93The render process and lifecycle methods

 console.log('ParentComponent: state');
 this.state = { text: '' };
 this.onInputChange = this.onInputChange.bind(this);
 }
 componentWillMount() {
 console.log('ParentComponent: componentWillMount');
 }
 componentDidMount() {
 console.log('ParentComponent: componentDidMount');
 }
 onInputChange(e) {
 const text = e.target.value;
 this.setState(() => ({ text: text }));
 }
 render() {
 console.log('ParentComponent: render');
 return [
 <h2 key="h2">Learn about rendering and lifecycle methods!</h2>,
 <input key="input" value={this.state.text}

onChange={this.onInputChange} />,
 <ChildComponent key="ChildComponent" name={this.state.text} />
];
 }
}

render(<ParentComponent />, document.getElementById('root'));

4.2.5 Updating methods

Once your component is mounted and in the DOM, you’ll want to update it. In chap-
ter 3, you saw that you can use this.setState() to perform a shallow merge of new
data into the component state, but more than that goes on when you trigger an
update. React provides several methods you can use to hook into the update process:
shouldComponentUpdate, componentWillUpdate, and componentDidUpdate. Figure 4.8
shows the updating portion of the overall lifecycle chart we looked at earlier.

 Unlike with other methods we’ve seen so far, you’re given the option to control
whether an update should occur. Another difference between the “update” methods
and those related to mounting is that they provide arguments for props and state. You
can use these to determine whether an update should occur or to react to changes.

 If shouldComponentUpdate returns false for some reason, render()is skipped until
the next state change. This means you can prevent your component from unnecessar-
ily updating. Because the component won’t update, the next methods, component-
WillUpdate and componentDidUpdate, won’t be called.

 Unless you specify otherwise, shouldComponentUpdate will always return true, but
if you’re careful to always treat state as immutable and to read only from props and

Exercise 4.1 Pondering mounting
What does it mean that a component has mounted?

Add component-
DidMount and
componentWillMount
to the parent
component.
Licensed to Samir Mashlum <smashlum@gmail.com>

94 CHAPTER 4 Rendering and lifecycle methods in React

t.
state in render(), then you can override shouldComponentUpdate with an implemen-
tation that compares the old props and state to their replacements. That can be useful
for performance tuning but should be treated as an escape hatch. React already
employs sophisticated and advanced methods to determine what should be updated
and when.

 If you do end up using shouldComponentUpdate, it should be in a case where those
methods aren’t sufficient for some reason. That doesn’t mean you should never use it,
but you probably won’t need to when first starting out with React. Like all the lifecycle
methods, it’s provided to you but should only be used when necessary. The next listing
shows an example of React’s update-related lifecycle methods.

//...
class ChildComponent extends Component {
 //...
 componentWillReceiveProps(nextProps) {

 console.log(‘ChildComponent : componentWillReceiveProps()’);
 console.log(‘nextProps: ‘, nextProps);
 }

Listing 4.3 Updating methods

componentWillReceiveProps(nextProps)

Updating
While a component is mounted, it

“lives” in the actual DOM and can

be updated by React to keep it in

sync with your data.

Δ can use setState()

props

false

true setState()

Mounted

Uncaught errors in

constructor, render, lifecyle methods

shouldComponentUpdate(nextProps, nextState)

componentWillUpdate(nextProps, nextState)

render()

componentDidUpdate(prevProps, prevState)Δ can use setState() componentDidCatch(error, errorInfo)

Figure 4.8 Updating lifecycle methods. When a component is being updated, several hooks fire that let you
determine whether the component should be updated at all, how to update, and when the update is done.

Add update methods to the child
component so you can inspect the
update process on a single componen
Licensed to Samir Mashlum <smashlum@gmail.com>

95The render process and lifecycle methods

e
o

t

e

t.
 shouldComponentUpdate(nextProps, nextState) {
 console.log(‘<ChildComponent/> - shouldComponentUpdate()’);
 console.log(‘nextProps: ‘, nextProps);
 console.log(‘nextState: ‘, nextState);
 return true;
 }
 componentWillUpdate(nextProps, nextState) {
 console.log(‘<ChildComponent/> - componentWillUpdate’);
 console.log(‘nextProps: ‘, nextProps);
 console.log(‘nextState: ‘, nextState);
 }
 componentDidUpdate(previousProps, previousState) {
 console.log(‘ChildComponent: componentDidUpdate’);
 console.log(‘previousProps:’, previousProps);
 console.log(‘previousState:’, previousState);
 }
 //…
 render() {
 console.log(‘ChildComponent: render’);
 return [
 <div key=”name”>Name: {this.props.name}</div>
];
 }
}

class ParentComponent extends Component {
 //...
 onInputChange(e) {
 const text = e.target.value;
 this.setState(() => ({ text: text }));
 }
 //…
 render() {
 console.log(‘ParentComponent: render’);
 return [
 <h2 key=”h2”>Learn about rendering and lifecycle methods!</h2>,
 <input key=”input” value={this.state.text}

onChange={this.onInputChange} />,
 <ChildComponent key=”ChildComponent” name={this.state.text} />
];
 }
}
//...

Now that you’ve specified update methods for your components, try running them
again and type something into the text box. You’ll see a cascading output in the devel-
oper console (listing 4.4 shows what the components should output). Take a minute
to look at the order of rendering. Notice anything? The order should cohere with
what you’ve learned so far in this chapter, but now you get to see how child and parent
component ordering matters. You may remember from chapter 2 that React is recur-
sive in how it forms a tree and renders things—it will exhaustively examine every part
of your components by asking about each component and all of its children.

Add updat
methods t
the child
componen
so you can
inspect th
update
process
on a single
componen
Licensed to Samir Mashlum <smashlum@gmail.com>

96 CHAPTER 4 Rendering and lifecycle methods in React
 Because it knows everything it needs to know about your component tree, React
can intelligently create components for you in the proper order. You’ll notice in list-
ing 4.4 that a child component’s mounting occurs before its parent’s. This makes
sense if you think about what mounting means for the parent: children have to be cre-
ated before the parent component’s mounting can be considered complete. If the
child didn’t yet exist, the parent couldn’t be said to be mounted.

 You’ll also note that when an update occurs, you’ll see the child component
receive props because the prop of that child has been changed by the parent via
this.setState(). From there, the updating methods run in order: shouldComponent-
Update, componentWillUpdate, componentDidUpdate. If you for some reason told the
component not to update by returning false from shouldComponentUpdate, those
steps would have been skipped.

ChildComponent : defaultProps
ParentComponent : defaultProps
ParentComponent : get initial State
ParentComponent : componentWillMount
ParentComponent : render
ChildComponent : componentWillMount
ChildComponent : render
ChildComponent : componentDidMount
ParentComponent : componentDidMount
ParentComponent : render
ChildComponent : componentWillReceiveProps
Object {text: "Mark"}
<ChildComponent/> : shouldComponentUpdate
nextProps: Object {text: "Mark"}
nextnextState: Object {name: "Mark"}
<ChildComponent/> : componentWillUpdate
 nextProps: Object {text: "Mark"}
 nextState: Object {name: "Mark"}
 ChildComponent : render
 ChildComponent : componentDidUpdate
 previousProps: Object {text: ""}
 previousState: Object {name: "Mark"}
 >

4.2.6 Unmounting methods

Just as we could listen for the mounting of a component, we can listen for its unmount-
ing. Unmounting is the process of removing a component from the DOM. If your appli-
cation is written all with React, a router (explored in chapters 8 and 9) will remove
components as you move between different pages. But you can also use React to inte-
grate with other frameworks and libraries, so you might need to perform some other
actions when your component unmounts (maybe clearing an interval, toggling a setting,
and so on). Regardless of what it is, you can take advantage of componentWillUnmount

Listing 4.4 Component update output with text entered

“Mark” was pasted in so you
don’t trigger a whole series
of updates for every letter.
Licensed to Samir Mashlum <smashlum@gmail.com>

97The render process and lifecycle methods
to do any cleanup you need to when a component is being removed. Figure 4.9 illus-
trates how the unmounting process happens.

Based on how mounting has worked so far, you might expect a componentDidUnmount
method to be available, but there isn’t one. That’s because once a component is
removed, its life is over and thus it shouldn’t be able to do anything from beyond the
grave. Let’s add the componentWillUnmount to our running example so we can get the
full picture of a component’s lifecycle.

//...
class ChildComponent extends Component {
 //...
 componentWillUnmount() {

Listing 4.5 Unmounting

Mounted
Once mounted,

updates can occurReactDOM.unmountComponentAtMode()

Virtual DOM

componentDidCatch(error, errorInfo)

Uncaught errors in constructor,

render, lifecycle methods

ReactDOM.render()

ReactDOM.hydrate()

(for server-side rendering)

Unmounted, component

only exists in virtual DOM

componentDidMount()

componentWillMount()

Props, intial state set in constructor

Unmounting Mounting

While a component is mounted,

it “lives” in the actual DOM and

can be updated by React to

keep it in sync with your data.

Mounting and unmounting are controlled externally

by ReactDOM (a component can’t unmount itself

without the help of ReactDOM), but it can control

whether or not an update to the component should

occur via shouldComponentUpdate.

componentWillMount()Δ can use setState()

(re-render won’t

be triggered)

Δ can use setState()

render()

Figure 4.9 React DOM is responsible for mounting and unmounting components. Mounting is the process of
inserting your components into the DOM and unmounting is the opposite: the process of removing your
components from the DOM. Once components are unmounted, they no longer exist in the DOM.
Licensed to Samir Mashlum <smashlum@gmail.com>

98 CHAPTER 4 Rendering and lifecycle methods in React
 console.log('ChildComponent: componentWillUnmount');
 }
 render() {
 console.log('ChildComponent: render');
 return [
 <div key="name">Name: {this.props.name}</div>
];
 }
}

class ParentComponent extends Component {
 //...
 componentWillUnmount() {
 console.log('ParentComponent: componentWillUnmount');
 }
 onInputChange(e) {
 const text = e.target.value;
 this.setState(() => ({ text: text }));
 }
 componentDidCatch(err, errorInfo) {
 console.log('componentDidCatch');
 console.error(err);
 console.error(errorInfo);
 this.setState(() => ({ err, errorInfo }));
 }
 render() {
 return [
 <h2 key="h2">Learn about rendering and lifecycle methods!</h2>,
 <input key="input" value={this.state.text}

onChange={this.onInputChange} />,
 <ChildComponent key="ChildComponent" name={this.state.text} />
];
 }
}
//...

4.2.7 Catching errors

Error handling is a first-class part of writing clean programs. So far, we haven’t seen
any special methods in React for dealing with errors. If you’ve worked with React for a
long time, you may remember that previous versions of React would lock up the entire
app if an error occurred in a React component’s render or lifecycle methods. This was
often a source of frustration, as it meant that an uncaught error could lock up the
entire application.

 More recent versions of React introduced a new concept called error boundaries to
help deal with this. If an uncaught exception is thrown within a component’s con-
structor, render, or lifecycle methods, React will unmount the component and its
children from the DOM. That may seem confusing at first, but the benefit it offers is
the ability to isolate errors in components from breaking the rest of the app.

Add the
componentWill-
Unmount method
to the parent and
child components.
Licensed to Samir Mashlum <smashlum@gmail.com>

99The render process and lifecycle methods
You can handle these errors by using another method that your components inherit
from React.Component: componentDidCatch. The semantics of the method are similar
to the try...catch behavior you’d see in JavaScript. componentDidCatch gives you
access to the error being thrown and an error message. Using these you can ensure
your components appropriately respond to errors. In a larger application, you might
use this method to set up error state for individual components (maybe a widget, card,
or other component) or at an application level. The following listing shows how to
add the componentDidCatch method to the parent component.

//...
class ChildComponent extends Component {
 constructor(props) {
 super(props);
 console.log('ChildComponent: state');
 this.oops = this.oops.bind(this);
 }
 //...
 oops() {
 this.setState(() => ({ oops: true }));
 }
 render() {
 console.log('ChildComponent: render');
 if (this.state.oops) {
 throw new Error('Something went wrong');
 }
 return [
 <div key="name">Name: {this.props.name}</div>,
 <button key="error" onClick={this.oops}>
 Create error
 </button>
];
 }
}

class ParentComponent extends Component {
 //...
 constructor(props) {
 super(props);
 console.log('ParentComponent: state');
 this.state = { text: '' };
 this.onInputChange = this.onInputChange.bind(this);
 }
 //...

Exercise 4.2 Differences among components
What are some of the differences between React components created from the
abstract base class React.Component and components created from plain functions
without inheritance?

Listing 4.6 Handling errors

Bind the class
method.

Toggle state so you
throw an error.

Throw an error in
the render method.
Licensed to Samir Mashlum <smashlum@gmail.com>

100 CHAPTER 4 Rendering and lifecycle methods in React
 componentDidCatch(err, errorInfo) {
 console.log('componentDidCatch');
 console.error(err);
 console.error(errorInfo);
 this.setState(() => ({ err, errorInfo }));
 }
 render() {
 console.log('ParentComponent: render');
 if (this.state.err) {
 return (
 <details style={{ whiteSpace: 'pre-wrap' }}>
 {this.state.error && this.state.error.toString()}

 {this.state.errorInfo.componentStack}
 </details>
);
 }
 return [
 <h2 key="h2">Learn about rendering and lifecycle methods!</h2>,
 <input key="input" value={this.state.text}

onChange={this.onInputChange} />,
 <ChildComponent key="ChildComponent" name={this.state.text} />
];
 }
}

render(<ParentComponent />, document.getElementById('root'));

We’ve looked at the different lifecycle methods provided to you by React and seen
how you can use them in a variety of situations. If it seems like there are a lot of meth-
ods to keep track of, you’ll be relieved to know that these make up the majority of the
API for React components (you can also use table 4.1 as a cheat sheet). The core
React API doesn’t have much more than what we’ve covered so far. What’s more, you
don’t have to use every one of these methods; use what you need. Table 4.1 shows a
summary of the methods covered so far (note that render isn’t included).

Table 4.1 Summary of React component lifecycle methods

Initial Will Did

Mounting defaultProps

Arguments—None, static
property

What—Static version
accessed many times. Sets
values to this.props if
that prop isn’t set by the par-
ent component.

When—Invoked when a com-
ponent is created and can’t
rely on this.props.
Returned complex objects

componentWillMount

Arguments—None

What—Allows you to operate on
component data before the
mounting process happens. For
example, if you call setState
within this method, render()
will see the updated state and
will be executed only once
despite the state change. “Last
chance” to change initial render
data.

componentDidMount

Arguments—None

What—Invoked once the
component has been
inserted into the DOM.
At this point, you can
access refs (a way to
access the underlying
DOM representation dis-
cussed in future chap-
ters). Often a good
place to perform

Add a componentDidCatch
method to the parent and use
it to update component state.

If an error
is thrown,

display
the error
and error
message.
Licensed to Samir Mashlum <smashlum@gmail.com>

101The render process and lifecycle methods
Mounting
(continued)

are shared across
instances, not copied.

When—Invoked once, both on the
client and server (chapter 12 cov-
ers server rendering), immediately
before the initial rendering occurs.

“impure” actions like
integrating with other
JavaScript libraries,
setting timers (via set-
Timeout or set-
Interval), or sending
HTTP requests. We’ll
often use this method to
replace placeholder
data in our components.

When—Invoked once,
only on the client (not
on the server!), immedi-
ately after the initial ren-
dering occurs. The
componentDid-
Mount() method of
child components is
invoked before that of
parent components.

Updating shouldComponentUpdate

Arguments—nextProps,
nextState

What—If shouldCompo-
nentUpdate returns false,
then render() will be com-
pletely skipped until the next
state change. Also, compo-
nentWillUpdate and
componentDidUpdate
won’t be called. Useful as
“escape hatch” for advanced
performance tuning.

When—Invoked before ren-
dering when new props or
state are being received by
your component. Not called
for the initial render.

componentWillReceiveProps

Arguments—nextProps:
Object

What—Use this as an opportunity
to react to a prop transition before
render() is called by updating
the state using this.set-
State(). The old props can be
accessed via this.props. Call-
ing this.setState() within
this function won’t trigger an addi-
tional render.

When—Invoked when a compo-
nent is receiving new props. This
method isn’t called for the initial
render.

componentDidUpdate

Arguments—prev-
Props: Object,
prevState: Object

What—Invoked immedi-
ately after the compo-
nent's updates are
flushed to the DOM.
This method isn’t called
for the initial render.

When—Use this as an
opportunity to operate
on the DOM when the
component has been
updated.

componentWillUpdate

Arguments—nextProps:
Object, nextState: Object

What—Use this as an opportu-
nity to perform preparation before
an update occurs. You can’t use
setState().

When—Invoked immediately
before rendering when new props
or state are being received. Not
called for the initial render.

Table 4.1 Summary of React component lifecycle methods

Initial Will Did
Licensed to Samir Mashlum <smashlum@gmail.com>

102 CHAPTER 4 Rendering and lifecycle methods in React
4.3 Starting to create Letters Social
Now that you know a little bit more about React’s lifecycle methods and what they do,
let’s put those skills to use. You’re going to start building out the Letters Social appli-
cation. If you haven’t already, make sure you read the first section of this chapter so
you know how to use the Letters Social repository. You should be on the start branch
when starting out, but if you want to skip to the end of the chapter you can check out
the chapter-4 branch (git checkout chapter-4).

 Up to this point you’ve been running most of your code in the browser on Code-
Sandbox. That’s been fine for learning, but you’re going to switch context and start
creating files on your local computer. You’ll want to use the Webpack build process
included with the repository, for a few reasons:

 The ability to write JavaScript in many files that are output in one or a small
handful of files that have automatically resolved dependencies and import
order

 The ability to handle and process different types of files (like SCSS or font files)
 To utilize other build tools like Babel so you can write modern JavaScript that

will run on older browsers
 To optimize JavaScript by removing dead code and minifying it

Webpack is an incredibly powerful tool used by many teams and companies. As stated
earlier in the chapter, I won’t be covering how to use it in this book. One of my hopes
for you in this book is to not have to learn React and every related build tool. There’s
simply too much complexity going on at once instead of making learning easy. But
you can learn more about it if you choose. The build process included in the source

Updating
(continued)

componentWillUnmount

Arguments—None

What—Perform any necessary
cleanup in this method, such as
invalidating timers or cleaning up
any DOM elements that were cre-
ated in componentDidMount.

When—Invoked immediately
before a component is
unmounted.

Errors componentDidCatch

Arguments—error, errorInfo

What—Handles errors in components. React will unmount components that occur in and
below the tree where the error occurred.

When—Called on an error in constructor, lifecycle, or render methods

Table 4.1 Summary of React component lifecycle methods

Initial Will Did
Licensed to Samir Mashlum <smashlum@gmail.com>

103Starting to create Letters Social
code can be understood if you spend some time reading about Webpack at https://
webpack.js.org.

 You’ll start building Letters Social by creating an App component and a main
index file that will serve as the entry point into the app (where React DOM’s render
method is called). The App component will house some logic for fetching posts from
the API and will render a number of Post components—you’ll create the component
for posts next. The repository also contains a number of components that you won’t
have to create yourself. You’ll use these now and in future chapters. The following list-
ing shows the entrypoint file, src/index.js.

import React, { Component } from 'react';
import { render } from 'react-dom';

import App from './app';

import './shared/crash';
import './shared/service-worker';
import './shared/vendor';
import './styles/styles.scss';

render(<App />, document.getElementById('app'));

The main app file contains references to some styling that Webpack can import as well
as the main call to React DOM’s render method. This is the main place your React app
will “start.” When the script is executed by the browser, it will render the main app and
React will take over. Without this call, your app won’t be executed. You might remem-
ber from past chapters that you called this at the bottom of a main app file. It’s no dif-
ferent here, really—your app is going to be comprised of many different files that
Webpack will know how to bring together (thanks to your import/export statements)
and run in the browser.

 Now that you have an entry point for your app, let’s create the main App compo-
nent. You can place this file in the src directory as src/app.js. You’ll sketch out a basic
skeleton for the App component and then fill it in as you go. In this chapter, your goal
is to get the main app running and displaying a number of posts. In the next chapter
you’ll start to flesh out more functionality and add the ability to create posts as well as
add locations to posts. You’ll keep adding functionality to the app as you explore dif-
ferent topics in React like testing, routing, and application architecture (using Redux).
The following listing shows the basics of the App component.

Listing 4.7 Main app file (src/index.js)

Import React and the render
method from React DOM—this file
will be where the main call to React
DOM’s render method will be.

Import the default export from the
App component—you’ll create this
in the next listing.

Import some files related to
error reporting, a service
worker register, and styling
(handled by repository setup).

Call render with the main
app on a target element
(the HTML template can be
found in src/index.ejs).
Licensed to Samir Mashlum <smashlum@gmail.com>

https://webpack.js.org
https://webpack.js.org
https://webpack.js.org

104 CHAPTER 4 Rendering and lifecycle methods in React

Impor
Letter

mo
for u
cre

fet
p

Set u
for the c

you
of

endpo
import React, { Component } from 'react';
import PropTypes from 'prop-types';
import parseLinkHeader from 'parse-link-header';
import orderBy from 'lodash/orderBy';

import ErrorMessage from './components/error/Error';
import Loader from './components/Loader';
import * as API from './shared/http';
import Ad from './components/ad/Ad';
import Navbar from './components/nav/navbar';
import Welcome from './components/welcome/Welcome';

class App extends Component {
 constructor(props) {
 super(props);
 this.state = {
 error: null,
 loading: false,
 posts: [],
 endpoint: `${process.env

.ENDPOINT}/posts?_page=1&_sort=date&_order=DESC&_embed=comments&_expand=
user&_embed=likes`

 };
 }
 static propTypes = {
 children: PropTypes.node
 };
 render() {
 return (
 <div className="app">
 <Navbar />
 {this.state.loading ? (
 <div className="loading">
 <Loader />
 </div>
) : (
 <div className="home">
 <Welcome />
 <div>
 <button className="block">
 Load more posts
 </button>
 </div>
 <div>
 <Ad
 url="https://ifelse.io/book"
 imageUrl="/static/assets/ads/ria.png"
 />
 <Ad
 url="https://ifelse.io/book"
 imageUrl="/static/assets/ads/orly.jpg"
 />

Listing 4.8 Creating the App component (src/app.js)

Import the libraries
you’ll need for the
App component.

Import the error message and
loader components to use.

t the
s API
dule
se in
ating

and
ching
osts.

Import the preexisting
Ad, Welcome, and Navbar
components.

p initial state
omponent—
’ll keep track
 posts and an
int to hit for
more posts.

If loading, render a
loader and not the
app body.

Render the
Welcome and
Ad components.

This is where you’ll
add components for

displaying posts.
Licensed to Samir Mashlum <smashlum@gmail.com>

105Starting to create Letters Social
 </div>
 </div>
)}
 </div>
);
 }
}

export default App;

With that, you can run the development command (npm run dev) and your app
should at least boot up and be available in the browser. If you haven’t already, make
sure you run npm run db:seed at least once to generate sample data for your database.
Running npm run dev will do a few things for you:

 Start up the Webpack build process and development server
 Start the JSON-server API so you can respond to network requests
 Create a development server (useful for server-side rendering in chapter 12)
 Hot-reload your app when changes occur (so you don’t have to refresh the app

every time you save a file)
 Notify you of build errors (these should show up in the command line and the

browser if and when they occur)

When the app is up and running in development mode, you should be able to view
the running app at http://localhost:3000. The API server is running at http://local-
host:3500 if you want to make requests to it using things like Postman (www.getpost-
man.com) or just want to navigate to different resources using your browser.

 With those logistical matters out of the way, you should add the ability to fetch post
to the App component. To do that, you’ll need to send a network request to the Letters
Social API using the Fetch API (bundled up in the API module you pulled in). Right
now, your component doesn’t do much. You haven’t defined any lifecycle methods out-
side of the constructor and render methods, so the component doesn’t have any data
to work with. You need to fetch data from the API and then update component state
with that data. You’ll also add an error boundary so that if your component encounters
an error you can show an error message instead of the entire app unmounting. The
next listing shows how to add the class methods to the App component.

//...
 constructor(props) {
 //...
 this.getPosts = this.getPosts.bind(this);
 }

 componentDidMount() {
 this.getPosts();
 }

Listing 4.9 Fetching data when the App component mounts

Export the App
component.

Bind class method and
use it to fetch posts
from the API when the
component mounts.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://localhost:3000
http://localhost:3500
http://localhost:3500
http://www.getpostman.com
http://www.getpostman.com

106 CHAPTER 4 Rendering and lifecycle methods in React

i

t
h

th
 componentDidCatch(err, info) {
 console.error(err);
 console.error(info);
 this.setState(() => ({
 error: err
 }));
 }
 getPosts() {
 API.fetchPosts(this.state.endpoint)
 .then(res => {
 return res
 .json()
 .then(posts => {
 const links = parseLinkHeader(res.headers.get('Link'));
 this.setState(() => ({
 posts: orderBy(this.state.posts.concat(posts),

'date', 'desc'),
 endpoint: links.next.url
 }));
 })
 .catch(err => {
 this.setState(() => ({ error: err }));
 });
 });
 }
 render() {
 //...
 <button className="block" onClick={this.getPosts}>
 Load more posts
 </button>
 //...
 }
 //...

The app should fetch posts when it mounts now and keep that data in its local compo-
nent state. Next, you need to create a Post component that will house post data. You’ll
create the Post component from a set of preexisting components that came with the
source code. These are mainly stateless functional components, and you’ll build on
them over the rest of the book. Take a look at the src/components/post directory to
familiarize yourself with them.

 Your posts will also fetch their own content so you can move the Post component
around in future chapters and render it on its own. The App component makes a
request to get posts, but all it really cares about is the ID and date of a post, whereas
the Post component itself will be responsible for loading the rest of its content.
Another way to do this would be to have the App component be responsible for all
data fetching and just pass data to the post. One upside to this approach is that fewer
network requests are made. You’ll make the post responsible for additional data fetch-
ing for the purposes of illustration and because we’re still focusing on learning lifecy-
cle methods, but I wanted to point out another approach to be clear. The following
listing shows the Post component. Create it in src/components/post/Post.js.

Set up an error boundary
for the app so you can
handle errors.

Fetch posts using the
included API module.

The API module uses the
Fetch API, so you need to
unwrap the JSON response.

The Letters
Social API

returns
pagination

nformation in
headers, so
you can use

he parse-link-
eader to pull
e URL for the
next page of

posts out.

Add the new posts to
state and ensure they’re

sorted correctly.
Update the
endpoint state.

If there’s an
error, update
component state.

Now that you have it defined,
assign the getPosts method to
the load more event handler.
Licensed to Samir Mashlum <smashlum@gmail.com>

107Starting to create Letters Social
import React, { Component } from 'react';
import PropTypes from 'prop-types';

import * as API from '../../shared/http';
import Content from './Content';
import Image from './Image';
import Link from './Link';
import PostActionSection from './PostActionSection';
import Comments from '../comment/Comments';
import Loader from '../Loader';

export class Post extends Component {
 static propTypes = {
 post: PropTypes.shape({
 comments: PropTypes.array,
 content: PropTypes.string,
 date: PropTypes.number,
 id: PropTypes.string.isRequired,
 image: PropTypes.string,
 likes: PropTypes.array,
 location: PropTypes.object,
 user: PropTypes.object,
 userId: PropTypes.string
 })
 };
 constructor(props) {
 super(props);
 this.state = {
 post: null,
 comments: [],
 showComments: false,
 user: this.props.user
 };
 this.loadPost = this.loadPost.bind(this);
 }
 componentDidMount() {
 this.loadPost(this.props.id);
 }
 loadPost(id) {
 API.fetchPost(id)
 .then(res => res.json())
 .then(post => {
 this.setState(() => ({ post }));
 });
 }
 render() {
 if (!this.state.post) {
 return <Loader />;
 }
 return (
 <div className="post">

Listing 4.10 Creating the Post component (src/components/post/Post.js)

Import the API
module so you
can fetch a post.

Import the
constituent
components
for Post.

You need lifecycle
methods, so extend
React.Component.

Declare
propTypes.

Define a constructor so
you can set state and
bind class methods.

Set initial state.

Bind class
method.

Load a post
on mount.

Use the API to
fetch a single post
and update state.

If the post hasn’t
loaded yet, show a
loader component.
Licensed to Samir Mashlum <smashlum@gmail.com>

108 CHAPTER 4 Rendering and lifecycle methods in React
 <UserHeader date={this.state.post.date}
 user={this.state.post.user} />
 <Content post={this.state.post} />
 <Image post={this.state.post} />
 <Link link={this.state.post.link} />
 <PostActionSection showComments={this.state.showComments}/>
 <Comments
 comments={this.state.comments}
 show={this.state.showComments}
 post={this.state.post}
 user={this.props.user}
 />
 </div>
);
 }
}

export default Post;

The last thing you need to do is to actually iterate over the posts so they get displayed.
Remember that the way to display a dynamic list of components is to construct an
array (either through Array.map or another method) and use that in a JSX expres-
sion. Also, don’t forget that React requires you to pass a key prop to each item being
iterated so it knows which components to update in a dynamic list. This is true for any
array of components that you return in a render method. The next listing shows how
to update the render method of the App component to iterate over posts.

//...
import Post from './components/post/Post';
//...
<Welcome />
 <div>
 {this.state.posts.length && (
 <div className="posts">
 {this.state.posts.map(({ id }) => (
 <Post id={id} key={id}

user={this.props.user} />
))}
 </div>
)}
 <button className="block" onClick={this.getPosts}>
 Load more posts
 </button>
 </div>
 <div>
 <Ad
 url="https://ifelse.io/book"
 imageUrl="/static/assets/ads/ria.png"
 />
 <Ad
 url="https://ifelse.io/book"

Listing 4.11 Iterating over Post components (src/app.js)

Set up the mock
data for your
CommentBox

component.

Import the Post
component.

Iterate over the posts you
fetched and render a Post
component for each one.

Don’t forget to add a key
prop to each item that

you’re iterating over.
Licensed to Samir Mashlum <smashlum@gmail.com>

109Starting to create Letters Social
 imageUrl="/static/assets/ads/orly.jpg"
 />
 </div>
//...

With that, you’re rendering out posts and have a start on Letters Social, as shown in
figure 4.10. There’s lots of room for improvements, certainly, but you’re on your
way. We’ll look at adding posts and adding locations to posts in the next chapter.
We’ll also explore using refs—a way to access underlying DOM elements from your
React components.

Exercise 4.3 Uncaught errors
What happens when an uncaught error occurs in a React component? Are there ways
to handle the error?

Figure 4.10 Our first pass at Letters Social. Posts are rendering, and you can load more. In the next chapter,
you’ll add the ability to create posts with locations.
Licensed to Samir Mashlum <smashlum@gmail.com>

110 CHAPTER 4 Rendering and lifecycle methods in React
4.4 Summary
Let’s go over what you’ve learned in this chapter:

 React components are created from JavaScript classes that inherit from the
React.Component class and that have a lifecycle you can hook into. This means
they have a beginning, middle, and end of their time being managed by React.
Because they inherit from the React.Component abstract base class, they also
have access to special React APIs that stateless functional components don’t.

 React provides lifecycle methods that you can use to hook into different parts of
a component’s lifetime. This lets your app act appropriately at different parts of
React’s process of managing the UI. These lifecycle methods don’t all have to
be used and should only be brought in when you need them. Many times, all
you’ll need is a stateless functional component.

 React provides a method for handling errors that occur in your component’s
constructor, render, or lifecycle methods: componentDidCatch. Using this
method, you can create error boundaries in your application. These behave like
try...catch statements in JavaScript. When an error is caught by React, it will
unmount the component where the error occurred and its children from the
DOM to promote render stability and prevent an entire app from breaking.

 You’ve started building Letters Social, the project we’ll use to explore topics in
React for the rest of the book. The final version of the project is available online
at https://social.react.sh, and the source can be found at https://github.com/
react-in-action/letters-social.

In the next chapter, you’ll start to add more functionality to Letters Social. We’ll focus
on adding the ability to create posts dynamically and even add locations to posts using
Mapbox.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh
https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social

Working with
forms in React
By this point, you’ve gotten some basics for building simple components with
React: lifecycle hooks, PropTypes, and much of the top-level component API.
You’ve had a taste of the fundamentals and can do basic things like update local
component state and pass data between components using props. You’ve also been
introduced to component structure, ways to think in terms of components, and life-
cycle methods.

 In this chapter, you’ll put more of that knowledge to work and really start build-
ing out the sample app, Letters Social. You’ll be creating a component that users
can use to create new posts for Letters Social. First, we’ll explore the overall prob-
lem and review the data requirements. Then we’ll talk about forms in React and
you’ll build out the functionality for the component. By the end of this chapter,
you’ll have learned how to use forms in your React applications.

This chapter covers
 Using forms in React

 Controlled and uncontrolled form components
in React

 Validating and sanitizing data in React
111

Licensed to Samir Mashlum <smashlum@gmail.com>

112 CHAPTER 5 Working with forms in React
5.1 Creating posts in Letters Social
So far, your React application, Letters, doesn’t do much except let you read things. A
read-only social network is really more like a library, and that’s not what your fictional
investors want. The first feature you need to create is to the ability to create posts.
You’ll be creating functionality for users to create posts with forms and display them in
the newsfeed. To get started, let’s review the data requirements and get an overview of
the problem so you understand exactly what you need to accomplish.

5.1.1 Data requirements

You’ll be starting to use some browser HTTP libraries to send data to your fake API
server. You probably already know at least a little bit about how these work and how to
communicate with RESTful and other sorts of web APIs from JavaScript, so I won’t
cover it in depth. If you don’t have experience with HTTP in the browser or commu-
nication with servers, there are many excellent resources available, for example, Java-
Script Application Design by Nicolas G. Bevacqua (Manning, 2015).

 When working with APIs, you usually need to send data that fulfills a contract of
sorts. If a database is expecting user info, you may be required to include things like
your name, email, and perhaps a profile picture. Your data will usually need to have a
particular shape to it, or the server will reject it. One of the first things you should to is
figure out how exactly your data needs to look for the server to be happy.

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapter 4 (if you followed along and built out the examples yourself) or
check out the chapter-specific branch (chapter-5-6).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, chapter-5-6 corresponds to the code as it will be at the end of chapters 5 and 6).
You can execute one of the following terminal commands in the directory of your
choice to get the code for the current chapter. If you don’t have the repository at all,
type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-5-6

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

113Creating posts in Letters Social
 Listing 5.1 shows the basic schema for posts in Letters Social. We’re using a simple
JavaScript class here because that’s what the server will actually use. When creating a
post, the payload you send to the server needs to have most of the things defined in
the schema. Note that your post can have a number of useful properties on it, includ-
ing a location—you’ll create a location-adding feature in chapter 6. The server will
assign some smart defaults for properties you don’t specify but will ignore other prop-
erties that aren’t defined. One thing you won’t need to do in the browser is create a
unique ID—the server can do that on its own.

export class Post {
 constructor(config) {
 this.id = config.id || uuid();
 this.comments = config.comments || [];
 this.content = config.content || null;
 this.date = config.date || new Date().getTime();
 this.image = config.image || null;
 this.likes = config.likes || [];
 this.link = config.link || null;
 this.location = config.location || null;
 this.userId = config.userId;
 }
}

5.1.2 Component overview and hierarchy

Now that you know a little about the data you’ll be able to work with, you can start to
think about how you might be able to express this data in component form. There are
plenty of examples of the sort of social networking app you’re creating, so it shouldn’t
be hard to think of examples you’ve seen. Figure 5.1 shows the final product that
you’re building toward, so we can look at that for some initial inspiration.

 I talked about establishing component hierarchy and relationships earlier in the
book and emphasized their importance in creating apps with React. We’ll do that
again here before you start creating your component. Here’s what you have so far in
your Letters app:

 Post data available to use from the API; some posts have images, others have
links

 User data for each post, with some avatar info
 An App component that serves as the catch-all component for the entire appli-

cation
 A Post component that you use as you iterate over the data from the API

You need to add the ability to create posts, and these posts can have locations associ-
ated with them as well as text content. You’ll need to let the user pick this location and
then display that location in each of the posts in the newsfeed. Where should the
CreatePost component live? Based on the mockups and the user needs, it seems like it

Listing 5.1 Post schema (db/models.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

114 CHAPTER 5 Working with forms in React
makes sense to place it as a sibling to the iterated posts, all within the main App com-
ponent, as illustrated in figure 5.2.

Let’s see how to create the skeleton for your component. You’ll put in just the basics
of a component that will render a basic element out, import the right tools, export the

Figure 5.1 The final Letters Social app you’ll be building. Can you see any ways you can break things out into
components?

App component

Post component

Create post?

{Post data}

Comment(s)
Create comment

Figure 5.2 Existing and future components.
You’ve created Post and App components that
fetch and iterate over data. The Create Post
component will exist outside components
used to display posts.
Licensed to Samir Mashlum <smashlum@gmail.com>

115Forms in React
Component class, and set up PropTypes to be defined later. The following listing shows
how to create this basic skeleton.

import React, { Component } from 'react';
import PropTypes from ‘prop-types’;

class CreatePost extends Component {
 static propTypes = {
 }
 constructor(props) {
 super(props);
 }
 render () {
 return (
 <div className="create-post">
 Create a post — coming (very) soon
 </div>
);
 }
}

export default CreatePost;

5.2 Forms in React
Both components you’re building in this chapter involve the use of forms. Web forms
are still similar to paper forms—they’re a structured means of receiving and recording
input. With paper, you use a pen or pencil to record information. With browser forms,
you use a keyboard, mouse, and files on your computer to capture information. There
are a number of form elements that you are probably familiar with, like input,
select, and textarea, among others.

 Most web applications involve forms to one degree or another. I’ve never worked
on an application that was deployed to production that didn’t involve forms of some
kind. I’ve also found that forms sometimes have a bad reputation for being difficult to
work with. Perhaps it’s for this reason that many frameworks have implemented a
“magic” approach to forms that seeks to ease the burden on the developer. React
doesn’t take a magical approach, but it can make forms easier to work with.

5.2.1 Getting started with forms

There’s no standard way to do forms across front-end frameworks. In some frame-
works and libraries, you can set up a form model that’s updated as the user changes
form values and has special methods built into it for detecting when a form is in differ-
ent states. Others implement different paradigms and techniques when it comes to
forms. What they all have in common is that they do forms slightly differently.

 What should we make of the different approaches? Is one better than another? It’s
hard to say whether one is fundamentally better than another, but sometimes “easier

Listing 5.2 Creating a component skeleton (src/components/post/Create.js)

Import React and the PropTypes
object so you can use it.

Create a React component.

Declare PropTypes as a static
property on the class.

Set up the constructor—
you’ll use this later.

Export the component so
you can use it elsewhere.
Licensed to Samir Mashlum <smashlum@gmail.com>

116 CHAPTER 5 Working with forms in React
to use” approaches can obscure the underlying mechanisms and logic from you.
That’s not always a bad thing—sometimes you don’t need visibility into the inner
workings of the framework. But you do need to have a sufficient understanding to
support a mental model that will let you create maintainable code and fix bugs when
they arise. That’s where React shines, in my opinion. By not giving you too much
“magic” when it comes to forms, you get a nice middle ground between having to
know too much and knowing too little about the forms.

 Fortunately, the mental model for forms in React is more of what you’ve already
learned. There’s no special set of APIs to use—forms are just more of what we’ve seen
so far in React: components! You use components, state, and props to create forms.
Because we’re building on previous learning, let’s review some parts of React’s mental
model before moving on:

 Components have two main ways of working with data: state and props.
 Because they’re JavaScript classes, components can have custom class methods

in addition to lifecycle hooks that can be used to respond to events and for just
about anything else.

 As you might for regular DOM elements, you can listen for events like clicks,
input changes, and other events in React components.

 Parent components (such as form elements) can provide callback methods as
props to child components, making it possible for components to communicate
with each other.

You’ll use these familiar React ideas as you build out your component for creating posts.

5.2.2 Form elements and events

To create a post, you’ll need to make sure that the post is persisted to your database,
that the post UI is updated, and that you update the list of posts for the user. First,
you’ll scaffold out the form elements that you’ll build, just as you might if you were
building out a regular HTML form. There’s not much to the markup—you’re only
receiving one input and don’t need to display much else. The following listing shows
the very beginnings of the component: rendering a textarea input.

//...
class CreatePost extends Component {
 render() {
 return (
 <div className="create-post">
 <textarea
 placeholder="What's on your mind?"
 />
 </div>
 <button>Post</button>
 </div>

Listing 5.3 Adding to your CreatePost component (src/components/post/Create.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

117Forms in React

o

)

D
meth

ha
subm
eve
Re

pas
to h
);
 }
}
//...

Now that you’ve created the bare-bones markup for your basic form, you can start to
wire things up. You may remember from earlier chapters that React lets you interact
with events like you would in regular browser JavaScript. It lets you listen for regular
events like clicks, scrolls, and others and react (no pun intended) to them. You’ll take
advantage of these events as you work with your forms.

NOTE If you’ve worked on front-end applications for some time, you’ll know
that there are many inconsistencies between different browsers, especially
when it comes to events. In addition to all the other goodness you get from it,
React also does a lot of work to abstract over these differences in browser
implementations. That’s a benefit that doesn’t get much attention, but it can
be an incredible help. Not having to worry as much about the differences
between browsers tends to let you focus more on other areas of your app and
generally results in happier developers.

Many different events can occur in the browser as a result of user interaction—includ-
ing mouse moves, keyboard typing, clicks, and more. We’re concerned with a few of
these types of events in particular when it comes to your app. For our purposes, you
want to listen with two main event handlers—onChange and onClick:

 onChange—This is fired when an input element changes. You can access the
new value of the form element using event.target.value.

 onClick—This is fired when an element is clicked. You’ll listen for this so you
can know when a user wants to send a post to the server.

Next you’ll assign some event handlers for these events. For now, you’ll put in some
console logging side effects for these functions so we can observe them being fired.
You’ll replace these with real functionality later. The following listing shows how you
can set up the event handlers by binding them in the component class constructor
and then assigning them in the components.

class CreatePost extends Component {
 constructor(props) {
 super(props);
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handlePostChange = this.handlePostChange.bind(this);
 }

 handlePostChange(e) {
 console.log('Handling an update to the post body!');
 }

Listing 5.4 Adding to your CreatePost component (src/components/post/Create.js)

Bind class methods for
handling submission
and post changes.

Declare method
on class to be
used when
update occurs t
body text (the
onChange event

eclare
od for
ndling
ission

nt, and
act will
s event
andler
Licensed to Samir Mashlum <smashlum@gmail.com>

118 CHAPTER 5 Working with forms in React
 handleSubmit() {
 console.log('Handling submission!');
 }

 render() {
 return (
 <div className="create-post">
 <button onClick={this.handleSubmit}>Post</button>
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 </div>
);
 }
}

Event handlers receive a synthetic event as an argument, and we have access to a num-
ber of available properties on the synthetic event. Table 5.1 shows some of the proper-
ties you can access on a synthetic event. By synthetic event, I mean that React translates
the browser event into something you can work with in your React components.

Table 5.1 Properties and methods available on a synthetic event in React

Property Return type

bubbles boolean

cancelable boolean

currentTarget DOMEventTarget

defaultPrevented boolean

eventPhase number

isTrusted boolean

nativeEvent DOMEvent

preventDefault()

isDefaultPrevented() boolean

stopPropagation()

isPropagationStopped() boolean

target DOMEventTarget

timeStamp number

type string

Pass event
handlers to
the button

and textarea
components.

Value of component
will be read from
component state
Licensed to Samir Mashlum <smashlum@gmail.com>

119Forms in React
Before we move on, try something: add console.log(event) to the post component’s
change event handler. If you type something into the textarea element and open the
developer console for your browser, you should see messages being logged out (see
figure 5.3 for an example). If you inspect these objects or try accessing some of the
properties in table 5.1, you should get back information about the event. For our pur-
poses, we’ll be concerned with the target property that you get back. Remember,
event.target is just a reference to the DOM element that dispatched the event, as it
would be in normal JavaScript.

Figure 5.3 React passes a synthetic event to event handlers that you set up. It’s a normalized event,
meaning you can access the same properties and data as you would for a regular browser event.
Licensed to Samir Mashlum <smashlum@gmail.com>

120 CHAPTER 5 Working with forms in React
5.2.3 Updating state in forms

You can listen for events now and watch as your component listens to updates and
submission events, but you’re not doing anything with the data yet. You need to do
something with the events to update your application state. This is the key way you
work with forms in React: by receiving events from event handlers and then using data
from those events to update state or props.

 State and props are the two main ways that React lets you work with data. Right
now, if you try to type something into the form, nothing happens. That may seem like
an error at first, but it’s just React doing its job. Think about it: when you’re changing
the value of the input, you’re mutating the DOM, and part of React’s main job is to
make sure that the DOM stays in sync with the in-memory version of the DOM that
gets created from your components.

 Because you haven’t changed anything in the in-memory DOM (no state was
updated), React won’t update the actual DOM with any changes. That’s a great exam-
ple of React in action, doing its job perfectly. If you were able to update the form val-
ues, you’d be inadvertently putting yourself in a tricky situation where things are out
of sync and you’d need to go back to older ways of doing things (which is what React
improves on in the first place).

 To update state, you’ll listen for the event emitted by React when the input value
changes. When this event is emitted, you’ll extract a value from it and use that value to
update component state. That gives you the opportunity to control every step of the
update process.

 Let’s see how to put this into practice. Listing 5.5 shows how to set up event han-
dlers to listen to and update the state of your components when a user changes a data
value. Later, you’ll use the event.target reference you worked with before and access
the value property to update your state with the value from the textarea element.

class CreatePost extends Component {
 constructor(props) {
 super(props);

 // Set up state
 this.state = {
 content: '',
 };

 // Set up event handlers
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handlePostChange = this.handlePostChange.bind(this);
 }

Listing 5.5 Updating component state using inputs (src/components/post/Create.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

121Forms in React
 handlePostChange(event) {
 const content = event.target.value;
 this.setState(() => {
 return {
 content,
 };
 });
 }

 handleSubmit() {
 console.log(this.state);
 }

 render() {
 return (
 <div className="create-post">
 <button onClick={this.handleSubmit}>Post</button>
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 </div>

);
 }
}

5.2.4 Controlled and uncontrolled components

This approach to updating component state in forms—tightly controlling how
updates occur by using events and event handlers to update state—is probably the
more common way to handle forms in React. Components that are designed with this
process in mind are generally known as controlled components. That’s because we
tightly control the component and how state is changed. But there’s another way of
designing components that use forms, known as uncontrolled components. Figure 5.4
shows an overview of how controlled and uncontrolled components work and illus-
trates some of their differences.

 In an uncontrolled component, rather than use a value property to set data, the
component maintains its own internal state. You can still listen for updates to the
input using an event handler, but you’ll no longer manage the state of the input. List-
ing 5.6 shows an example of using an uncontrolled component approach. We’ll stick
to using controlled components in this book, but it’s important to at least know what
this pattern looks like in practice.

Grab value of textarea element from
value property of DOM element (what
you want to update state with)

Use that value to set
state and update it
with new value

To see updated state, hit
form submission button and
inspect developer console

New value for
textarea element is
provided to element
Licensed to Samir Mashlum <smashlum@gmail.com>

122 CHAPTER 5 Working with forms in React

as
e

e
class CreatePost extends Component {
 constructor(props) {
 super(props);

 this.state = {
 content: '',
 };

 this.handleSubmit = this.handleSubmit.bind(this);
 this.handlePostChange = this.handlePostChange.bind(this);
 }

 handlePostChange(event) {
 const content = event.target.value;
 this.setState(() => {
 return {
 content,
 };

Listing 5.6 Using uncontrolled components (src/components/post/Create.js)

validate,

check data,

sanitize

Controlled

handleUpdateGeneric component

Synthetic

event

Set new value

from state

<textarea

onChange={this.handleUpdate}

value={this.state.content}

>

</textarea>

Uncontrolled

Update component

state

validate,

check data,

sanitize

handleUpdateGeneric component

Synthetic

event

<textarea

onChange={this.handleUpdate}

>

</textarea>

Update component

state

No control

Figure 5.4 Controlled components
listen for events emitted by a DOM
element, operate on the emitted data,
and then update the component state
and set the value of the element. This
keeps everything in the domain of the
component and creates a unified state
universe. Uncontrolled components
maintain their own internal state and
create a situation where a microcosm
exists within the component, cutting off
access to and control of that state.

Your handlers
are the same
before, but th
effect that
changing stat
has won’t be
the same.
Licensed to Samir Mashlum <smashlum@gmail.com>

123Forms in React
 });
 }

 handleSubmit() {
 console.log(this.state);
 }

 render() {
 return (
<div className="create-post">
 <button onClick={this.handleSubmit}>Post</button>
 <textarea
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 </div>
);
 }
}

5.2.5 Form validation and sanitization

One important part of using forms to record and store user input is letting users know
when they’re violating any validation rules you’ve set up and when they’re doing
anything to provide data that doesn’t satisfy your application. Hopefully, the server
applications that receive data from your client-side application will have strict data-
validation and sanitization procedures in place—you can’t rely on a browser app to do
all the work in this area. And even if you have good data sanitization and validation in
place on your server, you still need to provide and enforce good data practices on the
front end in order to help users, to add another level of defense against bad actors,
and to promote data integrity. If you don’t, you could potentially have confused users,
security holes, and meaningless data—all things you don’t want.

 As we’ve seen so far, using forms to update component state involves state, props,
and component methods, like much else in React. To add validation and sanitization
to your component, you need to hook into the update process. To that end, you’ll be
writing general-purpose validation and sanitization functions that could be used any-
where you can use JavaScript and probably in most other front-end frameworks.

Fortunately, the CreatePost component you’re creating doesn’t require extensive vali-
dation. You only need to check for a maximum length and do some additional valida-
tion so the component won’t submit empty posts to the API server. We’re using a

Exercise 5.1 Thinking about React events and forms
Take a minute to think about what you’ve learned about events and forms in React
so far. Are events in React any different from the events you’d deal with in the
browser? How are they different, if at all?

Your handlers are the same
as before, but the effect that
changing state has won’t be
the same.

As noted, there’s now
no value element
that will listen to the
component state.
Licensed to Samir Mashlum <smashlum@gmail.com>

124 CHAPTER 5 Working with forms in React
simple server setup for the purposes of learning and local development, so it will
accept most payloads without doing much validation. Writing applications on the
server is another domain outside the scope of this book, so I’ll only focus on valida-
tion and sanitization on the browser.

 You need to ask yourself a few questions when setting up validation for forms and
inputs in your applications:

 What are the data requirements for the application?
 Based on these constraints, how can you help your users provide meaningful data?
 Are there ways you can eliminate inconsistencies in data that users provide?

First, you need to find out what the data requirements set by the business or applica-
tion back end (if one exists) are. You should start there because that knowledge will
help you establish basic guidelines for how to treat your data. Because we’ve already
established that your server will willingly accept most things and we’ve set out the
basic data types for a post, we can move on the next question.

 Based on the constraints you have, how can you best help your users provide mean-
ingful data and have a good experience in your app? That usually involves checking
data for things like size, character type, maybe file type for file uploads, and more.
Right now, your CreatePost component is fairly benign, and there’s not much to vali-
date beyond length. Next you’ll check for a minimum and maximum length and only
let the user submit their post if valid. The following listing shows how to set up some
basic validation for your component.

//...
class CreatePost extends Component {
 constructor(props) {
 super(props);

 this.state = {
 content: '',
 valid: false,
 };

 this.handleSubmit = this.handleSubmit.bind(this);
 this.handlePostChange = this.handlePostChange.bind(this);
 }

 handlePostChange(event) {
 const content = event.target.value;
 this.setState(() => {
 return {
 content,
 valid: content.length <= 280
 };
 });
 }

Listing 5.7 Adding basic validation (src/components/post/Create.js)

Create a simple valid
property in local
component state

Determine validity of post
by setting max length
here—280 demonstrates
usage, but users sometimes
want posts to be long
Licensed to Samir Mashlum <smashlum@gmail.com>

125Forms in React
 handleSubmit() {
 if (!this.state.valid) {
 return;
 }
 const newPost = {
 content: this.state.content,
 };

 console.log(this.state);
 }

 render() {
 return (
 <div className="create-post">
 <button onClick={this.handleSubmit}>Post</button>
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 </div>
);
 }
}

We’ve worked on answering the first two questions (data constraints and validation).
Now we can approach the final aspect: eliminating data inconsistencies with (very)
basic data sanitization. Whereas validation is asking the user for certain data, sanitiza-
tion is ensuring that the data you get back is safe and in the right format, and that it
exists in a way that it can be persisted. Information security is a huge and very import-
ant field, and this book can’t begin to really go into proper data handling for secu-
rity—but we can tackle one smaller area for Letters: offensive content.

 You’ll use a JavaScript module called bad-words, available from npm (the main
JavaScript module registry and service—learn more at www.npmjs.com/about), to
help us out. It should already be installed in your project. bad-words takes in a string
and replaces any words found on a blacklist (you can create your own and substitute it
for the default if you prefer) with asterisks. The example illustrated in the following
listing is mostly contrived, but at the very least you can prevent people from posting
potentially offensive content on the public app (https://social.react.sh). Remember,
this a very contrived example and isn’t in any way suggesting or endorsing any kind of
censorship.

import PropTypes from 'prop-types';
import React from 'react';

import Filter from 'bad-words';

Listing 5.8 Adding basic content sanitization (src/components/post/Create.js)

Create a new
post object.

Import default object
from bad-words module
Licensed to Samir Mashlum <smashlum@gmail.com>

https://social.react.sh
http://www.npmjs.com/about

126 CHAPTER 5 Working with forms in React
const filter = new Filter();

class CreatePost extends Component {
 //...
 handlePostChange(event) {
 const content = filter.clean(event.target.value);
 this.setState(() => {
 return {
 content,
 valid: content.length <= 280
 };
 });
 }
//...
 }
export default CreatePost;

5.3 Creating new posts
Now that you’re performing some basic validation and sanitization of posts, you’ll
want to create them by sending them to the server. We’re going to introduce slightly
greater complexity to achieve this, so we’ll go over each step briefly and then look at
an illustration of what the process will look like all put together.

 To send your post up to the API, you’ll need to do the following things, in addition
to what the CreatePost component is already doing, which includes keeping track of
state, doing some basic validation, and performing some basic content sanitization.

 Next, you’ll need to do the following to send the data up to your API:

1 Capture the user input to be used as the post, updating state and performing
the data-checking logic you’ve implemented so far.

2 Call an event handler function passed from the parent component (the main
App component in this case) as a prop and give the post data to it.

3 Reset the CreatePost component’s state.
4 In the parent component, use the data passed from the CreatePost child com-

ponent to perform an HTTP POST to the server.
5 Update the local component state with the new post you receive from the

server.
6 To get a better grasp on what you’ll be doing, see the illustration in figure 5.5.

You’ll start by adding a function that will handle post submission in the parent compo-
nent (App.js). There are several parts to this function, so you’ll add them one at a
time and we’ll go through each. Listing 5.9 shows how to add the post submission
function to the main App component.

Use a constructor to create
new instance of filter

Pass form value into
the .clean() method
of filter and use
returned value to
set state
Licensed to Samir Mashlum <smashlum@gmail.com>

127Creating new posts

import * as API from './shared/http';

//...

export default class App extends Component {
 //...
 createNewPost(post) {
 this.setState(prevState => {
 return {
 posts: orderBy(prevState.posts.concat(newPost),

'date', 'desc')
 };
 });

 }
 //...
}

You’ve set up the post-creation handler function in the parent component, but it
won’t do anything at this point because nothing ever calls it. That’s because you need
to give it to its child component (the CreatePost component you’ve been working
on). Remember how you can pass data from parent to child as props? You can pass
functions, too. That’s crucial because it allows components to cooperate and work
together. Even though components can interact, they’re not so intertwined or cou-
pled that you could never move them around; the CreatePost component could just as
easily be moved to another part of the application and emit the same data to another
handler. Listing 5.10 shows an example of passing callbacks as props.

Listing 5.9 Handling post submissions (src/app.js)

App component

onPostSubmit() {

// ... AJAX

}

state: {

posts

}

Post components

createPost component

API

API responds

with posts

Component state

is updated

Executed on

form submission

Event handler function

passed as prop

Post date is sent to

server over HTTP

API processes request,

saves post

Figure 5.5 The CreatePost component overview. The CreatePost component receives a
function as a prop, uses its internal state as an input for that function, and calls it when the user
clicks Submit. That function, passed from the parent App component, sends the data to the API,
updates the local posts, and initiates a refresh of posts from the API.

Import the Letters
API module.

Concat the new post
and make sure posts
are sorted.
Licensed to Samir Mashlum <smashlum@gmail.com>

128 CHAPTER 5 Working with forms in React
import CreatePost from './post/Create';

export default class App extends Component {
 //...
 render() {
 return (
 //...
 <CreatePost onSubmit={this.createNewPost} />
 //...
)
 }
 //...
}

At this point, you’ve set up the basics of the event handler in the parent component
and are passing it into the child component. That helps you separate concerns—the
CreatePost component is only responsible for bundling up some post data and then
sending it to the parent component to do what it wants with it, namely, sending it off
to the API. Chapter 6 covers that and more.

5.4 Summary
Here are the main things you learned in this chapter:

 Forms are handled in React much like any other component: you can use
events and event handlers to pass data around and submit data.

 React doesn’t provide any “magic” ways to work with forms. Forms are just
components.

 Form validation and sanitization work within the same React mental model of
events, component updates, rerendering, state and props, and so on.

 You can pass functions as props between components, which is a powerful and
useful design pattern that prevents coupled components but promotes compo-
nent communication.

 Data validation and sanitization aren’t “magic”—React lets you use regular Java-
Script and libraries to work with your data.

In the next chapter, you’ll build on what you’ve created here and start to integrate a
third-party library with React to add maps to your app.

Exercise 5.2 Controlled and uncontrolled components
What are some of the differences between controlled and uncontrolled components
in React? What determines whether a component is considered controlled or uncon-
trolled?

Listing 5.10 Passing callbacks as props (src/app.js)

Import the
component for use.

Pass the
handlePostSubmit
function using
props.
Licensed to Samir Mashlum <smashlum@gmail.com>

Integrating third-party
libraries with React
In chapter 5, we started looking at forms and how they work in React. You added
event handlers to update component state in the CreatePost component. In this
chapter, you’ll build on that previous work and work on adding the ability to create
new posts. You’ll start interacting more with the JSON API that provided posts to
render in the last chapter.

 Often, you’ll build React applications in a context that involves non-React
libraries that also work with the DOM. These might include things like jQuery,
jQuery plugins, or even other front-end frameworks. We’ve seen that React man-
ages the DOM for you and that this can simplify how you think about user inter-
faces. There are still times, though, where you need to interact with the DOM, and
it’s often in the context of third-party libraries that use it. We’ll explore some ways

This chapter covers
 Sending form data in JSON format to a

remote API

 Building some new kinds of components,
including a location-picker, type-ahead, and a
display map

 Integrating your React app with Mapbox to search
locations and display maps
129

Licensed to Samir Mashlum <smashlum@gmail.com>

130 CHAPTER 6 Integrating third-party libraries with React
you can go about doing that with React in this chapter as you add Mapbox maps to
posts in Letters Social.

6.1 Sending posts to the Letters Social API
As you’ll recall from chapter 2, you created a comment box component that allowed
you to add comments. It persisted these locally, only in memory—the moment you
refresh the page, any comments you added are gone because they live and die with
the state of the page at a given time. You could have chosen to take advantage of local
or session storage or used another browser-based storage technology (such as cookies,
IndexedDB, WebSQL, and so on). Those would still keep everything local, however.

 What you’ll do is send the post data formatted as JSON to your API server, as
shown in listing 6.1. It will handle storing the post and responding with the new data.
When you cloned the repository, there were already-created functions in the shared/
http folder that you can use for the Letters Social project. You’re using the isomorphic-
fetch library for network requests. It follows the Fetch API of the browser but has the
advantage that it can work on the server, too.

export default class App extends Component {
//...
createNewPost(post) {

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapter 4 (if you followed along and built out the examples yourself) or
check out the chapter branch (chapter-5-6).

Remember, each branch corresponds to the code at the end of the chapter or chap-
ters indicated—for example, the branch chapter-5-6 corresponds to the code as it will
be at the end of this chapter. You can execute one of the following terminal com-
mands in the directory of your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-5-6

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install

Listing 6.1 Sending posts to the server (src/components/ app.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

131Sending posts to the Letters Social API
 return API.createPost(post)
 .then(res => res.json())
 .then(newPost => {
 this.setState(prevState => {
 return {
 posts: orderBy(prevState.posts.concat(newPost),

'date', 'desc')
 };
 });
 })
 .catch(err => {
 this.setState(() => ({ error: err }));
 });
 }

With that, you only have one last thing to do: invoke the post creation method inside
the child component. You’ve already passed it in, so it’s a simple matter of ensuring
that the click event triggers an invocation of the parent method and the post data gets
passed along. The following listing shows how to call the method passed as a prop
inside the child component.

class CreatePost extends Component {

// ...

fetchPosts() {/* created in chapter 4 */}

handleSubmit(event) {
 event.preventDefault();
 if (!this.state.valid) {
 return;
 }
 if (this.props.onSubmit) {
 const newPost = {
 date: Date.now(),
 // Assign a temporary key to the post; the API will create a real one

for us
 id: Date.now(),
 content: this.state.content,
 };

 this.props.onSubmit(newPost);
 this.setState({
 content: '',
 valid: null,
 });
 }
 }
 // ...
}

Listing 6.2 Calling functions passed via props

Use the Letters API
to create the post.

Get the JSON response.
Using the
new post,

update state.

Make sure posts are sorted using
Lodash’s orderBy method.

Set the error
state, if any.

Prevent default event and
create an object to send to
the parent component

Make sure you have
a callback function
to work with.

Invoke onSubmit callback passed via
props from the parent component,
passing in new post

Reset state to initial form so
user has visual cue that post
was submitted
Licensed to Samir Mashlum <smashlum@gmail.com>

132 CHAPTER 6 Integrating third-party libraries with React
Now, if you run the application in development mode using npm run dev, you should
be able to add posts! They should appear in your feed right away, but if you refresh
your page, you should still be able to see your added post. It won’t have a profile
image or link preview like others, but you’ll be adding those features in later chapters.

6.2 Enhancing your component with maps
Now that you’ve added the ability to create posts to your app and send them to the
server, you can move on to enhancing it a bit. The fictional investors for Letters Social
have been using Facebook and Twitter and have noticed that these let you add loca-
tions to your posts. They really want Letters Social to have this capability, so you’ll be
adding the ability to select and display locations when choosing a post. You’ll also
reuse the map display component so that the posts in a user’s newsfeed can show a
location. Figure 6.1 shows what you’ll be building.

Figure 6.1 What you’ll create for Letters Social. You’ll enhance the current
ability to post so users can add a location to their posts. Once you’re done, you’ll
be able to search for and choose locations when creating posts.
Licensed to Samir Mashlum <smashlum@gmail.com>

133Enhancing your component with maps
You might have noticed in figure 6.1 that you’re going to use Mapbox to create your
maps. Mapbox is a mapping and geoservices platform that provides an incredible vari-
ety of map and location-related services. You can customize maps with data, create dif-
ferent styles of maps and overlays, do geographic search, add navigation, and more. I
can’t cover even close to all of what Mapbox does, but if you’d like to learn more,
head to www.mapbox.com.

6.2.1 Creating the DisplayMap component using refs

You’ll need a way to display a location to the user both when they’re picking a location
for a new post and when a post renders in their newsfeed. We’re going to see how to
create a component that will serve both purposes so you can reuse your code. You may
not always be able to do this because each place where a map is needed may have dif-
ferent demands. But for this case, sharing the same component will work and will save
you extra effort. Start by creating a new file called src/components/map/Display-
Map.js. You’ll put both our map-related components in this directory.

 Where’s the Mapbox library coming from? In most other cases, we’ve used libraries
that we installed from npm. You’ll use the Mapbox npm module in the next section,
but you’ll use a different library to create the maps. If you look in the HTML template
included with the source code (src/index.ejs), you’ll see a reference to the Mapbox JS
library (mapbox.js):

...
<script src="https://api.mapbox.com/mapbox.js/v3.1.1/mapbox.js"></script>
...

This will give your React app the ability to work with the Mapbox JS SDK. Note that
the Mapbox JS SDK requires a Mapbox token to work. I’ve included a public token
in the application source code for Letters Social so you don’t need a Mapbox
account. If you have an account or want to create one for the purposes of customiza-
tion, you can add your token by changing values in the config directory of the appli-
cation source.

 There are often situations when you’re working on a project or feature that
requires you to integrate React with a non-React library. You might be working with
something like Mapbox (as you are in this chapter), or it could be another third-party
library that wasn’t written with React in mind. Given how React DOM manages the
DOM for you, you may wonder if this is something you can even do. The good news is
that React provides some nice escape hatches that make working with these sorts of
libraries possible.

 This is where refs come into play. I’ve briefly mentioned refs in past chapters, but
they’ll be especially useful here. A ref is React’s way of giving you access to the underly-
ing DOM node. Refs can be useful in React, but you shouldn’t overuse them. We still
want to use state and props as the primary means for making our apps interactive and
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.mapbox.com

134 CHAPTER 6 Integrating third-party libraries with React
for working with data. But there are good cases where refs are useful, including the
following:

 To manage focus and imperatively interact with media elements like <video>
 To imperatively trigger animations
 To interact with third-party libraries that use the DOM outside of React (this is

our use case)

How do you use refs in React? In past versions, you would add a string attribute to
React elements (<div ref=”myref”></div>), but the new approach is to use an inline
callback, like so:

<div ref={ref => { this.MyNode = ref; } }></div>

When you want to refer to the underlying DOM element, you can reference it from
your class. You can interact with it in the ref callback function, but most of the time
you’ll want to store the reference on your component class so it’s available elsewhere.

 I should note a few things. You can’t use refs in React on a stateless functional com-
ponent from the outside because that component doesn’t have a backing instance.
For example, this won’t work:

<ACoolFunctionalComponent ref={ref => { this.ref = ref; } } />

But if the component is a class, you get a ref to the component because it does have a
backing instance. You can also pass refs as props to components that consume them.
Most of the time, you’ll only want to use refs when you need direct access to a DOM
node, so this use case probably won’t come up often unless you’re building a library
that needs refs to work.

 You’re going to use refs to interact with the Mapbox JavaScript SDK. Mapbox’s
library handles creating a map for you and setting up lots of things like event han-
dlers, UI controls, and more on the map. Its map API requires using either a DOM
element reference or an ID to search the DOM for. You’ll use a ref. The following list-
ing shows the skeleton of your DisplayMap component.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

export default class DisplayMap extends Component {
 render() {
 return [
 <div key="displayMap" className="displayMap">
 <div
 className="map"
 ref={node => {
 this.mapNode = node;
 }}
 >

Listing 6.3 Adding refs to your map component (src/components/map/DisplayMap.js)

Return an array of
elements from render

DOM element that Mapbox
will use to create your map
Licensed to Samir Mashlum <smashlum@gmail.com>

135Enhancing your component with maps
 </div>
 </div>
];
 }
}

This is a good start in getting your map to work with React. Next, you’ll need to use
the Mapbox JS API to create the map. You’ll create a method that will use the ref
you stored on the class. You’ll also need to set up some default properties and state
so the map has a default area to pan to and doesn’t start by showing the entire
world. You’ll record a few pieces of state in the component, including whether the
map has loaded and some location information (latitude, longitude, and place
name). Note how it’s a fairly trivial matter to interact with another JavaScript library
through React. The hardest part has been using refs, but besides that, the libraries
can pretty easily be made to work together. The following listing shows how to set up
the DisplayMap component.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

export default class DisplayMap extends Component {
 constructor(props) {
 super(props);
 this.state = {
 mapLoaded: false,
 location: {
 lat: props.location.lat,
 lng: props.location.lng,
 name: props.location.name
 }
 };
 this.ensureMapExists = this.ensureMapExists.bind(this);
 }
 static propTypes = {
 location: PropTypes.shape({
 lat: PropTypes.number,
 lng: PropTypes.number,
 name: PropTypes.string
 }),
 displayOnly: PropTypes.bool
 };
 static defaultProps = {
 displayOnly: true,
 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 }
 };
 componentDidMount() {

Listing 6.4 Creating a map with Mapbox (src/components/map/DisplayMap.js)

Set up
initial state

Bind the
ensureMapExists

class method.
Licensed to Samir Mashlum <smashlum@gmail.com>

136 CHAPTER 6 Integrating third-party libraries with React

Check
map

in
wo

 Cre
with

store
it o
(you
map
 this.L = window.L;
 if (this.state.location.lng && this.state.location.lat) {
 this.ensureMapExists();
 }
 }
 ensureMapExists() {
 if (this.state.mapLoaded) return;
 this.map = this.L.mapbox.map(this.mapNode, 'mapbox.streets', {
 zoomControl: false,
 scrollWheelZoom: false
 });
 this.map.setView(this.L.latLng(this.state.location.lat,

this.state.location.lng), 12);

 this.setState(() => ({ mapLoaded: true }));
 }
 render() {
 return [
 <div key="displayMap" className="displayMap">
 <div
 className="map"
 ref={node => {
 this.mapNode = node;
 }}
 >
 </div>
 </div>
];
 }
}

Your component should now display a map that’s good enough for display-only pur-
poses. Remember, though, that you want to create a map component that you can
indicate specific locations on and update for the user when they’re picking a new loca-
tion. You’ll need to do some more work to enable these features: adding methods for
adding a marker to the map, updating the map position, and ensuring that the map
gets updated correctly. The following listing shows how to add these methods to your
component.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

export default class DisplayMap extends Component {
 constructor(props) {
 super(props);
 this.state = {
 mapLoaded: false,
 location: {
 lat: props.location.lat,
 lng: props.location.lng,
 name: props.location.name

Listing 6.5 A dynamic map (src/components/map/DisplayMap.js)

Mapbox uses a
library called
Leaflet (hence
the “L”).

 to see if the
 has location
formation to
rk with—if it
does, set up

the map.

Make sure you don’t
accidentally re-create

the map if you’ve
already loaded.

ate new map
 Mapbox and
 reference to
n component
’re disabling

 features you
don’t need)

Set map view to
latitude and longitude

your component
received

Update state so
you know the
map loaded
Licensed to Samir Mashlum <smashlum@gmail.com>

137Enhancing your component with maps

When
to

chan

acc

I
loc

locat
pro

th
n

Add
the m

is f

m
o

 }
 };
 this.ensureMapExists = this.ensureMapExists.bind(this);
 this.updateMapPosition = this.updateMapPosition.bind(this);
 }
 //...
 componentDidUpdate() {
 if (this.map && !this.props.displayOnly) {
 this.map.invalidateSize(false);
 }
 }
 componentWillReceiveProps(nextProps) {
 if (nextProps.location) {
 const locationsAreEqual = Object.keys(nextProps.location).every(
 k => nextProps.location[k] === this.props.location[k]
);
 if (!locationsAreEqual) {
 this.updateMapPosition(nextProps.location);
 }
 }
 }
 //...
 ensureMapExists() {
 if (this.state.mapLoaded) return;
 this.map = this.L.mapbox.map(this.mapNode, 'mapbox.streets', {
 zoomControl: false,
 scrollWheelZoom: false
 });
 this.map.setView(this.L.latLng(this.state.location.lat,

this.state.location.lng), 12);
 this.addMarker(this.state.location.lat, this.state.location.lng);
 this.setState(() => ({ mapLoaded: true }));
 }
 updateMapPosition(location) {
 const { lat, lng } = location;
 this.map.setView(this.L.latLng(lat, lng));
 this.addMarker(lat, lng);
 this.setState(() => ({ location }));
 }
 addMarker(lat, lng) {
 if (this.marker) {
 return this.marker.setLatLng(this.L.latLng(lat, lng));
 }
 this.marker = this.L.marker([lat, lng], {
 icon: this.L.mapbox.marker.icon({
 'marker-color': '#4469af'
 })
 });
 this.marker.addTo(this.map);
 }
 render() {
 return [
 <div key="displayMap" className="displayMap">
 <div
 className="map"

Bind class
methods

Tell Mapbox to invalidate size
of your map, preventing map
from displaying incorrectly
when hiding/showing it

location
 display
ges, you
need to
respond
ordingly

f you have a
ation, check
current and

previous
ion to see if
perties are
e same—if
ot, you can

update map

a marker to
ap when it

irst created

Update the map’s view
and your component
state accordingly.

Update an
existing

arker instead
f creating one

every time. Create a marker and
add it to the map.
Licensed to Samir Mashlum <smashlum@gmail.com>

138 CHAPTER 6 Integrating third-party libraries with React
 ref={node => {
 this.mapNode = node;
 }}
 >
 </div>
 </div>
];
 }
}

You may have noticed a pattern here as you’ve added each method to the component:
do something with a third-party library, teach React about it, repeat. That’s usually
how integration with third-party libraries goes in my experience. You tend to want to
find an integration point where you can get data out of the library or use its API to tell
it to do things—but all within React. There are many exceptions where it can be
incredibly difficult, but in my experience, the combination of React’s refs and general
JavaScript interoperability make working with non-React libraries not as bad as it
could otherwise be (and I hope you find the same in your future React apps).

 There’s still at least one improvement you can make to your component. Mapbox
also allows you to generate static images of maps based on geographic information.
This can be useful for situations where you might not want to load an interactive map.
You’ll add this feature as a fallback so that users can see a map right away. This will be
useful in chapter 12 when you’ll be doing server-side rendering. The server will gener-
ate markup that won’t call any mounting-related methods, so users will still be able to
see a location for posts even before the app has fully loaded.

 You’ll also need to add one minor bit of UI to your map component so that the
map can display the name of its location in display-only mode. We previously men-
tioned that you’d be adding a sibling to the main elements, and that’s why you were
returning an array of elements. This is where you’ll add this small bit of markup. The
following listing shows how to add the image fallback and location name display to
your component.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

export default class DisplayMap extends Component {
 constructor(props) {
 super(props);
 this.state = {
 mapLoaded: false,
 location: {
 lat: props.location.lat,
 lng: props.location.lng,
 name: props.location.name
 }
 };

Listing 6.6 Adding a fallback map image (src/components/map/DisplayMap.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

139Enhancing your component with maps

e

o

d
m

 this.ensureMapExists = this.ensureMapExists.bind(this);
 this.updateMapPosition = this.updateMapPosition.bind(this);
 this.generateStaticMapImage = this.generateStaticMapImage.bind(this);
 }
 //...
 generateStaticMapImage(lat, lng) {
 return `https://api.mapbox.com/styles/v1/mapbox/streets-

v10/static/${lat},${lng},12,0,0/600x175?access_token=${process
 .env.MAPBOX_API_TOKEN}`;
 }
 render() {
 return [
 <div key="displayMap" className="displayMap">
 <div
 className="map"
 ref={node => {
 this.mapNode = node;
 }}
 >
 {!this.state.mapLoaded && (
 <img
 className="map"
 src={this.generateStaticMapImage(
 this.state.location.lat,
 this.state.location.lng
)}
 alt={this.state.location.name}
 />
)}
 </div>
 </div>,
 this.props.displayOnly && (
 <div key="location-description" className="location-

description">
 <i className="location-icon fa fa-location-arrow" />
 <span className="location-

name">{this.state.location.name}
 </div>
)
];
 }
}

6.2.2 Creating the LocationTypeAhead component

You can display maps in your app, but you’ll still can’t do anything to create them. You
need to build another component to support that feature: a location type-ahead. In the
next section, you’ll use this component in the CreatePost component you’ve been
working with to allow users to search for locations. This component will use the
browser Geolocation APIs as well as the Mapbox APIs to search for locations.

 You can get started by creating another file, src/components/map/LocationType-
Ahead.js. Figure 6.2 shows the type-ahead component you’ll create in this section.

Bind
the class
method.

Use latitud
and
longitude t
generate
an image
URL from
Mapbox.

Display the
location image.

If you’re in
isplay-only
ode, show
a location
name and
indicator.
Licensed to Samir Mashlum <smashlum@gmail.com>

140 CHAPTER 6 Integrating third-party libraries with React
Here’s the basic functionality your component will have by the time it’s done:

 Display a list of locations for a user to select
 Yield the selected location to a parent component for use
 Use the Mapbox and Geolocation APIs to let users pick their current location

or search by address

Next, you’ll get started by creating a skeleton of what your component will look like.
Listing 6.7 shows the first sketch of it. You’ll be using Mapbox again, but this time
you’re using a different set of APIs. You used the map-display API in the last section,
but here you’ll use the set of Mapbox APIs that let users do reverse geocoding, which is a
fancy way of saying “search for a real location by text.” The Mapbox module is already
installed with the project and will use the same public Mapbox key to work. If you pre-
viously added in your API key, the app configuration should use the same key here.

import React, { Component } from 'react';
import PropTypes from 'prop-types';
import MapBox from 'mapbox';

Exercise 6.1 Mapbox alternatives
You’ve used Mapbox in this chapter, but there are other mapping libraries out there,
such as Google maps. How would you go about switching out Mapbox for Google
Maps? What would you have to do differently?

Listing 6.7 The beginnings of the LocationTypeAhead component

Figure 6.2 A location type-ahead component you can use along with your map
component to let the user add locations to their posts

Import Mapbox.
Licensed to Samir Mashlum <smashlum@gmail.com>

141Enhancing your component with maps

.

Ret

tha

you

Y
im

of
r

ev
export default class LocationTypeAhead extends Component {
 static propTypes = {
 onLocationUpdate: PropTypes.func.isRequired,
 onLocationSelect: PropTypes.func.isRequired
 };
 constructor(props) {
 super(props);
 this.state = {
 text: '',
 locations: [],
 selectedLocation: null
 };
 this.mapbox = new MapBox(process.env.MAPBOX_API_TOKEN);
 }
 render() {
 return [
 <div key="location-typeahead" className="location-typeahead">
 <i className="fa fa-location-arrow"

onClick={this.attemptGeoLocation} />
 <input
 onChange={this.handleSearchChange}
 type="text"
 placeholder="Enter a location..."
 value={this.state.text}
 />
 <button
 disabled={!this.state.selectedLocation}
 onClick={this.handleSelectLocation}
 className="open"
 >
 Select
 </button>
 </div>
];
 }
}

Now you can start filling out the methods you referenced in the render method of the
component. Note that you want a way to handle a change in search text, a button that
will allow you to choose a location, and an icon that’ll let the user pick their current
location. I’ll cover that functionality next; for now, you need methods that will let a
user search for locations using text and choose a location. Listing 6.8 shows how to
add these methods. Where are these locations going to come from? You’re going to use
the Mapbox API to search for locations based on what the user types and use those
results to show them addresses. This is just one way you can use Mapbox. You can do
the opposite, too—put in coordinates and turn it into an address. You’ll use that fea-
ture in the next listing to work with the Geolocation API.

Expose two methods,
one for location update
and one for location
selection.

Set up
initial state

Create an
instance of the
Mapbox client

urn an array
of elements
t will be the
markup for

r type-ahead
component.

ou’ll need to
plement all

the methods
eferenced in
ent handlers

(onChange,
onClick, and

so on).
Licensed to Samir Mashlum <smashlum@gmail.com>

142 CHAPTER 6 Integrating third-party libraries with React

l

 //...
 constructor(props) {
 super(props);
 this.state = {
 text: '',
 locations: [],
 selectedLocation: null
 };
 this.mapbox = new MapBox(process.env.MAPBOX_API_TOKEN);
 this.handleLocationUpdate = this.handleLocationUpdate.bind(this);
 this.handleSearchChange = this.handleSearchChange.bind(this);
 this.handleSelectLocation = this.handleSelectLocation.bind(this);
 this.resetSearch = this.resetSearch.bind(this);
 }
 componentWillUnmount() {
 this.resetSearch();
 }
 handleLocationUpdate(location) {
 this.setState(() => {
 return {
 text: location.name,
 locations: [],
 selectedLocation: location
 };
 });
 this.props.onLocationUpdate(location);
 }
 handleSearchChange(e) {
 const text = e.target.value;
 this.setState(() => ({ text }));
 if (!text) return;
 this.mapbox.geocodeForward(text, {}).then(loc => {
 if (!loc.entity.features || !loc.entity.features.length) {
 return;
 }
 const locations = loc.entity.features.map(feature => {
 const [lng, lat] = feature.center;
 return {
 name: feature.place_name,
 lat,
 lng
 };
 });
 this.setState(() => ({ locations }));
 });
 }
 resetSearch() {
 this.setState(() => {
 return {
 text: '',
 locations: [],
 selectedLocation: null
 };

Listing 6.8 Searching for locations (src/components/map/LocationTypeAhead.js)

Bind class
methods.

When the component
unmounts, reset the search.

When a location is
selected, update local
component state

At the same time, pass
location up to parent
via a props callback

Pull text off the event you receive
when a user types into search box

Use Mapbox
client to

search for
ocations using

user’s text

Don’t do
anything if
no results

Transform Mapbox
results into a format

you can more easily use
in your component.

Update state
with new
locations

Allow resetting
component state (see
componentWillUnmount)
Licensed to Samir Mashlum <smashlum@gmail.com>

143Enhancing your component with maps

y
 });
 }
 handleSelectLocation() {
 this.props.onLocationSelect(this.state.selectedLocation);
 }
//....

Next, you want to let the user choose their current location for a post. To do that,
you’ll use the browser Geolocation API. It’s okay if you haven’t worked with the Geolo-
cation API before. For a long time it was a bleeding-edge feature, and you could only
use it on certain browsers. Now it’s gained wide adoption and is more broadly useful.

 The Geolocation API does pretty much what you think it might: you can ask the
user whether you can use their location in your app. Nearly all browsers support
the Geolocation API at this point (http://caniuse.com/#feat=geolocation), so you can
take advantage of it and let a user choose the current location for a post. Note that the
Geolocation API can only be used in secure contexts, so if you try to deploy Letters
Social to an unsecured host, it won’t work.

 You’ll need to use the Mapbox API again, since all the Geolocation API gives you
back is coordinates. Remember how you used the user’s text to search for locations in
Mapbox? You can do the inverse: provide coordinates to Mapbox and get back match-
ing addresses. The following listing shows how to use the Geolocation and Mapbox
APIs to let the user choose their current location for a post.

 constructor(props) {
 super(props);
 this.state = {
 text: '',
 locations: [],
 selectedLocation: null
 };
 this.mapbox = new MapBox(process.env.MAPBOX_API_TOKEN);
 this.attemptGeoLocation = this.attemptGeoLocation.bind(this);
 this.handleLocationUpdate = this.handleLocationUpdate.bind(this);
 this.handleSearchChange = this.handleSearchChange.bind(this);
 this.handleSelectLocation = this.handleSelectLocation.bind(this);
 this.resetSearch = this.resetSearch.bind(this);
 }
 //...
 attemptGeoLocation() {
 if ('geolocation' in navigator) {
 navigator.geolocation.getCurrentPosition(
 ({ coords }) => {
 const { latitude, longitude } = coords;
 this.mapbox.geocodeReverse({ latitude, longitude },

{}).then(loc => {
 if (!loc.entity.features ||

!loc.entity.features.length) {
 return;

Listing 6.9 Adding Geolocation (src/components/map/LocationTypeAhead.js)

When location is selected, pass
currently selected location up

Bind class
method

Check to see if browser
supports geolocation

Get current
position of

user’s device

This will yield back
coordinates that
you can use.

Use Mapbox to geocode the
coordinates and return earl
if nothing is found.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://caniuse.com/#feat=geolocation

144 CHAPTER 6 Integrating third-party libraries with React
 }
 const feature = loc.entity.features[0];
 const [lng, lat] = feature.center;
 const currentLocation = {
 name: feature.place_name,
 lat,
 lng
 };
 this.setState(() => ({
 locations: [currentLocation],
 selectedLocation: currentLocation,
 text: currentLocation.name
 }));
 this.handleLocationUpdate(currentLocation);
 });
 },
 null,
 {
 enableHighAccuracy: true,
 timeout: 5000,
 maximumAge: 0
 }
);
 }
 }
 //...

Your component can search Mapbox for locations and let the user pick their own loca-
tion via the Geolocation API. But it’s not showing anything to the user yet, so you’ll fix
that next. You’re going to need to use the location results so the user can click to
select one, as shown in the following listing.

//...
render() {
 return [
 <div key="location-typeahead" className="location-typeahead">
 <i className="fa fa-location-arrow"

onClick={this.attemptGeoLocation} />
 <input
 onChange={this.handleSearchChange}
 type="text"
 placeholder="Enter a location..."
 value={this.state.text}
 />
 <button
 disabled={!this.state.selectedLocation}
 onClick={this.handleSelectLocation}
 className="open"
 >
 Select
 </button>
 </div>,

Listing 6.10 Displaying results to the user (src/components/map/LocationTypeAhead.js)

Get first
(closest)
feature to use

Pull out latitude
and longitude

Create location
payload to use and
update component

state with it

Call the
handleLocationUpdate
prop with new location

Options to pass to
Geolocation API
Licensed to Samir Mashlum <smashlum@gmail.com>

145Enhancing your component with maps
 this.state.text.length && this.state.locations.length ? (
 <div key="location-typeahead-results" className="location-

typeahead-results">
 {this.state.locations.map(location => {
 return (
 <div
 onClick={e => {
 e.preventDefault();
 this.handleLocationUpdate(location);
 }}
 key={location.name}
 className="result"
 >
 {location.name}
 </div>
);
 })}
 </div>
) : null
];
 }
//...

6.2.3 Updating CreatePost and adding maps to posts
Now that you’ve created the LocationTypeAhead and DisplayMap components, you can
integrate these into the CreatePost component you’ve been working with. This will tie
together the functionality you’ve created and allow the user to create posts that have a
location. Remember how the CreatePost component passes its data back up to a parent
component to do the actual post creation? You’ll do the same thing with the type-ahead
and DisplayMap components, but from the CreatePost. They’ll work together but not
be so tied to each other that you can’t move them around or use them elsewhere.

 You need to update your CreatePost component to work with the LocationType-
Ahead and DisplayMap components you created earlier—which, remember, yield and
receive a location, respectively. You’ll keep track of a location in the CreatePost com-
ponent and use the two components you recently created as a source and destination
of the location data. The following listing shows how to add the methods you’ll need
to add locations to posts.

constructor(props) {
 super(props);
 this.initialState = {
 content: '',
 valid: false,
 showLocationPicker: false,
 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 },
 locationSelected: false

Listing 6.11 Handling locations in CreatePost (src/components/post/Create.js)

If there’s a
search query
and you have

matching
results, show

results.

Map over
locations you
got back from
Mapbox.If user clicks a

location, set that to
selected location

Don’t forget to key
components you’re
iterating over.

Display
location name

If there aren’t locations
and a search query,
don’t do anything.

Add keys to state so you can
keep track of location and
related data; set up some
default location data
Licensed to Samir Mashlum <smashlum@gmail.com>

146 CHAPTER 6 Integrating third-party libraries with React
 };
 this.state = this.initialState;
 this.filter = new Filter();
 this.handlePostChange = this.handlePostChange.bind(this);
 this.handleRemoveLocation = this.handleRemoveLocation.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handleToggleLocation = this.handleToggleLocation.bind(this);
 this.onLocationSelect = this.onLocationSelect.bind(this);
 this.onLocationUpdate = this.onLocationUpdate.bind(this);
 }
//...
handleRemoveLocation() {
 this.setState(() => ({
 locationSelected: false,
 location: this.initialState.location
 }));
 }
 handleSubmit() {
 if (!this.state.valid) {
 return;
 }
 const newPost = {
 content: this.state.content
 };
 if (this.state.locationSelected) {
 newPost.location = this.state.location;
 }
 this.props.onSubmit(newPost);
 this.setState(() => ({
 content: '',
 valid: false,
 showLocationPicker: false,
 location: this.initialState.location,
 locationSelected: false
 }));
 }
 onLocationUpdate(location) {
 this.setState(() => ({ location }));
 }
 onLocationSelect(location) {
 this.setState(() => ({
 location,
 showLocationPicker: false,
 locationSelected: true
 }));
 }
 handleToggleLocation(e) {
 e.preventDefault();
 this.setState(state => ({ showLocationPicker:

!state.showLocationPicker }));
 }
//...

The CreatePost component can now work with locations, so you need to add in the UI
to make it happen. Once you add in the associated UI for adding a location, you’ll

Bind class
methods

Allow user to
remove location
from their post

When submitting a
post, add location to
payload if present

Handle a location update
from the LocationTypeAhead
component.

Toggle showing the
location picker
Licensed to Samir Mashlum <smashlum@gmail.com>

147Enhancing your component with maps

Bind
meth

constr

Bind re
meth

cu

le
er

Sho
a

bo

lo
find that the render method has become a little cluttered. This isn’t necessarily a bad
thing, and the markup isn’t so complicated that you have to refactor anything (I’ve
worked with render methods that are hundreds of lines long), but it’s a good oppor-
tunity to explore a different technique for rendering in React component—which I
call subrendering.

A subrender method involves breaking part of your render method into a class method
on the component (or a function anywhere, really) and then invoking that within a
JSX expression in the main render method. You can use this technique if you need to
break up a larger render method, need to isolate the logic for a particular part of the
rendered UI, or for other reasons. You’ll probably find other cases where it’s useful,
but the key takeaway is that you can break up your render into multiple parts that
don’t have to be other components. The following listing illustrates breaking up a
render method into smaller parts.

constructor(props) {
 //...
 this.renderLocationControls = this.renderLocationControls.bind(this);
 }
renderLocationControls() {
 return (
 <div className="controls">
 <button onClick={this.handleSubmit}>Post</button>
 {this.state.location && this.state.locationSelected ? (
 <button onClick={this.handleRemoveLocation}
 className="open location-indicator">
 <i className="fa-location-arrow fa" />
 <small>{this.state.location.name}</small>
 </button>
) : (
 <button onClick={this.handleToggleLocation}
 className="open">
 {this.state.showLocationPicker ? 'Cancel' : 'Add

location'}{' '}
 <i
 className={classnames(`fa`, {
 'fa-map-o': !this.state.showLocationPicker,
 'fa-times': this.state.showLocationPicker
 })}
 />

Exercise 6.2 Using refs elsewhere
We’ve spent some time exploring how to use refs in React in this chapter. Can you
think of other libraries or situations where refs might come in handy? Have you
worked on any projects in the past that might require using refs to be integrated with
React?

Listing 6.12 Adding a subrender method (src/components/post/Create.js)

 class
od in
uctor If a location is selected, show

button that allows users to
remove their location

moveLocation
od and display
rrent location

Show button
that will togg
location pick
components

w right text
nd use right
und method

based on
cation state
Licensed to Samir Mashlum <smashlum@gmail.com>

148 CHAPTER 6 Integrating third-party libraries with React
 </button>
)}
 </div>
);
 }
 render() {
 return (
 <div className="create-post">
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 {this.renderLocationControls()}
 <div
 className="location-picker"
 style={{ display: this.state.showLocationPicker ? 'block'

: 'none' }}
 >
 {!this.state.locationSelected && [
 <LocationTypeAhead
 key="LocationTypeAhead"
 onLocationSelect={this.onLocationSelect}
 onLocationUpdate={this.onLocationUpdate}
 />,
 <DisplayMap
 key="DisplayMap"
 displayOnly={false}
 location={this.state.location}
 onLocationSelect={this.onLocationSelect}
 onLocationUpdate={this.onLocationUpdate}
 />
]}
 </div>
 </div>
);
 }

Finally, you need to add the maps to posts that have locations on them. You’ve already
done the work of building out the DisplayMap component and making sure it can
work in display-only mode, so all you need to do is include it in the Post component.
The following listing shows how to do that.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

import * as API from '../../shared/http';
import Content from './Content';
import Image from './Image';

Listing 6.13 Adding maps to your posts (src/components/post/Post.js)

Invoke
subrender
method

Show or hide location
picker components
depending on state

Show location picker
components if a

location isn’t selected
Licensed to Samir Mashlum <smashlum@gmail.com>

149Enhancing your component with maps
import Link from './Link';
import PostActionSection from './PostActionSection';
import Comments from '../comment/Comments';
import DisplayMap from '../map/DisplayMap';
import UserHeader from '../post/UserHeader';
import Loader from '../Loader';

export class Post extends Component {
 static propTypes = {
 post: PropTypes.object
 };
 //...
 render() {
 if (!this.state.post) {
 return <Loader />;
 }
 return (
 <div className="post">
 <UserHeader date={this.state.post.date}

user={this.state.post.user} />
 <Content post={this.state.post} />
 <Image post={this.state.post} />
 <Link link={this.state.post.link} />
 {this.state.post.location && <DisplayMap

location={this.state.post.location} />}
 <PostActionSection showComments={this.state.showComments} />
 <Comments
 comments={this.state.comments}
 show={this.state.showComments}
 post={this.state.post}
 handleSubmit={this.createComment}
 user={this.props.user}
 />
 </div>
);
 }
}

export default Post;

With that, you’ve added the ability to add and display locations on posts for your users.
Your investors will surely be happy and impressed by such a game-changing feature!

Import the DisplayMap
component for use.

If post has location
associated with it,
show it and turn on
displayOnly mode
Licensed to Samir Mashlum <smashlum@gmail.com>

150 CHAPTER 6 Integrating third-party libraries with React
6.3 Summary
Here’s what you learned in this chapter:

 In React, a ref is a reference to an underlying DOM element. Refs can be useful
when you need an escape hatch and need to work with libraries that work with
the DOM outside of React.

 Components can be controlled or uncontrolled. Controlled components give
you full control over the state of the component and involve a complete cycle of
listening for and then setting an input’s value. Uncontrolled components main-
tain their own state internally and don’t provide insight or control.

 Integrating React components with third-party libraries that also use the DOM
is often possible through the use of refs. Refs can act as escape hatches when
you need to reach out and interact with DOM elements.

In the next chapter, you’ll start to add complexity to and create basic routing for your
app so you have the possibility of multiple pages.

Figure 6.3 The final product of your work in this chapter. You users can create posts and add locations to them.
Licensed to Samir Mashlum <smashlum@gmail.com>

Routing in React
In this chapter, you’re going to start making your app more robust and scalable by
adding routing. Routing means users will be able to navigate to different sections of
the app using URLs. The app has been limited to only one page until now, which
would hamper growth when you add sections to it. Larger applications would espe-
cially suffer from overcrowding without routing or another mechanism to give the
app manageable hierarchy. We’ll see how to solve this problem for your application
using React. You’ll build a simple router from scratch in order to better understand
how you can do routing with React applications.

This chapter covers
 More advanced component design and use

 Enabling multi-page React applications with
routing

 Building a router from scratch with React
151

Licensed to Samir Mashlum <smashlum@gmail.com>

152 CHAPTER 7 Routing in React
7.1 What is routing?
To really get into routing, we first have to have some idea of what it is. Routing is a key
part of all websites and web applications in one way or another. It plays a central role
in the simplest static HTML pages and the most complex React web applications.
Routing comes into play pretty much anytime you want to map a URL to an action.
Most applications are chock full of URL links because links are the de facto way of
moving around on the web. Think about how effective a system for finding something
a URL has become—they’re in use almost everywhere. Why are they so useful for find-
ing things on the web? Maybe because we’re used to routing systems like addresses,
and even though URLs don’t require turn-by-turn directions, they help us find what
we’re looking for—in this case, apps or resources instead of locations.

DEFINITION Routing can have many different meanings and implementa-
tions. For our purposes, it’s a system for resource navigation. In the abstract,
routing is probably a familiar idea to you and is common in web engineer-
ing. If you’re working in the browser, you’re familiar with routing as it
relates to URLs and resources in the browser (paths to images, scripts, and
so on). On the server, routing can be a focus on matching incoming request
paths (like https://ifelse.io/react-ecosystem) to resources from a database.
You’re learning how to use React, so routing in this book will usually mean
matching components (the resources people want) to a URL (the way of tell-
ing the system what they want).

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 5 and 6 (if you followed along and built out the examples yourself)
or check out the chapter-specific branch (chapter-7-8).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-7-8 corresponds to the code as it will be at the end of these
chapters). You can execute one of the following terminal commands in the directory
of your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-7-8

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io/react-ecosystem
https://github.com/react-in-action/letters-social

153What is routing?
Routing is an important part of web applications. Say you want to build a web app
where users can create custom fundraising pages to raise money for causes that are
important to them. In that case, you’ll need routing for quite a few reasons:

 In general, so people can provide external links to your web app. URLs leading
to permanent resources should be long-lasting and keep a consistent structure
over time.

 Public fundraising pages need to be reliably accessible to everyone, so you need
a URL that will route them to the right page.

 Different parts of the admin interface will require it. Users need to be able to
move forward and backward in their browsing history.

 Different parts of your site will need their own URLs so you can easily route peo-
ple to the right section (for example, /settings, /profile, /pricing, and so on).

 Breaking up your code by page helps promote modularity, so you can break up
your app as well. Along with dynamic content, that can in turn reduce the size
of the app that has to be loaded at a given point.

7.1.1 Routing in modern front-end web applications

In the past, the basic architecture of a web application involved a different approach
to routing than the modern way. The older approach involved the server (think some-
thing created in Python, Ruby, or, PHP) generating HTML markup and sending it
down to the browser. A user might fill out a form with some data, send it back up to
the server, and wait for a response. This was revolutionary in making the web more
powerful because you could modify data instead of only viewing it.

 Since then, web services have undergone many developments in design and con-
struction. Nowadays, JavaScript frameworks and browser technology are advanced
enough that web applications can have a more distinct client-server split. The client
app (all in-browser) is sent down by the server and then effectively “takes over.” The
server is then responsible for sending down raw data, usually in the form of JSON. Fig-
ure 7.1 illustrates and compares how these two generic architectures work.

 So far, you’ve been using a modern architecture to build the learning app, Letters
Social. A node.js server sends down the HTML, JavaScript, and CSS that you need for
your app. Once that’s loaded, though, React takes over. Further requests for data are
sent to the sample API server. But you’re missing a key part of that architecture: client-
side routing.

Exercise 7.1 Ruminating on routing
Take a second to reflect on routing before we dive deeper into building your router
with React. What are some other examples of routing you’ve encountered in past proj-
ects? What are some other uses for routing?
Licensed to Samir Mashlum <smashlum@gmail.com>

154 CHAPTER 7 Routing in React
7.2 Creating a router
You’ll build a simple router from scratch using components in order to better under-
stand how you can do routing with React applications. Here’s how you’ll proceed at a
high level:

 You’ll create two components, Router and Route, that will be used together to
accomplish client-side routing.

 The Router component will be comprised of Route components.
 Each Route will represent a URL path (/, /posts/123) and map a component

to that URL. When your users visit /, they’ll see a component for that.
 The Router component will look like a normal React component (it’ll have a

render method and component methods and use JSX) but will let you map
components to URLs.

Server

Client (browser)

- HTM, JS, CSS

- every request

is full reload

Modern architecture

Old architecture

Send request to server

Sends first request to server

Future requests are just for data

Process request

Respond to client

200 OK with HTML, JS, CSS

200 OK with HTML, JS, CSS

GET http://api.learnreactjs.io/

GET http://social.learnreactjs.io/

200 OK with JSON

Controller

Model

Database

2. Fetch data

from database

1. Dispatch route

to right model

View

3. Create HTML or

JSON response

with found data

Future requests all send/receive

all views, assets (JS, CSS)

{

“posts”: [Post, Post, Post],

“succes”: true,

“message”: “Fetched posts”,

“error”: null

}

Client (browser)

- HTM, JS, CSS

- view managed

by JS (React)

- Other data is sent

via XHR/AJAX

Figure 7.1 Comparing slightly older and modern web application architectures. In the old way,
dynamic content would be generated on the server. The server would usually fetch data from a
database and use it to populate an HTML view that would be sent down to the client. Now there
is more application logic on the client that gets managed by JavaScript (in this case, React).
The server initially sends down the HTML, JavaScript, and CSS assets, but after that, the client
React app takes over. From there, unless a user manually refreshes the page, the server will
only have to send down raw JSON data.
Licensed to Samir Mashlum <smashlum@gmail.com>

155Creating a router
 The Route components can specify parameters like /users/:user, where the
:user syntax will denote a value passed to the component.

 You’ll also create a Link component that will enable navigation with your client-
side router.

If that doesn’t all make perfect sense yet, don’t worry. We’ll work through each step
in turn. Let’s look at an example of what you’ll be working towards as you build
the router.

 Listing 7.1 shows the Router component you’ll build being used in its final form.
It’s easy to read through and think about: you have a router with routes that are tied to
a component. Routing doesn’t necessarily have to be hierarchical—you could create
chaos and arbitrarily nest resources—but often is. That means it can map relatively
easily to React’s composition semantics. If you were starting React for the absolute first
time, a routing example like the one in the following listing might be one of the easi-
est components to understand right away.

//...
 <Router location="/">
 <Route path="/" component={App}>
 <Route path="posts/:post" component={SinglePost} />
 <Route path="login" component={Login} />
 </Route>
 </Router>,
//...

This sort of router structure is easy to read and think about. It’s also fairly well estab-
lished in React applications, thanks to React Router. You’ll follow suit and build your
router with the same basic API in mind. As you do that, we’ll draw inspiration and take
direction from a small, lightweight router library created by TJ Holowaychuk, called
react-enroute. With this library you can explore routing in React without having to
re-create an entire open source library like React Router.

 We know some more about what you’ll be building and how it should look in use,
but where do we start? We start with children.

7.2.1 Component routing

No, you won’t be enlisting youngsters to implement routing in your app. Instead,
you’ll be using the special component prop children. You may remember the chil-
dren prop from past chapters, where it was part of the signature for React.create-
Element(type, props, children) or as the special prop with which you can compose
components.

Listing 7.1 Router end result (src/index.js)

Router component handles storing
routes and returning the proper
component for use in rendering

Each Route component receives a path
and a component and matches them
together, and you can nest several
components within each other.

You can pass in parameters to component paths that
represent dynamic values, meaning you can get data

back from your routes and use it in components.
Licensed to Samir Mashlum <smashlum@gmail.com>

156 CHAPTER 7 Routing in React
 Before, you only cared about children from an input perspective: you would pass
in components to another component to compose them together. Now you’re going
to access children from within a component and use components themselves to set up
your routes. This is where you can start to do the work of mapping components to
URLs. If routing in web development is the mapping of URLs to behaviors or views,
then routing in React is the mapping of URLs to particular components.

7.2.2 Creating the <Route /> component

You’re going to create a Router component that will use child components to match
URL routes to components and render them out. If you’re having a hard time think-
ing about what this will look like, remember that we’ll go through each step deliber-
ately, and you don’t have to fully get everything from the start.

 Listing 7.2 showed two types of components: Router and Route. Let’s start with the
Route components, which you can use to associate components with routes. Listing 7.2
shows how to create the Route component. There may not appear to be much to it,
but as you’ll see shortly, that’s fine. The Router component will do most of the heavy
lifting, whereas the Route component will serve mainly as a data container for your
mappings of URLs and components.

import PropTypes from 'prop-types';
import { Component } from 'react';
import invariant from 'invariant';

class Route extends Component {
 static propTypes = {
 path: PropTypes.string,
 component: PropTypes.oneOfType([PropTypes.element, PropTypes.func]),
 };
 render() {
 return invariant(false, "<Route> elements are for config only and

shouldn't be rendered");
 }
}

export default Route;

You probably noticed that you’re importing a new library here, called invariant. This
is a simple tool you’ll use to ensure that errors get thrown if certain conditions
aren’t met. To use it, you pass in a value and a message. If that value is falsey (null, 0,
undefined, NaN, ‘’(empty string), or false), it will throw an error. The invariant
library is often used in React, so if you ever see a warning or error message in the

Listing 7.2 Creating a Route component (src/components/router/Route.js)

Bring in invariant library so you can
ensure that the Route component
never gets rendered, or if it does,
you’ll throw an error

Each Route takes a path and
a function, so specify these
props using PropTypes.

The entire Route component is just a function
that returns a call to the invariant library—if
ever called, error is thrown and you’ll know
things aren’t behaving correctly

Use a named export to
make component available
to outside modules
Licensed to Samir Mashlum <smashlum@gmail.com>

157Creating a router
developer tools console that says something like “invariant violation,” it’s probably
involved. You’ll use it here to make sure the Route component doesn’t render anything.

 That’s right—the Route component won’t render anything. If it does, the invariant
tool will throw an error. That might sound like a weird thing to do at first. After all,
you’ve been doing lots of rendering in your components so far. But it’s just a way of
grouping routes and components together in a way that React can understand and that
you can take advantage of. You’ll use the Route components to store props and pass in
the children you want. This will become clearer as you build out your Router compo-
nent, but take a look at figure 7.2 before moving on to check your understanding.

7.2.3 Starting to build the <Router/> component

To get started working on the Router, you’ll need to go through the basics of creating
a component again. This should be familiar by now, although you’ll eventually build a
component that does some unique things you haven’t seen so far. The good news is

<Router /> Component

<Route /> path=“/home” component={<Home />}

<Route /> path=“/posts/:postID” component={<Post />}

<Route /> path=“/profile” component={<Profile />}

<Route /> path=“profile-picture” component={<AvatarSettings />}

<Route /> path=“email” component={<EmailSettings />}

Route components can
be nested within each other

A special route parameter syntax
lets you parameterize routes

Path Component

/home

/profile

/profile/profile-picture

/profile/email

/posts/12345

<Home/>

<AvatarSettings/>

<Profile/>

<EmailSettings/>

<Post/>

The Router matches components to URL paths

Figure 7.2 Overview of how Route and Router components will work. The Router, which you’ll build in the next
section, has Route components as its children. Each of these components uses two props: a path string and a
component. The <Router/> will use each <Route/> to match a URL and render the right component. Because
everything is a React component, you can pass in props to your router when rendering and use those as the initial
application state for top-level data like user, authentication state, and more.
Licensed to Samir Mashlum <smashlum@gmail.com>

158 CHAPTER 7 Routing in React
that you don’t have to do anything “magic” to create your router. You’re going to be
working with React components, adding some logic to the Router component, and
then using it as the main component that your app renders.

 This might not seem like a big deal. You may be thinking, “Okay, so it’s a compo-
nent. This is React, after all, so that seems...normal?” I’m pointing it out because it’s a
good example of something powerful and flexible that you can do with “just” React
that isn’t something you might immediately think of doing. You don’t need any brand-
new tools. You just need to find a way to record a mapping of URLs and components
and then a way to interact with the right browser APIs. Now you can get to building
this thing.

Listing 7.3 shows how to scaffold out the Router component. There’s little out of the
ordinary here aside from the routes property that gets set up on the component.
Notice that because you don’t want to do anything to change the routes on the fly,
you’re not storing the routes in React’s local component state. There may be some
cases where you’d want to dynamically change the routes at runtime, such as a user
actively customizing the app or something similar. In those cases, you could use the
component’s state interface. You don’t have that need here, so you’ll stick the routes
on the component.

export default class Router extends Component {
 static propTypes = {
 children: PropTypes.object,

What about React Router?
You might have heard of React Router before if you’ve worked with React at all. It’s
one of the most popular React projects in open source and is by far the most popular
routing solution for React applications. You may wonder why you don’t just install React
Router and learn how to use that API. You could do that, but I think you’d miss out on
the chance to see how you can do things with React components that you might not
expect (such as mapping URLs to components!). You’ll learn far more from building
something yourself than you will by simply installing something with npm.

Now, this is different from what you would probably do if you were in a business sit-
uation or any kind of production environment. As helpful as building your own router
from scratch might be, your primary role as an engineer is (almost always) to deliver
value to the company, and you can do that most effectively by either building or using
tools that are well tested, performant, and easy to work with.

With that in mind, you and your team would probably choose to use React Router
instead of building your own. It’s often a better engineering and business decision to
choose a well-maintained, popular, open source library that fits your needs. When we
discuss server-side rendering in chapter 12, you’ll swap out your router for React
Router so we can take advantage of some its features.

Listing 7.3 Scaffolding out the Router (src/components/router/Router.js)

The Router component will
have a render() method.
Licensed to Samir Mashlum <smashlum@gmail.com>

159Creating a router
 location: PropTypes.string.isRequired
 };

 constructor(props) {
 super(props);
 this.routes = {};

}

 render() {}
}

Now that you have the bare bones of your Router component, you can start adding
some utilities that you’ll use later in the core methods of the component.

 When working with routes, there are a few things you’ll need to do. If you looked
carefully at listing 7.2, you probably saw that you could pass in path props that didn’t
all have a / before them. That may seem like a minor thing, but you need to make
sure that users of the router can do this. You also need to make sure that any double
// get removed if a user were to include too many forward slashes either by accident
or as a result of nesting routes.

 Let’s see how to create two helper utilities to address these issues. First, you want to
create a utility for cleaning a path. This will use a simple regular expression to replace
any double forward slashes with a single one. If you’re not familiar with regular
expressions, you can find many good resources to learn more about them online.
They’re a powerful way of matching patterns in text and are key to many forms of soft-
ware development. But they can also seem obscure and difficult to reason about or
learn. Fortunately for us, you’re only using a simple regular expression to find and
replace any double forward slashes (//). The next listing shows how to implement the
simple cleanPath method. Note that sanitizing strings with regular expressions can be
tricky, so don’t expect every case you encounter to be this straightforward.

//...
cleanPath(path) {
 return path.replace(/\/\//g, '/');
}
//...

We won’t go too deep into regular expressions because they deserve serious, in-
depth treatment, but we can at least note a few things. First, the basic regex syntax
in JavaScript is two forward slashes with an expression inside /<regular expres-
sion>/. Second, although the \/\/ series of characters looks arcane and, frankly,
kind of like a W, it’s only two forward slashes (//) with escape characters (/) added
so they don’t get interpreted as comments or anything else. Finally, the g character
added to the end of the regular expression is a flag meaning match all occurrences. To
learn more about regular expressions, head to http://regexr.com/3eg8l for detailed

Listing 7.4 Adding the cleanPath utility to the Router (src/components/router/Router.js)

You’ll store the routes on
the router component in
an object.

Specify PropTypes—the router
will receive children and a
location to work with.

cleanPath uses String.replace
to remove any double slash
characters from the path (/).
Licensed to Samir Mashlum <smashlum@gmail.com>

http://regexr.com/3eg8l

160 CHAPTER 7 Routing in React
insights about what each part of a regular expression means and to practice matching
different patterns.

 Now that you can clean occurrences of //, you need to handle a few other situa-
tions for the routes you add. You’ll call this utility normalizeRoute because it will
ensure that parent and child routes get created as the right strings with a forward
slash if and where necessary. This function will take a path and an optional parent.
With these two inputs, you can handle a few situations. The following listing shows
how the normalizeRoute method will work.

//...
normalizeRoute(path, parent) {
 if (path[0] === '/') {
 return path;
 }

 if (parent == null) {
 return path;
 }

 return `${parent.route}/${path}`;
 }
//...

7.2.4 Matching URL paths and parameterized routing

You’ve got some helper tools created, but you aren’t doing any routing yet. To start
matching URLs to components, you need to add routes to your router. How are you
going to do that? Essentially, you need to find a way to render a given component
based on what the current URL is—the “matching” part I keep talking about. That
may not sound like a lot of work, but more than a few steps are involved.

 First, let’s look at a key component of a front-end routing system for the browser:
path matching. You need some way to evaluate path strings and turn them into mean-
ingful data you can use. To accomplish this, you’ll use a small package called enroute,
which is itself a tiny router you’ll use to match paths to your components. Internally,
enroute converts strings into regular expressions that can be used to match strings
(for example, the URLS you’ll be checking against). You can also use it to specify
path parameters so you can create a path like /users/:user and get access to the user
ID in /users/1234 as something like route.params.user in your code. This approach
is common, and you may have seen something similar if you’ve ever worked with
express.js.

 The ability to parameterize URLs is useful because that way you can treat the URL
like another form of data input you can pass to a router. URLs are powerful, and mak-
ing them dynamic is part of the reason why. URLs can be meaningful and allow users

Listing 7.5 Creating the normalizeRoute utility (src/components/router/Router.js)

Function receives path and
parent object—the route
property is a path string.

If the path is just a /, you can
just return it—we don’t need
to join it with a parent.

If no parent is provided, you
can just return the path since
there’s nothing to join it with.

If there is a parent, you add
the path to the parent’s path
by joining them together.
Licensed to Samir Mashlum <smashlum@gmail.com>

161Creating a router
to visit resources directly without having to first visit one page and then navigate sev-
eral more times to get where they want to go.

 You won’t use the full capabilities of parameterizing your routes, but let’s look at a
few examples to make sure you know what you’re working toward. Table 7.1 shows
a couple examples of URL paths that might be useful in a common web application.

You’re only taking advantage of one aspect of parameterized routing here with the
:name syntax, but there are tools that will let you do much more than that. If you’re
interested in learning more about parameterized routing, check out the path-to-
regexp library, available at www.npmjs.com/package/path-to-regexp. This is a great
tool, and there are others we could spend time looking into, but we need to focus on
the task at hand: routing with React.

 The important takeaway about these routing tools (enroute and path-to-regexp)
is that you’re going to use them to help match URLs and work with some path
parameters in URLs. It doesn’t matter so much for now which tool you use or if you
want to go build your own; you just need something that lets you focus on the funda-
mentals. One of the beautiful things about React is that you’re free to make your own
informed decision about which routing tools you want to use when you’re building
your own applications.

You’ll be using your URL-matching library (enroute) to determine which route to
render, so next you’ll get that set up on your component. Right now, the Router

Table 7.1 Examples of common routes with parameters

Route Example use

/ Home page for the app.

/profile Profile page for a user; shows settings.

/profile/settings Settings route; a child of the profile page; shows user-related settings.

/posts/:postID postID made available to code; example route would be
/posts/2391448. Useful if you wanted to create publicly available
links to particular posts.

/users/:userID :userID is a path parameter; useful to show a particular user based
on their ID.

/users/:userID/posts Show all posts for a user; the :userID part of the URL is dynamic and
made available in your code.

Exercise 7.2 Pondering parameters
Parameterizing routes is often a useful way of getting data into your application. Can
you think of other ways you might use route parameters besides getting the post ID?
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.npmjs.com/package/path-to-regexp

162 CHAPTER 7 Routing in React

component has a render method that doesn’t do anything, so that seems like a good
place to start. The following listing shows how to integrate enroute with your router
and the resulting changes to the render method.

import enroute from 'enroute';
import invariant from 'invariant';

export class Router extends Component {
 static propTypes = {
 children: PropTypes.element.isRequired,
 location: PropTypes.string.isRequired,
 }

 constructor(props) {
 super(props);

 // We'll store the routes on the Router component
 this.routes = {};

 // Set up the router for matching & routing
 this.router = enroute(this.routes);
 }

 render() {
 const { location } = this.props;
 invariant(location, '<Router/> needs a location to work');
 return this.router(location);
 }
}

You didn’t add that much code, but some of the most important parts of the router
are now in place. Right now, there aren’t any routes for enroute to work with, but the
basic mechanics are there. You want to try to find a component associated with a route
and then use the router to render that. In the next section, you’ll create those routes
so your router can use them.

7.2.5 Adding routes to the Router component

To add a route to the router, you need two things: the right URL string to use and the
component for that URL. You’ll create a method on the Router component that will
let you tie these two things together: addRoute. If you take a quick look at the enroute
usage example at https://github.com/lapwinglabs/enroute, you’ll see how enroute
works. It takes an object with URL strings for keys and functions for values, and when
one of the paths is matched, it invokes the function and passes in some extra data.
Listing 7.7 shows how you’d use the enroute library without React. With enroute you
can match functions that take parameters and any additional data to URL strings.

Listing 7.6 Finished Router (src/components/router/Router.js)

enroute is a tiny functional router
you use to match URL strings and
parameterize routes.

Set propTypes as a
static class property.

Set up component’s initial
state and initialize enroute

Routes will end up as
object with your URL
paths for keys.

Pass routes into enroute, and Render
will use return value of enroute to
match URLs to components.

Pass in the
current
location to
the router
as a prop.

Use invariant to
make sure that you

don’t forget to
provide a location.

Lastly, and most importantly, you want to
use the router to match a location and
return the corresponding component.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/lapwinglabs/enroute

163Creating a router
function edit_user (params, props) {
 return Object.assign({}, params, props)
}

const router = enroute({
 '/users/new': create_user,
 '/users/:slug': find_user,
 '/users/:slug/edit': edit_user,
 '*': not_found
 });

enroute('/users/mark/edit', { additional: 'props' })

Now that you have some idea of how enroute works apart from React, let’s see how to
integrate it into your router and give it some life. Instead of returning an object as you
did in the preceding listing, you want to return a component. But you currently have
no way to get to the paths or components for your routes. Remember how you created
a Route component that would store them but didn’t render anything? You need to
get access to that data from your parent component (Router). That means you’re
going to need to use the children property.

NOTE You’ve seen how you can compose components together in React to
create new components by creating parent and child relationships between
components. So far, you’ve only used children “externally” by nesting compo-
nents within each other. Any time you’ve been nesting and composing com-
ponents, you’ve been utilizing React’s concept of children. But you haven’t
dynamically accessed any of those nested children from a parent component
yet. You can access the children passed into a parent on the component’s
props as, you guessed it, children.

The children prop that’s available on every React component or element is what we
call an opaque data structure because it, unlike almost everything else in React, isn’t
just an array or plain old JavaScript object. This may change in future versions of
React, but in the meantime, it means there are a few tools provided by React that let
you work with the children prop. A number of methods are available from React
.Children you can use to work with the children opaque data structure, including
the following:

 React.Children.map—Similar to Array.map in native JavaScript, this invokes a
function on every immediate child within children (meaning it won’t traverse
every possible descendent component, just direct descendants) and returns an
array of the elements it traverses. Returns null or undefined rather than an
empty array if children is null or undefined:

React.Children.map(children, function[(thisArg)])

Listing 7.7 Route configuration example (src/components/router/Router.js)

Two parameters are used: route
parameters (like /users/:user) and
any additional data you pass in.

Pass in an object with
paths and functions
that you’ve created to
handle those paths.

To use, pass in a location
and any additional data
and the right function
will be executed.
Licensed to Samir Mashlum <smashlum@gmail.com>

164 CHAPTER 7 Routing in React
 React.Children.forEach—Similar to the way that React.Chidlren.map works,
but it doesn’t return an array:

React.Children.forEach(children, function[(thisArg)])

 React.Children.count—Returns the total number of components found in
children. Equal to the number of times either React.Children.map or React
.Children.forEach would invoke their callback on the same elements:

React.Children.count(children)

 React.Children.only—Returns the only child in children or throws an error:

React.Children.toArray(children)

 React.Children.toArray—Returns children as a flat array with keys assigned
to each child:

React.Children.toArray(children)1

Because you want to add route information to this.routes on the Router compo-
nent, you’ll use React.Children.forEach to iterate over each of the children of
Router (remember, those are the Route components) and get access to their props.
You’ll use these props to set up your routes and tell enroute which component should
be rendered at which URL.

1 Big thanks to Ben Ilegbodu for first introducing this idea to me!

“Self-eradicating” components in React
When React 16 came out, it enabled components to return arrays from render. This
was previously impossible, but it opens up some interesting possibilities. One of
them is the idea of a self-destructing or self-eradicating1 component. Previously, when
you could only return a single node from any given component, you would often find
yourself wrapping components in divs or spans just to get valid JavaScript output. A
common scenario would look something like this:

export const Parent = () => {
 return (
 <Flex>
 <Sidebar/>
 <Main />
 <LinksCollection/>
 </Flex>
);
}

Top-level components,
side-by-side, laid out with
Flexbox (or CSS grids)
Licensed to Samir Mashlum <smashlum@gmail.com>

165Creating a router
export const LinksCollection = () => {
 return (
 <div>
 <User />
 <Group />
 <Org />
 </div>
);
}

This was a source of much annoyance for many teams, although it certainly didn’t stop
people from using React. One major sort of problem it creates, though, isn’t merely the
fact that the wrapping div seems unnecessary. As you can see here, the app is laid out
using Flexbox (or some other CSS layout API that would break in this scenario).

The problem that the wrapping div creates is that it forces you to move components
up a level so they aren’t grouped within a single node. There are certainly other rea-
sons this caused problems or forced workarounds, but this is one that I’ve encoun-
tered many times.

With the advent of React 16 and following, though, it became possible to return arrays,
so now we have a way around this. React 16 introduced many other powerful features,
but this one was a welcome change. Developers can now do something like this:

export const SelfEradicating = (props) => props.children

This component acts as a sort of pass-through, getting out of the way or “self-eradicat-
ing” as it renders its children. Using this approach, you can maintain component sep-
aration without having to hedge on things like your CSS layout technique. The same
scenario might look something like this with a “self-eradicating” component:

export const SelfEradicating = (props) => props.children

export const Parent = () => {
 return (
 <Flex>
 <Sidebar/>
 <Main />
 <LinksCollection/>
 </Flex>
);
}

export const LinksCollection = () => {
 return (
 <SelfEradicating>
 <User />
 <Group />
 <Org />
 </SelfEradicating>
);
}

Wrapper div added because User,
Group, and Org can’t be returned
together in JavaScript—it doesn’t
support multiple return values
Licensed to Samir Mashlum <smashlum@gmail.com>

166 CHAPTER 7 Routing in React

t
pro

wi
com

Cre
co

wit
Remember, enroute expects you to give a function to each route so it can pass in
parameter information and other data to it. This function is where you’ll tell React to
create a component and handle rendering additional child components. Listing 7.8
shows how to add the addRoute and addRoutes methods to your component. add-
Routes uses React.Children.forEach to iterate over the child Route components,
grab their data, and set up the route for enroute to use. This is the core body of the
router—once you implement this, the router will be up and running!

 addRoute(element, parent) {
 const { component, path, children } = element.props;

 invariant(component, `Route ${path} is missing the "path" property`);
 invariant(typeof path === 'string', `Route ${path} is not a string`);

 const render = (params, renderProps) => {

 const finalProps = Object.assign({ params }, this.props, renderProps);

 const children = React.createElement(component, finalProps);
 return parent ? parent.render(params, { children }) : children;
 };

 const route = this.normalizeRoute(path, parent);

 if (children) {
 this.addRoutes(children, { route, render });
 }

 this.routes[this.cleanPath(route)] = render;
 }
//...

Exercise 7.3 props.children
We talked about React’s props.children in this chapter. Are there any differences
between props.children and other props? Why might there be any differences?

Listing 7.8 The addRoute and addRoutes methods (src/components/router/Router.js)

Use destructuring to
get component, path,
and children props.

Make sure every Route has
a path and component
prop or throw an error.

render is a
function you’ll

give to enroute
that takes

route-related
params and

additional data.

Merge
ogether
ps from
parent

th child
ponent

ate a new
mponent
h merged

props.

If there’s a parent, invoke render method of parent
parameter but with children you’ve created

Use normalizeRoute helper to make
sure the URL path gets set up right

If there are more
nested children on
current Route
component, repeat
process and pass in
route and parent
component

Use cleanPath utility to
create path on routes object
and assign your finished
function to it
Licensed to Samir Mashlum <smashlum@gmail.com>

167Creating a router
Whew! There was a lot going on in those few lines of code. Feel free to go back over it
a couple of times to make sure you feel comfortable with the concepts. Once you add
the addRoutes method, we’ll recap the steps and review with a visualization. But first
you’ll add the addRoutes method. Comparatively, it’s quite short. The following listing
shows how to implement it.

//...
constructor(props) {
 super(props);
 this.routes = {};
 this.addRoutes(props.children);
 this.router = enroute(this.routes);
}

addRoutes(routes, parent) {
 React.Children.forEach(routes, route => this.addRoute(route, parent));
}

With that, your router is complete and ready to roll. The next listing shows the Router
component in its final state with helper tools (path normalization, invariant uses) left
out for brevity. In the next chapter, you’ll put the Router component to use.

Listing 7.9 The addRoutes method (/components/router/Router.js)

Even though addRoutes gets
used in the addRoute method,
add it to component’s
constructor to kick off
setting up routes.

addRoutes method gets used
in addRoute any time there are
additional children to iterate over

Use React.Children.forEach utility to
iterate over each of the children, then invoke

addRoute for each child Route component.

<===> function(params, props) {

return Component

}

<Route />

<Router />

this.routes = { }

For each component

this.routes.[path]

Path, component

if (children) {

addRoutes(children)

}

<Route />
Path, component

<Route />
Path, component

<Route />

Figure 7.3 The process of adding routes to your router. For each Route component found
within your Router component, pull off the path and component props and then use those to
create a function you can pair with a URL path for enroute to use. If there are child
components for a Route, run the same process for those before moving on. When done, the
routes property will have all the right routes set up.
Licensed to Samir Mashlum <smashlum@gmail.com>

168 CHAPTER 7 Routing in React
import PropTypes from 'prop-types';

import React, { Component } from 'react';
import enroute from 'enroute';
import invariant from 'invariant';

export default class Router extends Component {
 static propTypes = {
 children: PropTypes.array,
 location: PropTypes.string.isRequired
 };

 constructor(props) {
 super(props);

 this.routes = {};

 this.addRoutes(props.children);
 this.router = enroute(this.routes);
 }

 addRoute(element, parent) {
 const { component, path, children } = element.props;

 invariant(component, `Route ${path} is missing the "path" property`);
 invariant(typeof path === 'string', `Route ${path} is not a string`);

 const render = (params, renderProps) => {
 const finalProps = Object.assign({ params }, this.props,

renderProps);

 const children = React.createElement(component, finalProps);

 return parent ? parent.render(params, { children }) : children;
 };

 const route = this.normalizeRoute(path, parent);

 if (children) {
 this.addRoutes(children, { route, render });
 }

 this.routes[this.cleanPath(route)] = render;
 }

 addRoutes(routes, parent) {
 React.Children.forEach(routes, route => this.addRoute(route,

parent));
 }

 cleanPath(path) {
 return path.replace(/\/\//g, '/');
 }

Listing 7.10 Finished Router (src/components/router/Router.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

169Summary
 normalizeRoute(path, parent) {
 if (path[0] === '/') {
 return path;
 }
 if (!parent) {
 return path;
 }
 return `${parent.route}/${path}`;
 }

 render() {
 const { location } = this.props;
 invariant(location, '<Router/> needs a location to work');
 return this.router(location);
 }
}

7.3 Summary
In this chapter, you started turning your React application from a simple page with
some components into a more robust application that handles routing and route con-
figuration. We covered quite a lot of ground and explored an advanced use of compo-
nents to build an entire router from the ground up:

 Routing in modern client applications doesn’t require you to perform a com-
plete page reload. Instead, it can be handled with client-side applications like
React. This can decrease browser load time and potentially server load, too.

 React doesn’t have a built-in routing library like some frameworks do. Instead,
you’re free to either pick one from the community or build your own from
scratch (like you did!).

 React provides you with several utilities to work with the opaque children data
structure. You can iterate over multiple components, check to see how many
there are, and more.

 You can use the routing setup you created to dynamically change which chil-
dren are rendered inside of a component. You’re listening for changes in the
browser’s location and rendering using that data.

In the next chapter, you’ll use your Router and add authentication to your app with
Firebase.
Licensed to Samir Mashlum <smashlum@gmail.com>

More routing and
integrating Firebase
In the last chapter, you built a simple router from scratch in order to better under-
stand how you can do routing with React applications. In this chapter, you’ll start to
use the router you built and break up the Letters Social app into better sections. By
the end of the chapter, you’ll be able to navigate around your app, view individual
post pages, and perform user authentication.

This chapter covers
 Using the router you built in chapter 7

 Creating routing-related components like Router,
Route, and Link

 Working with the HTML5 History API to enable
push-state routing

 Reusing components

 Integrating user authentication and Firebase

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
170

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

171Using the router
8.1 Using the router
In the last chapter, you built a working router with React. In a situation where you’re
working on a React app in a production setting, you’ll probably want to opt for some-
thing like React Router. Fortunately, React Router follows a very similar API, but it also
comes with more advanced features that let you do even more with routing. Maybe you
don’t need all those features, though, and something like you’ve built is enough. That’s
perfectly fine—pick the tools that best suit the problems you’re solving, not the ones
with the most GitHub stars or Hacker News upvotes. Your needs will change in chap-
ter 12 as we tackle server-side rendering, so we’ll switch to React Router in that chapter.

 Let’s get started using your shiny new router. First you need to hook up the router to
the HTML5 History API (https://developer.mozilla.org/en-US/docs/Web/API/History)
so you can take advantage of navigation that doesn’t require a full page reload. You’ll
use push state navigation because you don’t need to hit the server every time for a full
page refresh. But you could also use hash-based routing (see https://github.com/
ReactTraining/react-router/blob/v3/docs/guides/Histories.md for more).

 We won’t spend much time exploring the HTML5 APIs, because they deserve their
own treatment. You’ll use the well-known history library, available on npm at
www.npmjs.com/package/history. This library will let you work with the History API
in a reliable and predictable way across browsers. To make sure it’s installed, run npm
install --save history. Once you’ve installed it, you’ll need to make some changes
to your index.js file that currently serves as the root of the entire app. Until now, this
file was where React DOM would render your whole app to a DOM element. But you
have routing enabled, and your Router component expects a location (see chapter 7).
You need to find a way to feed it that location and take advantage of the HTML5 His-
tory API using the history library, and index.js is the perfect place to do this.

to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 5 and 6 (if you followed along and built out the examples yourself)
or check out the chapter-specific branch (chapter-7-8).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-7-8 corresponds to the code as it will be at the end of this
chapter). You can execute one of the following terminal commands in the directory of
your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-7-8

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/API/History
http://www.npmjs.com/package/history
https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md
https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md
https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md

172 CHAPTER 8 More routing and integrating Firebase
In addition to taking advantage of history, you’ll need to set up your routes. To do so,
you’ll need to refactor some of your components, which should give you a sense of the
benefits of composability and modularity in React. You’ll move things around but won’t
have to fundamentally change the way your components work. Let’s see how to fix the
App component first. It needs to serve as a container for the child routes because you
want every page to have the same sidebars and navigation bar, changing only what gets
passed into the children prop. Figure 8.1 shows an example of what this looks like.

Exercise 8.1 Comparing client-side and server-side routing
Take a moment to consider the differences between client-side routing and client-
server URL-based routing. What is one of the primary differences between client-side
routing and server-side routing?

Figure 8.1 The boxed area in the screenshot above will change based on what view you decide to render based
on a URL. Over time, you may even do more nesting and expand that area to include the sidebars so you can
maintain the same navigation bar across pages and have other routes that have dynamic areas in them.
Licensed to Samir Mashlum <smashlum@gmail.com>

173Using the router
To achieve this sort of nesting, you need to refactor the App component to dynami-
cally show children, as shown in listing 8.1. Fortunately, you won’t end up deleting
much of the work we’ve done—you’ll just move it around. As you refactor, you’re
going to do some reorganization of your app files. Create a new directory in src called
pages. You’ll be putting components here that tend to only contain other compo-
nents and provide them with data. I’ll talk about this idea more when we start explor-
ing React application architecture in later chapters.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

import ErrorMessage from './components/error/Error';
import Nav from './components/nav/navbar';
import Loader from './components/Loader';

class App extends Component {
 constructor(props) {
 super(props);
 this.state = {
 error: null,
 loading: false
 };
 }
 static propTypes = {
 children: PropTypes.node
 };
 componentDidCatch(err, info) {
 console.error(err);
 console.error(info);
 this.setState(() => ({
 error: err
 }));
 }
 render() {
 if (this.state.error) {
 return (
 <div className="app">
 <ErrorMessage error={this.state.error} />
 </div>
);
 }
 return (
 <div className="app">
 <Nav user={this.props.user} />
 {this.state.loading ? (
 <div className="loading">
 <Loader />
 </div>
) : (
 this.props.children
)}

Listing 8.1 Refactoring the App component (src/app.js)

Set up top-level error boundary
using componentDidCatch so
you can display error if
something goes wrong

Render the
error, if any.

Pass user props in—
you’ll use this when
you integrate Firebase.

If app is in a loading
state, render the loader

Use props.children to output
the currently active route.
Licensed to Samir Mashlum <smashlum@gmail.com>

174 CHAPTER 8 More routing and integrating Firebase

sam
o
c

acc
 </div>
);
 }
}

export default App;

You need to create a component for the main page so users can see the posts. Create a
file called home.js and place it in the pages directory. This component should look
familiar—it was the main component you had before breaking things into pages. List-
ing 8.2 shows the Home component with the method logic you’ve implemented before
commented out for brevity. Remember, as with all chapters, you can check out different
branches for each chapter if you want to see how the app has changed or how it’ll be at
the end of the chapter at https://github.com/react-in-action/letters-social.

import React, { Component } from 'react';
import parseLinkHeader from 'parse-link-header';
import orderBy from 'lodash/orderBy';

import * as API from '../shared/http';
import Ad from '../components/ad/Ad';
import CreatePost from '../components/post/Create';
import Post from '../components/post/Post';
import Welcome from '../components/welcome/Welcome';

export class Home extends Component {
 constructor(props) {
 super(props);
 this.state = {
 posts: [],
 error: null,
 endpoint: `${process.env

.ENDPOINT}/posts?_page=1&_sort=date&_order=DESC&_embed=comments&_expand=
user&_embed=likes`

 };
 this.getPosts = this.getPosts.bind(this);
 this.createNewPost = this.createNewPost.bind(this);
 }
 componentDidMount() {
 this.getPosts();
 }
 getPosts() {
 API.fetchPosts(this.state.endpoint)
 .then(res => {
 return res.json().then(posts => {
 const links = parseLinkHeader(res.headers.get('Link'));
 this.setState(() => ({
 posts: orderBy(this.state.posts.concat(posts),

'date', 'desc'),

Listing 8.2 The refactored Home component (src/pages/Home.js)

Don’t forget to adjust import
paths—the component lives
in a different directory.

Logic for
these is

exactly the
e—you’re

nly moving
omponents
around to

ommodate
new

hierarchy.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

175Using the router
 endpoint: links.next.url,
 }));
 });
 })
 .catch(err => {
 this.setState(() => ({ error: err }));
 });
 }
 createNewPost(post) {
 post.userId = this.props.user.id;
 return API.createPost(post)
 .then(res => res.json())
 .then(newPost => {
 this.setState(prevState => {
 return {
 posts: orderBy(prevState.posts.concat(newPost),

'date', 'desc')
 };
 });
 })
 .catch(err => {
 this.setState(() => ({ error: err }));
 });
 }
 render() {
 return (
 <div className="home">
 <Welcome />
 <div>
 <CreatePost onSubmit={this.createNewPost} />
 {this.state.posts.length && (
 <div className="posts">
 {this.state.posts.map(({ id }) => {
 return <Post id={id} key={id}

user={this.props.user} />;
 })}
 </div>
)}
 <button className="block" onClick={this.getPosts}>
 Load more posts
 </button>
 </div>
 <div>
 <Ad url="https://ifelse.io/book"

imageUrl="/static/assets/ads/ria.png" />
 <Ad url="https://ifelse.io/book"

imageUrl="/static/assets/ads/orly.jpg" />
 </div>
 </div>
);
 }
}

export default Home;

Logic for these is exactly the same—
you’re only moving components around
to accommodate new hierarchy.
Licensed to Samir Mashlum <smashlum@gmail.com>

176 CHAPTER 8 More routing and integrating Firebase

ll
p;

o
to

p

Now that you have your Home component moved around, you’re ready to configure
your routes and hook up the history tool so your router can respond to browser loca-
tion changes. It’s often helpful to make a single module available to other parts of
your application as a utility so you don’t duplicate work. You’ll do this more later in
the book, and you’ve probably done this on your own, too. You’ll do that with the
history library, as shown in the next listing, because you want to eventually use it to
(among other things) create links that work with your Router and don’t have to be
normal </> tags.

import createHistory from 'history/createBrowserHistory';
const history = createHistory();
const navigate = to => history.push(to);
export { history, navigate };

Now that you have history set up, you can set up the rest of index.js and configure
your Router. The following listing shows how to do that.

import React from 'react';
import { render } from 'react-dom';

import { App } from './pages/App';
import { Home } from './pages/Home';
import Router from './components/router/Router';
import Route from './components/router/Route';
import { history } from './history;

import './shared/crash';
import './shared/service-worker';
import './shared/vendor';
import './styles/styles.scss';

export const renderApp = (state, callback = () => {}) => {
 render(
 <Router {...state}>
 <Route path="" component={App}>
 <Route path="/" component={Home} />
 </Route>
 </Router>,
 document.getElementById('app'),
 callback
);
};

let state = {
 location: window.location.pathname,
};

Listing 8.3 Setting up the history library (src/history/history.js)

Listing 8.4 Setting up index.js for routing (src/index.js)

Make a single instance
of history library
available to your app.

Export navigate method and history instance
(in case you need direct access later).

Import
React DOM.

Import App, Home,
Router, and Route
components.

Import history
utility you just
created Create a function you’

call to render your ap
wrap React DOM’s
render method so you
can pass location data
and a callback.

Use JSX
spread

perator
 “fill in”
location
state as
rops for

your
Router

Create route for
App and Home
components

Render app to target
DOM element in
index.html

Create a state object
to keep track of
location and user
Licensed to Samir Mashlum <smashlum@gmail.com>

177Using the router
history.listen(location => {
 state = Object.assign({}, state, {
 location: location.pathname
 });
 renderApp(state);
});

renderApp(state);

8.1.1 Creating a page for a post

You’re routing! At this point, you’ve done a lot to get routing enabled and working
in your app. But you haven’t done anything to let the user move around different
parts of your application. At this point, your app will probably start to have more
pages and subsections of pages. If you were building out a more complicated version
of a social networking app, you’d probably have sections for a profile page, user set-
tings, messages, and more. But in this case, all you need to do is display individual
posts. How are you going to do this? You’ll start with the URL. Remember the
/posts/:postID route used a few times in examples so far? Your post pages are
going to live at this URL.

 You’ll get started by creating a page component for individual posts. In earlier
chapters, you built a Post component that would fetch its data once it was loaded, so
creating this single-post page shouldn’t be too much trouble. You want to create a new
component for this page, ensure the post is included, and make sure you map it to the
route correctly. One thing that will be different is where you get the post ID from.
Rather than an initial fetch from the server, you’ll pull it from the URL. You used a
special syntax to set up the URL, and the router will make that parameterized route
data available to your component. The following listing shows how to set up the single-
post page.

import PropTypes from 'prop-types';
import React, { Component } from 'react';

import Ad from '../components/ad/Ad';
import Post from '../components/post/Post';

export class SinglePost extends Component {
 static propTypes = {
 params: PropTypes.shape({
 postId: PropTypes.string.isRequired
 })
 };
 render() {
 return (
 <div className="single-post">
 <Post id={this.props.params.postId} />
 <Ad
 url="https://www.manning.com/books/react-in-action"

Listing 8.5 Creating the SinglePost component (src/pages/Post.js)

Fire when location changes and
update router, causing application
to re-render with new state data

Render
the app.

Import Post component
you created in earlier
chapters

Get the post ID off
the props passed
in by router
Licensed to Samir Mashlum <smashlum@gmail.com>

178 CHAPTER 8 More routing and integrating Firebase
 imageUrl="/static/assets/ads/ria.png"
 />
 </div>
);
 }
}

export default SinglePost;

Now that you have a component to use, you can integrate it back into your router so
users will be able to navigate to individual posts. Listing 8.6 shows how to add the Single-
Post component to your router. Notice that you’re taking advantage of the parameter-
ized routing we’ve seen in router examples so far. The :post part of the path is what
gets provided to your component in the params prop.

import React from 'react';
import { render } from 'react-dom';

import * as API from './shared/http';
import { history } from './history';
import Route from './components/router/Route';
import Router from './components/router/Router';
import App from './app';
import Home from './pages/home';
import SinglePost from './pages/post';

//...

export const renderApp = (state, callback = () => {}) => {
 render(
 <Router {...state}>
 <Route path="" component={App}>
 <Route path="/" component={Home} />
 <Route path="/posts/:postId" component={SinglePost} />
 </Route>
 </Router>,
 document.getElementById('app'),
 callback
);
};

//...

8.1.2 Creating a <Link/> component

If you run your app in development mode and try clicking around, you’ll notice that
even though you still have routes set up for individual posts, you can’t get there with-
out knowing the ID of the post in the first place and then putting that in the URL.
That’s not very useful, is it?

Listing 8.6 Adding individual posts to the router (src/index.js)

Import SinglePost
component for use
in your router

Configure SinglePost route
using special parameterized

routing syntax (:post)
Licensed to Samir Mashlum <smashlum@gmail.com>

179Using the router
 You need to create a custom Link component that will work with your history
tool and your Router—otherwise, users will probably abandon your app quickly,
and your investors will be sad. How can you enable this? A regular anchor tag
(Link!) won’t do because it will try to reload the entire page, which
you don’t want. You might also want to create links from things that aren’t anchor tags
at all, such as a post in a list or anything you don’t want to wrap in an anchor tag.

NOTE Accessibility is the degree to which an interface is usable by someone.
You’ve probably heard people talk about “web accessibility” before, but you
may not know much about it. That’s okay—it’s easy to learn. You want to
make sure your app is usable by as many people as possible, whether they’re
using it with a mouse and keyboard, screen reader, or other devices. I just
mentioned making arbitrary elements of an application navigable using a
Link component—something that should be done with care when approach-
ing things from an accessibility standpoint. With that in mind, I wanted to
briefly mention accessibility with regard to this book. Because building acces-
sible web applications is a huge and important topic, it’s beyond the scope of
this book. There are companies, apps, and hobby projects that consider it as a
first-class dimension of engineering. Although you may be able to reference
the source code for Letters Social as a collection of ways to build apps using
React components, we haven’t handled all the different accessibility concerns
that would come up for your app. To learn more about accessibility on the
web, check out the WAI-ARIA authoring practices (www.w3.org/WAI/PF/
aria-practices) or the MDN documentation on ARIA (https://developer
.mozilla.org/en-US/docs/Web/Accessibility/ARIA). Ari Rizzitano has also
put together an excellent talk on this topic with a special focus on accessibility
in React, called “Building Accessible Components” (https://speakerdeck.com/
arizzitano/building-accessible-components).

You’ll need to use your history utility again here and integrate it into a Link compo-
nent that you can use to enable push-state linking inside of your application. Remem-
ber the navigate function you exposed earlier? Using this function, you can now
programmatically tell the history library to change the location for the user. To turn
this functionality into a component, you’ll use some React utilities to wrap other com-
ponents in a clickable Link component. You’ll use React.cloneElement to create a
copy of the target element and then attach a click handler that will perform naviga-
tion. The signature for React.cloneElement looks like this:

ReactElement cloneElement(
 ReactElement element,
 [object props],
 [children ...]
)

It takes an element to clone, the props to merge into the new element, and any
children it should have. You’ll use this utility to clone the component that you want
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.w3.org/WAI/PF/aria-practices
http://www.w3.org/WAI/PF/aria-practices
http://www.w3.org/WAI/PF/aria-practices
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://speakerdeck.com/arizzitano/building-accessible-components
https://speakerdeck.com/arizzitano/building-accessible-components
https://speakerdeck.com/arizzitano/building-accessible-components

180 CHAPTER 8 More routing and integrating Firebase

co
to w
one
to turn into a Link. And you’ll need to make sure the Link component only has a sin-
gle child, so you’ll bring back the React.Children.only tool from earlier in the chap-
ter. All together, these tools will let you turn other components into Link components
that help the user get around your app. The following listing shows how to create the
Link component.

import { PropTypes, Children, Component, cloneElement } from 'react';
import { navigate } from '../../history

class Link extends Component {
 static propTypes = {
 to: PropTypes.string.isRequired,
 children: PropTypes.node,
 }

 render() {
 const { to, children } = this.props;
 return cloneElement(Children.only(children), {
 onClick: () => navigate(to),
 });
 }
}

import PropTypes from 'prop-types';
import { Children, cloneElement } from 'react';
import { navigate } from '../../history';

function Link({ to, children }) {
 return cloneElement(Children.only(children), {
 onClick: () => navigate(to)
 });
}

Link.propTypes = {
 to: PropTypes.string,
 children: PropTypes.node
};

export default Link;

To integrate the Link component, you can wrap individual posts in the reusable Post
component and make sure Link gets a to prop that will send the user to the right
page (see previous Note on accessibility). You can follow this same pattern to wrap

Listing 8.7 Creating the Link component (src/components/router/Link.js)

Import the libraries
you’ll need.

Reuse the history tool
you’ve been working with.

to and children props will hold
target URL and component
you’re Link-ifying, respectively.

Clone
children

of Link
mponent
rap only
 node (it
can have
children)

In props object, pass onClick
handler that will navigate to
URL using history

Define propTypes

Import the libraries
you’ll need.

Reuse the history tool
you’ve been working with.

to and children props will hold
target URL and component
you’re Link-ifying, respectively.

Clone children of
Link component to
wrap only one node
(it can have children)

In props object, pass onClick
handler that will navigate to
URL using history

Define
propTypes
Licensed to Samir Mashlum <smashlum@gmail.com>

181Using the router
other components in a similar manner and turn them into Link-ified components.
The following listing shows how to integrate the Link component.

import React, { Component } from 'react';
import PropTypes from 'prop-types';

import * as API from '../../shared/http';
import Content from './Content';
import Image from './Image';
import Link from './Link';
import PostActionSection from './PostActionSection';
import Comments from '../comment/Comments';
import DisplayMap from '../map/DisplayMap';
import UserHeader from '../post/UserHeader';

import RouterLink from '../router/Link';

export class Post extends Component {

//...

 render() {
 return this.state.post ? (
 <div className="post">
 <RouterLink to={`/posts/${this.state.post.id}`}>

 <UserHeader date={this.state.post.date}

user={this.state.post.user} />
 <Content post={this.state.post} />
 <Image post={this.state.post} />
 <Link link={this.state.post.link} />

 </RouterLink>
 {this.state.post.location && <DisplayMap

location={this.state.post.location} />}
 <PostActionSection showComments={this.state.showComments} />
 <Comments
 comments={this.state.comments}
 show={this.state.showComments}
 post={this.state.post}
 handleSubmit={this.createComment}
 user={this.props.user}
 />
 </div>
) : null;
 }
}

export default Post;

With that, you’ve fully integrated the Router into your application. Users can now view
individual posts, which is great for sharing and focusing on one at a time. Your investors

Listing 8.8 Integrating the Link component (src/components/post/Post)

Import Link component; alias it
as RouterLink to avoid naming
conflict with Link component
used in our posts

Wrap section
of Post

component
you want to
be linkable
and give it

the right ID
Licensed to Samir Mashlum <smashlum@gmail.com>

182 CHAPTER 8 More routing and integrating Firebase
will be suitably impressed and excited to invest in your next round of fundraising.
You’re not done yet, though. In the next section we’ll discuss what to do when you
can’t match a URL to a component.

8.1.3 Creating a <NotFound/> component

Try navigating to /oops in the Letters app and see what happens. Nothing? Yep, that’s
what should happen based on your code, but it isn’t what you want for users. Right
now, your Router component doesn’t handle any “not found” or “catch-all” routes.
You want to be kind to your users and assume that at some point they (or you) might
make a mistake and try to navigate to a route that doesn’t exist in your app. To
address that, you’ll create a simple NotFound component and configure it when cre-
ating an instance of your Router. The following listing shows how to create the Not-
Found component.

import React from 'react';
import Link from '../components/router/Link';

export const NotFound = () => {
 return (
 <div className="not-found">
 <h2>Not found :(</h2>
 <Link to="/">
 <button>go back home</button>
 </Link>
 </div>
);
};

export default NotFound;

Now that the NotFound component exists, you need to integrate it into your Router
configuration. You may be wondering how you’re going to tell the Router that it
should send users to the NotFound component. The answer is to use the * character
when configuring a router. That character says “match anything,” and if you put it at

Exercise 8.2 Adding more links
Try finding some other areas in the app that might make for good Link candidates and
use the Link component to turn them into links. Hint: How will users get back to the
home page after navigating to an individual post? As you go through, try to think about
the user’s experience as they move around the application. What would make sense
to them? Which ones did you turn into Links? Are there cases where you turned things
into Links that weren’t already anchor tags? Check out the single post page in the
application source code to see an example of adding a simple back button.

Listing 8.9 Creating the NotFound component (src/pages/404.js)

Import Link component you
created so users can get
back to home page

No need for component
state, so create a stateless
functional component

Use Link component
to let users go back
to home page
Licensed to Samir Mashlum <smashlum@gmail.com>

183Integrating Firebase
the end of your configuration, any routes that haven’t been matched to anything else
will go there. Be sure to note that the order here matters: if you put the catch-all route
too high up, it’ll match anything and not work like you’d want it to. The following list-
ing shows how to configure more routes for your router.

//...
import NotFound from './pages/404 ';
//...

export const renderApp = (state, callback = () => {}) => {
 render(
 <Router {...state}>
 <Route path="" component={App}>
 <Route path="/" component={Home} />
 <Route path="/posts/:postId" component={SinglePost} />
 <Route path="*" component={NotFound} />
 </Route>
 </Router>,
 document.getElementById('app'),
 callback
);
};
 //...

8.2 Integrating Firebase
With your router fully built and functioning, there’s one more area we want to
tackle in this chapter that we couldn’t have before: enabling user login and authen-
tication. You’ll do this using the popular and easy-to-use “back-end as a service” plat-
form Firebase (https://firebase.google.com). Firebase offers services that abstract
away or take the place of a back-end API that handles user data, authentication, and
other concerns. For our purposes, you can think of it as a drop-in replacement for a
back-end API.

 You won’t be using it to completely replace the back end of your application
(you’re still using your API server), but you will be using Firebase to handle user login
and user management. To get started with Firebase, head to https://firebase.google
.com and create an account if you don’t have one already. Once you’re signed up, go
to the Firebase console at https://console.firebase.google.com and create a new proj-
ect to use in Letters Social. Once you’ve done that, click the Add Firebase to Your Web
App button to open up a modal overlay. You’ll see some configuration information for
your app that you’ll use in just a bit. See figure 8.2.

 Once you’ve created a project and have access to your project configuration values,
you’re ready to get started. The Firebase SDK is already installed with the sample appli-
cation code, so you can move ahead and create a new file called core.js in a new back-
end directory inside of src (src/backend/core.js). Listing 8.11 shows how you’ll set up
core.js with the values from the app configuration. I’ve included the public Firebase API

Listing 8.10 Adding individual posts to the router (src/index.js)

Import the NotFound
component.

Set up route for
NotFound component
so it serves as a
catch-all route
Licensed to Samir Mashlum <smashlum@gmail.com>

https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://firebase.google.com
https://console.firebase.google.com

184 CHAPTER 8 More routing and integrating Firebase
Figure 8.2 The Firebase console. Create a new project to be used with your instance of
the Letters Social app.
Licensed to Samir Mashlum <smashlum@gmail.com>

185Integrating Firebase
key in the source code so you can run the app without an account, but if you want to
replace it with your own, you can easily change the values in the config directory.

import firebase from 'firebase';

const config = {
 apiKey: process.env.GOOGLE_API_KEY,
 authDomain: process.env.FIREBASE_AUTH_DOMAIN
};

try {
 firebase.initializeApp(config);
} catch (e) {
 console.error('Error initializing firebase — check your source code');
 console.error(e);
}

export { firebase };

Because you’ll be using Firebase for authentication, you’ll need to set up some code
that will let you take advantage of that functionality. To get started, pick a platform to
use for your authentication, as shown in figure 8.3. Choosing GitHub, Facebook, Goo-
gle, or Twitter will let users that already have one of those accounts sign in without

Listing 8.11 Configuring the Firebase back end (src/backend/core.js)

Values are injected by
Webpack—change values in
config directory if you want
to include your own

Initialize Firebase
with your credentials.

Export configured firebase
instance for use elsewhere

Figure 8.3 Setting up an authentication method with Firebase. Navigate to the Authentication section and pick
any of the social providers. Then follow the instructions for the social authenticator you picked and make sure
Firebase has access to the right credentials to authenticate with your chosen platform.
Licensed to Samir Mashlum <smashlum@gmail.com>

186 CHAPTER 8 More routing and integrating Firebase

C
wr
m

Fir
having to manage another username/login combination. I suggest picking GitHub
because you and most people who will see your app will likely have GitHub accounts,
but you’re completely free to set up one or more of the other platforms to use. I’ll use
GitHub in our examples for simplicity. Once you’ve decided, click the provider and
follow the instructions to get the platform set up.

 Once you’ve set up the platform of your choice for use with Firebase, you’ll need
to set up some more code that will let you interact with firebase to perform user
login. Firebase comes with built-in tools that let you authenticate with a variety of
social platforms. I’ll be using GitHub, as mentioned, but you’re free to use which-
ever provider or providers you set up on your own. They all follow the same pattern
(for example, create a provider object, set up the scope, and so on). You can find
more about the authentication services offered by Firebase at https://firebase.google
.com/docs/auth/. The next listing shows setting up the authentication utilities in
src/backend/auth.js. You’ll create functions for getting the user and token and log-
ging in and out.

import { firebase } from './core';

const github = new firebase.auth.GithubAuthProvider();
github.addScope('user:email');

export function logUserOut() {
 return firebase.auth().signOut();
}

export function loginWithGithub() {
 return firebase.auth().signInWithPopup(github);
}

export function getFirebaseUser() {
 return new Promise(resolve => firebase.auth().onAuthStateChanged(user =>

resolve(user)));
}

export function getFirebaseToken() {
 const currentUser = firebase.auth().currentUser;
 if (!currentUser) {
 return Promise.resolve(null);
 }
 return currentUser.getIdToken(true);
}

Now that we have everything set up and ready, we can create a new component that
will handle login. Create a new file called src/pages/Login.js. Here, we’ll create a
straightforward component that tells your user how they can log in to Letter Social.
The following listing shows the Login page component.

Listing 8.12 Setting up authentication tools (src/backend/auth.js)

Import Firebase library
you’ve recently configured

Use Firebase to set up
GitHub authentication
provider

Create function that wraps
Firebase logout method

Create simple loginWith-
Github utility that returns
a Firebase authentication
action Promise

reate
apper
ethod
to get
ebase

user
You’ll need the token
later, so create a method
that helps you get it.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://firebase.google.com/docs/auth/
https://firebase.google.com/docs/auth/
https://firebase.google.com/docs/auth/

187Integrating Firebase
import React, { Component } from 'react';

import { history } from '../history';
import { loginWithGithub } from '../backend/auth';
import Welcome from '../components/welcome/Welcome';

export class Login extends Component {
 constructor(props) {
 super(props);
 this.login = this.login.bind(this);
 }
 login() {
 loginWithGithub().then(() => {
 history.push('/');
 });
 }
 render() {
 return (
 <div className="login">
 <div className="welcome-container">
 <Welcome />
 </div>
 <div className="providers">
 <button onClick={this.login}>
 <i className={`fa fa-github`} /> log in with Github
 </button>
 </div>
 </div>
);
 }
}

export default Login;

8.2.1 Ensuring a user is logged in

Your last task is to make sure an unauthenticated user is redirected to the login page.
For the current state of your app, it would make little difference whether a user is
logged in or out because they can only see dummy data that isn’t related to anything
in real life (they’ll just be happy to see all the random Star Wars quotes and avatars).
But in a production situation, it’s likely that a user absolutely needs to only be able to
see data if they have an account and are logged in. This is a basic requirement of
almost all web applications, and though we won’t focus on security here, we do need
to make sure a user can only see the social network if they’re logged in.

 There are different approaches to making this functionality possible. In more
robust and developed tools like React Router, there are hooks you can execute when a
particular route is navigated to—you can check to see if the user is logged in and can
proceed. This is only one approach, and you don’t have hooks functionality set up in
your Router component, but you can add some logic to your main file (index.js) to

Listing 8.13 The Login component (src/pages/Login.js)

Import libraries
you’ll need for
this component

Create and bind
login method

Use wrapper method
you created earlier to
log in with GitHub

Render Welcome component
(included in source code) or
whatever else you’d like

Ensure login method
will be called when

user clicks login button
Licensed to Samir Mashlum <smashlum@gmail.com>

188 CHAPTER 8 More routing and integrating Firebase
check for a user’s presence and determine where they should be routed. You’ll transi-
tion to using React Router and these hooks in later chapters. You also need to add the
Login component to your Router.

When a user signs in, you want to make sure that they also get recorded with your API.
We’re using Firebase for authentication, but you still want to store the user’s informa-
tion so they can create posts and comments and can like posts (you’ll add comment
and like functionality in later chapters). You’ll need to account for whether a user
exists and, if they don’t, create them as a user in your system. The authentication logic
you’ll build out will take all this into account. We’ll also slightly modify the browser
history listener function so it can redirect people based on whether or not they’re
logged in.

 The following listing shows how to add this logic and modify the history listener in
the main index file for your app (src/index.js).

export const renderApp = (state, callback = () => {}) => {
 render(
 <Router {...state}>
 <Route path="" component={App}>
 <Route path="/" component={Home} />
 <Route path="/posts/:postId" component={SinglePost} />
 <Route path="/login" component={Login} />
 <Route path="*" component={NotFound} />
 </Route>
 </Router>,
 document.getElementById('app'),
 callback
);
};

let state = {
 location: window.location.pathname,
 user: {
 authenticated: false,
 profilePicture: null,
 id: null,
 name: null,
 token: null
 }
};

Exercise 8.3 Firebase alternatives
We’re using Firebase in this book as a “back-end as a service.” That dramatically sim-
plifies things for learning purposes, but it’s not necessarily how you might approach
things on a team. Without having to go into depth, what do you think would take the
place of Firebase for your application?

Listing 8.14 Adding the Login container to the Router (src/index.js)

Add Login page
to your routes

Keep track of user and
update state object you
created accordingly
Licensed to Samir Mashlum <smashlum@gmail.com>

189Integrating Firebase

Tr
u

va
renderApp(state);

history.listen(location => {
 const user = firebase.auth().currentUser;
 state = Object.assign({}, state, {
 location: user ? location.pathname : '/login'
 });
 renderApp(state);
});

firebase.auth().onAuthStateChanged(async user => {
 if (!user) {
 state = {
 location: state.location,
 user: {
 authenticated: false
 }
 };
 return renderApp(state, () => {
 history.push('/login');
 });
 }
 const token = await getFirebaseToken();
 const res = await API.loadUser(user.uid);
 let renderUser;
 if (res.status === 404) {
 const userPayload = {
 name: user.displayName,
 profilePicture: user.photoURL,
 id: user.uid
 };
 renderUser = await API.createUser(userPayload).then(res => res.json());
 } else {
 renderUser = await res.json();
 }
 history.push('/');
 state = Object.assign({}, state, {
 user: {
 name: renderUser.name,
 id: renderUser.id,
 profilePicture: renderUser.profilePicture,
 authenticated: true
 },
 token
 });
 renderApp(state);
});

Now your users can sign in and have an account created for them on the fly. You
should update the navbar so they know how to do that and so they can see the
logout option, too. You may remember that you were passing in a user prop to the
Navbar component earlier in the chapter even though it didn’t exist yet. Now that it
does, the Navbar component can conditionally show different views based on their

In your history listener,
check to see first if
there’s a Firebase user

Use async function to respond
to Firebase user state changing

If no user, update
state and render
app appropriately

If there is a user, get their
token using await and
Firebase utility we created

y to load
ser from
our API

Declare
a user

riable to
assign to

If no user, you need
to sign them up

Create user payload your
API will understand

Send
request to

API and
use the

response If user already exists, use
them for rendering app

Push user to
the main page

Update
app

state

Render app
with new state
Licensed to Samir Mashlum <smashlum@gmail.com>

190 CHAPTER 8 More routing and integrating Firebase
authentication state. The following listing shows how to make these changes to the
Navbar component.

import React from 'react';
import PropTypes from 'prop-types';

import Link from '../router/Link';
import Logo from './logo';
import { logUserOut } from '../../backend/auth';

 export const Navigation = ({ user }) => (
 <nav className="navbar">
 <Logo />
 {user.authenticated ? (

 {user.name}
 <img width={40} className="img-circle"

src={user.profilePicture} alt={user.name} />
 logUserOut()}>
 <i className="fa fa-sign-out" />

) : (
 <Link to="/login">
 <button type="button">Log in or sign up</button>
 </Link>
)}
 </nav>
);

Navigation.propTypes = {
 user: PropTypes.shape({
 name: PropTypes.string,
 authenticated: PropTypes.bool,
 profilePicture: PropTypes.string
 }).isRequired
};

export default Navigation;

8.3 Summary
In this chapter, you started using the Router component you built, added a few more
routing-related components to your application, did some refactoring, and added
user authentication with Firebase. Here are some things to take away:

 Firebase is a “back-end-as-a-service” tool that lets you authenticate users, store
data, and more. It can get you pretty far without having to do any back-end
development and is a great place to start for many hobby projects.

Listing 8.15 Updating the Navbar component with (src/components/nav/navbar.js)

If user is authenticated,
show info about their
profile (name, profile
picture)

Give user option
to log out (using
Firebase utility we
created earlier)

If they’re not
logged in,

show a
helpful link.

Declare
proptypes

Export component
for use
Licensed to Samir Mashlum <smashlum@gmail.com>

191Summary
 You can integrate browser history APIs with your router. This also enables you
to create Link components that don’t require a full page reload in lieu of regu-
lar anchor tags.

 Firebase can handle authentication and user session data for you. We’ll explore
more advanced methods of handling changing state like this in later chapters
when we look at Flux, Redux, and even using Firebase on the server for server-
side rendering.

Testing is an incredibly important part of developing good software. In the next chap-
ter, we’ll look at testing your React component using Jest and Enzyme.
Licensed to Samir Mashlum <smashlum@gmail.com>

Testing React components
In the last chapter, you added some significant functionality to your application. It
now has routing and user state, and you’ve broken it up into smaller pieces. You
even added some basic authentication so users could log in using their GitHub pro-
file. Your application is starting to look more robust, even if it’s probably not going
to worry anyone at Facebook or Twitter. You can do lots more with React than you
could when we first started. But as we’ve focused on learning the basics, we’ve omit-
ted an important part of the development process: testing.

 I didn’t cover testing from the start to spare you the mental overload of learning
React and testing fundamentals at the same time. But that doesn’t mean it’s an
unimportant part of either learning or web development. In this chapter, we’ll
focus on testing because it’s a fundamental part of developing high-quality software
solutions. Instead of demonstrating tests for every single one of your components,
though, we’ll go through a representative sample so you’ll understand the import-
ant principles at work and be able to write your own tests.

This chapter covers
 Testing front-end applications

 Setting up testing for React

 Testing React components

 Setting up test coverage
192

Licensed to Samir Mashlum <smashlum@gmail.com>

193
 By the end of this chapter, you’ll understand some of the basic principles of testing
web applications. You’ll also have set up tests and a test runner, worked with Jest,
Enzyme, and the React test renderer, and learned to use and understand test coverage
tools. You’ll be equipped to start testing your applications, which will add another
level of confidence to your React development skills.

Testing in software development is the process of validating assumptions. For exam-
ple, say you’re building an application (like Medium, Ghost, or WordPress) that lets
users write and create blog posts. Users pay a monthly fee and get the hosting and the
tools to run their own blog. When creating the front-end of the application, there are
several key things it must do (among others), including correctly displaying those
posts and letting users edit them.

 How can you be sure your app is doing what it needs to do? You can try it out
yourself and see if it works. Click around, edit things, and use the application in as
many ways as you can think of. This manual process works reasonably well and is a
first line of defense against bugs and regressions. You should always take care to
inspect what you’re working on, but you can’t test things quickly and or in a per-
fectly consistent manner.

 Also, as your application grows, the number of situations and features you’ll need
to manually test increases at an incredible rate. I’ve worked on applications with thou-
sands of tests, but there are many applications where that number would be easily

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 7 and 8 (if you followed along and built out the examples yourself)
or check out the chapter-specific branch (chapter-9).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-7 corresponds to the code as it will be at the end of this chap-
ter). You can execute one of the following terminal commands in the directory of your
choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-9

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

194 CHAPTER 9 Testing React components
dwarfed. The React library itself has 4,855 tests at the time of writing. There’s no
chance someone wanting to test React would be able to validate by hand the assump-
tions involved in all those tests.

 Fortunately, instead of testing everything by hand, you can use software to test soft-
ware. Computers excel where we fail in at least two important areas: speed and consis-
tency. We can use software to test our code in ways that we never could by hand, even
with an army of people trying things out in every possible way. You may be thinking,
“My project is small and really straightforward—there’s not much that could go
wrong.” But even as great as your coding skills may be, bugs are inevitable. Your apps
will break and work in unpredictable ways when you change things (and sometimes
even when you don’t).

 But instead of despairing about the inevitability of bugs, we can accept that they’ll
happen and take steps to minimize their impact and frequency. That’s where testing
comes in. You may have some general idea about what testing is, but to get started
we’ll need to explore some different types of testing. Bear in mind that the world of
testing is huge, and I can’t cover even close to everything here. I won’t be doing any
in-depth coverage of testing as a domain. I also won’t be deeply covering several types
of testing, including integration testing, regression testing, testing automation, and
others. But by the end of the chapter, you should be familiar enough to get started
testing React components in a few different ways.

9.1 Types of testing
As I said, testing software is the process of using software to validate your assumptions.
Because you’re using software to test software, you’ll ultimately be using the same
primitives you use when building software: Booleans, numbers, strings, functions,
objects, and the like. It’s important to remember that there’s no magic here—just
more code.

 There are different types of testing, and you’ll use a few to test your React applica-
tion. They encompass different aspects of an application, and when used together and
in the right proportions, they should give you a significant degree of confidence in
your application. Different types of tests address different parts and scopes of an appli-
cation. A well-tested app will test the individual units of functionality that make up the
basic parts of the app. It will also test the collections of these units of functionality
and, at the highest level, the points at which everything comes together (such as the
user interface).

 Here are a few types of testing:

 Unit—Unit tests focus on individual units of functionality. For example, say you
have a utility method for fetching new posts from the server. A unit test will
focus only on that one function. It doesn’t care about anything else. Like com-
ponents, these tests allow for refactoring and promote modularity.

 Service—Service tests focus on bundles of functionality. This part of the “testing
spectrum” can include a variety of granularities and focuses. The point, though,
Licensed to Samir Mashlum <smashlum@gmail.com>

195Types of testing
is that you’re testing things that aren’t at the highest level (see integration tests,
next) or the lowest levels of functionality. An example of a service test might be
something like a tool that uses several units of functionality but is not itself at
the level of an integration test.

 Integration—Integration tests focus on an even higher level of testing: the inte-
gration of various parts of an application. They test the way that services and
lower-level functionality come together. Typically, these tests test an application
through its user interface, not through the individual code behind the user
interface. These tests may simulate clicks, user input, and other interactions
that drive the application.

You may be wondering what these tests will look like in code; we’ll get into that shortly,
but first we need to talk about how these tests work together in the overall testing
approach. If you’ve done testing before, you may have heard of the testing pyramid.
This pyramid, illustrated in figure 9.1, generally refers to the proportion of different
types of tests you should write. In this chapter, you’ll only be writing unit tests for your
components.

9.1.1 Why test?

There are some software development paradigms where testing is a “first-class citizen”
of the entire development process. That means testing is important, is considered at
the beginning and throughout the development process, and usually plays a role in
determining when something is considered complete. Granted, the consensus is that
testing is a good thing for software development, but there are certain paradigms

Service

Unit

Integration

- individual units of functionality

- numerous

- more “fundamental”

- promote modularity

- inexpensive to write

- short run-time

- collections of functionality

- more brittle than unit tests

- inexpensive to write

- shorter run-time

- UI

- complex

- brittle

- expensive

The Testing Pyramid

Figure 9.1 The testing pyramid is a way of guiding how many and which types of tests you
write as you test your applications. Notice that certain types of tests take longer and are thus
more “expensive” in terms of time (and therefore also financial cost).
Licensed to Samir Mashlum <smashlum@gmail.com>

196 CHAPTER 9 Testing React components
where it takes on a central role. For example, you may have heard of test-driven develop-
ment (TDD). When practicing TDD, as its name suggests, the very process of writing
software is driven by testing. When working, a developer will usually write a failing test
(a test that makes assertions that haven’t yet been met), write just enough code to get
it to pass, refactor any duplication, and then move on to the next feature, repeating
the process.

 Although you don’t have to be a strict practitioner of TDD to write great software,
consider some of the benefits before moving on. If you’re already wise to the upsides
of testing, feel free to move on to the next section where we get started with testing in
React. But I want to ask an important question: why do we test at all?

 First and foremost, we want to write software that works. There are so many inter-
connected parts of modern software that it would be foolish to assume that every part
of the software stack will reliably work all the time. Things will break, and it’s better
to assume things will fail than to assume they’ll work all the time. We can do our
part to minimize the ways that our own software can break by testing our assump-
tions. Testing forces you to visit (or revisit) your assumptions about your software.
You walk it through the different cases it can handle and ensure that it handles
them all appropriately.

 Secondly, the process of testing your software tends to help you write better
code. Going through the process of writing out your tests encourages you to think
through what your code does, especially if you do it beforehand (as in TDD). Though
it’s far less preferable, you can write tests after the fact, too, which is better than hav-
ing no tests at all. Going through the process of testing will help you better under-
stand the code you write and will validate assumptions you and others make about
how things work.

 Third, integrating testing into your software development workflow means you can
release code more frequently. You may have heard people in the tech industry men-
tion “shipping often” before. That usually means releasing software incrementally and
frequently. In the past, companies tended to only release software after an extensive
process and only several times a year (or at least relatively infrequently).

 Thinking has changed today, and people have realized that incremental iteration
leads to generally better results for software: you can get feedback from users and oth-
ers on it sooner, experiment more easily, and more. The confidence you can have in a
well-tested app is a key part of this process. Using continuous integration (CI) or continu-
ous deployment tools like Circle CI (https://circleci.com), Travis CI (https://travis-ci.org),
or others, you can make testing part of the deployment process for your software. The
idea is this: if the tests pass, it gets deployed. These tools usually run your tests in a pris-
tine environment and, if they pass, send the code off to whatever system runs your
application. Figure 9.2 shows the process that the Letters Social app uses to get
tested and deployed.

 Finally, tests also help you when going back and refactoring your code or moving it
around. Say, for example, your requirements change, and you need to move some
Licensed to Samir Mashlum <smashlum@gmail.com>

https://circleci.com
https://travis-ci.org

197Testing React components with Jest, Enzyme, and React-test-renderer
components around. If you’ve kept your components modular and they have good
tests, moving them should be easy. Untested code can be moved around, of course,
but you have much less of a firm idea of whether it broke other parts of your system
than you do when your code is tested.

 There’s more to be said about the benefits and theory of testing in software, but it’s
beyond the scope of this book. If you want to learn more, I recommend checking out
The Art of Unit Testing, Second Edition (Manning Publications, 2013) by Roy Osherove
and Growing Object-Oriented Software: Guided by Tests by Nat Pryce and Steve Freeman
(Addison-Wesley, 2009).

9.2 Testing React components with Jest, Enzyme, and
React-test-renderer
Testing software is just more software, made from the same primitives and basic ele-
ments that your normal programs are, though people have developed special tools to
aid in the testing process. You could try to create the necessary tools to run all your
tests, but the open source community has already put an incredible amount of work
into a huge number of powerful tools—so you’ll use those instead.

 You’ll need a few types of libraries to test your React applications:

 Test runner—You’ll need something to run your tests. Most tests could be exe-
cuted as regular JavaScript files, but you’ll want to take advantage of some of the
added features of test runners, such as running more than one test at a time
and reporting back error or success information in a nicer way.
For this book, you’ll use Jest for most aspects of your testing. Jest is a testing
library developed by engineers at Facebook. Some popular alternatives with fewer
features built in that you might consider include Mocha (https://mochajs.org)
and Jasmine (https://jasmine.github.io). Jest is often used for testing React
apps, but adapters are being created for other frameworks, too. The source
code includes a setup file (test/setup.js) that invokes the adapter for React.

Code is stored

Receives code from `git push`

Lets interested services know

Runs code in test environment

Runs all tests for every single commit

If tests pass, deploy to Heroku

If they fail, let me know and no deploy

Hosts and runs

application code

Figure 9.2 The Letters Social deploy pipeline. A CI build process is triggered when I (or anyone who
contributes to the repository) push code. The CI provider (Circle, in this case) uses Docker containers
to run your tests quickly and reliably. If the tests pass, the code will be deployed to whatever service
you use to run your code. In our case, that’s Now.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://mochajs.org
https://jasmine.github.io

198 CHAPTER 9 Testing React components
 Test doubles—When writing tests, you want to avoid tying your tests to other frag-
ile or unpredictable parts of your infrastructure as much as possible; other tools
you rely on should be mocked out—replaced with a “fake” function that behaves
in an expected way. Testing this way promotes a focus on the code under test
and modularity because your tests aren’t tied to the exact structure of your code
at a given time. You’ll use Jest for mocking and test doubles, but there are other
libraries that also do this, such as Sinon (http://sinonjs.org).

 Assertion libraries—You can use JavaScript to make assertions about your code
(for example, does X equal Y?), but there are plenty of edge cases that you’ll
need to account for. Developers have created solutions to make writing asser-
tions about your code easier. Jest comes with assertion methods built in, so
you’ll rely on those.

 Environment helpers—Running tests on code that needs to run in a browser envi-
ronment places slightly different demands on you. The browser environment is
unique and includes things like the DOM, user events, and other normal parts
of web applications. These testing tools will help ensure that you can success-
fully emulate a browser environment. You’ll be using Enzyme and the React test
renderer to aid in testing your React components. Enzyme makes testing React
components easier. It provides a robust API that lets you query for different
types of components and HTML elements, set and get props of components,
inspect and set component state, and more. The React test renderer does simi-
lar things and can also generate snapshots of your components. We won’t go
into every aspect of Enzyme or the React test renderer APIs, but feel free to
explore more at http://airbnb.io/enzyme and www.npmjs.com/package/react-
test-renderer.

 Framework-specific libraries—There are libraries specifically made for React (or
other frameworks) that make writing tests for a particular framework easier.
These abstractions are usually developed to aid in the testing of a library or
framework and handle setting up anything needed by the framework. In React,
almost everything is “just JavaScript,” so there’s still little “magic” to be seen
even in these tools.

 Coverage tools—Thanks to the deterministic nature of code, people have figured
out ways to determine which parts of your code are “covered” by tests. That’s
great because you can get a metric that serves as a guideline in determining
how well tested your code is. It’s no substitute for logic and basic analysis (100%
code coverage doesn’t mean you can’t have bugs), but it can guide how you test
your code. You’ll use Jest’s built-in coverage tool, which utilizes a popular tool
called Istanbul (https://github.com/gotwarlost/istanbul).

Next, you’ll get started by installing the tools you’ll be using for your tests. If you
cloned the book repository from GitHub, these tools should already be installed.
Make sure to run npm install again when changing chapters to make sure you have
all the libraries for that chapter.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://sinonjs.org
http://airbnb.io/enzyme
https://github.com/gotwarlost/istanbul
http://www.npmjs.com/package/react-test-renderer
http://www.npmjs.com/package/react-test-renderer
http://www.npmjs.com/package/react-test-renderer

199Writing your first tests
9.3 Writing your first tests
Once you’ve installed the tools you’ll need, you’re ready to start writing some tests. In
this section, you’re going to set up commands to run your tests and start testing some
basic React components. You’ll make assertions about your components and look at
ways to test rendered output of components.

 But before diving in, I should note a few things about Jest and where the code for
your tests will run. Jest can be configured to run in different environments depending
on the sort of tests you’re writing. If you’re writing tests for React applications that run
in the browser, you’ll want to tell Jest that so it can provide the virtual browser environ-
ment you need to properly emulate a real browser. Jest uses another library, jsdom, to
accomplish that. If you’re writing tests for node.js applications, you don’t want the
extra memory and baggage of the jsdom environment—you just want to test your
server-side code. Jest is configured to run browser-oriented tests by default, so you
don’t need to override anything.

9.3.1 Getting started with Jest

To run your tests, as mentioned, you’ll use Jest. You can run Jest from the command
line, and it will execute your tests, so you’re going to add a script to your package.json
file so you can run it. The next listing shows how to add the custom script to your
package.json. If you cloned the repository from GitHub, this script should already
be available.

{
 //...
 "scripts": {

Exercise 9.1 Reviewing types of testing
There are a few different types of testing. To review, try matching the type with the
description of the type of testing.

1 Unit
2 Service
3 Integration

__ Complex, often brittle tests that take a long time to write and run. They test the
way different systems work together at a high level. There are often fewer of these
types of tests than others.

__ Less complex tests that test the way a particular system works, but without inter-
acting with other systems.

__ Low-level, focused tests that focus on testing small bits of functionality. These
should be the most numerous tests in a suite.

Listing 9.1 Setting up a custom npm script (package.json)
Licensed to Samir Mashlum <smashlum@gmail.com>

200 CHAPTER 9 Testing React components
 //...
 "test": "jest --coverage",
 "test:w": "jest –watch --coverage",
 "jest": {
 "testEnvironment": "jsdom",
 "setupFiles": ["raf/polyfill", "./test/setup.js"]
 },
 "repository": {
 "type": "git",
 "url": "git+ssh://git@github.com/react-in-action/letters-social.git"
 },
 "author": "Mark Thomas <hello@ifelse.io>",
// ...

Now that you have a command in place to run your tests (npm test), try it out. You
shouldn’t get any helpful info back yet because there are no tests to run (Jest should
warn you accordingly in your terminal). You can also run npm run test:w to run Jest in
watch mode. That’s helpful when you don’t want to manually run your tests every
time. Jest’s immersive watch mode makes it especially useful to work with—it will do
some work to run only tests that relate to changed files. That’s helpful if you have a
large test suite and don’t want to run every test every time. You can also provide regex
patterns or search by text string to run only particular tests.

Tooling matters
Testing libraries and even testing as a whole sometimes get last consideration
when it comes to evaluating libraries. That’s unfortunate for at least two reasons.
First, unusable testing libraries can make it more difficult for teams to buy into test-
ing their code, potentially causing them to forgo it altogether. That, in turn, gener-
ally results in code that’s harder to maintain, less stable, and more difficult to work
with overall.

Another downside is that if you or your team spends a lot of time writing tests, your
tools can have a substantial impact on your time. That can quickly translate to
money lost by the business because its engineers are taking longer to do the work
they need to do. I’ve seen both results firsthand. If testing wasn’t considered a top
priority from the beginning, it became more and more difficult over time and was
treated as a “one day” kind of thing. The result was code that could be more diffi-
cult to change with confidence because assumptions about functionality were no
longer backed by tests.

Another reason it pays to treat your testing tools as important is that if you do test
your code, a significant time investment will be involved. If you have flaky tests or a
testing setup that takes a long time to run, you can end up losing large chunks of
time on a daily basis. There’s no magic solution to this problem, but treating your
testing tools and setup as first-class issues will often help you greatly in the long run.

Run your tests and
output test coverage.

Run the tests in
watch mode.

Configure Jest; some testing helpers
and stubs are included with the
sample code.
Licensed to Samir Mashlum <smashlum@gmail.com>

201Writing your first tests
9.3.2 Testing a stateless functional component

Time to get started writing some tests. First, we’ll focus on a relatively straightforward
example of testing a component. You’re going to test the Content component. It
doesn’t do much; it just handles rendering a paragraph with content inside of it. The
next listing shows the structure of the component.

import React, { PropTypes } from 'react';

const Content = (props) => {
 const { post } = props;
 return (
 <p className="content">
 {post.content}
 </p>
);
};

Content.propTypes = {
 post: PropTypes.object,
};
export default Content;

One of the first things you can do when starting to write tests is to think about what
assumptions you want to validate. That is, once all the tests pass, they should confirm
certain things to you and act as a sort of guarantee. In fact, one of my favorite things
about tests is that I rely on them to fail when I’m making changes to a particular fea-
ture or part of a system. They back up my assumption that the changes I made repre-
sent a change to the application or system. This makes me much more comfortable
when writing my code because on the one hand I have a record of how things were
supposed to work beforehand, and on the other because I can get a sense of how my
changes affect the application as a whole.

 Let’s look at your component and think about how you might test it. There are a
few assumptions you want to validate about this component. For one, it needs to ren-
der some content that got passed in as a prop. It also needs to assign a class name to a
paragraph element. Aside from that, there’s not much to the component that you
need to focus on. These things should be enough to get you started writing a test.

 You may notice that “React works properly” isn’t one of the things you’re trying to
test here. We also excluded things like “A function can be executed,” “The JSX
transpiler will work,” and some other fundamental assumptions about the technolo-
gies you’re using. These things are important to test, but the tests you’re writing could
never adequately or accurately validate these assumption. These other projects are
responsible for writing their own tests and ensuring that they work. This underscores
the importance of choosing software that’s reliable, well-tested, and kept up-to-date. If
you have serious doubts about React’s reliability, those doubts may be unfounded.

Listing 9.2 Content component (src/components/post/Content.test.js)

Component takes in post props
object and uses content property of
post to render paragraph element

It assigns content
class to paragraph

Inner content of
paragraph element is
content from post

Component is exported—important
because you’ll need to import
component in your tests
Licensed to Samir Mashlum <smashlum@gmail.com>

202 CHAPTER 9 Testing React components
Although not perfect, React is used on some of the most popular web apps in the world,
including Facebook.com and Netflix.com, to name two. There are certainly bugs, but
it’s highly unlikely that you’d encounter them in our straightforward situation.

 You know a few things about the component you want to validate, but you could
have also gone about this the other way if you were starting from scratch and had
written the test first. You may have thought to yourself, “We need a component that
displays content, has a certain type, and has a certain class name so our CSS works.”
You may have then proceeded to write the test that would validate these conditions.
You’re going about it the other way due to how you’ve been learning about React,
but you can see how starting with a test can make things easy: you start out by having
to think through and plan your component. As mentioned, test-driven development
(TDD) is a school of thought that makes writing tests first a central part of software
development.

 Let’s see how to test this component. To do that, you’ll need to write a test suite,
which is a group of tests. Individual tests make assertions (statements about code that
can be true or false) to validate assumptions. For example, a test for your component
would assert that the right class name is set up. If any of your assertions fail, the test
fails. That’s how you know something has inadvertently changed or no longer works in
your app. Listing 9.3 shows how to set up the skeleton of the test.

 Notice that the file for the component ends with .test.js. That’s a convention that
you can choose to follow if you like. Jest will look for files that end in .spec.js or .test.js
and run those tests by default. If you choose to follow a different convention, you’ll
need to explicitly tell Jest about which files you want to run by adding them to the
command line invocation (jest --watch ./my.cool.test.file.js, for example).
You’ll follow the .test.js convention for all your tests.

 It’s also good to note where the test files are placed. Some people choose to place
all their tests in a “mirror” directory called test, usually located in the root directory of
their project. For every file that gets tested, they’ll create a corresponding file in the
test directory. That’s a fine way to structure things, but you can also locate your test
files right next to their source files. You’ll go with this method, but either way is per-
fectly fine.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import { Content } from './Content';

describe('<Content/>', () => {
 test('should render correctly', () => {

 });
});

Listing 9.3 Test skeleton for Content component (src/components/post/Content.test.js)

Import React.
Import related
helper methods

Import component
to be tested

Jest uses Jasmine-style
(https://jasmine.github.io/)
methods like describe to
group tests.

An actual test—the it
function is also provided

globally by jest
Licensed to Samir Mashlum <smashlum@gmail.com>

http://Netflix.com
https://jasmine.github.io/

203Writing your first tests
You may have noticed that there’s nothing special about the describe functions so far.
They’re primarily for organization and for ensuring that you can split your tests into the
appropriate chunks to test different parts of your code. It may not seem like a huge
need for such a small file, but I’ve worked with test files that are 2,000–3,000 lines long
(or more), and I can speak from experience: readable tests help make good tests.

Jest will look for files to test and then execute these different describe and it func-
tions, calling the callback functions you’ve provided to them. But what do you need
to put inside them? You need to set up assertions. To do that, you need something to
assert on. This is where Enzyme comes in; it lets you create a testable version of your
component that you can inspect and make assertions about. You’ll use Enzyme’s
shallow rendering, which will create a lightweight version of your component that
doesn’t perform full mounting or insertion into the DOM. You also need to provide
some mock (fake) data for the component to use. The next listing shows how to add
the test version of the component to your test suite. Before you start writing your
tests, make sure to run the npm run test:w command in your terminal to start the
test runner.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import { Content } from './Content';

describe('<Content/>', () => {
 describe('render methods', () => {
 it('should render correctly', () => {
 const mockPost = {
 content: 'I am learning to test React components',
 };

Write clean tests!
Have you ever read test code that hasn’t gotten the same treatment as the code
that it’s testing? I’ve had this happen to me more than once. It can be confusing or
even frustrating to read through test code that isn’t clean. Tests are just more code,
so they still need to be clean and readable, right? I’ve already mentioned in this
chapter that testing can sometimes take second priority to writing application code.
Test code can be treated as a task that has to be done or even a barrier between
you and the application code, and so standards are lowered. This tendency can be
easy to slip into, but the reality is that poorly written tests can be as bad as poorly
written application code. Tests should serve as another form of documentation for
your code, and one that still has to be read by developers. Remember that test code
should still be clean code.

Listing 9.4 Shallow rendering (src/components/post/Content.test.js)

Create dummy
post object that
component can use
Licensed to Samir Mashlum <smashlum@gmail.com>

204 CHAPTER 9 Testing React components

 const wrapper = shallow(<Content post={mockPost} />);
 });
 });
});

You now have a test component set up that you can make assertions about. To do this,
you’ll use the built-in expect() function from Jest. If you were using a different
assertion library, you might use something else. Remember from earlier that these
assertion libraries are for making assertions easier. For example, checking whether an
object is deeply equal (meaning equal in every one of its properties) can be an involved
task. When writing your tests, you shouldn’t be focusing on implementing tons of new
functionality just to write them—you should be focusing on the code under test.
Assertion helpers and open source libraries make that easier.

 To test the component at hand, you want to make a few assertions we mused about
earlier: class name, inner content, and element type. You’ll also create a snapshot test
using the React test renderer. Snapshot testing is a feature of Jest that allows you to test
the render output of your components in a unique way. Snapshot testing is closely
related to visual regression testing, a process where the visual output of an application
can be compared and checked for differences.

 If a difference in images is found, you know that your test failed and needs adjust-
ing or at least that the output snapshot needs to be updated. Rather than images, Jest
will create JSON outputs for tests and store them in specially named directories.
These should be added to version control along with all your other code. The follow-
ing listing shows how to use Jest, Enzyme, and the React test renderer to make those
assertions.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import Content from '../../../src/components/post/Content';

describe('<Content/>', () => {
 test('should render correctly', () => {
 const mockPost = {
 content: 'I am learning to test React components'
 };
 const wrapper = shallow(<Content post={mockPost} />);
 expect(wrapper.find('p').length).toBe(1);
 expect(wrapper.find('p.content').length).toBe(1);
 expect(wrapper.find('.content').text()).toBe(mockPost.content);
 expect(wrapper.find('p').text()).toBe(mockPost.content);
 });

Listing 9.5 Making assertions (src/components/post/Content.test.js)

Perform shallow rendering of
component and save returned

wrapper for later use

Import enzyme and
react-test-renderer.

Import
component
you want
to test

Use Jasmine-style describe function
to group tests together

Create
mock
post

Use Enzyme’s
shallow method
to render
component
Licensed to Samir Mashlum <smashlum@gmail.com>

205Writing your first tests
 test('snapshot', () => {
 const mockPost = {
 content: 'I am learning to test React components'
 };
 const component = renderer.create(<Content post={mockPost} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
});

If your test runner is running, you should see a passing result from Jest. The Jest com-
mand-line tools have greatly improved since the test runner came out, and you should
be able to see important information about your tests in the terminal.

9.3.3 Testing the CreatePost component without Enzyme

Now that you have your first test working, you can move on to testing more complex
components. For the most part, testing React components should be straightforward.
If you find yourself creating a component that has tons of functionality built into it and
subsequently huge tests associated with it, you may want to consider breaking it into
several components (although that’s not always possible).

 The next component you want to test, the CreatePost component, has more
functionality than the Content component did, and your tests will need to address
this added functionality. Listing 9.6 shows the CreatePost component so you can
review it before writing out tests for it. The CreatePost component is used by the
Home component to trigger the submission of new posts. It renders out a textarea
that gets updated when the user types in it and a button that submits the form with
data when a user clicks it. When the user clicks, it invokes a callback function passed
by a parent component. You can test all these assumptions and make sure that
things work as you expect.

import PropTypes from 'prop-types';
import React from 'react';
import Filter from 'bad-words';
import classnames from 'classnames';
import DisplayMap from '../map/DisplayMap';
import LocationTypeAhead from '../map/LocationTypeAhead';
class CreatePost extends React.Component {
 static propTypes = {
 onSubmit: PropTypes.func.isRequired
 };
 constructor(props) {
 super(props);
 this.initialState = {
 content: '',
 valid: false,
 showLocationPicker: false,

Listing 9.6 CreatePost component (src/components/post/Create.js)

Create
snapshot

test using
Jest and

react-test-
renderer
Licensed to Samir Mashlum <smashlum@gmail.com>

206 CHAPTER 9 Testing React components
 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 },
 locationSelected: false
 };
 this.state = this.initialState;
 this.filter = new Filter();
 this.handlePostChange = this.handlePostChange.bind(this);
 this.handleRemoveLocation = this.handleRemoveLocation.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handleToggleLocation = this.handleToggleLocation.bind(this);
 this.onLocationSelect = this.onLocationSelect.bind(this);
 this.onLocationUpdate = this.onLocationUpdate.bind(this);
 this.renderLocationControls = this.renderLocationControls.bind(this);
 }
 handlePostChange(event) {
 const content = this.filter.clean(event.target.value);
 this.setState(() => {
 return {
 content,
 valid: content.length <= 300
 };
 });
 }
 handleRemoveLocation() {
 this.setState(() => ({
 locationSelected: false,
 location: this.initialState.location
 }));
 }
 handleSubmit(event) {
 event.preventDefault();
 if (!this.state.valid) {
 return;
 }
 const newPost = {
 content: this.state.content
 };
 if (this.state.locationSelected) {
 newPost.location = this.state.location;
 }
 this.props.onSubmit(newPost);
 this.setState(() => ({
 content: '',
 valid: false,
 showLocationPicker: false,
 location: this.defaultLocation,
 locationSelected: false
 }));
 }
 onLocationUpdate(location) {
 this.setState(() => ({ location }));
 }
Licensed to Samir Mashlum <smashlum@gmail.com>

207Writing your first tests
 onLocationSelect(location) {
 this.setState(() => ({
 location,
 showLocationPicker: false,
 locationSelected: true
 }));
 }
 handleToggleLocation(event) {
 event.preventDefault();
 this.setState(state => ({ showLocationPicker:

!state.showLocationPicker }));
 }
 renderLocationControls() {
 return (
 <div className="controls">
 <button onClick={this.handleSubmit}>Post</button>
 {this.state.location && this.state.locationSelected ? (
 <button onClick={this.handleRemoveLocation}

className="open location-indicator">
 <i className="fa-location-arrow fa" />
 <small>{this.state.location.name}</small>
 </button>
) : (
 <button onClick={this.handleToggleLocation}

className="open">
 {this.state.showLocationPicker ? 'Cancel' : 'Add

location'}{' '}
 <i
 className={classnames(`fa`, {
 'fa-map-o': !this.state.showLocationPicker,
 'fa-times': this.state.showLocationPicker
 })}
 />
 </button>
)}
 </div>
);
 }
 render() {
 return (
 <div className="create-post">
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 {this.renderLocationControls()}
 <div
 className="location-picker"
 style={{ display: this.state.showLocationPicker ? 'block'

: 'none' }}
 >
 {!this.state.locationSelected && (
 <LocationTypeAhead
 onLocationSelect={this.onLocationSelect}
Licensed to Samir Mashlum <smashlum@gmail.com>

208 CHAPTER 9 Testing React components
 onLocationUpdate={this.onLocationUpdate}
 />
)}
 <DisplayMap
 displayOnly={false}
 location={this.state.location}
 onLocationSelect={this.onLocationSelect}
 onLocationUpdate={this.onLocationUpdate}
 />
 </div>
 </div>
);
 }
}

export default CreatePost;

This was a slightly more complicated component than you created in previous chap-
ters. With it you can create posts and add a location to those posts. In my experience,
testing larger and more complex components further highlights the importance of
clean, readable tests. If you can’t read or reason through your test file, how is a future-
you or another developer going to?

 Listing 9.7 shows a suggested skeleton of tests for the CreatePost component. You
don’t have enough methods to make it difficult to read through the tests, but if a com-
ponent had more to it, you might even add nested describe blocks to make it easier
to reason about. The functions in listing 9.7 will be executed by the test runner (Jest
in this case), and within those tests you can make your assertions. Most tests follow this
same sort of pattern. You import the code under test, mock out any dependencies to
isolate your tests to one unit of functionality (hence unit tests), and then a test runner
and assertion library will work together to run your tests.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('snapshot', () => {

 });
 test('handlePostChange', () => {

 });
 test('handleRemoveLocation', () => {

 });
 test('handleSubmit', () => {

Listing 9.7 Testing the CreatePost component (src/components/post/Create.test.js)

Using one describe call here, but
in larger test files you can have
many and even nest them

Create a test for
each method in your
component, including
a snapshot to ensure
it renders correctly
Licensed to Samir Mashlum <smashlum@gmail.com>

209Writing your first tests
 });
 test('onLocationUpdate', () => {

 });
 test('handleToggleLocation', () => {

 });
 test('onLocationSelect', () => {

 });
 test('renderLocationControls', () => {

 });
});

If you follow a consistent pattern of considering each part of your component that
needs to be tested, you’ll be more thorough in developing and testing your compo-
nents. Feel free to follow whatever structure makes the most sense to you—this is just
one that has been helpful for me and for teams I’ve been on. I’ve also found it helpful
to start writing tests by writing out the different describe and test blocks for a com-
ponent or module before writing any other tests. I find that I can more easily think
through the cases I want to cover (with an error, without an error, with a condition,
and so on) if I’m doing that all at once.

With this skeleton setup in place, you can begin testing the CreatePost component,
starting with the constructor. Remember, the constructor is where initial state gets set

What about other types of testing?
You may be wondering about testing such things as user flows, cross-browser test-
ing, and other types of testing I’m not covering here. These other sorts of testing will
generally be focused on by an engineer or engineering team dedicated to specialized
forms of testing. QA teams and SETs (software engineers in test) will generally have
a host of specialized tools that allow them to take your application and simulate all
the complicated flows that might exist.

These types of testing (integration testing) may involve the interaction of one or more
disparate systems. If you remember the testing pyramid from figure 9.1, these tests
can take a lot of time to write, are hard to maintain, and tend to cost a lot of money.
When you think of “testing front-end applications,” you may think these sorts of tests
are what would be involved. We’ve seen that this isn’t the case (most tests that non-
QA engineers write are unit or low-level integration tests). If you’re interested in learn-
ing more about these sorts of tools, here are a few you could use as a springboard
to learn more about higher-level testing:

 Selenium—www.seleniumhq.org
 Puppeteer—https://github.com/GoogleChrome/puppeteer
 Protractor—www.protractortest.org/#/
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/GoogleChrome/puppeteer
http://www.seleniumhq.org
http://www.protractortest.org/#/

210 CHAPTER 9 Testing React components
up, class methods get bound, and other setup can occur. To test this part of the
CreatePost component, we need to introduce another tool I mentioned earlier:
Sinon. You need some test functions that you can give to your component for use that
aren’t dependent on other modules. With Jest you can create mock functions for your
test that help keep your tests focused on the component itself and prevent you from
tying all your code together. Remember how I said tests should break when you
change your code? That’s true, but changing one test also shouldn’t break other tests.
As with regular code, your tests should be decoupled and only care about the slice of
code they’re testing.

 Jest’s mock functions not only help us isolate our code, they help us make more
assertions. You can make assertions about how your component used the mock func-
tion, whether it was called, what arguments it was called with, and more. The follow-
ing listing shows setting up the snapshot test for your component and mocking some
basic props your component needs using Jest.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('snapshot', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
 //...
});

Now that you have one test under your belt, you can test some other aspects of the
component. The component is primarily responsible for allowing users to create posts
and attach locations to them, so you need to test those areas of functionality. You’ll
start by testing post creation. The next listing shows how to test post creator methods
in your component.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

Listing 9.8 Writing your first test (src/components/post/Create.test.js)

Listing 9.9 Testing post creation (src/components/post/Create.test.js)

Use jest.mock function to tell
Jest to use a mock instead of the
module when running tests

Create test block within outer
describe block you created earlier

Create mock props object
and use Jest’s to create
mock function

Use React test renderer
to create your component

and pass in props

Call toJSON method to
generate a snapshot

Assert that
snapshot
matches
Licensed to Samir Mashlum <smashlum@gmail.com>

211Writing your first tests
describe('CreatePost', () => {
 test('snapshot', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
 test('handlePostChange', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = { target: { value: 'value' } };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });

 const component = new CreatePost(props);
 component.handlePostChange(mockEvent);
 expect(component.setState).toHaveBeenCalled();
 expect(component.setState.mock.calls.length).toEqual(1);
 expect(component.state).toEqual({
 valid: true,
 content: mockEvent.target.value,
 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 },
 locationSelected: false,
 showLocationPicker: false
 });

 });
 test('handleSubmit', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = {
 target: { value: 'value' },
 preventDefault: jest.fn()
 };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });

 const component = new CreatePost(props);
 component.setState(() => ({
 valid: true,
 content: 'cool stuff!'
 }));
 component.state = {
 valid: true,
 content: 'content',
 location: 'place',
 locationSelected: true
 };
 component.handleSubmit(mockEvent);
 expect(component.setState).toHaveBeenCalled();
 expect(props.onSubmit).toHaveBeenCalledWith({

Create mock set
of props to use

Mock setState
so you can

make sure your
component calls

it and that
updating post
updates state

in the right way.

Directly instantiate
component and
call its methods

Assert that your
component invokes

the right methods and
that method updated

state correctly

Create another mock
event to simulate what
your component will
receive from an event

Mock
setState

again.
Instantiate another
component and set state of
component to simulate user
entering post content

Directly modify
component’s state
(for testing purposes)

Handle post submission
with mock event you
created and assert that
mocks were called
Licensed to Samir Mashlum <smashlum@gmail.com>

212 CHAPTER 9 Testing React components

A
yo
 content: 'content',
 location: 'place'
 });
 });
});

Finally, you want to test the remainder of the component’s functionality. Aside from let-
ting users create posts, the CreatePost component also handles the user picking a loca-
tion. Other components handle updating the location via callbacks passed as props, but
you still need to test the component methods on CreatePost related to this feature.

 Remember you implemented a subrender method on CreatePost, which you used
to make reading the render method’s output of CreatePost easier and to reduce clut-
ter. You can test this in a similar way that you’ve been testing components with Enzyme
or the React test renderer. The following listing shows the rest of the tests for the
CreatePost component.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('handleRemoveLocation', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.handleRemoveLocation();
 expect(component.state.locationSelected).toEqual(false);
 });
 test('onLocationUpdate', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationUpdate({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 expect(component.setState).toHaveBeenCalled();
 expect(component.state.location).toEqual({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 });

Listing 9.10 Testing post creation (src/components/post/Create.test.js)

Mock
setState

Invoke handleRemove-
Location function

ssert that
u updated

state in
correct
manner

Repeat same
process for rest of

your component
methods
Licensed to Samir Mashlum <smashlum@gmail.com>

213Writing your first tests

p
r
c

 test('handleToggleLocation', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = {
 preventDefault: jest.fn()
 };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.handleToggleLocation(mockEvent);
 expect(mockEvent.preventDefault).toHaveBeenCalled();
 expect(component.state.showLocationPicker).toEqual(true);
 });
 test('onLocationSelect', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationSelect({
 lat: 1,
 lng: 2,
 name: 'name'
 });

 test('onLocationSelect', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationSelect({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 expect(component.setState).toHaveBeenCalled();
 expect(component.state.location).toEqual({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 });

 test('renderLocationControls', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 let tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
});

9.3.4 Test coverage

Now that you’ve gotten your hands dirty testing some components, let’s look at test
coverage and see what progress you’ve made. In your terminal, stop the test runner

Repeat
same

rocess for
est of your
omponent

methods

Create another snapshot
test for subrender
method you created
Licensed to Samir Mashlum <smashlum@gmail.com>

214 CHAPTER 9 Testing React components
and execute the command shown in the next listing. This command will turn on the
coverage option included in Jest.

> npm run test:w

Once your test runner finishes executing tests, it should output a colored table that
should look something like figure 9.3 (with less coverage). The figure shows the Jest

Listing 9.11 Enabling test coverage (project root)

Total % lines of
the file covered

% of functions
covered by tests

% of logical branches
covered by tests

Source files

% of statements
covered by tests

Lines of source files that tests
don’t run through at all

Figure 9.3 Test coverage output from Jest shows coverage stats for the different files in your project. Each
column reflects a different aspect of coverage. For each type of coverage, Jest shows a percentage covered.
Statements and functions are simply JavaScript statements and functions, whereas branches are logical branches.
If your test doesn’t address one part of an if statement, that should be reflected in the code coverage both in the
uncovered lines column and in the percent-covered stat for branches.
Licensed to Samir Mashlum <smashlum@gmail.com>

215Writing your first tests
coverage output with annotations about each of the columns. There are different
forms of readable code coverage reports (HTML, for example), but the terminal out-
put is most useful during development because it provides immediate feedback.

 Istanbul is the tool generating the stats in figure 9.3. If you want to see more detailed
coverage information, open the coverage directory that should have been generated by
the jest command that included the coverage option. In this directory, Istanbul should
have created a few files. If you open ./coverage/lcov-report/index.html in a browser,
you should see something like figure 9.4.

The Istanbul output is useful, but you can also drill down into different files and get
more in-depth information about individual files. Each file should display information
about how many times different lines were covered and which ones weren’t. Most of the
time the top-level summary is good enough, but sometimes you may want to inspect
individual reports, like the one in figure 9.5. When I’m writing tests, I like to take at
least one look at these files once I’ve covered all my cases to make sure I didn’t miss
any edge cases or logical branches.

 Test coverage is an important and useful tool for software development, but don’t
treat it as a magical guarantee that your code works. You can get to 100% coverage
and still have code that breaks. You can technically also have code that works with 0%
code coverage. Coverage is about making sure your tests are executing all the different
parts of your code—not guaranteeing a lack of errors or things like performance—
but it’s useful for that and should be treated as an important data point when consid-
ering how “complete” your code is. I’ve been on teams where our definition of success
for a particular user story or task included, among other things, code coverage above

Figure 9.4 Istanbul generates coverage metadata in computer-readable and human-readable formats. The
coverage report shown here is useful for more detailed exploration of code coverage. You can even sort by different
columns and prioritize files with low coverage. Note that there are columns for statements, branches (if/else
statements), functions (which functions were called), and lines (lines of code).
Licensed to Samir Mashlum <smashlum@gmail.com>

216 CHAPTER 9 Testing React components
80% and no decreased coverage overall. Use coverage as a guideline for which parts of
your code you have or haven’t tested and to check your testing progress.

9.4 Summary
In this chapter, you learned about some of the principles behind testing and how to
test React applications:

 Testing is the process of validating assumptions made about software. It helps
you better plan your components, prevents breakage in the future, and helps
increase confidence in your code. It also plays an important role in a rapid
development process.

 Manual testing doesn’t scale well because no number of people could ever
quickly or adequately test complex software well.

 We use a variety of tools in the software testing process, ranging from tools that
run our tests to tools that determine how much of our code is covered by tests.

 Different types of tests should occur in different proportions. Unit tests should
be the most common and are easy, cheap, and quick to write. Integration tests
test the interaction of many different parts of the system and can be brittle and
take longer to write. They should be less common.

 You can test React components using a variety of tools. Because they’re just
functions, you could test them strictly as such. But tools like Enzyme make test-
ing React components easier.

Exercise 9.2 Considering coverage
We talked about test coverage in this chapter. Does 100% test coverage mean that
your code is perfect? What role should code coverage play in your testing?

Figure 9.5 Individual file coverage report generated by Istanbul. You can see how many times different lines were
or weren’t covered and get a sense for exactly which parts of your code were covered.
Licensed to Samir Mashlum <smashlum@gmail.com>

217Summary
 Clean tests, like any clean code, are easy to read and well organized and use
appropriate proportions of unit, service, and integration tests. They should pro-
vide meaningful assurance that things function in a particular manner and
should guarantee that changes to your component can be evaluated.

In the next chapter, we’ll look at a more robust implementation of the Letters Social
app and explore the Redux architectural pattern. Before moving on, see if you can
keep honing your testing skills and get test coverage for the app up above 90%!
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

Part 3

React application
architecture

By the end of part 2, you will have transformed the Letters Social sample
application from a bare-bones static page to a dynamic user interface with rout-
ing, authentication, and dynamic data. In part 3, you’ll add to what you’ve cre-
ated by exploring some advanced topics in React.

 In chapters 10 and 11, you’ll explore the Flux application architecture and
implement Redux. Redux is a variation of the Flux pattern that has become the
de facto state management solution for sizeable React applications. You’ll explore
the concepts of Redux and transition your React application to use Redux as the
state management solution. As you do this, you’ll continue to add features to
Letters Social, including comments and the ability to like posts.

 In chapter 12, we’ll take things a step further and explore how you can use
React on the server. Thanks to the availability of the node.js server runtime, you
can execute React code on the server. You’ll explore server-side rendering with
React and even integrate your Redux state management into the process. You’ll
also integrate React Router, a popular routing library for React.

 Finally, you’ll make a minor departure from React for the web in chapter 13 and
explore React Native. React Native is another React project that gives you the ability
to write React applications that can run on iOS and Android mobile devices.

 By the end of part 3, you’ll have created an entire application that takes full
advantage of React, Redux, and server side rendering. You’ll have completed
your initial foray into React, but you’ll be able to further your abilities with React
and explore other advanced topics like React Native.
Licensed to Samir Mashlum <smashlum@gmail.com>

Licensed to Samir Mashlum <smashlum@gmail.com>

Redux application
architecture
By this point, you can create React applications that are tested, handle dynamic
data, accept user input, and can communicate with remote APIs. That’s a lot and
covers most of what a typical web app will do; you may feel like the only thing left to
do is practice. Putting your skills to use will help you master React, but there’s still
an important area you’ll need to cover to build larger, more complex applications:
application architecture. Application architecture is “the process of defining a struc-
tured solution that meets all of the technical and operational requirements, while
optimizing common quality attributes such as performance, security, and manage-
ability” (from Microsoft Application Architecture Guide, 2nd Edition). Architecture
asks, “Okay, we can do this, but now how do we do it better and consistently?” It’s
about how and how well the application is organized, how data moves around, and
how responsibility is delegated to different parts of a system.

 Every application has an implicit architecture of sorts simply because it has a
structure and does things in a particular way. What I’m talking about here are strat-
egies and paradigms for building complex applications. React errs on the side of

This chapter covers
 Redux actions, stores, reducers, and middleware

 Simple testing of Redux actions, stores,
reducers, and middleware
221

Licensed to Samir Mashlum <smashlum@gmail.com>

222 CHAPTER 10 Redux application architecture
being a more minimal or unopinionated framework focused on UI, so it doesn’t come
with a built-in strategy for you to follow as you build more complex applications.

 Just because there isn’t a built-in strategy for you to use doesn’t mean there aren’t
options out there, though. There are many approaches to building complex applica-
tions with React, and many of them are based on the Flux model popularized by engi-
neers at Facebook. Flux differs from the popular MVC architecture by promoting
unidirectional data flow, introducing new concepts (dispatchers, actions, stores), and
in other ways. Flux and MVC are concerned with things “above” what an application
looks like or even some of the specific libraries or technologies it is built with. They
are more concerned with how the application is organized, how data moves around,
and how responsibility is delegated to different parts of a system.

 This chapter explores one of the most widely used and well-regarded variants of
the Flux pattern: Redux. It’s extremely common to see Redux used with React
applications, but in fact it can be used with most JavaScript frameworks (in-house
or otherwise). This chapter and the next cover the core concepts of Redux (actions,
middleware, reducers, the store, and others) and then the integration of Redux with
your React app. Actions in Redux represent work being done (fetching user data, log-
ging the user in, and so on), reducers determine how state should change, the store
holds a centralized copy of state, and middleware allows you to inject custom behavior
into the process.

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapter 9 (if you followed along and built out the examples yourself) or
check out the chapter-specific branch (chapter-10-11).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-10-11 corresponds to the code as it will be at the end of
these chapters). You can execute one of the following terminal commands in the
directory of your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-10-11

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

223The Flux application architecture
10.1 The Flux application architecture
Modern applications must do more than ever before and are correspondingly more
complex—internally and externally. Developers have long been aware of the mess that
can be made of a complex application that grows without coherent design patterns in
place. Spaghetti-code codebases aren’t only not fun to work with, they slow down
developers and thus business units. Remember the last time you had to work in a large
codebase full of one-off solutions and jQuery plugins? Probably not fun. To combat dis-
organization, developers have developed paradigms like MVC (Model-View-Controller)
to organize the functionality of an application and guide development. Flux (and by
extension Redux) is an effort in the same vein that helps you deal with increased com-
plexity in an application.

 Don’t worry if you’re not especially familiar with the MVC paradigm; we won’t
spend much time getting into it. But before we talk about Flux and Redux, it might be
helpful to briefly discuss MVC for the sake of comparison. If you’re interested in
learning more, Jeff Atwood has some helpful thoughts at https://blog.codinghorror
.com/understanding-model-view-controller/, and there are many other resources avail-
able online. Here are the basics:

 Model—The data for your application. Usually a noun like User, Account, or
Post, for example. Your model should at least have the basic methods to
manipulate associated data. In the most abstract sense, the model represents
raw data or knowledge. It’s where the data intersects with your application
code. For example, the database might store several properties like access-
Scopes, authenticated, and so on. But the model will be able to use this data
for a method like isAllowedAccessForResource() on it that will act on the
underlying data to model. The model is where raw data converges with your
application code.

 View—A representation of your model. The view is often the user interface
itself. The view shouldn’t have any logic in it that isn’t related to presentation of
the data. For front-end frameworks, this would generally mean that a particular
view was directly associated with a resource and would have CRUD (create,
read, update, delete) actions associated with it. This isn’t how front-end applica-
tions are always built anymore.

 Controller—Controllers are the “glue” that binds the model and view together.
Controllers should usually be only glue and not much more (for example, they
shouldn’t have complex view or database logic in them). You should generally
expect controllers to have far less ability to mutate data than the models they
interact with.

The paradigms we’re going to focus on in this chapter (Flux and Redux) depart from
these concepts but still have the goal of helping you create a scalable, sensible, and
effective application architecture.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://blog.codinghorror.com/understanding-model-view-controller/
https://blog.codinghorror.com/understanding-model-view-controller/
https://blog.codinghorror.com/understanding-model-view-controller/

224 CHAPTER 10 Redux application architecture
 Redux owes its origin and design to a pattern popularized at Facebook, called Flux. If
you’re familiar with the popular MVC pattern that Ruby on Rails and other application
frameworks use, Flux might be a departure from what you’re used to. Rather than
break parts of your application into models, views, and controllers, Flux defines sev-
eral different parts to it:

 Store—Stores contain the application state and logic; they’re somewhat like a
model in a traditional MVC. However, instead of representing a single database
record, they manage the state of many objects. Unlike a model, you represent
the data however it makes sense, unconstrained by resources.

 Actions—Rather than update state directly, Flux apps modify their state by creat-
ing actions that modify state.

 View—The user interface, usually React, but Flux doesn’t require React.
 Dispatcher—A central coordinator of actions and updates to stores.

Figure 10.1 shows an overview of Flux.

In the Flux pattern, as shown in figure 10.1, actions are created from views—this
might be a user clicking something. From there, the dispatcher handles incoming
actions. Actions are then sent to the appropriate store to update state. State, having
changed, notifies a view that new data should be used (if applicable). Notice how this
would differ from a typical MVC-style framework, where the view and a model (like
the store here) would both be able to update the other. This bidirectional data flow
differs from the more unidirectional flow typical in Flux architectures. Also, note that
middleware is missing here: although possible to create in Flux, it is less of a first-class
citizen than in Redux, so we omit it here.

 If some of these parts sound familiar, the way data flows in Flux might not be if
you’ve worked with MVC-style applications before. As mentioned, data flows more
unidirectionally in the Flux paradigm, which differs from the bidirectional manner
MVC-type implementations tend to enforce. This usually means that there’s no sin-
gle place in an app where data flows from; many different parts of the system have
authority to modify state, and state is often decentralized throughout the applica-
tion. This approach works well in many cases, but in larger apps, it can be confusing
to debug and work with.

 Think what this might look like in a medium-to-large application. Say you had a
collection of models (user, account, and authentication) that were associated with

View Actions Dispatcher Store(s)

Figure 10.1 A simple Flux overview
Licensed to Samir Mashlum <smashlum@gmail.com>

225The Flux application architecture
their own controllers and views. At any given place in the application, it could be dif-
ficult to pin down the exact location of state because it’s distributed across parts of
the application (information about a user could be found on any of the three mod-
els I mentioned).

 This might not necessarily be a problem for smaller apps and can even be made to
work well for larger applications, but it can become more difficult in nontrivial client-
side applications. For example, what happens when things you need in order to mod-
ify a model’s use in 50 different locations and 60 different controllers need to know
about changes to state? Making matters more complicated is the fact that views some-
times act like models in some front-end frameworks (so state is even more decentral-
ized). Where’s the source of truth for your data? If it’s spread across views and many
different models, and all in a moderately complex setup, mentally keeping track of
everything is going to be difficult. This can also result in inconsistent application state
that causes application bugs, so it’s not just a “developer-only” problem—end-users
are directly affected as well.

 Part of the reason why this is difficult is that people generally aren’t good at reason-
ing about change that occurs over time. To drive this home, imagine a checkers board
in your head. It’s not so hard to hold maybe one or even a few snapshots of the board in
your head. But would you be able to keep track of every snapshot of the board after 20
turns? Thirty? The entire game? We should be building systems that are easier for us
to think about and use because keeping mental track of asynchronous changes to data
over time is hard. For example, think of calling a remote API and using the data to
update your application state. Simple for a handful of cases, but what if you have to
call 50 different endpoints and need to keep track of the incoming responses while a
user is still using the app and making changes that could result in more API interac-
tion? It can be hard to mentally line them all up in a row and predict what the result
of changes would be.

 You may already notice some similarities between React and Flux. They’re both rel-
atively new approaches to building user interfaces and they both aim to improve the
mental model a developer works with. In each, changes should be easy to reason
about, and you should be able to build your UI in a way that empowers you instead of
hinders you.

 What does Flux look like in code? It’s primarily a paradigm, so there are plenty of
libraries available that implement the core ideas of Flux. They’re all slightly different
from one another in how they implement Flux. Redux does this, too, even though its
particular flavor of Flux has gained the most use and mindshare. Other Flux libraries
include Flummox, Fluxxor, Reflux, Fluxible, Lux, McFly, and MartyJS (though in
practice you’ll see little use of these compared to Redux).

Licensed to Samir Mashlum <smashlum@gmail.com>

226 CHAPTER 10 Redux application architecture
10.1.1 Meet Redux: A variation on Flux

Perhaps the most widely used and well-known library that implements the ideas
behind Flux is Redux. Redux is a library that implements the ideas of Flux in a slightly
modified way. Redux is described by its own documentation as “a predictable state
container for JavaScript apps.” In concrete terms, this means it’s a library that puts
into practice the concepts and ideas of Flux in its own way.

 Nailing down exact definitions of what is and isn’t considered Flux is not import-
ant here, but I should cover some of the important differences between the Flux and
Redux paradigms:

 Redux uses a single store—Rather than locate state information in multiple stores
across the app, Redux apps keep everything in one place. In Flux, you can have
many different stores. Redux breaks from this and enforces a single global store.

 Redux introduces reducers—Reducers are a more immutable approach to muta-
tion. In Redux, state is changed in a predictable and deterministic way, one part
of state at a time, and only in one place (the global store).

 Redux introduces middleware—Because actions and data flow in a unidirectional
way, you can add middleware to your Redux app and inject custom behavior as
data is updated.

 Redux actions are decoupled from the store—Action-creators don’t dispatch anything
to the store; instead, they return action objects that a central dispatcher uses.

These may be subtle differences to you, and that’s okay—your goal is learning about
Redux, not doing a “spot the differences” exercise. Figure 10.2 shows an overview of
the Redux architecture. You’ll dive into each of the different sections, explore how
they work, and develop a Redux architecture for your app.

 As you can see in figure 10.2, actions, a store, and reducers make up the bulk of
the Redux architecture. Redux uses a single centralized state object that’s updated in
specific, deterministic ways. An action is created when you want to update state (usu-
ally due to an event like a click). The action will have a type that a certain reducer will
handle. The reducer that handles the given action type will make a copy of the cur-
rent state, modify it with data from the action, and then return the new state. When
the store is updated, view layers (React in our case) can listen to updates and respond
accordingly. Also note that in the figure the views are just reading in updates from the
store—they don’t care about the data being communicated to them. The React-
redux library handles passing new props to components when the store changes, but
views still just receive and display data.

Licensed to Samir Mashlum <smashlum@gmail.com>

227The Flux application architecture
10.1.2 Getting set up for Redux

Redux is a paradigm for your application architecture, but it’s also a library you can
install. This is one area where Redux shines over a “raw” Flux implementation. There
are so many implementations of the Flux paradigm—Flummox, Fluxxor, Reflux, Flux-
ible, Lux, McFly, and MartyJS, to name a few—and they all have varying degrees of
community support and different APIs. Redux enjoys strong community support, but
the Redux library itself has a small, powerful API that has helped it become one of the
most popular and relied-upon libraries for React application architecture. In fact, it’s
so common to see Redux used with React that the core teams for each library often
interact with each other and ensure compatibility and feature-awareness. Some peo-
ple are even on both teams, so there’s generally great visibility and communication
between the projects.

 To get set up to use Redux, you’re going to need to do a few things:

 Make sure you’ve run npm install with the source code from the current chap-
ter so all the right dependencies are installed locally. In this chapter, you’ll start

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

Reducers perform

pure mutations to

create new state

New store

state exists

U

R

A

E

Updates

Reducer

Action

Event

R
e
d
u
c
e
rs

 u
s
e
 c

o
p
ie

s
 o

f
s
ta

te
 f

o
r

m
u

ta
ti
o

n

Components receive

state as props

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Actions

Store

Reducer

Action sent to dispatcher

State

Logging(e.g. Google analytics,
segment, etc.)

A A A

R

R

UUU

R

const Component = {props} => {
return {

<Button
onClick={this.handleButtonClick}
data={props.data}

/>
};

}

View ()React Components

E

E

E

ex: click, keyup,

focus, change

Events trigger

action creators

Figure 10.2 An overview of Redux
Licensed to Samir Mashlum <smashlum@gmail.com>

228 CHAPTER 10 Redux application architecture
to take advantage of some new libraries, including js-cookie, redux-mock-
store, and redux.

 Install the Redux developer tools. You can use them to inspect the Redux store
and actions in the browser.

Redux is predictable by design and that makes it easy to create some amazing debug-
ging tools. Engineers like Dan Abramov and others who work on the Redux and React
libraries have helped create some powerful tools for working with Redux applications.
Because the state in Redux changes in predictable ways, debugging in new ways is pos-
sible: you can track individual changes to your app state, inspect differences between
changes, and even rewind and replay your app state over time. The Redux Dev Tools
extension lets you do all this and more and comes bundled as a browser extension. To
install it for your browser, follow the instructions at https://github.com/zalmoxisus/
redux-devtools-extension. Figure 10.3 shows a sneak peek of what’s available with the
Redux Dev Tools.

After installing the extension, you should see the new Dev Tools icon in your browser
toolbar. As of the time of writing, it only appears colorized when it detects a Redux

Figure 10.3 The Redux Dev Tools extension bundles the popular Redux Dev Tools library from Dan Abramov in
a convenient browser extension. With it, you can rewind and replay your Redux app, inspect changes one by one,
examine diffs between changes in state, review your entire app state in one area, generate testing boilerplate,
and more.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension

229Creating actions in Redux
app instance in development mode, so if you visit the app or other sites that don’t
have Redux set up, the extension won’t work yet. But once you configure the app,
you’ll see the icon appear with color, and clicking it will open the tools.

10.2 Creating actions in Redux
In Redux, actions are payloads of information that send data from your application
to your store. Apart from an action, the store doesn’t have any other way to get data.
Actions are used throughout a Redux application to initiate changes in data,
although they themselves are not responsible for updating the state (store) of the
app. Reducers are more involved with that part of the architecture, and we’ll look at
those after actions. If you’re used to being able to update the state of your app how-
ever you like, you may not like actions at first. They can take some getting used to,
but they lead to apps that are usually more predictable and easier to debug. If the
way data changes in your app is tightly controlled, you can easily predict what
should and shouldn’t have changed in your app. Figure 10.4 shows where actions fit
into the broader picture. We’re starting with actions and will work our way through
the Redux flow, through the store, reducers, and eventually back to React to com-
plete the data flow.

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

Reducers perform

pure mutations to

create new state

New store

state exists

U

R

A

E

Updates

Reducer

Action

Event

R
e
d
u
c
e
rs

 u
s
e
 c

o
p
ie

s
 o

f
s
ta

te
 f

o
r

m
u
ta

ti
o
n

Components receive

state as props

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Actions

Store

Reducer

Action sent to dispatcher

State

Logging(e.g. Google analytics,
segment, etc.)

A A A

R

R

UUU

R

const Component = {props} => {
return {

<Button
onClick={this.handleButtonClick}
data={props.data}

/>
};

}

View ()React Components

E

E

E

ex: click, keyup,

focus, change

Events trigger

action creators

Action created

Figure 10.4 Actions are how your Redux application knows to change; they have a type and any additional
information that your app needs.
Licensed to Samir Mashlum <smashlum@gmail.com>

230 CHAPTER 10 Redux application architecture
What does a Redux action look like? It’s a plain old JavaScript object (POJO) with a
required type key and anything else you want on it. The type key will be used by reduc-
ers and other Redux tools to associate a set of changes together. Every unique type of
action should have a unique type key. Types should typically be defined as string con-
stants, and you’re free to use whatever unique names you like for these, although com-
ing up with a naming pattern to follow is a good idea. Listing 10.1 shows a few
examples of the action type names you might come up with.

 In general, you should keep your actions so they only have the information on
them that they absolutely need. That way, you’ll avoid passing extra data around and
have less information to think about. The next listing shows two simple actions, one
with additional data on it and one without. Note that you can name the additional
keys on actions whatever you want, but this can be confusing if you aren’t consistent
and is especially problematic for teams.

{
 type: 'UPDATE_USER_PROFILE',
 payload: {
 email: 'hello@ifelse.io'
 }
}

{
 type: 'LOADING'
}

{
 type: appName/dashboard/insights/load'
}

10.2.1 Defining action types

Although you may add more later in the chapter, you can start transitioning your Let-
ters Social app to a Redux architecture by laying out some action types. These will usu-
ally map to user actions such as logging in, logging out, changing a form value, and so
on, but they don’t necessarily have to be user actions. You may want to create action
types for an opened, resolved, or errored network request or any other number of
things that don’t directly pertain to a user.

 It’s also worth noting that in a smaller app, you might not necessarily have to
define your action types in a constants file; you could just as well remember to pass
them in when you create actions or hardcode them yourself. The downside is that as
your app grows, keeping track of action types will be a pain point and could lead to
difficult debugging or refactoring situations. In most real-world cases, you’ll define
your actions, so that’s what you’ll do here, too.

 You’ll sketch out a few action types that you can expect to use, but you can feel free
to add or remove them over time as needed. You’ll use the name-spacing approach to

Listing 10.1 Some simple Redux actions

An action can contain info that will tell your
application about how it should change, like
a new user email address, error diagnostics,
or other info.

Every action must have a
type—without a type,
your app doesn’t know
what sort of changes you
need to make to the store.

Types are usually uppercase
string constants so you can tell
them apart from regular values
in your app, but here I use a
name-spacing scheme to ensure
actions are unique but readable.
Licensed to Samir Mashlum <smashlum@gmail.com>

231Creating actions in Redux
action types here, but remember when creating your own actions that you can follow
whatever pattern you feel is best as long as they are unique. You’ll also “bundle” simi-
lar action types together in objects, but they could just as easily be spread out and
exported as individual constants. The advantage to bundling is that you can group
them together and use shorter names (GET, CREATE, and so on) without having to
build those into the variable names themselves (UPDATE_USER_PROFILE, CREATE_NEW
_POST, and so on). Listing 10.2 shows how to create your initial action types. You’ll put
these in src/constants/types.js. You’re creating all the actions you’ll need for this
chapter right now so you can reference them and don’t have to constantly go back to
the file.

export const app = {
 ERROR: 'letters-social/app/error',
 LOADED: 'letters-social/app/loaded',
 LOADING: 'letters-social/app/loading'
};

export const auth = {
 LOGIN_SUCCESS: 'letters-social/auth/login/success',
 LOGOUT_SUCCESS: 'letters-social/auth/logout/success'
};

export const posts = {
 CREATE: 'letters-social/post/create',
 GET: 'letters-social/post/get',
 LIKE: 'letters-social/post/like',
 NEXT: 'letters-social/post/paginate/next',
 UNLIKE: 'letters-social/post/unlike',
 UPDATE_LINKS: 'letters-social/post/paginate/update'
};

export const comments = {
 CREATE: 'letters-social/comments/create',
 GET: 'letters-social/comments/get',
 SHOW: 'letters-social/comments/show',
 TOGGLE: 'letters-social/comments/toggle'
};

When using the Redux developer tools, these action types will show up in a timeline of
your app’s state changes, so grouping names in a URL-like fashion like in listing 10.2
can make them easier to read when you have many actions and action types. You
could also use : characters to separate them (namespace:action_name:status) or
use whatever convention makes the most sense to you.

Listing 10.2 Defining action types (src/contstants/types.js)
Licensed to Samir Mashlum <smashlum@gmail.com>

232 CHAPTER 10 Redux application architecture
10.2.2 Creating actions in Redux

Now that you have some types defined, you can start doing something with actions.
You’ll reuse logic from preexisting parts of the app, so a lot of the code may look
familiar to you. This is actually a good point to reflect on briefly: most of a Redux app
shouldn’t be a complete redo of any existing application logic. Hopefully, you’re able
to clean it up, but the main work of converting it to use Redux can potentially just be
mapping the different aspects of your application state to the patterns Redux enforces.
At any rate, we need to get started with actions.

 Actions are how you initiate state changes in Redux applications; you can’t just
modify a property directly like you might in other frameworks. Actions are created
with action creators—functions that return an action object—and dispatched by the
store using a dispatch function.

 We don’t want to get too far ahead of ourselves here. I’ll just cover the action cre-
ators themselves first. You’ll start simple and create some actions that should indicate
to your app when loading has started and completed. You won’t need to pass any addi-
tional information in this time, but I’ll cover parameterized action creators next. The
next listing shows how to create two action creators for loading and loaded actions. To
keep things organized, you’ll put any action creators under the actions directory. The
same will go for other Redux-related files; reducers and the store will get their own
directories, too.

import * as types from '../constants/types';

export function loading() {
 return {
 type: types.app.LOADING
 };
}

export function loaded() {
 return {
 type: types.app.LOADED
 };
}

10.2.3 Creating the Redux store and dispatching actions

Action creators won’t do anything by themselves to change your app state (they just
return objects). You need to use the dispatcher provided by Redux in order for the
action creators to have any effect. The dispatch function is provided by the Redux
store itself and will be the way you send actions into Redux to be handled. You’ll set
up the Redux store next so you can use its dispatch function with your actions.

 Before you set up your store, you’ll need to create a root reducer file that will allow
you to create a valid store; the reducer won’t do anything until later when you look at

Listing 10.3 loading and loaded action creators (src/actions/loading.js)

Import your types from
the constants file.

Return an action object with
required type key using loading
type you defined earlier

Export an action creator
for a loaded action.
Licensed to Samir Mashlum <smashlum@gmail.com>

233Creating actions in Redux
reducers and build them out. You’ll create a folder called reducers in src and inside it
a file, root.js. In this file, you’ll use the combineReducers function provided by Redux
to set up where your future reducers will go. This function does exactly what it sounds
like it does: combines multiple reducers into one.

 Without the ability to combine reducers, you’d run into issues with conflicts
between multiple reducers and would have to find ways to merge reducers or route
actions. This is one area where the benefits of Redux can be tangibly observed.
There’s a bit more work in setting everything up, but once the work is done, Redux
makes it easier to scale application state management. The next listing shows how to
create the root reducer file.

import { combineReducers } from 'redux';
const rootReducer = combineReducers({});
export default rootReducer;

Now that you have a reducer set up for Redux to use, you’ll configure and set up the
store. Create a folder called store and create several files inside it: store.js, stores/store
.prod.js, and stores/store.dev.js. These files are responsible for exporting a function
that creates your store for you and, if you’re in development mode, integrates the
developer tools. Listing 10.5 shows creating the store-related files side by side in the
same listing. You’re using different files for each environment here because you might
want to include different middleware and other libraries for development and pro-
duction environments. This just a convention—there’s nothing about Redux that
requires you to put functions in many files or one.

// src/store/configureStore.js
import { __PRODUCTION__ } from 'environs';
import prodStore from './configureStore.prod';
import devStore from './configureStore.dev';
export default __PRODUCTION__ ? prodStore : devStore;

// src/store/configureStore.prod.js
import { createStore } from 'redux';
import rootReducer from '../reducers/root';

let store;
export default function configureStore(initialState) {
 if (store) {
 return store;
 }
 store = createStore(rootReducer, initialState);
 return store;
}

Listing 10.4 Creating the root store (src/reducers/root.js)

Listing 10.5 Creating the Redux store

Import the combineReducers
tool from Redux.

Create the root reducer
using combineReducers
with empty object for now

Export the
root reducer.

This file makes it easier
to use the store in your
app without having to
determine if you want
the development or
production store.

Pass in initial state to
your configuration
for Redux to use

Use Redux
createStore method
to create your store
Licensed to Samir Mashlum <smashlum@gmail.com>

234 CHAPTER 10 Redux application architecture
// src/store/configureStore.dev.js
import thunk from 'redux-thunk';
import { createStore, compose} from 'redux';
import rootReducer from '../reducers/root';

let store;
export default initialState => {
 if (store) {
 return store;
 }
 const createdStore = createStore(
 rootReducer,
 initialState,
 compose(window.devToolsExtension())
);
 store = createdStore;
 return store;
};

Now that you have a store configured and ready to use, you can try dispatching some
actions and see how they work. Before long, you’ll hook Redux up to React, but
remember that you don’t have to use Redux with React or with any library or frame-
work. There are other open-source projects using Redux to integrate with frameworks
like Angular, Vue, and more.

 The Redux store exposes a couple of important functions that you’ll use through-
out working with Redux: getState and dispatch. getState will be used to grab a
snapshot of your Redux store state at a given point in time, and dispatch is how you’ll
send actions to the Redux store. When calling the dispatch method, you pass in an
action that’s the result of calling an action creator. Using the store.dispatch()
method is the only way to trigger a state change in Redux, so you’ll be using it all over
the place. Next you’ll try using the store to dispatch a few actions using the loading
action creators that you set up before. The following listing shows how to dispatch a
few actions using a temporary file (src/store/exampleUse.js). This file is just for
demonstration purposes and won’t be needed to make the main app work.

import configureStore from './configureStore';
import { loading, loaded } from '../actions/loading';
const store = configureStore();

console.log('========== Example store ===========');
store.dispatch(loading());
store.dispatch(loaded());
store.dispatch(loading());
store.dispatch(loaded());
console.log('========== end example store ===========');

Listing 10.6 Dispatching actions (src/store/exampleUse.js)

Import compose utility
from Redux, which will let
you combine middleware

Make sure you’re accessing the same
store consistently—this ensures you
return the same store if another file
accesses an already-created store.

If dev tools extension
is installed, this will
hook into it

Import configureStore
method and use it to
create a store

Call store’s dispatch method and pass in invoked action
creator; will return object for dispatch method to use

Dispatch
another action.
Licensed to Samir Mashlum <smashlum@gmail.com>

235Creating actions in Redux
To dispatch these actions, all you need to do is import the exampleUse file into your
main app file, and it will run when you open the app. Listing 10.7 shows the minor
modification you need to make to src/index.js. Once you connect Redux to React,
you’ll interact with Redux through React components and won’t need to manually dis-
patch actions like you are here for demonstration purposes.

import React from 'react';
import { render } from 'react-dom';

import { App } from './containers/App';
import { Home, SinglePost, Login, NotFound, Profile } from './containers';
import { Router, Route } from './components/router';
import { history } from './history';
import { firebase } from './backend';
import configureStore from './store/configureStore';
import initialReduxState from './constants/initialState';

import './store/exampleUse';
//...

If you load the app in development mode (using npm run dev), you should see that the
Redux dev tools icon is enabled. When the app runs now, the imported file that you’ve
created will run and invoke the store dispatcher several times, sending actions off to
the store. Right now, there isn’t any handling set up for the actions (via reducers), and
you haven’t hooked anything up to React, so there won’t be any meaningful changes.
But if you open the developer tools and look at the action history, you should see an
action dispatched and recorded for each of the loading actions you dispatched. Fig-
ure 10.5 shows the actions being dispatched in the context of your diagram and the
results you should see in the Redux developer tools.

10.2.4 Asynchronous actions and middleware

You can dispatch actions, but right now they’re only synchronous. There are many
cases where you’ll want to make a change to your app based on an asynchronous action.
These might be a network request, reading a value back from the browser (via local
storage, cookie stores, and so forth), working with WebSockets, or any other async
action. Redux doesn’t have support for asynchronous actions out of the box because it
expects actions to just be objects (not Promises or anything else). But you can enable
it by integrating a library you’ve already installed: redux-thunk.

 redux-thunk is a Redux middleware library, which means it works as a sort of “on
the way” or pass-through mechanism for Redux. You’ve probably used other APIs that
make use of this concept, like Express or Koa (server-side frameworks for Node.js).
Middleware works by letting you hook into a cycle or process of some kind in a com-
posable way, meaning that you can create and use multiple middleware functionalities
independent of each other in a single project.

Listing 10.7 Importing the exampleUse file (src/index.js)

Import the store file so it will
run when you open the app.
Licensed to Samir Mashlum <smashlum@gmail.com>

236 CHAPTER 10 Redux application architecture
Redux middleware is, in the words of the Redux docs, a “third-party extension point
between dispatching an action and the moment it reaches the reducer.” This means
you have one or more opportunities to act on or because of an action before it gets
handled by a reducer. You’ll use Redux middleware to create an error-handling solu-
tion next, but right now you can use the redux-thunk middleware to enable asynchro-
nous action creation in your application. Listing 10.8 shows how to integrate the
redux-thunk middleware into your app. Note that you should add the middleware to
both your production and development stores (configureStore.prod.js and configure-
Store.dev.js). Remember, you can choose whatever production/development store
setup makes the most sense for your situation—I only broke them into two here to
make clear which one gets used for each environment.

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

r
m

u
ta

ti
o

n

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Actions

Store

Reducer

Action sent to dispatcher

Logging(e.g. Google analytics,
segment, etc.)

A A A

E

Events trigger

action creators

Action created

{ type: loading }

{ type: loaded }

{ type: loading }

Figure 10.5 When you run your app, the example store you created will receive the results of
your action creators and dispatch them to the store. Right now, you don’t have any reducers set
up to do anything, so little will happen. Once you have reducers set up, Redux will determine what
changes to state need to be made depending on what type of action is dispatched.
Licensed to Samir Mashlum <smashlum@gmail.com>

237Creating actions in Redux
import thunk from 'redux-thunk';
import { createStore, compose, applyMiddleware } from 'redux';
import rootReducer from '../reducers/root';

let store;
export default (initialState) => {
 if (store) {
 return store;
 }
 const createdStore = createStore(rootReducer, initialState, compose(
 applyMiddleware(
 thunk,
),
 window.devToolsExtension()
)
);
 store = createdStore;
 return store;
};

You can create async action creators now that you have the redux-thunk middleware
installed. Why do I say async action creators and not asynchronous actions? Because even
when you’re doing asynchronous things like making network requests, the actions you
create aren’t the asynchronous tasks themselves. Instead, redux-thunk teaches your
Redux store to evaluate a Promise when it comes through. The course of that Promise
is how you dispatch actions for your store. Nothing has really changed about Redux.
The actions are still synchronous, but Redux now knows to wait for Promises to resolve
when you pass them into the dispatch function.

 In earlier chapters, you created some logic to fetch posts from your API using the
isomorphic-fetch library and display them using React. Actions like these that per-
form asynchronous work will often require multiple actions to be dispatched (usually
loading, success, and failure actions). For example, say you want to let a user upload
files to a server that sends back progress data over the duration of the upload. One
way of mapping actions to the different parts of this process would be to create an
action to indicate that the upload has started, an action to tell the rest of the app that
something is loading, an action for progress updates from the server, an action for the
completion of the upload, and an action to handle errors.

 redux-thunk works by wrapping the dispatch method of a store so that it will handle
dispatching something other than plain objects (like Promises, an API dealing with
asynchronous flows). The middleware will dispatch created actions asynchronously (at
the beginning and end of a request, for example) as the Promise is executed and let you
handle those changes appropriately. As already noted, the key distinction here is that
actions themselves are still synchronous, but when they get dispatched and sent to
reducers they are asynchronous. Figure 10.6 shows how this works.

Listing 10.8 Enabling asynchronous action creators via redux-thunk

To integrate middleware
into your Redux store, pull
in applyMiddleware utility

Insert and order middleware in Redux
within the applyMiddleware function—
here you’re inserting the redux-thunk

middleware into your store.
Licensed to Samir Mashlum <smashlum@gmail.com>

238 CHAPTER 10 Redux application architecture
Next you’ll use what you know about async action creators to write some action cre-
ators that will handle fetching and creating posts. Because redux-thunk wraps the
store’s dispatch method, you can return a function from your action creator that
receives the dispatch method as a function, allowing you to dispatch multiple actions
over the course of a Promise execution. Listing 10.9 shows what this sort of action cre-
ator looks like. You’ll create several async action creators and a synchronous one.
You’ll start by creating a handful of actions you’ll need to handle user interactions
with posts and comments. First up is an error action that you’ll use to show the user
error information if something goes wrong. In a larger application, you’ll probably
need to create more than one way to handle errors, but for our purposes this should
suffice. You can use this error action here and also in any component error boundar-
ies. componentDidCatch will provide error information you can dispatch to the store.

import * as types from '../constants/types';
export function createError(error, info) {
 return {
 type: types.app.ERROR,
 error,
 info
 };
}

Listing 10.9 Creating the error action (src/actions/error.js)

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

Reducers perform

pure mutations to

create new state

e
s
 o

f
s
ta

te
 f

o
r

m
u
ta

ti
o
n

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Actions

Store

Reducer

Action sent to dispatcher

Logging(e.g. Google analytics,
segment, etc.)

A A A

R
R View ()React Components

E

E

E

ex: click, keyup,

focus, change

Events trigger

action creators

Action created

A

A

dispatch

dispatch

dispatch

start

end

Promise
e.g. http
request

Inject dispatch

P

Figure 10.6 Asynchronous action creators are enabled by a middleware library like redux-thunk, which
allows you to dispatch something besides an action like a Promise (a way to do asynchronous work that’s part
of the JavaScript specification). It will resolve the Promise and let you dispatch actions at different points over
the lifetime of the Promise (before execution, on completion, on error, and so on).

This action creator is
parameterized—you want to send
error information to your store.

This action has generic app error
type—in larger apps you’ll have
many types of errors

Pass along actual
error and info
Licensed to Samir Mashlum <smashlum@gmail.com>

239Creating actions in Redux
Now that you have a way to handle errors, you can start to write some async action cre-
ators. You’ll start with comments and move on to posts. The posts and comments
actions should look similar overall with some minor differences in how each set of
actions works. You want the ability to do a few things related to comments: show and
hide them, load them, and create a new comment for a given post. Listing 10.10 shows
the comment actions you’ll create.

 As you create these and other actions, you’ll continue to use the isomorphic-
fetch library to do network requests, but the Fetch API that it follows is becoming
more standard in browsers and is now the de facto way to do network requests. When
possible, you’ll keep using the Web platform APIs or libraries that follow the same
specifications.

import * as types from '../constants/types';
import * as API from '../shared/http';
import { createError } from './error';

export function showComments(postId) {
 return {
 type: types.comments.SHOW,
 postId
 };
}
export function toggleComments(postId) {
 return {
 type: types.comments.TOGGLE,
 postId
 };
}
export function updateAvailableComments(comments) {
 return {
 type: types.comments.GET,
 comments
 };
}
export function createComment(payload) {
 return dispatch => {
 return API.createComment(payload)
 .then(res => res.json())
 .then(comment => {
 dispatch({
 type: types.comments.CREATE,
 comment
 });
 })
 .catch(err => dispatch(createError(err)));
 };
}
export function getCommentsForPost(postId) {
 return dispatch => {
 return API.fetchCommentsForPost(postId)

Listing 10.10 Creating comment actions (src/actions/comments.js)

Import your
API helpers.

Create parameterized action
creator so you can show a
particular comments section.

You want the ability to
toggle a comment section.

Create ability to get
comments—your async
action creators in this file
will use this function

Create comment from a given
payload; return a function
instead of a plain object

The Fetch API implements Promise-
based methods like json() and blob().

Dispatch create comment
action with comment JSON
you get back from server

If you receive an error,
send it to store using
createError action

Fetch comments for a particular
post and use updateAvailable-
Comments action
Licensed to Samir Mashlum <smashlum@gmail.com>

240 CHAPTER 10 Redux application architecture
 .then(res => res.json())
 .then(comments => dispatch(updateAvailableComments(comments)))
 .catch(err => dispatch(createError(err)));
 };
}

Now that you’ve created actions for comments, you can move on to creating actions
for posts. The actions for posts will be similar to the ones you’ve just created but will
also use some comment actions. The ability to mix and match different actions across
your application is another reason Redux works well as your application architecture.
It provides a structured, repeatable way to create functionality with actions and then
utilize that functionality across your app.

 Next you’ll keep creating actions and add some functionality to your posts. In ear-
lier chapters, you created functionality for fetching and creating posts. Now you’ll also
create ways to like and unlike posts. The next listing shows the action creators related
to posts in your application. You’ll start with four action creators for now and then
explore a few more in the next listing.

import parseLinkHeader from 'parse-link-header';

import * as types from '../constants/types';
import * as API from '../shared/http';
import { createError } from './error';
import { getCommentsForPost } from './comments';

export function updateAvailablePosts(posts) {
 return {
 type: types.posts.GET,
 posts
 };
}
export function updatePaginationLinks(links) {
 return {
 type: types.posts.UPDATE_LINKS,
 links
 };
}
export function like(postId) {
 return (dispatch, getState) => {
 const { user } = getState();
 return API.likePost(postId, user.id)
 .then(res => res.json())
 .then(post => {
 dispatch({
 type: types.posts.LIKE,
 post
 });
 })

Listing 10.11 Creator async and synchronous actions (src/actions/posts.js)

Handle the
error, if any.

JSON API uses Link
headers to indicate
paging options

As you did with
comments, this action
creator will pass along
new comments to store.

Update pagination links
in store accordingly

Like a particular
post using its ID.

Return function will have the
dispatch and getState methods
injected into it by Redux

Dispatch LIKE action
with post attached
as metadata
Licensed to Samir Mashlum <smashlum@gmail.com>

241Creating actions in Redux
 .catch(err => dispatch(createError(err)));
 };
}
export function unlike(postId) {
 return (dispatch, getState) => {
 const { user } = getState();
 return API.unlikePost(postId, user.id)
 .then(res => res.json())
 .then(post => {
 dispatch({
 type: types.posts.UNLIKE,
 post
 });
 })
 .catch(err => dispatch(createError(err)));
 };
}

You still need to create a few more action types for posts. You can like and unlike
posts, but you still haven’t ported over the post creation you previously created. You
also need a way to fetch a number of posts and single posts individually. Listing 10.12
shows the corresponding action creators you’ll need to create.

 Hopefully by now you’re starting to get the hang of asynchronous action cre-
ators. In many apps, these sorts of action creators are pretty common. But the possi-
bilities don’t end here. I’ve found using redux-thunk by itself to be sufficient for
most applications that need asynchronous action creation, but people have created
plenty of other libraries to address this need. For example, check out Redux Saga at
https://github.com/redux-saga/redux-saga.

//...

export function createNewPost(post) {
 return (dispatch, getState) => {
 const { user } = getState();
 post.userId = user.id;
 return API.createPost(post)
 .then(res => res.json())
 .then(newPost => {
 dispatch({
 type: types.posts.CREATE,
 post: newPost
 });
 })
 .catch(err => dispatch(createError(err)));
 };
}
 export function getPostsForPage(page = 'first') {
 return (dispatch, getState) => {
 const { pagination } = getState();
 const endpoint = pagination[page];

Listing 10.12 Creating more post action creators (src/actions/posts.js)

Unliking a post involves
same flow, but dispatches
a different action type

As before, use getState function
to access snapshot of state

Embed user ID
on new post

Dispatch a create
post action.

Grab pagination
state object
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/redux-saga/redux-saga

242 CHAPTER 10 Redux application architecture
 return API.fetchPosts(endpoint)
 .then(res => {
 const links = parseLinkHeader(res.headers.get('Link'));
 return res.json().then(posts => {
 dispatch(updatePaginationLinks(links));
 dispatch(updateAvailablePosts(posts));
 });
 })
 .catch(err => dispatch(createError(err)));
 };
}
export function loadPost(postId) {
 return dispatch => {
 return API.fetchPost(postId)
 .then(res => res.json())
 .then(post => {
 dispatch(updateAvailablePosts([post]));
 dispatch(getCommentsForPost(postId));
 })
 .catch(err => dispatch(createError(err)));
 };
}

10.2.5 To Redux or not to Redux?

With those action creators done, you’ve created the initial functionality for creating
posts and comments. You’re still missing one area, though: authentication for the
user. In previous chapters, you were using Firebase helpers to check for the user’s
authentication state and update the local component state with that. Do you need to
do the same thing with authentication? That brings up another good question: what
belongs in Redux and what doesn’t? Let’s look at this somewhat contentious question
before moving on.

 Opinions in the React/Redux community vary from “put whatever you want in the
store” to “absolutely everything must go in the store.” There’s also a tendency for engi-
neers who have only worked with React in a Redux context to see that as the only way
to go and think of React and Redux as one and the same. People are often limited by
their experience, but my hope is that we can take time to consider the facts and
tradeoffs before forming an immovable opinion.

 For one, it’s important to remember that although React and Redux fit well
together, the technologies themselves aren’t intrinsically linked. You don’t need
Redux to build React applications. I hope you’ve seen that in this book. Redux is just
another tool available to engineers—it’s not the only way to build your React applica-
tions and is certainly not something that invalidates “normal” React concepts (local
component state, for example). There are some cases where you might simply be add-
ing overhead by bringing a component’s state into Redux.

 What should you do? So far, Redux has proven to be a great way to give your appli-
cation a robust architecture that has already helped you better organize code and
functionality (and we haven’t even gotten to reducers yet!). Based on your experience

Use link header
parser and pass in

Link header Dispatch
link action

Dispatch update
posts action

Load post from
API and fetch
its associated
comments
Licensed to Samir Mashlum <smashlum@gmail.com>

243Creating actions in Redux
so far, you may be tempted to quickly agree with the “absolutely everything should be
in the Redux store” point of view. But I want to caution against this impulse and look
at the tradeoffs instead.

 In my experience, there are a couple questions we can ask to guide decisions about
what does and doesn’t belong in the Redux store. The first one is this: do many other
parts of the application need to know about this piece of state or functionality? If so, it
should probably go in the Redux store. If the state is completely localized to a compo-
nent, you should consider leaving it out of the Redux store. One example is some-
thing like a dropdown menu that doesn’t need to be controlled except by the user. If
your app needs to control whether the dropdown is open or closed and respond to it
opening or closing, those state changes should probably go through the store. But if
not, keeping the state local to the component is fine.

 Another question is whether the state you’re dealing with would be simplified or
better expressed in Redux. If you’re taking the state and actions for a component and
translating them into Redux for the sake of doing so, you’re probably introducing
additional complexity for yourself and not getting much for it. But if your state is com-
plicated or particular enough that Redux would make it easier to work with, you
might want to include it in the store.

 With those things in mind, let’s revisit the question of whether you should inte-
grate the user and authentication logic into Redux. Do other parts of the application
need to know about the user? They certainly do. Would you be able to better express
the user logic in Redux? Without centralizing it in the store, you might need to repli-
cate the logic across different pages in your application, and that might not be ideal.
For the time being it looks like it makes sense to integrate the user and authentication
logic into Redux.

 Let’s see how to create some actions! Listing 10.13 shows the user-related actions
you’ll create. You’ll use a modern feature of the JavaScript language in these exam-
ples, async/await. If you’re unfamiliar with how this part of the language works, it
might help to read through the Mozilla Developer Network documentation (https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_
function) and the chapter on async/await in Exploring ES2016 and ES2017 by Dr.
Axel Rauschmayer (Leanpub, 2017; http://exploringjs.com/es2016-es2017/ch_async-
functions.html).

import * as types from '../constants/types';
import { history } from '../history';
import { createError } from './error';
import { loading, loaded } from './loading';
import { getFirebaseUser, loginWithGithub, logUserOut, getFirebaseToken }

from '../backend/auth';

Listing 10.13 Creating user-related actions (src/actions/auth.js)

Import modules you’ll need for
your auth-related actions.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
http://exploringjs.com/es2016-es2017/ch_async-functions.html
http://exploringjs.com/es2016-es2017/ch_async-functions.html

244 CHAPTER 10 Redux application architecture

 export function loginSuccess(user, token) {
 return {
 type: types.auth.LOGIN_SUCCESS,
 user,
 token
 };
}
export function logoutSuccess() {
 return {
 type: types.auth.LOGOUT_SUCCESS
 };
}
export function logout() {
 return dispatch => {
 return logUserOut()
 .then(() => {
 history.push('/login');
 dispatch(logoutSuccess());
 window.Raven.setUserContext();
 })
 .catch(err => dispatch(createError(err)));
 };
}
export function login() {
 return dispatch => {
 return loginWithGithub().then(async () => {
 try {
 dispatch(loading());
 const user = await getFirebaseUser();
 const token = await getFirebaseToken();
 const res = await API.loadUser(user.uid);
 if (res.status === 404) {
 const userPayload = {
 name: user.displayName,
 profilePicture: user.photoURL,
 id: user.uid
 };
 const newUser = await API.createUser(userPayload).then(res
 => res.json());
 dispatch(loginSuccess(newUser, token));
 dispatch(loaded());
 history.push('/');
 return newUser;
 }
 const existingUser = await res.json();
 dispatch(loginSuccess(existingUser, token));
 dispatch(loaded());
 history.push('/');
 return existingUser;
 } catch (err) {
 createError(err);
 }
 });
 };
}

Create login and
logout action
creators—login
action will be
parameterized to
accept user and token

Log user out
using Firebase

Push user to login page, dispatch
logout action, and clear user
context (for error-tracking library)

Log user in
with Firebase

Async/await uses
try...catch error-
handling semantics

Get user and token from
Firebase using awaitTry finding user

you got back from
Firebase with API—if

they don’t exist (404),
must sign them up using

info from Firebase

Create new user

Dispatch login actions
with new user and
return from function

If user already
existed, dispatch
appropriate login
actions and return

Catch error in login
process and dispatch
it to store
Licensed to Samir Mashlum <smashlum@gmail.com>

245Creating actions in Redux
After all that, you’ve created actions for user-related actions, comments, posts, load-
ing, and errors. If that seemed like a lot, you’ll be glad to know that what you’ve done
is create the bulk of the raw functionality of the app. You still need to teach Redux
how to respond to state changes with reducers in the next section and then wire every-
thing up to React, but the actions you’ve re-created represent all the basic ways you
(or a user) can interact with your application. This is another strength of Redux:
you end up doing work to turn functionality into actions, but in the end you have a
pretty comprehensive collection of what actions someone could take in your app. This
can be much clearer than spaghetti-code–filled codebases where there’s no way to get
an accurate way of the application, much less the different actions you can take.

10.2.6 Testing actions

Next you’ll write some quick tests for these actions before we move on to reducers.
For the sake of expediency, I won’t cover writing the tests for every single reducer or
action that you set up, but I want to make sure you have some representative examples
to get an idea of how to test different parts of a Redux app. If you’d like to see more
examples, check out the application source code and look in the test directory.

 Redux makes testing action creators, reducers, and other parts of your Redux
architecture straightforward. Even better, they can be tested and maintained mostly
independently of your front-end framework. This can be especially important in
larger applications where testing is a nontrivial endeavor (say, a business application
instead of a weekend side project). For actions, the general idea is to assert that
expected action type or types, and any necessary payload information is created based
on a given action.

 Most action creators can be easily tested because they usually return an object with
a type and payload information. Sometimes, though, you need to do some additional
setup to accommodate things like async action creators. To test async action creators,
you’ll use the mock store you installed at the beginning of the chapter (redux-mock-
store—see more at https://github.com/arnaudbenard/redux-mock-store) and con-
figure it with redux-thunk. That way, you can assert that an async action creator dis-
patches certain actions and verify that it’s working as expected. The next listing shows
how you can go about testing actions in Redux.

jest.mock('../../src/shared/http');
import configureStore from 'redux-mock-store';
import thunk from 'redux-thunk';
import initialState from '../../src/constants/initialState';
import * as types from '../../src/constants/types';
import {
 showComments,
 toggleComments,
 updateAvailableComments,
 createComment,

Listing 10.14 Testing actions in Redux (src/actions/comments.test.js)

Use Jest to
mock HTTP
file so you
don’t make
network
requests

Import mock store and redux
middleware so you can create

mock store to mirror yours
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/arnaudbenard/redux-mock-store

246 CHAPTER 10 Redux application architecture

Imp
act

yo
nee

A
ac
w

act
ri
 getCommentsForPost
} from '../../src/actions/comments';
import * as API from '../../src/shared/http';

const mockStore = configureStore([thunk]);
describe('login actions', () => {
 let store;
 beforeEach(() => {
 store = mockStore(initialState);
 });
 test('showComments', () => {
 const postId = 'id';
 const actual = showComments(postId);
 const expected = { type: types.comments.SHOW, postId };
 expect(actual).toEqual(expected);
 });
 test('toggleComments', () => {
 const postId = 'id';
 const actual = toggleComments(postId);
 const expected = { type: types.comments.TOGGLE, postId };
 expect(actual).toEqual(expected);
 });
 test('updateAvailableComments', () => {
 const comments = ['comments'];
 const actual = updateAvailableComments(comments);
 const expected = { type: types.comments.GET, comments };
 expect(actual).toEqual(expected);
 });
 test('createComment', async () => {
 const mockComment = { content: 'great post!' };
 API.createComment = jest.fn(() => {
 return Promise.resolve({
 json: () => Promise.resolve([mockComment])
 });
 });
 await store.dispatch(createComment(mockComment));
 const actions = store.getActions();
 const expectedActions = [{ type: types.comments.CREATE, comment:

[mockComment] }];
 expect(actions).toEqual(expectedActions);
 });
 test('getCommentsForPost', async () => {
 const postId = 'id';
 const comments = [{ content: 'great stuff' }];
 API.fetchCommentsForPost = jest.fn(() => {
 return Promise.resolve({
 json: () => Promise.resolve(comments)
 });
 });
 await store.dispatch(getCommentsForPost(postId));
 const actions = store.getActions();
 const expectedActions = [{ type: types.comments.GET, comments }];
 expect(actions).toEqual(expectedActions);
 });
});

ort
ions
u’ll

d to
test

import API so you can
mock out specific
functions on it

Create mock store
and reinitialize it
before each test

ssert that an
tion creator
ill output an
ion with the
ght type and

data

Create mock
comment to
pass to action
creator

Mock out
createComment
method from API
module using Jest

Dispatch
action and

use await to
wait for

promise to
resolve

Assert that actions
were created as
expected
Licensed to Samir Mashlum <smashlum@gmail.com>

247Creating actions in Redux
10.2.7 Creating custom Redux middleware for crash reporting

You have some actions created, but before you move on to reducers you can add some
of your own middleware. Middleware is Redux’s way of letting you hook into the data
flow process (actions dispatched to store, handled by reducer, state updated, listeners
notified). Redux’s approach to middleware is similar to other tools like Express or
Koa (web server frameworks for Node.js), although it solves a different problem. Fig-
ure 10.7 shows an example of a middleware-focused flow as it might appear in some-
thing like Express or Koa.

Sometimes you may want to interrupt the flow, send data off to another API, or solve
any other application-wide problems. Figure 10.7 shows a few different use cases for
middleware: data modification, flow interruption, and performing side effects. One
key point here is that the middleware should be composable—you should be able to
reorder any of these and not worry about them affecting each other.

 Redux middleware lets you act between the point that an action is dispatched and
when it reaches a reducer (see the “Middleware” section of figure 10.7). It’s a great
place to focus on issues that are common to all parts of your Redux app and would
otherwise require duplicate code in many places.

Exercise 10.1 Definitions
Match the term to its definition:

A. Store

B. Reducer

Add, remove,

modify data

Middleware

Interrupt flow

Middleware

Process start Process end
Perform

side effects

Side effects

Middleware

Other services

Figure 10.7 Middleware sits between a process’s start and end points and lets you do
various things in between.
Licensed to Samir Mashlum <smashlum@gmail.com>

248 CHAPTER 10 Redux application architecture
For example, using middleware can be a great way to centralize error handling,
send analytics data off to a third-party API, do logging, and more. You’ll implement
a simple crash-reporting middleware that will make sure that any unhandled excep-
tions get reported to your error-tracking and management system. I’m using Sentry
(https://sentry.io), an app that tracks and records exceptions for later analysis, but
you could use whatever option is best for you or your team (Bugsnag is another great
option—check it out at https://bugsnag.com). Listing 10.15 shows how to create some
basic error-reporting middleware that will log out errors and send them to Sentry
when they’re encountered by Redux. Usually, engineers will get notifications of some
kind (immediately or in a dashboard) when exceptions occur in an app; Sentry
records those errors and lets you know when they happened.

// ... src/middleware/crash.js
import { createError } from '../actions/error';
export default store => next => action => {
 try {
 if (action.error) {
 console.error(action.error);
 console.error(action.info);
 }
 return next(action);
 } catch (err) {
 const { user } = store.getState();
 console.error(err);
 window.Raven.setUserContext(user);
 window.Raven.captureException(err);
 return store.dispatch(createError(err));
 }
};

//... src/store/configureStore.prod.js

C. Action

D. Action creator

___ The central state object in Redux; source of truth.

___ Objects that contain change-related information. They must have a type and can
contain any additional information needed to communicate that something happened.

___ Functions used by Redux to compute changes to state based on something
happening.

___ Functions that are used to create type and payload information about something
that happened in the application.

Listing 10.15 Creating simple crash-reporting Redux middleware

Redux middleware is
comprised of composed
functions that Redux
will inject into.

If no errors, move
to the next action

Report error, if any

Get user and send along
with error; dispatch
error to store
Licensed to Samir Mashlum <smashlum@gmail.com>

https://sentry.io
https://bugsnag.com

249Summary
import thunk from 'redux-thunk';
import { createStore, compose, applyMiddleware } from 'redux';

import rootReducer from '../reducers/root';
import crashReporting from '../middleware/crash';

let store;
export default function configureStore(initialState) {
 if (store) {
 return store;
 }
 store = createStore(rootReducer, initialState, compose(
 applyMiddleware(thunk, crashReporting)
));
 return store;
}

This is only a taste of what you can do with Redux middleware. The extensive docu-
mentation contains a wealth of Redux information and insight into design and API
usage as well as offering excellent examples. See http://redux.js.org/docs/advanced/
Middleware.html#seven-examples for more great examples of Redux middleware.

10.3 Summary
Here are the main points covered in this chapter:

 Redux is a library and application architecture that doesn’t have to be used with
any particular library or framework. It works especially well with React and
enjoys immense popularity as the tool of choice for state management and
application architecture in many React apps.

 Redux focuses on predictability and enforces strict ways of working with data.
 A store is an object that serves as the source of truth for an application; it is the

global state of the app.
 Flux allows you to have multiple stores, but Redux only allows one.
 Reducers are functions used by Redux to compute changes to state based on a

given action.
 Redux is similar to Flux in many ways, but introduces the idea of reducers, has a

single store, and its action creators don’t directly dispatch actions.
 Actions contain information about something that happened. They must have a

type but can contain any other information that your store and reducers will
need to determine how state should be updated. In Redux, there’s a single state
tree for the entire application; state all lives in one area and can only be
updated through specific APIs.

 Action creators are functions that return actions that can be dispatched by the
store. With certain middleware (see next item) in place, you can create asynchro-
nous action creators that are useful for doing things like calling remote APIs.

Pull in middleware
to be used in
production.

Add middleware
for production
environment
Licensed to Samir Mashlum <smashlum@gmail.com>

http://redux.js.org/docs/advanced/Middleware.html#seven-examples
http://redux.js.org/docs/advanced/Middleware.html#seven-examples
http://redux.js.org/docs/advanced/Middleware.html#seven-examples

250 CHAPTER 10 Redux application architecture
 Redux allows you to write middleware, a place for injecting custom behavior
into the Redux state management process. Middleware is executed before
reducers are fired off and allow you to perform side effects or implement global
solutions for your app.

In the next chapter, you’ll continue to work with Redux as you learn about reducers
and integrate them into your React app.
Licensed to Samir Mashlum <smashlum@gmail.com>

More Redux and
integrating Redux with React
In this chapter, you’ll continue the work you did in the last chapter to build out
the basic elements of your Redux architecture. You’ll work to integrate React with
your Redux actions and store, and explore how reducers work. Redux is a variant
of the Flux pattern that was designed with React in mind, and it works well with
React’s unidirectional data flow and APIs. Although it’s not the universal choice,
many large React applications will consider Redux as one of the top choices when
implementing a state management solution. You’ll follow suit and do so for Let-
ters Social.

This chapter covers
 Reducers, Redux’s way of determining how state

should change

 Using Redux with React

 Converting Letters Social to use the Redux
application architecture

 Adding like and comment functionality to your app
251

Licensed to Samir Mashlum <smashlum@gmail.com>

252 CHAPTER 11 More Redux and integrating Redux with React
11.1 Reducers determine how state should change
You can create and dispatch actions and handle errors, but these don’t do anything to
change your state yet. To handle the incoming actions, you need to set up reducers.
Remember, actions are just ways to describe that something happened and specify
some info about what happened, but nothing more. The job of reducers is to specify
how the store state should change in response to these actions. Figure 11.1 shows how
reducers fit into the broader picture of Redux we’ve been looking at.

 But what are reducers? If you’ve enjoyed the straightforward simplicity of Redux
so far, you won’t be disappointed by reducers: they’re just more simple functions
that have a single purpose. Reducers are pure functions that receive the previous state
and an action as arguments and return the next state. According to the Redux docu-
mentation, they’re called reducers because their method signature looks like what
you would pass to Array.prototype.reduce (for example, [1,2,3].reduce((a, b)
=> a + b, 0).

 Reducers must be pure functions, meaning that given an input they will produce the
same associated output every time. This contrasts with actions or middleware, where
side effects are produced and API calls are often made. Doing anything asynchronous
or impure (like calling Date.now or Math.random()) in reducers is an anti-pattern and
could degrade performance or reliability in your app. The Redux docs drive this point
home: “Given the same arguments, it should calculate the next state and return it. No

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 7 and 8 (if you followed along and built out the examples yourself)
or check out the chapter-specific branch (chapter-10-11).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-10-11 corresponds to the code as it will be at the end of this
chapter). You can execute one of the following terminal commands in the directory of
your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-10-11

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social

253Reducers determine how state should change
surprises. No side effects. No API calls. No mutations. Just a calculation.” For more on
this, see https://redux.js.org/basics/reducers.

11.1.1 State shape and initial state

Reducers will start to work on modifying the single Redux store, so it’s a good time to
talk about what shape that store will take. Designing the state shape of any app will
both affect and be affected by how the UI of your app works, but it’s generally a good
idea to keep the “raw” data separated from the UI data as much as possible. One way
to do this is to store things like IDs separate from their counterparts and use the IDs to
look up data.

 You’ll create an initial state file that will help you determine your state shape and
structure. In the constants folder, create a file named initialState.js. This will be the
state of your Redux app before any actions have been dispatched or any changes have
been made. You’ll include information for error and loading states, as well as some
information about posts, comments, and the user. You’ll store the IDs for comments

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

Reducers perform

pure mutations to

create new state

New store

state exists

U

R

A

E

Updates

Reducer

Action

Event

R
e
d
u
c
e
rs

 u
s
e
 c

o
p
ie

s
 o

f
s
ta

te
 f

o
r

m
u

ta
ti
o

n

Components receive

state as props

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Actions

Store

Reducer

Action sent to dispatcher

State

Logging(e.g. Google analytics,
segment, etc.)

A A A

R

R

UUU

R

const Component = {props} => {
return {

<Button
onClick={this.handleButtonClick}
data={props.data}

/>
};

}

View ()React Components

E

E

E

ex: click, keyup,

focus, change

Events trigger

action creators

Figure 11.1 Reducers are just functions that help determine what changes should be made to the state. You
can think of them as sort of a gateway to your app state that tightly controls incoming changes.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://redux.js.org/basics/reducers

254 CHAPTER 11 More Redux and integrating Redux with React
and posts in arrays and the main information for these in objects that you can easily
reference. The following listing shows an example of setting up the initial state.

export default {
 error: null,
 loading: false,
 postIds: [],
 posts: {},
 commentIds: [],
 comments: {},
 pagination: {
 first: `${process.env
 .ENDPOINT}/posts?_page=1&_sort=date&_order=DESC&

_embed=comments&_expand=user&_embed=likes`,
 next: null,
 prev: null,
 last: null
 },
 user: {
 authenticated: false,
 profilePicture: null,
 id: null,
 name: null,
 token: null
 }
};

11.1.2 Setting up reducers to respond to incoming action

With your initial state set up, you should create some reducers to handle incoming
actions so your store can be updated. Reducers usually use a switch statement to
match incoming action types to make updates to state. They return a new copy of the
state (not the same version with changes) that will then be used to update the store.
Reducers also perform catch-all behavior to ensure that unknown actions just return
the existing state. We’ve noted it before, but it’s important to say again that reducers
are performing calculations and should return the same output every time based on a
given input; no side effects or impure processes should be initiated.

 Reducers are responsible for calculating how the store should change. In most
apps, you’ll have many reducers that will each be responsible for a slice of your store.
This helps keep files uncluttered and focused. You’ll ultimately use the combine-
Reducers method available from Redux to, well, combine your reducers into one.
Most reducers use a switch statement with cases for different action types and a
default catch-all at the bottom to ensure that unknown action types (probably created
by accident, if anything) don’t have any unintentional effects on state.

 Reducers also make copies of state and don’t directly mutate the existing store
state. If you look back at figure 11.1, you’ll see that the reducers use state as they per-
form their jobs. This approach is similar to the way that immutable data structures

Listing 11.1 Initial state and state shape (src/constants/initialState.js)

Object that Redux will
use for its initial state

Store comment
and post IDs
separate from
the actual data. Store pagination

links (received via
HTTP headers)—
this is just one
approach to
pagination.

Store information
about user’s
authentication state
Licensed to Samir Mashlum <smashlum@gmail.com>

255Reducers determine how state should change
generally work; modified copies are made instead of direct mutations. Listing 11.2
shows how to set up the loading reducer. Note that in this case you’re only dealing
with a “flat” slice of state—the Boolean loading property—so you just return either
true or false for the new state. You’ll frequently be working with a state object that
has many keys or nested properties, and your reducer will need to do more than just
return true or false.

import initialState from '../constants/initialState';
import * as types from '../constants/types';

export function loading(state = initialState.loading, action) {
 switch (action.type) {
 case types.app.LOADING:
 return true;
 case types.app.LOADED:
 return false;
 default:
 return state;
 }}

Now when a loading-related action gets dispatched, the Redux store will be able to do
something about it. When an action comes in and has made it through any existing
middleware, Redux will invoke reducers to determine what new state should be cre-
ated based on the action. There wasn’t a way for your store to know about change
information contained in an action before you had set up any reducers. To visualize
this, figure 11.2 cuts out the reducers from the flow; see how there’s no way for actions
to reach the store?

 Next, you’ll create another reducer to put your Redux skills to work. After all,
many reducers won’t be just returning a true or false value, or at the very least if they
do, there will probably be more that goes into calculating that true or false value.
Another key part of the Letters Social app is showing and creating posts, and you need
to migrate it to Redux. Like you might if you were migrating a real-life React app to
use Redux, you should be able to preserve much of the existing logic that your app
uses and translate it into a Redux-friendly form. You’ll create two reducers to handle
the posts themselves and one for keeping track of the post IDs. In a larger app, you
might combine these together under another key, but keeping them separate is fine
for now. This also serves as an example of how multiple reducers can be set up to han-
dle a single action. Listing 11.3 shows how to create the reducer for comments. You’ll
be creating quite a few reducers here, but once that’s done, your app will not only
have a comprehensive description of actions that can occur but also of ways that the
state can change.

Listing 11.2 Setting up the loading reducer (src/reducers/loading.js)

Function that takes
two parameters,

state and an action

Usually, you’ll use a switch statement
to explicitly handle each type of action
and return state by default.

If action has loading type,
return true for new state value

Handle loaded
case and return
appropriate false
case

Return existing
state by default
Licensed to Samir Mashlum <smashlum@gmail.com>

256 CHAPTER 11 More Redux and integrating Redux with React
import initialState from '../constants/initialState';
import * as types from '../constants/types';
export function comments(state = initialState.comments, action) {
 switch (action.type) {
 case types.comments.GET: {
 const { comments } = action;
 let nextState = Object.assign({}, state);
 for (let comment of comments) {
 if (!nextState[comment.id]) {
 nextState[comment.id] = comment;
 }
 }
 return nextState;
 }
 case types.comments.CREATE: {
 const { comment } = action;
 let nextState = Object.assign({}, state);
 nextState[comment.id] = comment;
 return nextState;
 }

Listing 11.3 Creating the comments reducer (src/reducers/comments)

Type: ‘

Payloa

Action

Reducers perform

pure mutations to

create new state

R
e
d
u
c
e
rs

 u
s
e
 c

o
p
ie

s
 o

f
s
ta

te
 f

o
r

m
u

ta
ti
o

n

Third party APIs

Thunk

Middleware

Analytics

Dispatcher

Store

Reducer

Action sent to dispatch

State

Logging(e.g. Google analytics,
segment, etc.)

A A A

const Compon
return {

<Button
onClick
data={p

/>
};

}

View (Re

Figure 11.2 With reducers in place, Redux will know how to make
changes to the store when actions are dispatched. In a moderately
complex app, you’ll usually have many different reducers that are each
responsible for their own “slice” of the store state.

Pull in
initial state

Reducers are functions that take a
state object and an action.

Use a switch statement to
determine how to respond
to incoming action

For GET, make copy of
state and add comments
you don’t already have

Return new
state

Add new comment
to state
Licensed to Samir Mashlum <smashlum@gmail.com>

257Reducers determine how state should change
 default:
 return state;
 }
}

export function commentIds(state = initialState.commentIds, action) {
 switch (action.type) {
 case types.comments.GET: {
 const nextCommentIds = action.comments.map(comment =>

comment.id);
 let nextState = Array.from(state);
 for (let commentId of nextCommentIds) {
 if (!state.includes(commentId)) {
 nextState.push(commentId);
 }
 }
 return nextState;
 }
 case types.comments.CREATE: {
 const { comment } = action;
 let nextState = Array.from(state);
 nextState.push(comment.id);
 return nextState;
 }
 default:
 return state;
 }
}

Now when you dispatch actions related to comments, your store state will update
appropriately. Did you notice how you were able to respond to actions that weren’t
strictly of the same type? Reducers can respond to actions that are within their pur-
view, even if they aren’t of an identical type. This has to be possible because even
though the “posts” slice of state manages posts, there are other actions in the realm of
the act that might affect it. The takeaway here is that a reducer is responsible for
deciding how a particular aspect of state should change, regardless of which action or
which type of action is coming through. Some reducers might need to know about
many different types of actions that aren’t specifically related to the resource (posts)
they’re modeling.

 Now that you’ve created the comments reducer, you can create the one that will
handle posts. It will be very similar to the comments one because you’re employing
the same strategy for storing them as IDs and objects separately. It will also need to
know how to handle liking and unliking posts (you created the actions for this func-
tionality in chapter 10). The following listing shows how to create these reducers.

import initialState from '../constants/initialState';
import * as types from '../constants/types';
export function posts(state = initialState.posts, action) {

Listing 11.4 Creating the posts reducers (src/reducers/posts.js)

By default return
same state

You only want IDs here
because you’ll store
them separately from
main objects.

Create copy
of previous

state

Push new
ID in
Licensed to Samir Mashlum <smashlum@gmail.com>

258 CHAPTER 11 More Redux and integrating Redux with React
 switch (action.type) {
 case types.posts.GET: {
 const { posts } = action;
 let nextState = Object.assign({}, state);
 for (let post of posts) {
 if (!nextState[post.id]) {
 nextState[post.id] = post;
 }
 }
 return nextState;
 }
 case types.posts.CREATE: {
 const { post } = action;
 let nextState = Object.assign({}, state);
 if (!nextState[post.id]) {
 nextState[post.id] = post;
 }
 return nextState;
 }
 case types.comments.SHOW: {
 let nextState = Object.assign({}, state);
 nextState[action.postId].showComments = true;
 return nextState;
 }
 case types.comments.TOGGLE: {
 let nextState = Object.assign({}, state);
 nextState[action.postId].showComments =

!nextState[action.postId].showComments;
 return nextState;
 }
 case types.posts.LIKE: {
 let nextState = Object.assign({}, state);
 const oldPost = nextState[action.post.id];
 nextState[action.post.id] = Object.assign({}, oldPost, action.post);
 return nextState;
 }
 case types.posts.UNLIKE: {
 let nextState = Object.assign({}, state);
 const oldPost = nextState[action.post.id];
 nextState[action.post.id] = Object.assign({}, oldPost, action.post);
 return nextState;
 }
 case types.comments.CREATE: {
 const { comment } = action;
 let nextState = Object.assign({}, state);
 nextState[comment.postId].comments.push(comment);
 return state;
 }
 default:
 return state;
 }
}

export function postIds(state = initialState.postIds, action) {
 switch (action.type) {

Handle getting
new posts

Show or toggle
comments for
a post

Liking/unliking
a post involves

updating
specific post in
state with new
data from API

Handle new
IDs same way
you did for
comments
Licensed to Samir Mashlum <smashlum@gmail.com>

259Reducers determine how state should change
 case types.posts.GET: {
 const nextPostIds = action.posts.map(post => post.id);
 let nextState = Array.from(state);
 for (let post of nextPostIds) {
 if (!state.includes(post)) {
 nextState.push(post);
 }
 }
 return nextState;
 }
 case types.posts.CREATE: {
 const { post } = action;
 let nextState = Array.from(state);
 if (!state.includes(post.id)) {
 nextState.push(post.id);
 }
 return nextState;
 }
 default:
 return state;
 }
}

I included two reducers in these files because they were so closely related and both act
on the same fundamental data (posts and comments), but you’ll probably find that
most of the time you want to have one reducer per file to keep things simple. Most of
the time your reducer setup will mirror or at least follow the structure of your store.
You may have noticed the subtlety that how you design your store state shape (see the
initial state you set up earlier in the chapter) will greatly influence how your reducers
and, to a lesser degree, your actions are defined. One takeaway from this is that it’s
generally better to spend too much time on designing state shape than to gloss over it.
Too little time spent on design will probably result in lots of rework to improve the
state shape, whereas solid design plus the patterns Redux gives you can make adding
new functionality easier than not adding it.

Migrating to Redux: worth it?
I’ve mentioned a few times in this chapter that Redux can be a lot of work to initially
set up (perhaps you’re feeling that right now!) but in the end it’s often worthwhile.
Obviously, that can’t be true in every possible case, but I’ve found it to be true in the
projects I’ve worked on and for other engineers I know who’ve done the same. One
project I worked on involved a complete migration of the app from a Flux to Redux
architecture. It took the entire team working for maybe a month or so, but we were
able to launch the rewrite of the app with minimal instability and bug creation.

The greater overall outcome, however, was the ability to more rapidly iterate on the
product due to the patterns that Redux helped us put in place. Months after the
Redux migration, we ended up doing a series of complete redesigns of the applica-
tion. Even though we ended up rebuilding large portions of the React portion of the
Licensed to Samir Mashlum <smashlum@gmail.com>

260 CHAPTER 11 More Redux and integrating Redux with React

U

With some of the more complicated reducers taken care of, you can finish the reduc-
ers portion of our Redux work by creating reducers for errors, pagination, and the
user. Start with the error reducer in the following listing.

import initialState from '../constants/initialState';
import * as types from '../constants/types';
export function error(state = initialState.error, action) {
 switch (action.type) {
 case types.app.ERROR:
 return action.error;
 default:
 return state;
 }
}

Next, you need to ensure that your pagination state can get updated. Right now, the
pagination is only related to posts, but in a larger application you might have to set up
pagination for many different parts of your application (for example, when you have a
post with too many comments to sensibly show at once). You only need to handle sim-
ple pagination for your sample application, so create the pagination reducer in the
following listing.

import initialState from '../constants/initialState';
import * as types from '../constants/types';
export function pagination(state = initialState.pagination, action) {
 switch (action.type) {
 case types.posts.UPDATE_LINKS:
 const nextState = Object.assign({}, state);
 for (let k in action.links) {
 if (action.links.hasOwnProperty(k)) {
 if (process.env.NODE_ENV === 'production') {
 nextState[k] =

action.links[k].url.replace(/http:\/\//, 'https://');
 } else {
 nextState[k] = action.links[k].url;
 }
 }
 }

application, the Redux architecture meant that we had to make relatively few changes
to any of the state management and business-logic portions of the application.
What’s more, the patterns Redux provided for us made it trivial to add to the state of
the application where necessary. Integrating Redux was worth the initial work to set
it up and transition the app over to it and it continues to pay dividends long after.

Listing 11.5 Creating the error reducer (src/reducers/error.js)

Listing 11.6 Creating the pagination reducer (src/reducers/pagination.js)

This slice of state isn’t
complicated; sends
through error on action

pdate those
link URLs
with new

pagination
info

Create new copy of
previous state and
merge in URLs from
action’s payload

Quirk due to how Letters Social terminates SSL
when deployed to Zeit (https://zeit.co/now)—

ignore if you don’t deploy app yourself

Update URL
for each link

type
Licensed to Samir Mashlum <smashlum@gmail.com>

https://zeit.co/now

261Reducers determine how state should change
 return nextState;
 default:
 return state;
 }
}

Now you need to create a reducer that will let you respond to user-related events like
logins and logouts. In this reducer you’ll also handle storing some cookies on the
browser so you can use them later when you do server-side rendering in chapter 12.
Cookies are small pieces of data that the server can send to a user’s web browser. You’re
probably familiar with cookies from using computers every day (you get notified
about them on some sites for legal reasons), but maybe you’ve never worked with
them in a programmatic way before. That’s okay. You’ll use the js-cookie library to
interact with cookies, and all you’ll do with them is set and unset one particular
cookie when the user’s authentication state changes. The following listing shows creat-
ing the user reducer to do this.

import Cookies from 'js-cookie';
import initialState from '../constants/initialState';
import * as types from '../constants/types';
export function user(state = initialState.user, action) {
 switch (action.type) {
 case types.auth.LOGIN_SUCCESS:
 const { user, token } = action;
 Cookies.set('letters-token', token);
 return Object.assign({}, state.user, {
 authenticated: true,
 name: user.name,
 id: user.id,
 profilePicture: user.profilePicture ||

'/static/assets/users/4.jpeg',
 token
 });
 case types.auth.LOGOUT_SUCCESS:
 Cookies.remove('letters-token');
 return initialState.user;
 default:
 return state;
 }
}

11.1.3 Combining reducers together in our store

Lastly, you need to make sure that your reducers are integrated with your Redux store.
Even though you’ve created them, they’re not connected in any way right now. Let’s
revisit the root reducer you created in chapter 10 and see how to add new reducers to
it. Listing 11.8 shows how to add the reducers you created to the root reducer. It’s
important to note here that the way that combineReducers will create keys on your

Listing 11.7 Creating the user reducer (src/reducers/user.js)

Import js-cookie
library for use

Pull user and
token from action

Store token as
cookie on browser
using js-cookie

Return copy of state
with new user data,
including token

When logging out, set
user back to initial state
and wipe the cookie
Licensed to Samir Mashlum <smashlum@gmail.com>

262 CHAPTER 11 More Redux and integrating Redux with React
store is based on the reducers you pass in. For the case in listing 11.8, your store’s state
will have loading and posts keys, each managed by their respective reducer. I’m
using the ES2015 property shorthand here, but could have named the final keys dif-
ferently if I wanted to. This is important to note so you don’t feel as though your func-
tion names must be directly tied to keys on your store.

import { combineReducers } from 'redux';

import { error } from './error';
import { loading } from './loading';
import { pagination } from './pagination';
import { posts, postIds } from './posts';
import { user } from './user';
import { comments, commentIds } from './comments';

 const rootReducer = combineReducers({
 commentIds,
 comments,
 error,
 loading,
 pagination,
 postIds,
 posts,
 user
});

export default rootReducer;

11.1.4 Testing reducers

Testing Redux reducers is straightforward thanks to their pure, decoupled nature—
they’re just functions, after all. To test your reducers, you’ll assert that given a certain
input, they should produce a certain state. The next listing shows how to test the
reducers you created for the posts and post ID slices of state. As with other parts of
Redux, the fact that reducers are also functions makes them easy to isolate and test.

jest.mock('js-cookie');

import Cookies from 'js-cookie';

import { user } from '../../src/reducers/user';
import initialState from '../../src/constants/initialState';
import * as types from '../../src/constants/types';

describe('user', () => {
 test('should return the initial state', () => {
 expect(user(initialState.user, {})).toEqual(initialState.user);
 });

Listing 11.8 Adding new reducers to existing root reducer (src/reducers/root.js)

Listing 11.9 Testing reducers (src/reducers/posts.test.js)

Import reducers so
you can add them
to root reducer

combineReducers will
mount each reducer at
corresponding key, but
you can change names
if desired

Mock the js-cookie
library

Import reducer
and types you’ll
need for testing

Assert that initial state will
be returned by default
Licensed to Samir Mashlum <smashlum@gmail.com>

263Reducers determine how state should change
 test(`${types.auth.LOGIN_SUCCESS}`, () => {
 const mockUser = {
 name: 'name',
 id: 'id',
 profilePicture: 'pic'
 };
 const mockToken = 'token';
 const expectedState = {
 name: 'name',
 id: 'id',
 profilePicture: 'pic',
 token: mockToken,
 authenticated: true
 };
 expect(
 user(initialState.user, {
 type: types.auth.LOGIN_SUCCESS,
 user: mockUser,
 token: mockToken
 })
).toEqual(expectedState);
 expect(Cookies).toHaveBeenCalled();
 });
 test(`${types.auth.LOGOUT_SUCCESS}, browser`, () => {
 expect(
 user(initialState.user, {
 type: types.auth.LOGOUT_SUCCESS
 })
).toEqual(initialState.user);
 expect(Cookies).toHaveBeenCalled();
 });
});

With that, we’ve covered most of the basics of a Redux application: the store, reduc-
ers, actions, and middleware! The Redux ecosystem is robust, and there are many
more areas you can explore yourself. We’ve omitted some parts of the API and/or
Redux ecosystem like advanced middleware usage, selectors (optimized ways of inter-
acting with store state), and more. We also specifically omitted extensively covering
the store API (like, for example, working with store.subscribe() to interact with
update events). That’s because the nuts and bolts of working with this part of Redux
will be abstracted over with the react-redux library. (If you’re interested in going into
more depth in these areas and learning more about Redux, see https://redux.js.org.)
I’ve also put together a guide to the React ecosystem on my blog at https://ifelse.io/
react-ecosystem that covers Redux as well.

Create mock user,
token, and expected
state to assert with

Given a login action,
assert that state
changed as expected

Assert that your
cookies mock
was called

Perform similar assertion
on LOGOUT_SUCCESS
action
Licensed to Samir Mashlum <smashlum@gmail.com>

https://redux.js.org
https://ifelse.io/react-ecosystem
https://ifelse.io/react-ecosystem
https://ifelse.io/react-ecosystem

264 CHAPTER 11 More Redux and integrating Redux with React
11.2 Bringing React and Redux together
You’ve made progress with Redux, but your React components don’t know anything
about it at this point. You need to bring them together somehow. You can start to inte-
grate your new architecture with React now that you’ve completed the Redux setup pro-
cess by building out reducers, actions, and a store to use. You’ve probably noticed that
you didn’t have to do much with React to get Redux up and running. That’s because
Redux can be implemented without regard to a specific framework—or any framework
at all. Granted, the way that Redux works fits particularly well with React applications,
and this is at least in part why it has become one of the most popular choices for React
application architecture. But remember even as you start to integrate React and Redux
that you could integrate it with Angular, Vue, Preact, or Ember.

11.2.1 Containers vs. presentational components

When integrating Redux into a React app, you’ll almost certainly be working with the
react-redux library. This library serves as abstraction that covers the integration of
the Redux store and actions into your React components. I’ll cover some of the ways you
can use react-redux, including how to bring actions into your components, and discuss
some new types of components: presentational and container components. You no lon-
ger need to distribute state among your many components because Redux is responsi-
ble for managing the application state via actions, reducers, and the store. Note again
that there’s nothing inherently wrong with creating a React app that doesn’t use Redux;
you still get all the other good things that come from using React. Redux’s predictability
and added structure make designing and maintaining a large, complex React app eas-
ier, and that’s why many teams will choose to go with it over “vanilla” React.

 These two new categories of components (presentational and container) are really
just two more-focused expressions of what your components are already doing. The
difference between “any old” component and a presentation or container component
is in what it does. Rather than allowing any component to handle styling, UI data, and
application data, presentational components handle UI and UI-related data, and con-
tainer components handle application data (à la Redux).

 It’s important to understand the difference between containers and presentational
components, but your application is still doing the same things it was doing with better

Exercise 11.1 True or false
Redux is a relatively small library for what it does, but it has a few “strong” opinions
about how data flow works within the store, reducer, actions, and middleware. Take
a second to check your understanding by evaluating the following statements:

 T | F Reducers should modify the existing state directly.
 T | F Redux includes a way of doing asynchronous work (network requests, for

example) by default.
 T | F It’s a good idea to include an initial state for every reducer by default.
 T | F Reducers can be combined, making it easier to separate out slices of state.
Licensed to Samir Mashlum <smashlum@gmail.com>

265Bringing React and Redux together
separation of concerns. You haven’t introduced anything fundamentally new into the
application with Redux; your React components will still receive props, maintain state,
respond to events, and render with the same lifecycle as before. The key difference
that react-redux provides is in integrating your store, reducers, and actions with your
components. And the new divide between presentational and container components
is just a pattern that can make your life easier.

 Let’s look at these two general sorts of components used in a React app with a
Redux architecture. As noted, presentational components are “UI-only” components.
This means they should generally not have much to do with determining how applica-
tion data is changed, updated, or emitted.

 Here are some basics on presentational components:

 They deal with how things look instead of how data flows or is determined.
 They only have their own state (they’re React classes with a backing instance) if

necessary; most of the time they should be stateless, functional components
that receive props from Redux via react-redux bindings.

 When they do have their own state, it should be UI-related data, not application
data. For example: an open/closed dropdown menu item and its state.

 They don’t determine how data gets loaded or changed—that should happen
primarily in containers.

 They’re usually created “by hand” instead of by the react-redux library.
 They may contain style information, things like CSS classes, other style-related

components, and any other UI-related data.

If you’re exploring the React/Redux ecosystems, you may sometimes see references to
smart (containers) and dumb (presentational) components. This way of referring to them
has fallen out of favor, as it was found to be unhelpful and had a pejorative bent, but if do
you see that terminology used you’ll be able to map it to the presentational/container
dichotomy. With that in mind, container components do all of the following:

 Serve as a data source and can be stateful; the state will usually come from your
Redux store.

 Provide data and behavior information (like actions) to presentational com-
ponents.

 Can contain other presentational or container components; it’s common for a
container to be a parent with many presentational child components.

 Are usually created using react-redux’s connect method (more on that shortly)
and are usually higher-order components (components that create new compo-
nents from other components).

 Usually don’t have style information that doesn’t have to do with application
data. For example, the user profile state slice on the Redux store might have “red”
recorded for the user’s “favorite color”, but the container wouldn’t use that data
for any styling—it would only ever pass it down to a presentational component.
Licensed to Samir Mashlum <smashlum@gmail.com>

266 CHAPTER 11 More Redux and integrating Redux with React
In this chapter, we’ll take a sort of middle approach to breaking down your compo-
nents into presentational and connected or container components. For each compo-
nent you want to connect to the Redux store, you’ll do the following:

 Modify it by exporting a connected component in addition to the regular
component.

 Move any props and state into special functions that react-redux can use
(more on that shortly).

 Bring in any actions you need and bind those to an actions prop the compo-
nent will have.

 Replace local state where appropriate with props mapped to Redux store state.

Figure 11.3 should help you get a better sense of how a connected component typi-
cally works; the same Redux aspects exist, but are essentially “rearranged” around a
React component so updates from the store are communicated to components.

React Component(s)

Type: ‘FETCH_API_DATA’

Payload: { id: 123 }

Action creator

Reducers perform

pure mutations to

create new state

New store

state exists

Inject dispatch

Store state updates are

broadcast to container

component(s)

U

R

A

E

Updates

Reducer

Action

Event

R
e

d
u

c
e

rs
 u

s
e

 c
o

p
ie

s
 o

f
s
ta

te
 f

o
r

m
u

ta
ti
o

n

Store state

passed as props

action-creators

are bound to

event handlers

Third party APIs

PThunk

Middleware

Analytics

Dispatcher Actions

Store

Reducer

Dispatch End

Action sent to dispatcher

Container component (generated via react-redux)

State

Logging(e.g. Google analytics,
segment, etc.)

A

A

Dispatch

Dispatch

Promise
e.g. http

request

StartA

A A

R

R

U

U

U

R

const Component = {props} => {
return {

<Button
onClick={this.handleButtonClick}
data={props.data}

/>
};

}

Figure 11.3 Redux integrated with React. react-redux provides utilities that will help you generate
components (higher-order components; components that generate other components).
Licensed to Samir Mashlum <smashlum@gmail.com>

267Bringing React and Redux together
This chapter doesn’t have the space to cover converting every component we’ve
touched in this book, but the difference between containers and presentational com-
ponents as well as the way you integrate Redux with React should give you some good
starting practice to point you in the right direction.

11.2.2 Using <Provider /> to connect components to the Redux store

The first step in integrating your Redux setup into your React app is to wrap the entire
app with the Provider component provided by react-redux. This component accepts
a Redux store as a prop and will make that store available to your “connected” compo-
nents—another way to describe components that are hooked up to Redux. In almost
every case, this is the central point of integration between your React components and
Redux. A store will have to be available to your containers or your app won’t function
properly (or probably at all). The following listing shows how to use the Provider com-
ponent and update the authentication listener to handle your Redux actions.

import React from 'react';
import { render } from 'react-dom';
import { Provider } from 'react-redux';
import Firebase from 'firebase';

import * as API from './shared/http';
import { history } from './history';

import configureStore from './store/configureStore';
import initialReduxState from './constants/initialState';

import Route from './components/router/Route';
import Router from './components/router/Router';
import App from './app';
import Home from './pages/home';
import SinglePost from './pages/post';
import Login from './pages/login';
import NotFound from './pages/404';

import { createError } from './actions/error';
import { loginSuccess } from './actions/auth';
import { loaded, loading } from './actions/loading';
import { getFirebaseUser, getFirebaseToken } from './backend/auth';

import './shared/crash';
import './shared/service-worker';
import './shared/vendor';
import './styles/styles.scss';

const store = configureStore(initialReduxState);

const renderApp = (state, callback = () => {}) => {
 render(
 <Provider store={store}>

Listing 11.10 Wrapping your app with react-redux’s <Provider />

Import redux-
related
modules you’ll
need here

Create Redux store
using initial state

Wrap your router with
Provider from react-redux
and pass it the store
Licensed to Samir Mashlum <smashlum@gmail.com>

268 CHAPTER 11 More Redux and integrating Redux with React
 <Router {...state}>
 <Route path="" component={App}>
 <Route path="/" component={Home} />
 <Route path="/posts/:postId" component={SinglePost} />
 <Route path="/login" component={Login} />
 <Route path="*" component={NotFound} />
 </Route>
 </Router>
 </Provider>,
 document.getElementById('app'),
 callback
);
};

const initialState = {
 location: window.location.pathname
};

// Render the app initially
renderApp(initialState);

history.listen(location => {
 const user = Firebase.auth().currentUser;
 const newState = Object.assign(initialState, { location: user ?

location.pathname : '/login' });
 renderApp(newState);
});

getFirebaseUser()
 .then(async user => {
 if (!user) {
 return history.push('/login');
 }
 store.dispatch(loading());
 const token = await getFirebaseToken();
 const res = await API.loadUser(user.uid);
 if (res.status === 404) {
 const userPayload = {
 name: user.displayName,
 profilePicture: user.photoURL,
 id: user.uid
 };
 const newUser = await API.createUser(userPayload).then(res =>

res.json());
 store.dispatch(loginSuccess(newUser, token));
 store.dispatch(loaded());
 history.push('/');
 return newUser;
 }
 const existingUser = await res.json();
 store.dispatch(loginSuccess(existingUser, token));
 store.dispatch(loaded());
 history.push('/');
 return existingUser;
 })

History listener
stays the same

Get user from
Firebase and dispatch
loading action

Create new
user if you
don’t have

one already
and dispatch

user/token

Load existing
user and
dispatch
Licensed to Samir Mashlum <smashlum@gmail.com>

269Bringing React and Redux together
 .catch(err => createError(err));
 //...

Now that a store will be available to your components, you can connect them to your
store. You’ll remember from figure 11.3 that react-redux will inject store state into
your components as props and change those props when the store gets updated. If
you weren’t using react-redux, you’d need to manually subscribe to updates from the
store on a component-by-component basis.

 To make this happen, you need to use the connect utility from react-redux. It will
generate a container component that’s connected (hence the name) to the Redux
store and apply updates when the store changes. The connect method only has a few
arguments, but there’s more to it than might first appear; you can read up on it more
thoroughly at https://github.com/reactjs/react-redux. For your purposes, you’ll use
both the ability to subscribe to the store and to inject the store’s dispatch function so
you can create actions for your components.

 To inject state, you’ll pass a function (mapStateToProps) that will receive state as
a parameter and will return an object that will be merged into the props for the com-
ponent; react-redux will re-invoke this function whenever the component receives
new props. Once you’re using connect to wrap your component, you’ll need to adjust
the way props are used in the component (I cover actions next); state shouldn’t be
used unless it relates to UI-specific data. Remember that although this is considered a
best practice, it doesn’t mean that there are no valid cases for blurring the lines
between presentational and container components. They exist, even if they’re rare;
make the best engineering decisions for your team and specific situation.

 Listing 11.11 shows how to use connect and how to adjust the way you’re accessing
props in our Home component and convert it to a stateless function comp. You’ll use
the first of the two parameters that you’ll end up passing to connect: mapStateTo-
Props. This function will receive state (the store state) and can have an additional
argument, ownProps, that will pass in any additional props passed to the container
component. You won’t use that parameter right now, but the API provides it in case
you need it.

import PropTypes from 'prop-types';
import React, { Component } from 'react';
import { connect } from 'react-redux';
import orderBy from 'lodash/orderBy';

import Ad from '../components/ad/Ad';
import CreatePost from '../components/post/Create';
import Post from '../components/post/Post';
import Welcome from '../components/welcome/Welcome';

export class Home extends Component {
 render() {

Listing 11.11 mapStateToProps (src/pages/Home.js)

Use Lodash’s
orderBy function
for sorting posts

Import
components
Home page
displays
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/reactjs/react-redux

270 CHAPTER 11 More Redux and integrating Redux with React
 return (
 <div className="home">
 <Welcome />
 <div>
 <CreatePost />
 {this.props.posts && (
 <div className="posts">
 {this.props.posts.map(post => (
 <Post
 key={post.id}
 post={post}
 />
))}
 </div>
)}
 <button className="block">
 Load more posts
 </button>
 </div>
 <div>
 <Ad url="https://ifelse.io/book" imageUrl="/static/

assets/ads/ria.png" />
 <Ad url="https://ifelse.io/book" imageUrl="/static/

assets/ads/orly.jpg" />
 </div>
 </div>
);
 }
}
//...
export const mapStateToProps = state => {
 const posts = orderBy(state.postIds.map(postId => state.posts[postId]),

'date', 'desc');
 return { posts };
};
export default connect(mapStateToProps)(Home);

When you run the app now (using npm run dev), you shouldn’t encounter any run-
time errors, but you shouldn’t see any posts, either, because there are no actions
doing anything. But if you open the React developer tools, you should be able to see
react-redux at work creating your connected component. Notice how connect cre-
ated another component that wraps the one you passed in and gave it a new set of
props. Behind the scenes, it’s also going to subscribe to updates from the Redux store
and pass them in as new props to your container. Figure 11.4 shows what you should
see when you open the dev tools and your app side by side.

Map over
posts

Pass in post and post
ID (mapStateToProps
will further handle)

Map in posts and sort
them using orderBy

mapStateToProps
function returns props
for connected component

Export connected
component
Licensed to Samir Mashlum <smashlum@gmail.com>

271Bringing React and Redux together
Figure 11.4 If you open the React developer tools, you’ll be able to pick out the newly connected
component and the props that it had passed into it by connect. Notice how the connect function
created a new component that wrapped the component you passed to it.
Licensed to Samir Mashlum <smashlum@gmail.com>

272 CHAPTER 11 More Redux and integrating Redux with React
11.2.3 Binding actions to component event handlers

You need to get your app to respond to user actions again. You’ll use a second func-
tion to do that: mapDispatchToProps. This function does just what it sounds like—it
has a dispatch argument that will be the store’s dispatch method, injected into your
component. You might have noticed in figure 10.3 from chapter 10 or in your React
developer tools that the container has a dispatch method injected into its props
already; you can use that function as is because it gets automatically injected if you
don’t provide a mapDispatchToProps function. But using mapDispatchToProps has
the advantage that you can use it to separate out the component-specific action logic
from the component itself, and it makes testing easier.

The mapDispatchToProps function will be invoked by react-redux and the resulting
object will be merged into your components’ props. You’ll use it to set up your action
creators and make them available to your component. You’ll also take advantage of
the bindActionCreators helper utility from Redux. The bindActionCreators utility
transforms an object whose values are action creators into an object with identical
keys—with the difference being that every action creator is wrapped in a dispatch call,
so they may be invoked directly.

 You probably noticed in listing 11.11 that you used a React class instead of a
stateless functional component. It’s common to create stateless functional compo-
nents, but in this case you need a way to initially load posts, so you require lifecycle
methods that can dispatch actions when the component has mounted. One way
around this is to offload initiation events to the routing layer and coordinate load-
ing data when certain routes are entered or exited. Your current router isn’t built
with lifecycle hooks in mind, but other routers like React-router do have this as a
feature. We’ll explore switching to React Router in the next chapter and you’ll take
advantage of this feature.

 All that’s left, then, is to use mapDispatchToProps to pull in your actions and bind
them in your components. You can also create an object with functions assigned to
whatever key you like. This pattern can make it easier to directly reference your
actions if the functions on the mapDispatchToProps object don’t have any additional
logic between them and the dispatch invocation. The next listing shows how to use
mapDispatchToProps to set up your actions.

Exercise 11.2 Source code assignment
The react-redux library provides some nice abstractions that have been battle-
tested by many companies and individuals using Redux with React. But you don’t
have to use this library to get React and Redux to work together. As an exercise, take
some time to read through the source code for React-Redux at https://github.com/
reactjs/react-redux/tree/master/src. It’s not recommended that you create your own
way to connect React and Redux, but you should be able to see that it’s not “magic.”
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/reactjs/react-redux/tree/master/src
https://github.com/reactjs/react-redux/tree/master/src
https://github.com/reactjs/react-redux/tree/master/src

273Bringing React and Redux together

t
// ...
import { createError } from '../actions/error';
import { createNewPost, getPostsForPage } from '../actions/posts';
import { showComments } from '../actions/comments';
import Ad from '../components/ad/Ad';
import CreatePost from '../components/post/Create';
import Post from '../components/post/Post';
import Welcome from '../components/welcome/Welcome';
export class Home extends Component {
 componentDidMount() {
 this.props.actions.getPostsForPage();
 }
 componentDidCatch(err, info) {
 this.props.actions.createError(err, info);
 }
 render() {
 return (
 <div className="home">
 <Welcome />
 <div>
 <CreatePost onSubmit={this.props.actions.createNewPost} />
 {this.props.posts && (
 <div className="posts">
 {this.props.posts.map(post => (
 <Post
 key={post.id}
 post={post}
 openCommentsDrawer=

{this.props.actions.showComments}
 />
))}
 </div>
)}
 <button className="block"

onClick={this.props.actions.getNextPageOfPosts}>
 Load more posts
 </button>
 </div>
 <div>
 <Ad url="https://ifelse.io/book" imageUrl="/static/

assets/ads/ria.png" />
 <Ad url="https://ifelse.io/book" imageUrl="/static/

assets/ads/orly.jpg" />
 </div>
 </div>
);
 }
}
//...
export const mapDispatchToProps = dispatch => {
 return {

Listing 11.12 Using mapDispatchToProps (src/containers/Home.js)

Import actions
you’ll need for
this componen

Load posts when
component mounts

If error occurs in your
component, use
componentDidCatch to
handle it, dispatch error
to store

Pass post creation
action to CreatePost

component

Pass showComments
action via props

Pass load more
posts action
Licensed to Samir Mashlum <smashlum@gmail.com>

274 CHAPTER 11 More Redux and integrating Redux with React

w
i

 actions: bindActionCreators(
 {
 createNewPost,
 getPostsForPage,
 showComments,
 createError,
 getNextPageOfPosts: getPostsForPage.bind(this, 'next')
 },
 dispatch
)
 };
};

export default connect(mapStateToProps, mapDispatchToProps)(Home);

With that, you’ve connected your component to Redux! As I mentioned earlier, there
isn’t sufficient space to cover converting every single one of the components in your
application to use Redux. The good news is they all follow the same pattern (create
mapStateToProps and mapDispatchToProps, export using connect), and you should
be able to convert them to interact with Redux in the same way you did here for the
home page. Here are the other components you’ve connected to the Redux store in
the application source:

 App—src/app.js
 Comments—src/components/comment/Comments.js
 Error—src/components/error/Error.js
 Navigation—src/components/nav/navbar.js
 PostActionSection—src/components/post/PostActionSection.js
 Posts—src/components/post/Posts.js
 Login—src/pages/login.js
 SinglePost—src/pages/post.js

With all these components integrated, your application will be transitioned to using
Redux! Now that you know how to add a Redux “loop” (action creator, reducer to
handle action, and connecting any components), how would you go about adding a
new feature like a user profile? What other features could you add to Letters Social?
Fortunately, the Letters Social application has many areas for extension and ways in
which you can try new things with Redux.

11.2.4 Updating your tests

When you converted your Home component to React, you ended up breaking the
tests that you had previously written for it. You’re going to fix that now. Fortunately,
the bulk of the testing logic should now live elsewhere, so if anything, these tests
should have gotten simpler than they were before. The following listing shows the
updated test file for the Home component.

Use bindAction-
Creators to bind
rap your actions
n a dispatch call

Use .bind() to ensure
getPostsForPage action is called
with ‘next’ argument every time
Licensed to Samir Mashlum <smashlum@gmail.com>

275Bringing React and Redux together
jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';
import { Provider } from 'react-redux';

import { Home, mapStateToProps, mapDispatchToProps } from
'../../src/pages/home';

import configureStore from '../../src/store/configureStore';
import initialState from '../../src/constants/initialState';

const now = new Date().getTime();
describe('Single post page', () => {
 const state = Object.assign({}, initialState, {
 posts: {
 2: { content: 'stuff', likes: [], date: now },
 1: { content: 'stuff', likes: [], date: now }
 },
 postIds: [1, 2]
 });
 const store = configureStore(state);
 test('mapStateToProps', () => {
 expect(mapStateToProps(state)).toEqual({
 posts: [
 { content: 'stuff', likes: [], date: now },
 { content: 'stuff', likes: [], date: now }
]
 });
 });
 test('mapDispatchToProps', () => {
 const dispatchStub = jest.fn();
 const mappedDispatch = mapDispatchToProps(dispatchStub);
 expect(mappedDispatch.actions.createNewPost).toBeDefined();
 expect(mappedDispatch.actions.getPostsForPage).toBeDefined();
 expect(mappedDispatch.actions.showComments).toBeDefined();
 expect(mappedDispatch.actions.createError).toBeDefined();
 expect(mappedDispatch.actions.getNextPageOfPosts).toBeDefined();
 });
 test('should render posts', function() {
 const props = {
 posts: [
 { id: 1, content: 'stuff', likes: [], date: now },
 { id: 2, content: 'stuff', likes: [], date: now }
],
 actions: {
 getPostsForPage: jest.fn(),
 createNewPost: jest.fn(),
 createError: jest.fn(),
 showComments: jest.fn()
 }
 };
 const component = renderer.create(
 <Provider store={store}>

Listing 11.13 Updating the Home component tests (src/containers/Home.test.js)

Mock Mapbox because
CreateComment component will
try to use it, bring in test renderer
from react-test-renderer

Create initial
state with
some posts

Use initial state to
create a store

To test mapState-
ToProps, assert a
particular state
will result in the
right props

Assert mapDispatchToProps function
has all the right properties

Perform snapshot test to
assert that component’s
output hasn’t changed
Licensed to Samir Mashlum <smashlum@gmail.com>

276 CHAPTER 11 More Redux and integrating Redux with React
 <Home {...props} />
 </Provider>
);
 let tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
});

11.3 Summary
Here are the main things you learned in this chapter:

 Reducers are functions used by Redux to compute changes to state based on a
given action.

 Redux is similar to Flux in many ways but introduces the idea of reducers, has a
single store, and its action creators don’t directly dispatch actions.

 Actions contain information about something that happened. They must have a
type but can contain any other information that your store and reducers will
need to determine how it should be updated. In Redux, there’s a single state tree
for the entire application; state all lives in one area and can only be updated
through specific APIs.

 Action creators are functions that return actions that can be dispatched by the
store. With certain middleware (see next bullet point) in place, you can cre-
ate asynchronous action creators that are useful for doing things like calling
remote APIs.

 Redux allows you to write middleware, a place for injecting custom behavior
into the Redux state management process. Middleware is executed before
reducers are fired off and allow you to perform side effects or implement global
solutions for your app.

 react-redux provides bindings for React components that enable you to con-
nect your components to your store, handle the passing of new props, and
check for updates from Redux (when the store changes).

 Container components are components that only deal with data and nothing
UI-related (think “application data only”).

 Presentational components are only concerned with what you can see or UI-
specific data, such as whether a dropdown menu is open (think “what you see”).

 Redux enforces a unidirectional data flow pattern where data changes are com-
puted by reducers responding to actions and applied to the store.

In the next chapter, you’ll explore the possibilities of server-side rendering in modern
web applications and you’ll start using React on the server.

Perform snapshot test to
assert that component’s
output hasn’t changed
Licensed to Samir Mashlum <smashlum@gmail.com>

React on the server and
integrating React Router
Did you know you can use React outside the browser? That’s because some parts of
the react-dom library don’t require a browser environment to work and can run on
the node.js runtime (or almost any JavaScript runtime with sufficient language sup-
port). To be fair, most JavaScript that isn’t platform-specific can run on the browser
or server; that would exclude IO-related features like reading files or cryptography
for the node.js platform and user-related events or DOM-related aspects for
browser platforms. But with the robustness and prevalence of the node.js platform,
more and more frameworks are starting to be written with server and browser sup-
port in mind.

This chapter covers
 Server-side rendering with React

 When to and when not to add server-side
rendering to your application

 Transitioning your routing setup to React Router

 Handling authenticated routes with React Router

 Fetching data during server-side rendering

 Using Redux in the server-side rendering process
277

Licensed to Samir Mashlum <smashlum@gmail.com>

278 CHAPTER 12 React on the server and integrating React Router
 This is true for React, too; it supports server-side rendering (SSR) via React DOM’s
server APIs. What does that mean? SSR is generally the generation of static HTML
markup that can be sent to the browser via HTTP or another protocol; it’s still “ren-
dering,” but in a server context. Integrating SSR in your application can be useful in
certain circumstances and unnecessary in others. In this chapter, we’ll explore some
of the historical context of server-side rendering, look at when it might make sense to
implement, integrate it into your Letters Social app, and replace the router you cre-
ated in chapters 7 and 8 to better support SSR and allow for future improvements.
You’ll implement a simple version of server-side rendering using React to get familiar
with the basic concepts.

12.1 What is server-side rendering?
Let’s take a brief look at the historical context of rendering in web applications before
we explore using React on the server. If you’re already familiar with how SSR works
(maybe you’ve worked with frameworks like Ruby on Rails or Laravel before or
already understand the mechanics), feel free to move ahead to section 12.1.4, where
you start to implement SSR for your application.

 In the past (and still today for many applications), applications with only server-
rendered views were the widespread norm. Generally, these apps would create HTML
strings interspersed with user-related or other data and send that down to the browser

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 10 and 11 (if you followed along and built out the examples your-
self) or check out the chapter-specific branch (chapter-12).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-12 corresponds to the code as it will be at the end of this
chapter). You can execute one of the following terminal commands in the directory of
your choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-12

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-in-action/letters-social
https://github.com/react-in-action/letters-social

279What is server-side rendering?
over HTTP. Things would eventually improve, but at first even the server-side aspect
was primitive. Simple server-side scripts were created that would manually concatenate
parts of HTML strings together and then send that down as a response. This worked
but made things more difficult than they had to be since manually creating concate-
nated views was time-consuming and could be hard to change. Over time, frameworks
and even languages developed or were created to better enable developers to build
user interfaces that were primarily rendered on the server.

 Figure 12.1 shows a rough overview of this process. The basic idea is that servers
respond to requests from the browser with dynamically generated HTML that, for
example, contains information specific to the requesting user in some way. The exam-
ple ERB template shows an example of what an engineer might work with as they create
HTML markup. You might be familiar with the Pug (née Jade) templating language if
you’ve worked in the node.js community before.

Frameworks like Ruby on Rails, WordPress (a PHP-based content-management frame-
work), and others developed and grew to fill the need of building applications in this
manner. This server-centric approach has worked well and still does. But as client-side
JavaScript became more robust and browsers became more powerful, developers
eventually started using JavaScript for more than just adding basic interactivity to their
apps. They started using it to generate and update interfaces with dynamic data. This
meant the server was utilized less for templating and more as a source of data. Today
you’ll find that many apps (like yours) use a robust client-side application to manage
the UI and a remote (usually REST) API to provide dynamic data. This paradigm is
the one you’ve been using in the book so far. But this chapter starts to change that
slightly as you blend server-rendered and client-rendered patterns. The next section
will show a more concrete example of some of what goes into server-side rendering.
Figure 12.2 shows an example of this setup as compared to the one in figure 12.1.

Server(s)

Data lookup / computation
(based on info from session
cookie, query parameters,

or other source)

Final formatting, template
processing (see),right

string concatenation, etc.

Browser request
GET https://example.com/profile

Server response
html “filled in” with
computed data

Browser

Templates are processed and filled in with appropriate data,
then made available to be sent to the client

Example: default application.html.erb file fromunprocessed

Ruby on Rails 5.0.2

<!DOCTYPE html>
<html>
<head>
<title>RailsTemp</title>
<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
data-turbolinks-track': 'reload' %>

<%= javascript_include_tag 'application',
data-turbolinks-track': 'reload' %>
</head>

<body>
<%= yeld %>

</body>
</html>

Other server processes

Figure 12.1 A simplified overview of server-side rendering
Licensed to Samir Mashlum <smashlum@gmail.com>

280 CHAPTER 12 React on the server and integrating React Router
12.1.1 Digging into server-side rendering

Before you start implementing SSR, we’ll look at a few more aspects of it in non-React
contexts so that when you do start building it into your app, your task will make more
sense. Let’s look at an example of SSR that uses ERB (Embedded Ruby). We saw ERB
referenced in figure 12.1. ERB is a feature of the Ruby programming language that
can be used to create templates for HTML (or other types of text like XML for RSS
feed generation). If you’re curious, you can learn more about ERB and Ruby on Rails
at http://guides.rubyonrails.org/layouts_and_rendering.html.

 Many Ruby on Rails apps will incorporate views generated using ERB templates.
The framework will read the .erb template files created by developers and populate
them using data from a server or elsewhere. Filled with data, the resulting text will be
sent to the user’s browser. The ability to template HTML views is similar to JSX, albeit
with a different syntax and semantics. React creates and manages the UI, whereas tem-
plating approaches like ERB only cover the “creation” half. Listing 12.1 shows a sim-
ple example of an ERB file to demonstrate the sort of templating that’s often used in
server-rendered applications. Aside from the syntax differences, it shouldn’t be too
dissimilar from what you’re used to in other templating languages like Handlebars,
Jade, EJS, or even in React. Many of these templating languages allow you to use many
of the basic constructs available in programming languages like looping, variable
access, and more; React’s JSX is no different.

<h1>Listing Books</h1>
<table>

Listing 12.1 ERB templating

Browser request
GET https://example.com/profile

Server response
HTML, additional assets (JS, CSS)
JSON (for API interaction)

Server(s)

Browser

Futher requests to API
(non-rendering)

- Serve HTML + CSS + JS ()if not over cdn

- RESful API serves JSON

- interact with database, other normal server

tasks

- Render, manage UI

- Make futher API requests

- (Usually) handle client-side routing

Figure 12.2 As browsers and JavaScript evolved (sometimes slowly), client-side JavaScript took on
more responsibilities. In both figure 12.1 and this one, the same basic tasks are being accomplished
(fetch or compute data; show it to the user), but client and server take on differing responsibilities.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://guides.rubyonrails.org/layouts_and_rendering.html

281What is server-side rendering?
 <tr>
 <th>Title</th>
 <th>Summary</th>
 <th></th>
 <th></th>
 <th></th>
 </tr>
<% @books.each do |book| %> #A
 <tr>
 <td><%= book.title %></td>
 <td><%= book.content %></td>
 <td><%= link_to "Show", book %></td>
 <td><%= link_to "Edit", edit_book_path(book) %></td>
 <td><%= link_to "Remove", book, method: :delete, data: { confirm: "Are

you sure?" } %></td>
 </tr>
<% end %>
</table>

<%= link_to "New book", new_book_path %>

It might be helpful to take a quick look at what gets sent to the browser in the server-
rendering process to get a feel for the mechanics of what you want to build. After the
server processes a template like in listing 12.1, it sends a text response to the browser.
The result will look something like listing 12.2, which shows a text representation of
an HTTP (version 1/1.1) response. This is similar to what you’ll be sending down to
your browser when you’re rendering the Letters Social app on the server.

 I used a common command-line tool, cURL, to fetch the web page at http://
example.com so we could see a raw HTTP request. You probably already have cURL
installed on your machine, but if you don’t, head over to https://github.com/curl/
curl and follow the instructions there to install it. Listing 12.2 shows the “raw” HTTP
response sample output from running curl -v https://example.com. I omitted some
content for brevity and left in the > and < symbols from cURL to indicate outgoing (>)
and incoming (<) messages. If you don’t want to use cURL, you can always navigate to
http://example.com in your browser and open the developer tools. Chrome, Firefox,
and Edge all have network sections that let you inspect HTTP requests, too.

> GET / HTTP/1.1
> Host: example.com
> User-Agent: curl/7.51.0
> Accept: */*

< HTTP/1.1 200 OK
< Cache-Control: max-age=604800
< Content-Type: text/html
< Date: Mon, 01 May 2017 16:34:13 GMT
< Etag: "359670651+gzip+ident"
< Expires: Mon, 08 May 2017 16:34:13 GMT

Listing 12.2 Sample HTTP request

Request you sent to
server using cURL

Response headers provide
information like status of
response and other helpful
info (Cache-Control, Expires,
and so on)
Licensed to Samir Mashlum <smashlum@gmail.com>

http://example.com
http://example.com
http://example.com
https://github.com/curl/curl
https://github.com/curl/curl
https://github.com/curl/curl
http://example.com

282 CHAPTER 12 React on the server and integrating React Router
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Server: ECS (rhv/81A7)
< Vary: Accept-Encoding
< X-Cache: HIT
< Content-Length: 1270
<
<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples in

documents. You may use this
 domain in examples without prior coordination or asking for

permission.</p>
 <p>More

information...</p>
</div>
</body>
</html>

By the end of this chapter, you want the server portion of your application to be able
to create the same sort of result as in listing 12.2 (but specific to your app, of course).
Hopefully by now the general idea of server rendering is making sense. In the next
two sections, we’ll explore when it does and doesn’t make sense to build this function-
ality into your application.

12.2 Why render on the server?
Why would you want to do SSR? There might be some very compelling reasons,
depending on your use case. For example, there’s some anecdotal evidence that a
server-rendered app fares better when it comes to being indexed and crawled by
search engines. Although it seems that large search engines like Google can execute
or at least emulate JavaScript and the DOM on the server, it also seems as if sites that
render dynamic content without requiring the DOM tend to fair better. It’s difficult to
ascertain the exact impact of SSR versus non-SSR apps on search engine optimization
(SEO) because Google and other companies’ site-ranking algorithms are closely held,
but there’s at least anecdotal evidence from people and teams in the industry that it
can have a positive effect. If you have a highly public app that heavily depends on
showing up in search engine results, you might consider SSR to increase crawler-
friendliness in addition to all your other SEO optimizations.

Response headers provide
information like status of
response and other helpful
info (Cache-Control, Expires,
and so on)

Response body—
what you’ll use
React to generate
Licensed to Samir Mashlum <smashlum@gmail.com>

283Why render on the server?
 In this book, you’ve been building an app that requires interactivity and allows
users to dynamically create content, but not every app has those requirements. If you
only want the static aspects of React, you could easily use React-DOM’s static render-
ing abilities to create a static page generator or templating library.

 Another reason you might want to render on the server is to optimize your users’
experience. If your app needs to show content to users as quickly as possible, render-
ing on the server might allow you to present that content to them more quickly than
waiting on a client-side render might. This could be the case if your app is something
that depends heavily on showing ads or other static paid content to people and if the
size of the payload isn’t substantially large. In cases where you want to show content
quickly without interaction, you tend to be more concerned about the first paint,
which is when a user is first able to see something in their browser.

 The first paint is one of many metrics you can use to determine how well an app is
being rendered by the browser. Another one is the perceptual speed index (usually just
speed index or SpeedIndex). This is calculated by recording how much of the page has
finished rendering over time. Browsers will record a video of the page as it is loading
and determine what percent of the page has loaded at a given interval. This metric
can be useful for understanding at an aggregate level how quickly a given page
appears to load for a user. SSR can potentially contribute to a faster speed index by
allowing more of your site to be renderable by the browser earlier in the loading pro-
cess. Learn more about speed index at https://sites.google.com/a/webpagetest.org/
docs/using-webpagetest/metrics/speed-index.

 Most apps will benefit from a faster speed index and quick first paint. But in other
cases, you may not care as much about showing something to a user as quickly as pos-
sible because you care more about how quickly they can use your app. The time it
takes until a user can interact with your application or page, called time to interactive
(TTI), might be more important if your app is a highly interactive, feature-rich appli-
cation like Basecamp or Asana. For these applications, SSR might not make sense
because they aren’t public-facing and rely more heavily on interactivity than on show-
ing their users something quickly.

 Let’s look at a couple of applications and see how TTI could hypothetically factor in:

 Basecamp (project management app)—Users want to be able to search for issues,
update to-dos, and check project statuses. In this case, you would want to opti-
mize your app to load JavaScript as quickly as possible instead of trying to show
the user content as quickly as possible.

 Medium (blog/writing app)—Users want to be able to read and browse articles as
quickly as possible. Their ability to do so doesn’t depend on the interactivity of
the app, so in this case you might want to optimize for the first paint.

When considering SSR you’ll also want to weigh the resource-usage tradeoffs between
rendering on the server and on the client. If you’re rendering a huge amount of data
(maybe thousands of rows in an online spreadsheet), doing that on the server will
Licensed to Samir Mashlum <smashlum@gmail.com>

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

284 CHAPTER 12 React on the server and integrating React Router
probably require you to send down a much larger initial payload to the browser. This,
in turn, will probably mean a longer TTI that could be detrimental to your users and
will probably use more server resources. Getting the same amount of data in JSON
format after the app has loaded, for example, would probably result in a smaller pay-
load size and potentially better user experience.

Server rendering with enterprise and consumer applications
You may feel like our discussion of server rendering in this chapter is something the-
oretical that you’ll never have to deal with. But I believe you’ll find that server render-
ing is more common than you think and is an option many teams will actively
consider. I’ve seen this to be true in my own experience and in the experiences of
other engineers I’ve met. I’ve worked on public-facing consumer products and walled-
off enterprise applications and had the chance to see server rendering considered in
diverse business scenarios. In both sorts of cases, we wanted to do the best thing
for our users and we considered server-side rendering as an option.

In the enterprise application, we were dealing with users who wanted the application
to be interactive quickly, not just quickly rendered. We also had to serve pages that
were potentially filled with hundreds or even thousands of rows of financial data
(which could potentially obviate gains achieved by server rendering). The application
was comprised of several smaller applications, and we served different JavaScript
bundles depending on which of the apps were in use at a given time. To make matters
even more complicated, data integrity and security were of the topmost concern for
us, so server rendering would potentially introduce a new area to secure and evaluate
from a security perspective.

These factors made server rendering a “nice to have” that would be saved for some
future time when it could be reevaluated. We found that we could do other things to
help our users, like improving our server performance, optimizing how we serve appli-
cation assets, and defer data fetching on the client until necessary. Interestingly,
people also tend to have different expectations about different sorts of applications.
Consumer applications like Facebook, Twitter, and Amazon all compete for users that
have a wide variety of choices they can make and so directly compete with others on
many fronts. In my experience, enterprise users tend to have a slightly different set
of expectations for an application they use for work. Speed is, of course, incredibly
important, but so are stability, reliability, clarity, and other important aspects of a
business application. It might make sense for an engineering team to optimize on
these dimensions instead of spending the equivalent time optimizing on a less
impactful metric. That’s not always the case, but it has been for some projects I’ve
worked on.

Other projects I’ve worked on had very different demands. Another application was in
the e-commerce space. Server rendering of pages made sense because time to first
paint and SEO considerations were extremely important. We worked to minimize the
size of bundled assets and show content to the user as quickly as possible. Any
appearance of sluggishness would potentially dissuade a user from continuing in
their shopping experience. The applications were also tightly integrated with market-
ing efforts, so working to guarantee stable SEO performance was a priority.
Licensed to Samir Mashlum <smashlum@gmail.com>

285You might not need SSR
You don’t necessarily have to go all-or-nothing in your SSR implementation. If you
must render thousands of rows in a spreadsheet, it might make sense to let the client
handle that aspect of rendering but render the signup and login pages on the server
since those are smaller and rely more on first paint than on time to interactivity. You
could also choose to render certain portions of pages on the web but allow the client
to handle all further data fetching and rendering. If you’re interested in learning
more about thinking through different aspects of web performance, a great place to
start is Google’s Web Fundamentals guide: https://developers.google.com/web/
fundamentals/performance/.

12.3 You might not need SSR
Even though there are some potential benefits to SSR, you should only build it into
your app when the need really exists. That’s because it can, depending on how
deeply integrated it is, introduce significant complexity. In this chapter, we’ll imple-
ment a basic, even simplistic, version of SSR (server-side rendering) to get familiar
with the concepts, but building a robust, purpose-built implementation that han-
dles all the different nuances of doing SSR can represent a significant technical
involvement.

 There are at least a few reasons why integrating server-side rendering can add com-
plexity. Here are a few of them:

 You’ll need to synchronize the server and client in a way that your client can
understand when it takes over. This can involve setting up markup, event han-
dlers, and more that a client might need. Your authentication implementation
will also need to account for requests coming from either the server or the cli-
ent, which may require changes.

 The client and server operate within different paradigms that don’t always eas-
ily map to one another (for example, no DOM, no filesystem, and so on). You
must coordinate handoff and rendering and make sure you either don’t use, or
else properly handle, components that depend on a browser environment.

 Although there are a few exceptions, React (and any JavaScript) is most reliably
run on Node.js runtime. This can tend to couple your client and the server that
renders it because they now both need to support JavaScript. That can be a
good thing, but it does mean you’re tying yourself to the JavaScript language/
platform more than you would otherwise.

 Fine-tuning SSR can require special tuning of your client and server. Perfor-
mance gains are usually realized in small, incremental wins that focus on specific

There are still other sorts of cases where server rendering can be applied, but I hope
that these two simpler examples help shed a little light on some of the practicalities
of what we’re discussing in this chapter.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developers.google.com/web/fundamentals/performance/
https://developers.google.com/web/fundamentals/performance/
https://developers.google.com/web/fundamentals/performance/

286 CHAPTER 12 React on the server and integrating React Router
functionality and almost always involve tradeoffs. This can sometimes mean less
flexibility in making rapid changes and a more complex maintenance process.
Server-side rendering adds one more aspect to this process.

Overall, the main reason for caution here is the “use only what you need” idea. I don’t
want you to come away with the idea that your React app isn’t complete or is somehow
“not React-y enough” unless it’s using SSR. The best engineering decision-making pro-
cesses involve a thorough consideration of the tradeoffs involved (not just what other
people are using or what’s popular!), and that applies here, too. An example might be
the case where you’re writing a simple blogging app as a personal side project. The
reality is that you don’t need the infrastructure and orchestration technology of, say,
Netflix, if you’re not Netflix. Even so, not all large companies are doing SSR. At the
present time of writing, for instance, even Instagram doesn’t seem to be using React to
do SSR, and that company is heavily invested in React. Use what you need.

12.4 Rendering components on the server
Now that we’ve briefly looked at some of the tradeoffs of server-side rendering, we can
start to dig in and see how it works with React. Let’s start with the React API that you’ll
use. ReactDOMServer (accessed via require('react-dom/server') or import React-
DOM from ‘react-dom/server’) exposes four important methods that you can use to
generate the initial HTML for your components:

 renderToString
 renderToStaticMarkup
 renderToNodeStream
 renderToStaticNodeStream

Let’s look at each method in turn.
 First, we have ReactDOMServer.renderToString. renderToString does what it

sounds like: it takes a React element and generates the corresponding HTML markup
from the component based on initial state and props (either default or passed) that
exist when the method is called. React elements, as you’ll remember from earlier
chapters, are the smallest building blocks of React apps. They’re created with
React.createElement (or, more commonly, from JSX) and they’re created from
either a string type or a React component class. The method looks like this:

ReactDOMServer.renderToString(element) string

When you’re rendering on the server, you’re using components and passing props
as usual. The key difference between what you’re used to so far and using React on
the server is the lack of a DOM and browser environment. This means React won’t
run lifecycle methods like componentWillMount or persist state or utilize other DOM-
specific features.
Licensed to Samir Mashlum <smashlum@gmail.com>

287Rendering components on the server
ReactDOM.renderToStaticMarkup will do the same thing as renderToString, but
without attaching any extra DOM attributes for React to use when “taking over” on
the client side. This is useful for cases when you want to do basic templating or static
site generation and don’t need any of the extra attributes. renderToStaticMarkup is
almost identical to renderToString:

ReactDOMServer.renderToStaticMarkup(element) string

You won’t be using renderToStaticMarkup beyond this point, but once you’re done
learning about how to implement SSR with React it should be simple to use it in
future projects where appropriate.

 You may have noticed that the first two methods have apparent complements in
renderToNodeStream and renderToStaticNodeStream. If so, you’ve guessed correctly.
These methods are identical to the others except they use node’s Streams API and
were introduced in React 16 along with the fiber reconciler and many other changes.
Streams are commonly used in node.js, and if you’ve done any work with node, you’ve
probably heard of them. If you haven’t, that’s fine too, and you can learn more at
https://nodejs.org/api/stream.html. The takeaway for our purposes is that these
stream-based methods are asynchronous. This gives them a significant advantage over
their synchronous counterparts. For some time, one of the minor disadvantages of
server rendering with React was that these methods were synchronous. That pre-
sented a challenge for applications that must render complex pages with many com-
ponents. We’ll explore these methods later in the chapter when we look at data
fetching on the server as part of server rendering.

 We can focus on renderToString now that you know a little bit more about the
API methods available to us. renderToString will generate code that React can work
with and use on the client. React-DOM has another method, hydrate, that works
almost exactly like the regular render method you’re so used to. The main difference
is that hydrate specifically handles markup generated by server-side rendering.

 If you call ReactDOM.hydrate() on a node that already has the markup created by
React-DOM on the server, React will preserve the existing HTML and do less work
than it would otherwise. This should generally mean even less work for React to do on

Exercise 12.1
Server rendering can involve a significant amount of complexity and shouldn’t be
treated as a standard or “must-have” feature for all applications. Take some time to
think through how you might approach implementing (or choosing not to implement)
server-side rendering for the following types of apps:

 Enterprise application with no public-facing portions
 Social media site that depends heavily on advertising
 E-commerce application
 Video-hosting platform
Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/api/stream.html

288 CHAPTER 12 React on the server and integrating React Router
initial startup in addition to being a quicker initial load (depending on how much
data you’re sending down and other factors like server load, network, weather, and so
forth). I won’t note it again, but remember that SSR isn’t magic, and you can easily
obviate any performance gains if you do things like load huge JavaScript files, don’t
split your code, or go against other best practices.

 Till now, you haven’t touched any server files. Aside from the limited scope of this
chapter, server programming is generally outside the scope of this book, so we won’t
cover much about the node.js runtime or web server programming paradigms. If
you’re curious to learn more about node and server-side programming, check out
Node.js in Action, 2nd Edition by Alex Young, et al. (Manning Publications, 2017):
www.manning.com/books/node-js-in-action.

 You’re going to start building SSR by focusing on the server changes you need to
make. Listing 12.3 shows the state of the main app server code as it is before you do
anything to get it to work with React. I’ve included all of it so you can get a sense of
what it’s doing. Most of the code is boilerplate middleware that a simple Express
application might use, but most of it isn’t directly related to SSR. Figure 12.3 puts the
code in listing 12.3 into context of the rendering approaches we’ve discussed so far
in this chapter.

Listing 12.3 shows the (basic) server setup for your app. When you put it into the con-
text of the SSR approaches we’ve been looking at in this chapter, it matches with the

Server(s)

Middleware

- parse incoming request

- basic security patching

- handle global logging

- compression

- handle not-founds

Response Handler

- perform route-specific logic

- determine final response

Browser request

GET http://localhost:3000/<route-name>

Server response

(no rendering just yet)

Browser

Figure 12.3 As of listing 12.3, this is the basics of what the server code is doing. It sets up your
server, adds some boilerplate middleware, and then serves a stripped-down HTML file that in turn
downloads your app.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.manning.com/books/node-js-in-action

289Rendering components on the server
client-focused paradigm. In this sort of approach, the server will usually only send
down an HTML file that has no pre-rendered content in it. Your build tools are cur-
rently taking care of generating and serving the HTML file. That file contains refer-
ences to scripts that will download and execute to do the work of rendering and
managing the application, but no rendering is done on the server (yet!).

import { __PRODUCTION__ } from 'environs';
import { resolve } from 'path';
import bodyParser from 'body-parser';
import compression from 'compression';
import cors from 'cors';
import express from 'express';
import helmet from 'helmet';
import favicon from 'serve-favicon';
import hpp from 'hpp';
import logger from 'morgan';
import cookieParser from 'cookie-parser';
import responseTime from 'response-time';
import * as firebase from 'firebase-admin';
import config from 'config';

import DB from '../db/DB';

const app = express();
const backend = DB();

app.use(logger(__PRODUCTION__ ? 'combined' : 'dev'));
app.use(helmet.xssFilter({ setOnOldIE: true }));
app.use(responseTime());
app.use(helmet.frameguard());
app.use(helmet.ieNoOpen());
app.use(helmet.noSniff());
app.use(helmet.hidePoweredBy({ setTo: 'react' }));
app.use(compression());
app.use(cookieParser());
app.use(bodyParser.json());
app.use(hpp());
app.use(cors({ origin: config.get('ORIGINS') }));

app.use('/api', backend);
app.use(favicon(resolve(__dirname, '..', 'static', 'assets', 'meta',

'favicon.ico')));

app.use((req, res, next) => {
 const err = new Error('Not Found');
 err.status = 404;
 next(err);
});

app.use((err, req, res) => {
 console.error(err);

Listing 12.3 Starting out on the server (server/server.js)

Using ES modules
syntax, available in
node 8.5 and higher
via ESM

Setting up middleware that will
apply to all incoming requests;
handles logging, some basic
security protections, parsing of
incoming requests.

Respond to requests,
where you’ll integrate

with React DOM

Error-handling code that
will catch forwarded
errors from other routes
and send to the client
Licensed to Samir Mashlum <smashlum@gmail.com>

290 CHAPTER 12 React on the server and integrating React Router

g
C
w

 return res.status(err.status || 500).json({
 message: err.message
 });
});

module.exports = app;

The first step you want to take is to bring in React-DOM and try rendering a simple
component. You’ll render a simple div first with some text inside it before you move
on to integrating your app. You’ll use React.createElement for this small example so
you don’t have to deal with transpiling your server file, but you’ll be able to use JSX in
other files later when you pull your components in to be used. That’s because you’ll
use babel-register, a Babel library for development that transpiles your code on-the-
fly. You can see us pulling in babel-register in index.js. In a production environ-
ment you wouldn’t do that. Instead, you’d be using something like Webpack and
Babel to compile your code into a bundle. I can’t cover tooling in-depth here, but you
can learn more at https://webpack.js.org and https://babeljs.io.

 For this first pass, all you’ll do is insert a simple message as the child content of a
div and send it to the client. Once you have that in place, you’ll run the server and
check to see what you get back. Figure 12.4 shows what the code in listing 12.4 does.

//...
app.use('/api', backend);
app.use(favicon(resolve(__dirname, '..', 'static', 'assets', 'meta',

'favicon.ico')));
app.use('*', (req, res, next) => {
 const componentResponse = ReactDOMServer.renderToString(
 React.createElement(
 'div',
 null,
 `Rendered on the server at ${new Date()}`
)
);
 res.send(componentResponse).end();
});
//...

If you make the change in listing 12.4, run only the server with node server/run.js in a
terminal, and use another session to send a request with cURL, then you should see a
response coming back from the server. Before, you were sending down the same HTML
string every time, and that document would load your application scripts after the fact.
React would then run and render your application into the DOM (creating DOM
nodes, assigning event listeners, and so on). With this new approach, you can delegate
that first render to the server and let React take over. Listing 12.5 shows how to run the
server and use cURL to inspect responses coming back from the server.

Listing 12.4 Trying out server-side rendering

Within request handler, create
HTML string and send it down

Use renderToStrin
and pass in bare-
bones React
element

reate element
ith type of div
and no props

Pass in simple string
with timestamp as
child contentSend

response
to client
Licensed to Samir Mashlum <smashlum@gmail.com>

https://webpack.js.org
https://babeljs.io

291Rendering components on the server
$ npm run server:dev

// ... in a different terminal session

$ curl -v http://localhost:3000
> GET / HTTP/1.1
> Host: localhost:3000
> User-Agent: curl/7.51.0
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Powered-By: react
< X-XSS-Protection: 1; mode=block
< X-Frame-Options: SAMEORIGIN
< X-Download-Options: noopen
< X-Content-Type-Options: nosniff
< Access-Control-Allow-Origin: *
< Content-Type: text/html; charset=utf-8
< Content-Length: 144
< ETag: W/"90-gXhNJUy73fc2MSrpr7eaKDZ7OV8"
< Vary: Accept-Encoding
< X-Response-Time: 0.795ms
< Date: Mon, 08 May 2017 10:26:55 GMT
< Connection: keep-alive

Listing 12.5 Inspecting your first server-rendered response

Server(s)

Middleware

- parse incoming request

- basic security patching

- handle global logging

- compression

- handle not-founds

Response Handler

...

- use ReactDOM to generate

some basic static HTML, send

to client as a string response

Browser request

GET http://localhost:3000/<route-name>

Server response

contains generated

Browser

Figure 12.4 You’re now using React-DOM to render a simple HTML string and send it to the client.
In some sense, this is all SSR is (create static markup, send it to the client). The complexity I’ve
mentioned tends to come from, among other things, getting all the data you need to create the
text, coordinating the process with the client, and then optimization.

Hit running server
with request, inspect
what you get back

You should get headers back
in your request, but you care
most about response body.
Licensed to Samir Mashlum <smashlum@gmail.com>

292 CHAPTER 12 React on the server and integrating React Router
<
* Curl_http_done: called premature == 0
* Connection #0 to host localhost left intact

<div data-reactroot="">Rendered on the server at Mon May 08 2017 03:26:55
GMT-0700 (PDT)</div>

With that, you’ve done your first server rendering. You used React to create a string
representation of a React component and send it to the client. Right now, React isn’t
being loaded so it can’t pick up from where the server left off, but once it’s included it
will be able to take over. Try running the same commands but opt to use renderTo-
StaticMarkup instead and see how the HTTP response from your server differs.

12.5 Switching to React Router
The router you built in earlier chapters was optimized for handling routing in the
browser, but it wasn’t designed with server-side rendering in mind. The chance to dig
in and see what’s possible with React was a large part of building it yourself and not
just installing a third-party library, and I hope that it gave you the chance to see how
components can be used in different ways.

 It may be useful enough for the relatively simple needs of the sample application,
but your router is lacking in a few areas. It has a pretty bare-bones API, and it would be
nice if it supported things like routing hooks (transitions between routes), middle-
ware (logic that can be applied to multiple routes), and more. And as you dig into
server-side rendering with React, you’re going to need more functionality, like the
ability to generate a component tree to render based on a request URL. That’s why
you’ll switch to using React Router V3.

 React Router (https://github.com/ReactTraining/react-router) seems to be the
single most-used and most-developed routing solution for React. It enjoys a robust fol-
lowing and community of contributors on GitHub and has gone through several
major revisions.

 As of the time of writing, the most recent major version for React Router is 4. It’s
currently in flux and may have been replaced by a new major version by the time
you read this. You’ll use version 3 because its API is similar to the router that you
created, and you should be able to use it with few changes. You’ll also use it because
it’s a robust technology that has been developed by the React open source commu-
nity. It can do more than your simpler router can and even exceeds the needs you
have here.

 It’s worth noting that React Router is a substantial technology, and we’ll only be
dipping into its potential here. The project has come to include a wide variety of rout-
ing features for many situations. The latest major version (4 at time of writing) even
has solutions for routing with the React Native platform. The number of developers

Special react-root and react-
checksum properties on
outermost HTML element
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/ReactTraining/react-router

293Switching to React Router
using and working on React Router has helped make the project incredibly useful, but
it also has the drawback of sometimes changing substantially between major versions.
It’s for this reason, and the similarity to the router you built from scratch, that you
won’t use the latest version of React Router. If you find yourself wanting to use the
latest version of React Router, I have a post on my blog that covers using React Router
v4 with React 16: https://ifelse.io/2017/09/07/server-rendering-with-react-router-and-
react-16-fiber. I’ll also note that even though APIs have changed between versions of
React Router, most of the same concepts apply—you’ll just need to do the work of
remapping functionality to new APIs when transitioning.

12.5.1 Setting up React router

We’ve decided on React Router as a production-ready replacement for your own
router, so let’s see how to get it set up. The first step is to make sure you have React
Router installed and swapped out with your current router. Even though the technol-
ogies are different, the APIs that you’ll use should be similar.

 React Router should already be installed with the project dependencies. Now you
need to start transitioning your project over to React Router and a setup that will allow
you to do SSR. Start with your current src/index.js file. This is an entry-point file
where you’ve been setting up the main parts of your app, including listening to
browser history, rendering your router component, and activating your authentica-
tion events listener.

 This won’t work for your SSR setup because so much of the code there depends on
a browser environment and because you won’t need all the functionality of React
Router to get the app working. All you really need to keep is your authentication lis-
tener. Before you add anything in, create a helper tool for later. Listing 12.6 shows
how to create a simple utility to check whether you’re in a browser environment.
Some tooling technologies like Webpack can help you bundle code that’s environ-
ment aware, but for our purposes, stick to this simpler approach.

Choosing third-party libraries vs. building in-house
Another reason you’re switching over to React Router instead of sticking with your
homegrown solution is that it’s a more likely candidate for any business situations
you or your team will be in. You may often opt for an open source solution like React
Router over writing your own. That’s because, depending on your needs, the time
required to build and maintain a robust solution to a problem may or may not be
worthwhile. Navigating the build-or-buy decision can be tricky when it comes to exter-
nal dependencies, too. My two cents here are to keep two things in mind: 1) you don’t
have to use something because everyone else does, and 2) there’s often much more
work in building your own solution than just the initial work—maintenance is usually
the biggest time sink. A large community of open source contributors will often catch
many bugs before you encounter them yourself.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io/2017/09/07/server-rendering-with-react-router-and-react-16-fiber
https://ifelse.io/2017/09/07/server-rendering-with-react-router-and-react-16-fiber

294 CHAPTER 12 React on the server and integrating React Router
export function isServer() {
 return typeof window === 'undefined';
}

Now you can use this helper to determine what environment you’re in and execute
code conditionally depending on your needs. It doesn’t do exhaustive checks to
ensure you’re in a browser environment, but it should suffice for your needs. Having
to account for the environment your code is running in is a pretty common aspect of
building apps with SSR capabilities or apps that share code between client and server
(sometimes referred to as universal or isomorphic). In my experience, this can also be a
common source of bugs that can be hard to track down, especially if you install third-
party dependencies that aren’t built with environment awareness in mind.

 By now, lots of the existing technology in the React community will usually either
have support for SSR or indicate where it might cause problems. That wasn’t always
the case. When using earlier versions of React several years ago, I ran into bugs in
React itself that made some aspects of certain libraries fail unpredictably. Things are
much better now, though, and SSR is a consideration not only of the React commu-
nity but also the core team.

 Before moving on, you need to make a minor adjustment to one of your reducers
to take the server environment into account. The user reducer will set a cookie on the
browser using js-cookie. The server doesn’t normally allow you to store cookies
(although there are libraries that can emulate this behavior, like tough-cookie
(https://github.com/salesforce/tough-cookie)), so you need to use your environ-
ment helper to adjust this code. The following listing shows the modifications you’ll
need to make

export function user(state = initialState.user, action) {
 switch (action.type) {
 case types.auth.LOGIN_SUCCESS:
 const { user, token } = action;
 if (!isServer()) {
 Cookies.set('letters-token', token);
 }
 return Object.assign({}, state.user, {
 authenticated: true,
 name: user.name,
 id: user.id,
 profilePicture: user.profilePicture ||

'/static/assets/users/4.jpeg',
 token
 });
 case types.auth.LOGOUT_SUCCESS:
 Cookies.remove('letters-token');
 return initialState.user;

Listing 12.6 Checking for browser environment (src/utils/environment.js)

Listing 12.7 Modifying the user reducer

Only attempt to use
browser cookies if you’re
in a browser environment.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/salesforce/tough-cookie

295Switching to React Router
 default:
 return state;
 }
}

Back to the task at hand. You need to get React Router set up. Much like your router,
React Router (version 3) allows you to use a nested hierarchy of <Route/> compo-
nents to indicate which components should be mapped to which URLs. As I’ve noted,
React Router is an incredibly widely used and battle-tested solution with many features
that you didn’t add to your own router; you’ll stick to directly swapping it in for your
own router instead of exploring all it can do.

 Create a new file, src/routes.js, for your routes. You’re breaking your routes into
their own file because they’ll need to be accessed by your server and your client. This
is convenient for apps where client code sits alongside server code, but you might
need to find another way to bring in your routes to your server if they’re hosted else-
where (via npm, a Git submodule, and so on). Your routes file should look like the
router you created, with a few minor differences. You added the ability to specify an
index component in the same <Route/> component, while React Router exposes a
separate component for that purpose. Figure 12.5 shows the high-level role of your
routes configuration; it works in the same general manner as your router did and
serves to map URLs to components or component trees (when nesting). Listing 12.8
shows how to integrate React Router into your routing setup.

import React from 'react';

import App from './pages/app';
import Home from './pages/index';
import SinglePost from './pages/post';

Listing 12.8 Creating routes for React Router (src/routes.js)

URL (client or server)

https://example.com/example/nested-route

Route configuration

(nested React

components)

Render component tree
URL: '/example'

URL: '/example/other-route'

URL: '/example/nested-route'

<DifferentComponent />

<ParentComponent />

<ExampleComponent />

<ParentComponent />

<ExampleComponent />

<ExampleComponent />
map URL to

component

Figure 12.5 In the same way as the router you built, the routes configuration for React Router maps URLs to
components. You can nest components in order to share certain parts of the UI across pages or subsections (like
a navbar or other shared component).
Licensed to Samir Mashlum <smashlum@gmail.com>

296 CHAPTER 12 React on the server and integrating React Router

.

th

,
import Login from './pages/login';
import NotFound from './pages/404;

import { Route, IndexRoute } from 'react-router';

export const routes = (
 <Route path="/" component={App}>
 <IndexRoute component={Home} />
 <Route path="posts/:post" component={SinglePost} />
 <Route path="login" component={Login} />
 <Route path="*" component={NotFound} />
 </Route>
);

Now that you have some routes set up, you can import them into your main app file
for use with React Router. The same routes will get used on the client and server,
which is where part of the universal or isomorphic aspect of SSR you may have heard
about comes into play. Reusing code on the client and the server can be a big deal,
but you probably won’t start to see the more significant benefits of it here in such a
limited case. The advantage you do gain here is in easily exposing your client compo-
nents to your server in the “normal” React way.

 Now import your routes into your server. Listing 12.9 shows how to bring your
routes into the server and use them in the rendering process. How is your server
going to grab the right component(s) to render? Because routing is just mapping
URLs to actions (HTTP responses, in this case), you need to be able to look up the
right component that you’ve associated with a path. In your own router, you were
using a basic URL-regex-matching library to determine whether a URL was mapped to
a component in your router. It did the work of determining which component, if any,
should be rendered based on a URL (refer to figure 12.5). React Router will allow you
to do the same thing but on the server. That way, you can use the incoming URL from
the HTTP request to the server to match the component(s) to render into static
markup. That’s the key connection point between React Router and your goal of
doing SSR. React Router uses a URL to render a component or component tree like it
normally would, but on the server. The next listing shows how to set up the initial
server portion of your SSR capabilities with React Router.

//...
import { renderToString } from 'react-dom/server';
import React from 'react';
import { match, RouterContext } from 'react-router';
import { Provider } from 'react-redux';

import configureStore from '../src/store/configureStore';
import initialReduxState from '../src/constants/initialState';
import { routes } from '../src/routes';

Listing 12.9 Using React Router on the server (server/server.js)

Use App to wrap
the entire app.

Use React Router’s
IndexRoute component to
make sure you can show
components at index (/) paths

Match components wi
paths as you did with
your own router.

Import some utils
from React Router
renderToString
from React DOM,
Redux Provider
component, your
store, and your
routes
Licensed to Samir Mashlum <smashlum@gmail.com>

297Handling authenticated routes with React router

Pa
to

func

t

w
HT
//...
app.use('*', (req, res) => {
 match({ routes: routes, location: req.originalUrl },
 (err, redirectLocation, props) => {
 if (redirectLocation && req.originalUrl !== '/login') {
 return res.redirect(302, redirectLocation.pathname +

redirectLocation.search);
 }

 const store = configureStore(initialReduxState);
 const appHtml = renderToString(
 <Provider store={store}>
 <RouterContext {...props} />
 </Provider>
);

 const html = `
 <!doctype html>
 <html>
 <head>
 <link rel="stylesheet"

href="http://localhost:3100/static/styles.css" />
 <meta charset=utf-8/>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Letters Social | React In Action by Mark

Thomas</title>
 <meta name="viewport" content="width=device-

width,initial-scale=1">
 </head>
 <body>
 <div id="app">
 ${appHtml}
 </div>
 <script src="http://localhost:3000/bundle.js"

type='text/javascript'></script>
 </body>
 </html>
 `.trim();
 res.setHeader('Content-type', 'text/html');
 res.send(html).end();
 });
});

//... Error handling

export default app;

12.6 Handling authenticated routes with React router
Now that you have your server set up, you can clean up the client-side of your app a
bit. You need to make sure you’re using your new routing setup. You also need to
move around some of the logic you built related to authentication so you can better
utilize React Router. To do that, you’ll use a set of features available from React

ss URL
 match
tion as
well as
routes

Match gives
error, redirect
(if any), and
props; would be
used to render
custom error
page or redirec

Pass in RouterContext
component you
imported from React
Router and wrap it in
usual Redux Provider
component

Using string
template
literal to

create HTML
document

ith your app
ML inserted

inside it

Set headers on response
and send back to browser
Licensed to Samir Mashlum <smashlum@gmail.com>

298 CHAPTER 12 React on the server and integrating React Router
Router: hooks. Similar to the way lifecycle methods work for mounting, updating,
and unmounting components, React Router exposes certain hooks for transitions
between routes. There are quite a few ways you can use these hooks, including the
following:

 You can trigger data fetching for a page or check if a user is logged in before
allowing them to finish the URL transition.

 You can handle any cleanup or maybe end an analytics session when a user
leaves a page—you’re not restricted to entry-related events.

 With React Router’s hooks you can even do synchronous or asynchronous work,
so you’re not restricted to either one.

 Send pageview events to an analytics platform such as Google Analytics.

Figure 12.6 shows the basic flow of the hooks you can use in React Router v3. React
Router interacts with the History API (https://developer.mozilla.org/en-US/docs/
Web/API/History_API) under the hood, but exposes these hooks to make routing
easier in your applications. If you’d like to learn about more about the React Router
V3 API and explore other helpful guides written by the community, check the docs out
on GitHub at https://github.com/ReactTraining/react-router/blob/v3/docs/API.md.

You’ll use the onEnter hook to check for a logged-in user for certain routes and redi-
rect them to the login page if there is no authenticated user. In practice, you’d want to
think through your application from a security perspective and put some serious time

Start transition

(user-initiated or programmatically triggered)

redirect (if needed) onEnter(nextState, replace, callback?)

onChange(prevState, nextState, replace, callback?)

onLeave(prevState)

Called when a route is

about to be entered

Called on routes when the location changes,

but the route itself neither enters or leaves.

Called when a route is

about to be exited.

Transition end

Figure 12.6 React Router exposes a few event handlers on Route components. You can use these to hook into
the route transitions that occur when a user or your code causes a transition. Note that the “redirect” is not an
HTTP redirect with a 3XX status code.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://github.com/ReactTraining/react-router/blob/v3/docs/API.md

299Handling authenticated routes with React router

ase

R
Ro
h

take t
argum

nextS
a rep
func

a
callb

o

into how you prevent a user from transitioning to pages they shouldn’t be able to tran-
sition to. You’d also need to ensure your security strategy extends to your server as
well. But for now, Firebase and route hooks should be sufficient to protect some of
your routes. The next listing shows how you can set up the onEnter hook for pro-
tected pages. You might recognize the authentication logic from the last chapter,
where you used it in the login action. Figure 12.6 shows how this process works.

import React from 'react';

import { Route, IndexRoute } from 'react-router';

import App from './pages/app';
import Home from './pages/index';
import SinglePost from './pages/post';
import Login from './pages/login';
import Profile from './pages/profile';
import NotFound from './pages/error';
import { firebase } from './backend';
import { isServer } from './utils/environment';
import { getFirebaseUser, getFirebaseToken } from './backend/auth';

async function requireUser(nextState, replace, callback) {
 if (isServer()) {
 return callback();
 }
 try {
 const isOnLoginPage = nextState.location.pathname === '/login';
 const firebaseUser = await getFirebaseUser();
 const fireBaseToken = await getFirebaseToken();
 const noUser = !firebaseUser || !fireBaseToken;

 if (noUser && !isOnLoginPage && !isServer()) {
 replace({
 pathname: '/login'
 });
 return callback();
 }
 if (noUser && isOnLoginPage) {
 return callback();
 }
 return callback();
 } catch (err) {
 return callback(err);
 }
}

export const routes = (
 <Route path="/" component={App}>
 <IndexRoute component={Home} onEnter={requireUser} />
 <Route path="/posts/:postId" component={SinglePost}

onEnter={requireUser} />

Listing 12.10 Setting up an onEnter hook (src/routes.js)

Import Fireb
and isServer
utilities.

eact
uter
ooks
hree
ents:
tate,
lace

tion,
nd a
ack.

If you’re
n server,
proceed

You need to know if
you’re on login page

so you don’t
infinitely redirect

Use Firebase
utility functions
included in sample
repository to get
Firebase user and
token

If no token
or user and

you’re not on
login page,

redirect user

If no user but they’re
on login page, allow
them to proceed

If error, callback
with it

Add hook to
appropriate
components
using prop
Licensed to Samir Mashlum <smashlum@gmail.com>

300 CHAPTER 12 React on the server and integrating React Router

Impor
use hy

method
React-

so i
work

se
rend

ma

s
 <Route path="/login" component={Login} />
 <Route path="*" component={NotFound} />
 </Route>
);

The final bit of setup you need to do before moving on is to clean up the main app file
and replace your link components. The following listing shows the stripped-down ver-
sion of the main client-side file.

import React from 'react';
import { hydrate } from 'react-dom';
import { Provider } from 'react-redux';

import { Router, browserHistory } from 'react-router';
import configureStore from './store/configureStore';
import initialReduxState from './constants/initialState';
import { routes } from './routes';

import './shared/crash';
import './shared/service-worker';
import './shared/vendor';
// NOTE: this isn't ES*-compliant/possible, but works because we use

Webpack as a build tool
import './styles/styles.scss';

// Create the Redux store
const store = configureStore(initialReduxState);

hydrate(
 <Provider store={store}>
 <Router history={browserHistory} routes={routes} />
 </Provider>,
 document.getElementById('app')
);

You’ve set up React Router using browserHistory, but you could have also set it up
using either a hash-based or in-memory history. These are slightly different from your
browser history in that they don’t use the same browser History API. The hash-based
history works by changing a hashed fragment in the URL but not changing the user’s
browser history. The in-memory history API doesn’t manipulate the URL at all and
is more suited for things like local development or React Native (covered in the
next chapter). For more information on the different history implementations avail-
able, see https://github.com/ReactTraining/react-router/blob/v3/docs/guides/
Histories.md.

 If you run the app locally, you should be able to see everything getting rendered
on the server and sent down to the client. React should take over, and things should
be interactive as you’d expect. You may notice one thing, though: routing with links
seems to be broken. That’s because you built your own link components that integrate

Listing 12.11 Cleaning up your app index (src/index.js)

t and
drate
 from
DOM
t can
 with
rver-
ered
rkup

Import router and
browserHistory

Import your
routes.

Wrapping your
app in Redux
Provider

Pass in your route
and browser-
History to Router
component
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md
https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md
https://github.com/ReactTraining/react-router/blob/v3/docs/guides/Histories.md

301Server rendering with data-fetching
with your old router. Fortunately, all you’ll need to do to remedy this problem is swap
out the history module you’ve been using for the one React Router uses. The change-
over here should be easy, but it’s also worth pointing out that when you choose or
build a router it can affect large portions of your application. Links, changing
between pages, how props are accessed—they can all be affected by routing and you
should take that into consideration.

 The main change you need to make is swapping out the history your links use.
React Router still uses the browser History API, but you can sync things up with your
router by using the one React Router provides instead of what you were using before.
Since you centralized your navigation wrapper, any actions that need to route users
around should work fine within your new setup. The next listing shows the lines you’ll
need to change. Aside from that, you shouldn’t have to change anything else.

import { browserHistory } from 'react-router';
const history = typeof window !== 'undefined'
 ? browserHistory
 : { push: () => {} };
const navigate = to => history.push(to);
export { history, navigate };

With those changes in place, you should be rendering on the server using React
Router! Let’s recap as we wrap up:

 When a request comes in, you pass the URL of the request to React Router’s
match utility to get the component(s) you want to render.

 Using the results from match, you use React DOM’s renderToString method to
build an HTML response and send it back down to the client.

 If you use cURL or the developer tools to inspect your dev server (running with
npm run server:dev), you should see the HTML for your components in the
response (see figure 12.7).

12.7 Server rendering with data-fetching
You’ve integrated server rendering into your application. This can potentially have
benefits with regard to app engagement and performance. There’s still room to
improve, however. You’re not currently doing anything to render the app in its full
state before sending it down. The payload that you’re sending down is the same
whether a user is logged in or not. It’s currently up to the browser to then do things
like start the authentication flow and loading posts. Your server rendering is also syn-
chronous because you’re not yet using renderToNodeStream. In this section, you’ll
improve your server rendering to take advantage of this API and integrate Firebase on
your server so you can do rendering that’s aware of authentication state. Figure 12.8
shows an overview of server-rendering with data-fetching integrated.

Listing 12.12 Swapping histories out (src/history/history.js)

Only lines you’ll need to
change; let React Router
know about your transitions
Licensed to Samir Mashlum <smashlum@gmail.com>

302 CHAPTER 12 React on the server and integrating React Router
Figure 12.7 Inspecting your server-rendered app. With React-DOM you can create the HTML of your app that you
can then send down to the client. Notice that because you haven’t done any server-side data fetching, you won’t
expect to see any dynamic data populating your app (like posts).

Server(s)

Middleware

- parse incoming request

- basic security patching

- handle global logging

- compression

- handle not-founds

Response Handler

...

- fetch user data, dispatch

Redux actions

- embed initial store state into

HTML response

- use ReactDOM to generate

some basic static HTML, send

to client as a string respond

Browser request

GET http://localhost:3000/<route-name>

Server response

contains generated HTML

Browser

FirebaseID

Use cookie to

verify user is

authenticated

Figure 12.8 Server rendering with data fetching. This is similar overall to how you’ve been doing rendering, with
the main difference being that you’ll need to do some data fetching as part of the rendering process. The rendering
output will change based on whether or not a user is logged in, what that user’s data looks like, and when they
log in.
Licensed to Samir Mashlum <smashlum@gmail.com>

303Server rendering with data-fetching
Firebase provides a way to interact with their APIs from the server in a similar way to
how you have from the browser. This will enable you to continue to treat Firebase as
your database even on the server. In other situations, you might do something like
make an HTTP call to a microservice or database that would allow you to determine if
a user exists and if they’re in a currently authenticated state. You’ll stick with Firebase
because you’re focusing on React, but note that this is one place where you might
swap in one of these systems under different circumstances.

 If you haven’t already created a Firebase account, this is a great time to do so. I’ve
distributed the application source with the public token for the account, but to use
the Firebase user admin APIs you need to have a real account (you can use it to access
user information, something I don’t want people doing). To get set up with a Firebase
account, head to https://firebase.google.com and sign up for an account (you should
be able to use an existing Google account). From there, create a project named what-
ever you like.

 After that, you’ll need to walk through the Firebase admin SDK setup. This process
might change over time, so I won’t specify it exactly here. The setup and installation
instructions can be found at https://firebase.google.com/docs/admin/setup and
should be relatively straightforward to follow. We’re most interested in the User Man-
agement API. You shouldn’t need to install anything else in the project because the
node.js Firebase SDK is already included in your project dependencies.

 As a final bit of setup, you’ll need to replace the included Firebase keys in the
application, since they’re related to the Letters Social project and will likely conflict
with your own. You can find them in the source code by looking in the config direc-
tory. Two files, development.json and production.json, contain the configuration vari-
ables for the development and production environments, respectively. Feel free to
edit those or other variables as you see fit (maybe you want to customize the applica-
tion yourself and deploy it on a site!). Figure 12.9 shows the Firebase console and the
service account page. Generate a new private key and move the downloaded file into
the main app repository—you’ll use it shortly.

 You can get back to coding now that you have those logistical bits out of the way.
You want to authenticate your server application with the Firebase platform so you can
verify and fetch Firebase users for the purposes of rendering the complete application
state. You may have already seen the example snippet showing how to do this on the
Firebase page, but listing 12.13 shows how to configure the Firebase Admin SDK in
your server.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://firebase.google.com
https://firebase.google.com/docs/admin/setup

304 CHAPTER 12 React on the server and integrating React Router
Figure 12.9 Create a new Firebase project and generate a new private key. This will allow you to authenticate
to the Firebase platform and use the SDK to manage users on the server.
Licensed to Samir Mashlum <smashlum@gmail.com>

305Server rendering with data-fetching
// ...
import * as firebase from 'firebase-admin';
import config from 'config';

// Initialize Firebase
firebase.initializeApp({
 credential: firebase.credential.cert(JSON.parse(process.env.LETTERS_

FIREBASE_ADMIN_KEY)),
 databaseURL: 'https://letters-social.firebaseio.com'
});

// const serviceAccount = require("path/to/serviceAccountKey.json");
// admin.initializeApp({
// credential: firebase.credential.cert(serviceAccount),
// databaseURL: "https://test-8d685.firebaseio.com"
// });

// Our dummy database backend
import DB from '../db/DB';

//...

Now when the server runs it will automatically connect to Firebase and enable you to
use the Admin SDK to interact with users. That way you can do data fetching on the
server in a way that knows about the user making the request. Why does that matter?
You might remember from earlier in the chapter that I said server-side routing can be
complicated because it can involve synchronizing your client and server. You’re not
going to do anything terribly complicated, but this is what I was referring to. Server-
side rendering can quickly become extremely complicated.

 Fortunately, you won’t be doing anything so daunting. What you’re going to do is
use Redux in a way you may not have used it before. Because there’s nothing about
Redux that constrains it to running in the browser, you can use it for state manage-
ment on the server too. Here’s a brief outline of what you’ll do to accomplish render-
ing that allows for data fetching:

 Get the user’s token from a cookie you stored in earlier chapters.
 Verify the token with Firebase and fetch the user if they exist.
 If they don’t have a valid token (maybe it expired), clear the cookie and send

them to the login page.
 If they’re a valid user, fetch their information from your server and dispatch

actions to the store.
 Render the appropriate route component based on the state of the store.
 JSON.stringify the current store state and embed it in the HTML that you

need to send down to the browser.

Listing 12.13 Integrating Firebase on the server (server/server.js

Import
Firebase
admin SDK

Set stringified
version of JSON file

as environment
variable; parse it so

Firebase can work

Another way to
authenticate

with Firebase
Licensed to Samir Mashlum <smashlum@gmail.com>

306 CHAPTER 12 React on the server and integrating React Router
If that sounds complicated, don’t fret. You’re adding a minor step to the same flow of
server rendering you were doing before. Instead of rendering the same content every
time, you’re fetching data from Firebase and using that information to do rendering.
Remember, the benefit here is that you can “fully” render the application so the user
can immediately see content.

 Your use of Redux on the server is a great example of “universal” JavaScript in
action. If Redux depended heavily on browser APIs, it might be difficult or impossible
to integrate it on the server, and you’d have to take a different approach altogether. As
it is, though, you can re-create a store on demand, update it based on responses from
your APIs and Firebase, and then use the store to render your application just as you
would in the browser. Figure 12.10 shows this process in the context of server render-
ing that we’ve been looking at for this chapter.

In this flow, you use a cookie coming from the browser to verify that the user’s token
is valid. Then you get the user from Firebase and dispatch actions to a Redux store
created server-side. You still render to static HTML, but this time you render using
updated state so the app can be rendered with new data. You also embed the state in
the HTML response so the browser can pick up where the server left off. One thing
to watch out for when doing this is your Redux store not being recreated or persist-
ing in memory on the server. I’ve worked on projects where this was briefly happen-
ing during local development, and it was hard to track down. Aside from being
annoying, it meant that the server would render the same user data for everyone
making requests because the store’s state hadn’t been wiped. That would’ve been an
unacceptable security breach in a production environment. I mention this to help

Server(s)

Middleware

- parse incoming request

- basic security patching

- handle global logging

- compression

- handle not-founds

Response Handler

...

- fetch user data, dispatch

Redux actions

- embed initial store atate into

HTML response

- use ReactDOM to generate

some basic static HTML, send

to client as a string respond

Browser request

GET http://localhost:3000/<route-name>

Server response

contains generated

Browser

FirebaseID

Render based on

store state, embed

store state in HTML

Store

Dispatch Redux

Action

Get user

Figure 12.10 Server rendering with data fetching as part of the render process
Licensed to Samir Mashlum <smashlum@gmail.com>

307Server rendering with data-fetching

rap
m

ken
d,
or
drive home the reality that coordinating browser and client can be complex and
must be done carefully to avoid tricky bugs or security holes.

 Let’s take a look at the code you’ll need to do this data fetching and rendering
process. Listing 12.14 shows the initial steps of fetching data and handling some basic
errors that might arise from an expired or invalid token. In the next step, you’ll inte-
grate asynchronous server rendering with React-DOM’s renderToNodeStream and
even further improve your server rendering.

// ...
 const store = configureStore(initialReduxState);
 try {
 const token = req.cookies['letters-token'];
 if (token) {
 const firebaseUser = await firebase.auth()
 .verifyIdToken(token);
 const userResponse = await fetch(
 `${config.get('ENDPOINT')}/users/${firebaseUser.uid}`
);
 if (userResponse.status !== 404) {
 const user = await userResponse.json();
 await store.dispatch(loginSuccess(user));
 await store.dispatch(getPostsForPage());.
 }
 }
 } catch (err) {
 if (err.errorInfo.code === 'auth/argument-error') {
 res.clearCookie('letters-token');
 }
 // dispatch the error
 store.dispatch(createError(err));
 }
 //...

That’s most of the work you’ll need to do fully render the application with user con-
text! One downside to this approach is that if you had many pages with different data-
fetching requirements, it would be difficult to fit those in. You don’t have a way of
saying, “Ah, we’re requesting page X, page X needs Y data.” There are ways to do that,
though, and I cover them briefly on my blog at https://ifelse.io/2017/09/07/server-
rendering-with-react-router-and-react-16-fiber (if you’re interested in learning more
about this and some of the newer React Router versions).

 To finish your rendering improvements, you’ll need to do a few more things. First,
you’ll need to find a way to inject the HTML string that React-DOM will give back to
us. Because it works with streams, your string template approach from before will
need to change. Instead of directly injecting the resulting HTML, you’ll use two func-
tions to write down HTML for your app. One will contain the header information that
your app will need (metadata about the app, Open Graph data, CSS links, and so on).
The other will embed the Redux store state in the HTML response. You want to

Listing 12.14 Fetching data for server rendering (server/server.js)

Create instance of
your Redux store

Get user token off
requests’ cookies

Verify token with
Firebase and use

response to fetch user
from your JSON API

If user exists, unw
JSON response fro
API (you’re using
isomorphic-fetch
library and async/
await syntax here)

Thanks to Redux-
thunk, you can
dispatch your
asynchronous

action creators
that you use in

login and wait for
them to finish

before moving on.

If there’s an
error like to
being expire
dispatch err
to store
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ifelse.io/2017/09/07/server-rendering-with-react-router-and-react-16-fiber
https://ifelse.io/2017/09/07/server-rendering-with-react-router-and-react-16-fiber

308 CHAPTER 12 React on the server and integrating React Router
embed the state so that when the browser takes over it doesn’t redo any of the work
the server already did. You want to do less rendering, not more! The next listing shows
the HTML wrapper component that you’ll pass your component and Redux store
state into.

const ogProps = {
 updated_time: new Date(),
 type: 'website',
 url: 'https://social.react.sh',
 title: 'Letters Social | React in Action by Mark Thomas from Manning

Publications',
 description:
 'Letters Social is a sample application for the React.js book React in

Action by Mark Thomas from Manning Publications. Get it today at
https://ifelse.io/book'

};

export const start = () => {
 return `<!DOCTYPE html><html lang="en-us">
 <head>
 <link rel="stylesheet" href="/static/styles.css" type="text/css" />
 <link rel="stylesheet" href="https://api.mapbox.com/map-

box.js/v3.1.1/mapbox.css" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <title>
 Letters Social | React in Action by Mark Thomas from Manning

Publications
 </title>
 <link rel="manifest" href="/static/manifest.json" />
 <meta name="viewport" content="width=device-width,initial-scale=1" />
 <meta name="ROBOTS" content="INDEX, FOLLOW" />
 <meta property="og:title" content="${ogProps.title}" />
 <meta property="og:description" content="${ogProps.description}" />
 <meta property="og:type" content="${ogProps.type}" />
 <meta property="og:url" content="${ogProps.url}" />
 <meta property="og:updated_time" content="${ogProps.updated_time}" />
 <meta itemProp="description" content="${ogProps.description}" />
 <meta name="twitter:card" content="summary" />
 <meta name="twitter:title" content="${ogProps.title}" />
 <meta name="twitter:description" content="${ogProps.description}" />
 <meta property="book:author" content="Mark Tielens Thomas" />
 <meta property="book:tag" content="react" />
 <meta property="book:tag" content="reactjs" />
 <meta property="book:tag" content="React in Action" />
 <meta property="book:tag" content="javascript" />
 <meta property="book:tag" content="single page application" />
 <meta property="book:tag" content="Manning publications" />
 <meta property="book:tag" content="Mark Thomas" />
 <meta name="HandheldFriendly" content="True" />

Listing 12.15 Embedding Redux state

Basic metadata about the app—some boilerplate code
is omitted as not relevant to current discussion

Inject your app into main div so when
React-DOM takes over on browser, it
won’t have to redo work server did
Licensed to Samir Mashlum <smashlum@gmail.com>

309Server rendering with data-fetching
 <meta name="MobileOptimized" content="320" />
 <meta name="theme-color" content="#4469af" />
 <link
 href="https://fonts.googleapis.com/css?fam-

ily=Open+Sans:400,700,800"
 rel="stylesheet"
 />
 </head>
 <body>
 <div id="app">
 `;
};

export const end = reduxState => {
 return `</div>
 <script id="initialState">
 window.__INITIAL_STATE__ = ${JSON.stringify(reduxState)};
 </script>
 <script src="https://cdn.ravenjs.com/3.17.0/raven.min.js"

type="text/javascript"></script>
 <script src="https://api.mapbox.com/mapbox.js/v3.1.1/mapbox.js"

type="text/javascript"></script>
 <script src="/static/bundle.js" type="text/javascript"></script>
 </body>
 </html>`;
};

With that, you need to modify the Redux store so it can take over. In this listing, you’ll
do two main things: make sure the Redux store is created from scratch every time on
the server (to prevent the potential bugs mentioned earlier) and teach it to read the
initial state from the DOM. The following listing shows these minor modifications that
you’ll make to your production store (the development version isn’t being rendered
by the server, so there’s no initial state to pick up).

//...
let store;
export default function configureStore(initialState) {
 if (store && !isServer()) {
 return store;
 }
 const hydratedState =
 !isServer() && process.env.NODE_ENV === 'production'
 ? window.__INITIAL_STATE__
 : initialState;
 store = createStore(
 rootReducer,
 hydratedState,
 compose(applyMiddleware(thunk, crashReporting))
);
 return store;
}

Listing 12.16 Modifying the Redux store for SSR (src/store/configureStore.prod.js)

Redux store in browser
should be able to take over

where server left off, so
embed store in JSON-

stringified format;

If you’re on server, you
want to return new
store every time

If you’re not on
server and app is
in production
mode, check DOM
for state and use
if possible
Licensed to Samir Mashlum <smashlum@gmail.com>

310 CHAPTER 12 React on the server and integrating React Router
Now your store will be able to read initial state from data embedded by your server
and won’t have to do double work. What’s left? You may remember from the begin-
ning of the chapter that you had asynchronous options available to use when render-
ing on the server. You’re currently using the renderToString method from React-
DOM, but it’s synchronous, and that could be a bottleneck for your server if many
users visit the app at once. In React 16, an asynchronous option for server rendering
was introduced, and you’ll use it here. The usage is identical except node.js streams
can be used instead of the synchronous method.

You may be familiar with streams if you’ve worked with node.js before. If not, that’s
fine. Streams in node.js are an abstract interface for working with streaming data.
That can include things like reading or writing a file, transforming and compressing
images, or working with HTTP requests and responses. You can learn more about
streams in node.js at https://nodejs.org/api/stream.html. The next listing illustrates
taking advantage of the new renderToNodeStream API in React-DOM.

 res.setHeader('Content-type', 'text/html');
 res.write(HTML.start());
 const renderStream = renderToNodeStream(
 <Provider store={store}>
 <RouterContext {...props} />
 </Provider>
);
 renderStream.pipe(res, { end: false });
 renderStream.on('end', () => {
 res.write(HTML.end(store.getState()));
 res.end();
 });

Exercise 12.2 Open source libraries
You’ve done some work to integrate server-side rendering into the Letters Social
application. You got it working with Redux, but scaling to a very large application or
introducing new data-fetching requirements (data for other pages, for example) might
require some refactoring and reconsidering how you approach server rendering. There
are open source libraries for doing server rendering with React that help address
issues of uniformly allowing components to be rendered on the server. As an exercise
in improving your understanding of what’s possible with server rendering with React,
take some time to look at them and their source code. You’ll probably be pleasantly
surprised at what you can accomplish with server rendering (optimized rendering, in
the case of react-server https://github.com/redfin/react-server) and how much eas-
ier an abstraction can make implementing server rendering (in the case of Next.js:
https://github.com/zeit/next.js/).

Listing 12.17 Async server rendering (server/server.js)

Write Content-
type header so
browser knows

what type of
content to

expect

Browser should start
loading page as quickly
as possible, so send first
part of app down

Create stream for
your app to render

Pipe rendered app
down to browser but
don’t end stream yet

When stream emits end event
and rendering is done, send down

rest of HTML and end response
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/redfin/react-server
https://github.com/zeit/next.js/
https://nodejs.org/api/stream.html

311Summary
With that, Letters Social is now being fully rendered to users. You can directly observe
this if you use the developer tools to inspect the document loading process and look
at what the server sends down (figure 12.11 shows something similar to what you
should see). You may be able to see the difference in speed if you run the application
in production mode, but looking at the development tools in Chrome or Firefox will
allow you to inspect the app loading on a frame-by-frame basis. You’ll be able to see
that a full web page is being sent down by the server and not just rendered after the
application has loaded.

12.8 Summary
In this chapter, we looked at how you might approach building server-side rendering
functionality into your app. As we saw, it can involve quite a few aspects of your appli-
cation, including routing, data fetching, and state management (Redux):

 Server-side rendering (SSR) is generating the static markup for a UI on a server
that is sent to a client. SSR with React involves using React-DOM to either render

Initial render includes
markup before script

bundle has loaded

Images haven’t loaded yet but can start loading
more quickly because their corresponding tags

are already available to the brouser

Without server rendering,
the user would see a gray
screen and no content yet

Figure 12.11 If we inspect the performance tab for social.react.sh using the Chrome developer tools, you’ll see
that the server is sending down fully rendered HTML and not waiting till the application bundle has loaded to
render the application.
Licensed to Samir Mashlum <smashlum@gmail.com>

312 CHAPTER 12 React on the server and integrating React Router
an HTML string that React can reuse when running on the client-side or static
markup (ReactDOM.renderToString()) that’s meant to remain static on the
browser (ReactDOM.renderToStaticMarkUp()).

 Not all JS frameworks or libraries are built to handle SSR; React is and can
“take over” markup that was generated on the server without having to ini-
tially re-render existing elements on the browser.

 Using a routing solution like React Router can allow you to share routes between
the client and server, allowing you to share some code across platforms.

 SSR can be complex to implement and only makes sense in certain cases. Some
situations where it might make sense include when you’re especially concerned
about SEO, when you have an app whose critical path needs to involve a quick
first paint, or if you’re using React as a static markup generator.

 The performance gains SSR can offer are often only realized if the page pay-
load sent down by a server is not overly large (so as to not take even longer to
load than before). A longer response time and more data may obviate the quick
first paint you would otherwise get.

 SSR requires you to consider which parts of your app will work on the server
and which won’t. Those features that require a browser environment need to be
patched to work or should be handled so as not to run on the server.

 You can accomplish a “complete” render on the server by doing work to syn-
chronize authentication state between client and server and doing any neces-
sary fetching of data on the server.

 Although other JS platform implementations exist, SSR practically requires you
to run a node.js server or at least call out to one to generate your HTML for
sending to the client.

In the next chapter, we’ll take a brief look at React Native and complete your journey
toward learning the basics of React.
Licensed to Samir Mashlum <smashlum@gmail.com>

An introduction
to React Native
At this point, you’ve been over the basics of using React, implemented a router,
explored Redux, looked at server-side rendering, and even transitioned to using
React Router. What’s left? There’s still plenty to learn and explore in the React eco-
system and community. This chapter takes a high-level look at React Native,
another project in the React ecosystem developed by Facebook. With React Native,
you can write React applications that run on mobile platforms like iOS and
Android. This means you can write applications that run on smartphones and any
other platforms that React Native targets now or in the future. React Native pro-
vides an excellent developer experience when building these mobile applications
in a React-like way, and this is a large part of why it’s becoming increasingly import-
ant and popular in the React community.

 Because React Native and getting started with mobile development encompass a
substantially large domain, I’ll keep our discussion of React Native concise and
focused mainly on higher-level concepts. By the end of the chapter, you should

This chapter covers
 An overview of React Native

 Differences between React and React Native

 Ways to learn more about React Native
313

Licensed to Samir Mashlum <smashlum@gmail.com>

314 CHAPTER 13 An introduction to React Native
have an idea of what React Native is and why you might want to use it, and you’ll know
how to get started on learning more about it.

13.1 Introducing React Native
Before React Native came on the scene, you had a few options when it came to creat-
ing mobile applications. You could either use the iOS and Android platforms and lan-
guages available to you or you could opt for one of the hybrid approaches available.
These vary in how they’re implemented, but they would often utilize a web view (think
“mobile browser”) and expose some interfaces to the native SDKs. One downside to
this approach is that although you can write native applications that allow you to use
many familiar web APIs and idioms, the app wasn’t “really native,” and there would
sometimes be a noticeable difference in performance and overall feel. The benefit
was that teams or developers without expertise in mobile development could transfer
their web-related skills and be able to create a mobile app.

 The subject of mobile development and how platforms, languages, and hardware
in this world all play their different roles is beyond the scope of this book. But the
choice between hybrid and all-native approaches is relevant to our discussion of React
Native because React Native offers a new alternative. With React Native, you can build
apps that are “really native” but you can use a combination of JavaScript and platform-
specific code (like Swift or Java).

 React Native aims to bring the idioms and concepts of building user interfaces with
React to mobile application development and blend the best aspects of mobile and
browser development. It encourages code-sharing across platforms (there are compo-
nents that target both iOS and Android devices), allows you to write native code where
appropriate, and compiles to a native application—all while using many of the same
idioms familiar to React.

 Let’s glance at a few top-level features of React Native:

 With React Native, you can write JavaScript applications that can also use native
code (Swift or Java) and compile to native applications that run on iOS or
Android.

 React Native can handle creating the same UI elements on Android and iOS,
potentially simplifying the development of mobile applications.

 You can add your own native code when you need to, so you aren’t constrained
to using only JavaScript.

 React Native apps share idioms with React and provide the same component-
driven, declarative concepts, and even APIs in some cases, to work with when
designing your UI.

 The developer tooling for building React Native applications allows you to reload
your application with changes without having to wait for a long compile cycle.
This often saves developers time and can make for a more pleasant experience.

 The ability to share code and target multiple platforms can sometimes reduce
the number of engineers dedicated to building a particular app or project. It
Licensed to Samir Mashlum <smashlum@gmail.com>

315Introducing React Native
can lead to fewer codebases to maintain, and engineers can more easily move
between web and native platforms.

 You can share logic and other aspects of React web apps with React Native apps,
such as business logic and even styles in some cases.

How does React Native work? It may seem like a mysterious, black-box process for
something to take your JavaScript and output a compiled, native application. You
don’t need to know how every part of React Native works in order to work with it, just
like you don’t need to know the ins and outs of React-DOM to write great React appli-
cations. But it’s often helpful to have at least a working understanding of the technol-
ogy you’re using.

 With React Native, you can create applications that are a blend of JavaScript and
native code. React Native makes this possible by creating a bridge of sorts between
your application and the underlying mobile platform. Most mobile devices can exe-
cute JavaScript, and React Native takes advantage of that to run your JavaScript. When
your JavaScript is executed alongside any native code, React Native’s bridging system
uses the React core library, among others, to translate the component hierarchy (with
event handlers, state, props, and styles) into a view on the mobile device.

 When updates occur (for example, a user presses a button), React Native trans-
lates the native event (a press, a shake, a geolocation event, or whatever it is) into an
event your JavaScript or native code can handle. It also renders the proper UI based
on changes to state or props. React Native will also bundle all your code and do any
necessary compilation so you can release your app to the Apple App Store or Google
Play Store.

 There’s much more to these processes and to how React Native works, but the
basic process of translating between the JavaScript running on the device and the native
platform APIs and events is where the “magic” of React Native happens. The result is a
platform that you can work with but that also doesn’t compromise when it comes to
performance. It’s a happy medium between the problems of previous hybrid
approaches to mobile apps, and it also avoids some of the pain points of traditional
mobile development. Figure 13.1 illustrates an overall view of how it works.

 If that sounds like a departure from the React you’ve been learning in this book,
well, it is in many ways. But more important than the differences are the similarities.
I’ll cover those more in the next section, but you can look at the code in listing 13.1
to see how similar a React Native component is to the components you’ve worked
with so far.

 You can still see what the code in listing 13.1 does even though I’m not covering
how to set up a React Native project in this chapter. Visit https://repl.it/KOAE/3 if
you want to see what the code is doing and play around with React Native. Repl.it is an
online platform for running and sharing code in an interactive way, and it has support
for React Native. You’ll be able to scan a QR code with your phone to view your React
Native playground app. It’s a great way to experiment with React Native without hav-
ing to do any setup or configuration.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://repl.it/KOAE/3

316 CHAPTER 13 An introduction to React Native

com
Nat
One important thing you might notice is that the elements of the component (View,
Text) are analogous to the div and span elements in your components from earlier
chapters. This is an example of the broad React concepts persisting across platforms.
It doesn’t matter so much what the individual elements of a component are as much
as that you can reuse and compose them, as shown in this listing.

import React, { Component } from 'react';
import { Text, View } from 'react-native';

export default class WhyReactNativeIsSoGreat extends Component {
 render() {
 return (
 <View>
 <Text>
 If you like React on the web, you'll like React Native.
 </Text>
 <Text>
 You just use native components like 'View' and 'Text',
 instead of web components like 'div' and 'span'.
 </Text>
 </View>
);
 }
}

There are other projects like React VR where the focus is even more divergent from
the web UIs you’ve been working with but that use the same patterns and concepts.

Listing 13.1 React Native example component

Development environment & tools

JavaScript
Code

React Native bundler

Bridge interface uses
platform JS engine

& native APIs

Commands,
events to/from
native platform

(draw, update view,
create view, etc.) Mobile platform

native SDK/APIs

JS engine
Your code

(JS + mobile)

Bridge

native platform (iOS, Android)

iOS

compile

Android

App store,
Play store

Swift,
Objective-C,

Java, etc.

Figure 13.1 React Native works by creating a bridge between your JavaScript and the underlying native platform.
Most native platforms implement a JavaScript virtual machine or other way of running JavaScript natively. The
bridge enables execution of your application’s JavaScript. The React Native bridging system will relay messages
between the underlying platform and your JavaScript so that native events can be translated into ones your React
components can understand and respond to.

You can still use regular
React.Component, even in native app

React Native comes
with basic ingredients
to build mobile
applications.

You can compose
ponents with React

ive; view component
here is like a div in
browser (common
layout component)

Text is more like
span in browser
Licensed to Samir Mashlum <smashlum@gmail.com>

317React and React Native
This is one of the most powerful aspects of the React platform and is especially appar-
ent when you see it across platforms. Learn more about React VR at https://facebook
.github.io/react-vr.

13.2 React and React Native
How similar are React and React Native? Beyond sharing a name, they both use the
React core library but target different platforms (browsers and mobile devices). This
section will briefly look at some of their differences and similarities. Let’s compare
some of the important aspects of React and React Native:

 Runtime—React and React Native target different platforms. React targets brows-
ers and thus heavily uses the browser-specific APIs. You can see some of the
results of this in each API. For example, properties like class, ID, and others are
commonly seen in web-based React components. Native platforms use different
layout and styling semantics, so you won’t see many of these properties on React
Native components. Browser-based and mobile applications also run on different
types of devices, so things like threading, CPU utilization, and other differences
in the underlying technology shouldn’t be ignored when thinking about React
and React Native.

 Core APIs—Many of the React-specific APIs (like those used in component life-
cycles, state, props, and so on) are similar across React and React Native. But
each platform implements different APIs for networking, layout, geolocation,
resource management, persistence, events, and other important areas. React
Native aims to import some familiar APIs from the browser-oriented world, like
the Fetch API for networking (https://developer.mozilla.org/en-US/docs/Web/
API/Fetch_API) and the Flexbox API for layout (https://developer.mozilla.org/
en-US/docs/Web/CSS/flex). React Native also exposes events, but they’re more
specific to mobile platforms (onPress, for instance). These differences can be
a minor hurdle, but fortunately there are libraries that help to eliminate differ-
ences between web and native APIs, like react-primitives (https://github
.com/lelandrichardson/react-primitives).

 Components—The web-based React project doesn’t have “built-in” components
(for example, for images, text layout, or other UI elements). You create these
yourself. React Native, on the other hand, does include components for things
like text, views, images, and more. These are primitives you need to create UIs
for mobile applications and are similar to what DOM elements are for browser
environments.

 Use of React core library—Both React and React Native use the React core library
for component definition. Each project utilizes a different rendering system to
wire everything together and interact with the device (browser or mobile).
React for web uses the react-dom library, whereas React Native implements its
own system. This approach enables you to write components in similar ways
across platforms.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://facebook.github.io/react-vr
https://facebook.github.io/react-vr
https://facebook.github.io/react-vr
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://github.com/lelandrichardson/react-primitives
https://github.com/lelandrichardson/react-primitives
https://github.com/lelandrichardson/react-primitives

318 CHAPTER 13 An introduction to React Native
 Lifecycle methods—React Native components also have lifecycle methods since
they inherit from the same React base class, and those methods are also han-
dled by the platform-specific system (React-DOM or React Native).

 Event types—Whereas React-DOM implements a synthetic event system that
allows your components to work with browser events in a standard way, mobile
applications expose other events. One example is gestures. You can pan, zoom,
drag, and more on touch devices. Components written in React Native compo-
nents allow you to respond to these events.

 Styling—Because React Native doesn’t target browsers, you’ll need to style your
components in slightly different ways. There is no CSS API in regular mobile
development, but you can use most CSS properties with React Native. React
Native provides a specific API where 1:1 correspondence between properties
isn’t possible. Take CSS animations, for example. The CSS specification and the
ways browsers implement it are different than how iOS and Android enable and
implement animations, so you’ll need to animate differently and use the right
API for each platform. Learning new APIs for styling can take time and can pre-
vent directly sharing CSS styling across web and native projects. Thankfully,
though, there are libraries that work with React and React Native, like styled-
components (www.styled-components.com). With the increasing popularity of
React Native, you should expect to see more of these cross-platform libraries
being developed.

 Third-party dependencies—As with React, you can still use third-party component
libraries for React Native. Many popular libraries, like React Router and
styled-components, even include variants that target React Native (as noted
earlier). One of the most appealing aspects of React Native is that it can still
take advantage of the JavaScript module ecosystem.

 Distribution—Although you can deploy React applications to almost any modern
browser, React Native applications require platform-specific distribution tooling
for both development and final release (Xcode, for example). You’ll usually
need to use the React Native build process to compile your application for final
upload. The “walled garden” nature of the iOS and Android tooling is a well-
known tradeoff to developing mobile applications.

 Development tooling—React for web runs in browsers, so you have the benefit of
any browser-specific tools to help with debugging and development. For React
Native, you aren’t required to have the platform-specific tooling available, but it
can still be useful. One key difference between the projects is that React Native
has a focus on hot reloading that isn’t part of React by default. Hot reloading can
speed up mobile development because you don’t have to wait for your app to
compile. Figure 13.2 shows an example of some of the developer tools you get
access to when working with React Native.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.styled-components.com

319When to use React Native
13.3 When to use React Native
Not every developer and not every team has a need for React Native. Let’s imagine a
few scenarios you could find yourself in and see how React Native might or might not
be something you should consider:

 Solo developer—If you’re learning React for the first time or just using it for
side projects, you’ll probably learn React Native for fun or if you work on any
mobile projects. React Native is also something to consider if you aren’t
deeply experienced with native development but want to ease into it or have a
more straightforward app. If you already know React, it can make sense to
dive into using React Native for mobile development with some familiar con-
cepts at your disposal.

 Small cross-functional team—Small startups are often in a position where engi-
neers will work on a broad slice of the stack, ranging from server to client appli-
cations (web, mobile, or otherwise). In situations like this, React Native can
sometimes present a way for engineers who wear many hats for the organization
to work on a mobile app without deep mobile experience and have their React
momentum carry over. This could also apply to large organizations that want to
easily move engineers between apps or projects.

 Team with little to moderate native expertise—If you or your team have little to mod-
erate expertise with mobile development but are familiar with React and Java-

Figure 13.2 React Native comes with a number of
additional developer tools that help with performance,
debugging, and other functionality. These tools also
mean you have less of a strict reliance on tools like
Xcode for development, although you can certainly
still use your platform-specific tools for development.
Although there are many reasons, the excellent
developer experience provided by React Native seems
to be one reason why it’s been received especially well
as a technology.
Licensed to Samir Mashlum <smashlum@gmail.com>

320 CHAPTER 13 An introduction to React Native
Script, React Native may make it easier for you to get your product together
quickly. There’s no substitute for experience, but not having to go all-in on
Swift (iOS) or Java (Android) could potentially save you time.

 Deep native expertise—Some teams will choose React Native not because it lowers
the barrier to mobile development in some ways, but because it helps standard-
ize idioms and patterns across the various implementations of an app for a busi-
ness (mobile and desktop). But if that’s not a problem and you already have
significant expertise and time invested in mobile development, React Native
may need closer evaluation to see whether your team would benefit from the
available abstractions and patterns.

Aside from the team and expertise considerations you might make when thinking
about React Native, you should also be aware of some of the limitations that are inher-
ent to the technology as it exists today:

 Use of JavaScript—If your team or organization doesn’t have any JavaScript-
focused developers or is already highly experienced with mobile development,
it may not make sense to transition engineers to a JavaScript and JavaScript-
focused ecosystem, and that’s okay. Like React for web, React Native is not a sil-
ver bullet and should be evaluated based on tradeoffs, not the hype around it.

 Specific performance needs—React Native is performant, but as an abstraction it
can present another barrier to achieving specific performance goals that you or
your team might have. For example, if rendering 3D scenes is the primary goal
of an application, React Native will probably not be the best fit. Other frame-
works (like Unity) are probably better suited. This is in keeping with the “React
is not a silver bullet” idea I just mentioned and that I’ve tried to maintain in ear-
lier chapters.

 Highly specialized app—Some application types aren’t a good fit for the React
model. Augmented reality (AR), graphics-intensive, or other highly specialized
applications often require special libraries and skills that most web engineers
aren’t equipped with. This isn’t to say that it can’t be done, but as of now React
Native doesn’t focus on addressing these needs.

 Internal application—Sometimes larger companies develop apps for internal use
that help employees do their job better in a variety of ways. React Native can be
well suited for these sorts of apps because such apps usually involve a relatively
simple UI and can be iterated on quickly by engineers who don’t specialize in
mobile development.

Of course, it’s ultimately up to you and your team to evaluate whether a technology
makes sense for your use case, but hopefully you now have a better sense of when it
might or might not make sense to use React Native.
Licensed to Samir Mashlum <smashlum@gmail.com>

321The simplest “Hello World”
13.4 The simplest “Hello World”
Even though I won’t cover how to integrate React Native with Letters Social, this sec-
tion spends a little time walking through a basic “Hello World” example so you can see
it in action. You’ll work outside the Letters Social repository, so feel free to place the
app code wherever you like to keep track of code on your computer. Run the com-
mands in the following listing to get started.

cd ./path-to-your-react-native-sample-folder

npm install -g create-react-native-app

create-react-native-app .

After you’ve run these commands, you should be able to see a number of files created
in your desired directory and some instructions. These commands are similar to those
available in Create React App, a similar project focused just on React.js for the web
platform. You can learn more about Create React App at https://github.com/face-
bookincubator/create-react-app. Figure 13.3 shows what you should see when getting
started with the Create React Native App library.

 The Create React Native App tool installed dependencies, created some boiler-
plate files, set up a build process, and integrated the Expo React Native toolkit into
the project. The Expo SDK extends React Native’s functionality and makes working
with the hardware technologies easier, among other things. The Expo XDE develop-
ment environment makes it easy to manage multiple React Native projects as well as
build and deploy them.

 You won’t build anything substantial, but you can tinker around and get a sense for
how easy it might be to start building applications with React Native. Once you have
the React Native packager running with yarn start, open one of the emulators
(Android or iOS) so you can see the running app. Swap out some of the boilerplate
code and see the hot reloading happening. Listing 13.3 shows a simple component
that fetches some data from the Star Wars API when it’s mounted. Notice that React
Native is already using modern web APIs like Flexbox and Fetch (which you used a
polyfill for in earlier chapters).

Listing 13.2 Installing create-react-native-app
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

322 CHAPTER 13 An introduction to React Native
Figure 13.3 When you start the application in development mode, you should see the React
Native packager start and see a message like the one shown here. Follow the instructions to
make sure you have the Expo XDE set up on your local machine. Depending on what environment
you’d like to target, open either the Android or iOS simulator.
Licensed to Samir Mashlum <smashlum@gmail.com>

323The simplest “Hello World”

Yo

fea
asyn

Re
import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

export default class App extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 people: []
 };
 }
 async componentDidMount() {
 const res = await fetch('https://swapi.co/api/people');
 const { results } = await res.json();
 this.setState(() => {
 return {
 people: results
 };
 });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text style={{ color: '#fcd433', fontSize: 40, padding: 10 }}>
 A long time ago, in a Galaxy far, far away...
 </Text>
 <Text>Here are some cool people:</Text>
 {this.state.people.map(p => {
 return (
 <Text style={{ color: '#fcd433' }} key={p.name}>
 {p.name}
 </Text>
);
 })}
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#000',
 alignItems: 'center',
 justifyContent: 'center'
 }
});

If you make changes to the app, you should see the packager respond and update
your running app in real time, as shown in figure 13.4. I hope this gives you a sense of
how easy it can be to build applications in React Native. You may be used to hot
reloading on the web, but for mobile development the compile-inspect-recompile
cycle can take up a significant amount of time.

Listing 13.3 Simple React Native example (App.js)

Unlike React, React
Native comes with
primitive components
for your UI.

Constructor, state
initialization, and lifecycle
methods are the same in
React and React Native

u can use
modern

JavaScript
tures like
c/await in
act Native
apps too.

Even though styles appear
similar in React Native,
you’re not using CSS.

JSX expressions are
the same in React
Native and React

Creating a stylesheet in
React Native requires use
of its Stylesheet API to
style your components.
Licensed to Samir Mashlum <smashlum@gmail.com>

324 CHAPTER 13 An introduction to React Native
With that, you’ve created your first React Native component and code, which should
give you a brief glimpse into how the technology works and how easy it can be to
work with.

13.5 Where to go next
One of the phrases you’ll see in the React docs, library ecosystem, and community is
learn once, write anywhere. This is an homage of sorts to the write once, run anywhere
phrase that’s popular within the Java community and that is one of the hallmarks of
the React paradigm. As we’ve seen in this chapter, you can learn React concepts and
apply them to a variety of platforms, ranging from web to mobile to VR. There will be
platform-specific differences and nuances whenever you learn how to use React on a
new platform, but much of your React knowledge will easily transfer. That’s one of the
reasons why working with React can be such a pleasure.

 There are many resources you can look into if you’d like to keep learning about
React Native. One is React Native in Action by Nader Dabit (Manning Publications,

Figure 13.4 You should be able to see
changes being instantly reflected in the
simulator running your application code.
Licensed to Samir Mashlum <smashlum@gmail.com>

325Where to go next
2018), shown in figure 13.5, which pairs nicely with this book because it allows you to
pick up right where you leave off in learning React and is an excellent introduction to
React Native. You’ll apply your knowledge from your work in this book so far and use
the momentum to dive into building mobile applications with React Native. It’s also a
good resource to look into next if your team is considering React Native for an
upcoming project.

Another great resource to get you started with React Native is the Create React Native
App project. Create React Native App provides an excellent starting place for a new
React Native project or an excellent sample application for those just starting out with
it. It includes a few preset libraries and tools for building React Native apps, but allows
you to “eject” and reset to the default. If you’re curious about Create React App or
Create React Native App, check them out online:

 Create React Native App—https://github.com/react-community/create-react-
native-app

 Create React App—https://github.com/facebook/create-react-app
 React Native documentation—https://facebook.github.io/react-native

Figure 13.5 React Native in Action
by Nader Dabit gives iOS, Android, and
web developers the skills they need to
build robust, complex React Native
applications. If you’re still curious about
React, it’s the perfect book to transition
to next. Learn more at www.manning
.com/books/react-native-in-action.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/react-community/create-react-native-app
https://github.com/react-community/create-react-native-app
https://github.com/facebookincubator/create-react-app
https://facebook.github.io/react-native
http://www.manning.com/books/react-native-in-action
http://www.manning.com/books/react-native-in-action

326 CHAPTER 13 An introduction to React Native
13.6 Summary
Here’s a recap of what you learned in this chapter:

 React Native is a technology in the React ecosystem that developers can use to
write React applications that run on mobile iOS and Android devices.

 React Native uses the React core library for component creation but uses a dif-
ferent set of libraries to handle rendering your application on the native plat-
form and to handle interactions with the underlying platform (touch events,
geolocation, cameras access, and so on).

 React Native handles bridging between your JavaScript and the underlying
mobile platform.

 React Native uses many APIs that are identical or similar to web APIs. It uses
Flexbox for layout, Fetch for network requests, and other familiar APIs.

 You can mix JavaScript and native code when building React Native applications.
 React Native provides a robust set of tools for developing and compiling your

applications.
 React Native’s hot-reload developer tools save you time by not making you wait

for your application to recompile every time.
 Using React Native can help lower the barrier to mobile development for you

or your team.
 You won’t want to use React Native for absolutely every type of mobile applica-

tion, but it should be sufficient for most typical mobile applications.
 React Native in Action by Nader Dabit (Manning, 2018) is a great next resource

to consider in your React journey—check it out at www.manning.com/books/
react-native-in-action.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://www.manning.com/books/react-native-in-action
http://www.manning.com/books/react-native-in-action
http://www.manning.com/books/react-native-in-action

index
A

accessibility 179
action creators 232
actions

asynchronous 235–241
binding to component event handlers

272–274
creating in Redux 229, 232–250

creating Redux middleware for crash
reporting 247–250

creating Redux stores 232–235
middleware 235–241

defining types of 230–231
dispatching 232–235
reducers responding to 254–261
testing 245

addEventListener 46
addRoutes method 162, 167
anchor tags 182
API (application programming interface)

27
API server and database, Letters Social

81–82
application data 26–28
AR (augmented reality) 320
Array.forEach method 62
Array.map method 108
Array.prototype.reduce 252
assertion libraries 198
assertions 202
asynchronous actions 235–241
audience of this book 6–7
authenticated routes, handling with React

Router 297–301
auto bind methods 48

B

babel-register library 290
bindActionCreators function 272
binding actions, to component event

handlers 272–274
Boolean attributes 55
browserHistory 300
Bugsnag 248

C

callback function 67–68
CD (continuous deployment) 196
children property 40, 155, 163
CI (continuous integration) 196
Circle CI 196
classes, creating 37
clean tests 203
cleanPath method 159
client-side routing 172
code coverage 215
CodeSandbox 31
combineReducers function 233, 254, 261
Comment component 40
Component class 88, 115
componentDidCatch method 99, 238
componentDidMount method 91, 96
components 17–19

communication between 73
connecting to Redux stores, using 267–270
creating

overview 36–37
using JSX 53–55

encapsulated and reusable 18–19
event handlers, binding actions to 272–274
327

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX328
components (continued)
mounting 89–92
overview 17
presentational, containers vs. 264–267
relationships between

establishing 28–31
parent-child relationships 28

rendering
on servers 286–292
overview 34–36

state and
overview 43–44
setting initial state 44–52

stateless functional 71–73
componentWillMount method 90, 96, 286
composite components 19
connect method 265, 269
constructor class 70
containers (smart) components 265
containers, presentational components vs.

264–267
continuous deployment. See CD
continuous integration. See CI
cookies 261
crash reporting, creating middleware for

247–250
Create React Native App tool 321
createClass method 37
CreateComment component 48, 51
CreatePost component 208

updating 145–150
without Enzyme 205–213

create-react-class module 37

D

data and data flow
component communication 73
one-way data flow 74–76
See also state

data binding 74
data structures, ephemeral 64
data-fetching, with SSR (server-side

rendering) 301–312
defaultProps property 69–70, 88
deploying Letters Social 81
describe functions 203
development.json file 303
diffing 16
dispatch function 232
dispatching actions 232–235
DisplayMap component, creating using refs

133–138
divs element 14
document.findElemenyById method 14

DOM (Document Object Model)
overview 13–15
updates and diffing 16
virtual 15

double forward slashes 159
drag-and-drop classes 24
drag-and-drop operations 31
dumb components 264–265, 267

E

elements
creating 34–42
of forms 116–119

Embedded Ruby 280
encapsulated components 18–19
enroute package 160
ERB (Embedded Ruby) 280
error boundaries 98
error handling 98–100
escape characters 159
event handlers, binding actions to 272–274
events, in forms 116–119
expect() function 204
expression syntax, JSX 66

F

failing test 196
fake data 203
Fetch API 105
Firebase, integrating 183–190
Flux

application architecture 223–229
Redux as variation on 226
Redux setup for 227–229

for teams;teams 19–21
forms

controlled and uncontrolled components 121
elements and events 116–119
overview 115–116
posts with, creating 112–115, 126–128

component overview and hierarchy
113–115

data requirements 113–115
updating state in 120
validation and sanitization 123–125

framework-specific libraries 198

G

g character 159
geocoding 140
Geolocation API 143
GitHub 186
Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 329
H

has-a relationship 73
hash-based routing 171
Hello World application, React Native with

321–324
heuristic diffing 16
higher-order components 37
Home component 176
hooking components 89
hooks 187
hot reloading 318
HTML tags 55
HTML, differences from JSX 55–56
HTMLElements 33
hydrate method 287

I

immutable state 43, 63–65, 69–70
immutable.js library 68
incoming messages 281
inputs, typechecking 70
integration testing 195, 209
invariant library 156
is-a relationship 73
isAllowedAccessForResource() method 223
isomorphic SSR 296
isomorphic-fetch library 82, 130, 237
Istanbul output 198, 215
it functions 203

J

JavaScript 320
jest command 215
Jest, testing components with 197–200
js-cookie library 228, 261, 294
jsdom library 199
JSON-server library 81
JSX 52–56

benefits of and differences from HTML 55–56
creating components using 53–55

L

Letters Social 78–82
API server and database 81–82
deploying 81
getting source code 80
running app 82
sending posts to API 130–132
starting to create 102–110
versions of node 80

libraries. See third-party libraries

lifecycle methods
error handling 98–100
overview 19, 82–84, 318
types of 84–88
unmounting 96–97
updating 93–96

<Link/> component 178–182
loading property 234, 255
LocationTypeAhead component, creating

139–144

M

map() function 51
Mapbox 133, 135, 138, 140
mapDispatchToProps function 272, 274
maps 132–150

CreatePost, updating 145–150
DisplayMap component, creating using refs

133–138
LocationTypeAhead component, creating

139–144
mapStateToProps function 269, 274
Math.random() method 252
methods. See lifecycle methods
middleware

creating for crash reporting 247–250
overview 235–241

Mocha 197
mock data 203
mock function 210
Model-View-Controller. See MVC
mounting components 89–92
mutable state 43, 63, 65–69
MVC (Model-View-Controller) 10, 223

N

name property 69
Navbar component 189
nextState object 46
node, versions of 80
normalizeRoute method 160
<NotFound/> component 182–183

O

Object.freeze method 69
onChange event handlers 48, 117
onClick event handler 117
onEnter hook 298
one-way data flow 70, 74–76
opaque data structure 163
ourFirstApp 31
outgoing messages 281
Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX330
owner-ownee relationship 73
ownProps argument 269

P

pages directory 173
parameterized routing 160–162, 178
parent-child relationships 28
path props 159
path-to-regexp library 161
perceptual speed index 283
persistent state 36
POJO (plain old JavaScript object) 230
Post component 148
Postman 105
posts

creating with forms 112–115, 126–128
component overview and hierarchy 113–115
data requirements 113–115

sending to Letters Social API 130–132
presentational components, containers vs.

264–267
prevState argument 67
production.json file 303
ProfilePicture component 39
properties 4
property validation, via PropTypes 38–42
props argument 67
props, default 70–71
props.children 166
PropTypes

overview 70–71
property validation via 38–42

prop-types library 31, 39, 70
Protractor 209
<Provider/> component, connecting components

to Redux stores 267–270
Puppeteer 209
pure methods 91, 252
push code 197

Q

querySelectorAll method 14

R

React
components in 17–19

encapsulated and reusable 18–19
overview 17

for teams;teams 19–21
integrating Redux with 264–276

binding actions to component event
handlers 272–274

containers vs. presentational components
264–267

updating tests 274–276
using <Provider /> to connect components

to Redux stores 267–270
React Native and 317–318
tradeoffs of 10–12
users of 7–9
virtual DOM 17

React Native 313–326
Hello World application 321–324
online resources 324–326
overview 314–317
React and 317–318
when to use 319–320

React Router
handling authenticated routes with 297–301
overview 158
setting up 293–296
switching to 292–296

React VR 316
React.Chidlren.count 164
React.Chidlren.forEach 164
React.Chidlren.only 164
React.Chidlren.toArray 164
React.Children.map 163
React.Children.only tool 180
React.cloneElement 179
React.Component class 37, 39, 42–43, 56, 65
React.createClass 53
React.createElement() function 33–35, 42, 51, 55,

84, 155
ReactComponentElement 32
react-dom library 4, 24, 317
ReactDOM.hydrate() method 287
ReactDOM.render 32
ReactDOMElement 32
ReactDOMServer.renderToString 286
react-enroute library 155
react-native library 4, 24
react-redux library 226, 263–264
reducers 226

combining in stores 261–262
determining how states change 252–263

initial state 253–254
state shape 253–254

responding to incoming actions 254–261
testing 262–263

Redux 251–276
application architecture 221–250
creating actions in 229, 232–250

asynchronous actions 235–241
creating Redux middleware for crash

reporting 247–250
creating Redux stores 232–235
Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 331
Redux (continued)
defining action types 230–231
dispatching actions 232–235
middleware 235–241
testing actions 245

Flux application architecture 223–229
Redux as variation on Flux 226
Redux setup for 227–229

integrating with React 264–276
binding actions to component event

handlers 272–274
containers vs. presentational

components 264–267
updating tests 274–276
using <Provider /> to connect components

to Redux stores 267–270
reducers determining how states change

252–263
combining reducers in stores 261–262
initial state 253–254
reducers responding to incoming

actions 254–261
state shape 253–254
testing reducers 262–263

when to use 242–245
redux-mock-store library 228
redux-thunk library 235
ref callback function 134
render method 31, 37–38, 66, 70, 147, 154,

162
rendering

components on servers 286–292
server-side (SSR)

advantages of 282–285
data-fetching with 301–312
disadvantages of 285–286
overview 278–282

renderToNodeStream method 287, 307
renderToStaticMarkup method 287
renderToStaticNodeStream method 287
renderToString method 286, 301, 310
rerender 91
reusable, components 18–19
reverse geocoding 140
Rizzitano, Ari 179
<Route /> component 156–157
route.params.user 160
<Router/> component 157–160, 162–167
routes property 158
routes, authenticated 297–301
routing 151–169, 171–183

<Link/> component 178–182
<NotFound/> component 182–183
<Route /> component 156–157
<Router/> component 157–160, 162–167

component routing 155–156
overview 152–153
page for post 177–178
parameterized routing 160–162

routing tools 161

S

sanitization, of forms 123–125
search engine optimization. See SEO
Selenium 209
self-eradicating components 164
Sentry 248
SEO (search engine optimization) 282
servers, rendering components on 286–292
server-side rendering. See SSR
service tests 194
SETs (software engineers in test) 209
setState() method 64, 66
shallow rendering 203
shouldComponentUpdate method 93–94, 96
simplicity 19
SinglePost component 178
Sinon 198
smart (containers) components 265
snapshot testing 204
software engineers in test. See SETs
speed index 283
splitLetters 61
SSR (server-side rendering)

advantages of 282–285
data-fetching with 301–312
disadvantages of 285–286
overview 278, 280–282

state 65–73
immutable 63–65, 69–70
mutable 63–69
overview 43–44, 60–65
setting initial state 44–52
stateless functional components 71–73
updating in forms 120

state interface 158
stateful components 38
stateless functional components 37, 72
states

initial 253–254
reducers determining changes 252–263

combining reducers in stores
261–262

reducers responding to incoming
actions 254–261

testing reducers 262–263
shape of 253–254

store.dispatch() method 234
store.subscribe() method 263
Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX332
stores
connecting components to 267–270
overview 224
reducers combining in 261–262

subrender method 212
subrendering 147
SVGElements 33
switch statement 254

T

target property 119
TDD (test-driven development) 196, 202
teams, React for 19–21
test coverage 215
test-driven development. See TDD
testing

actions 245
components 192–217

coverage 213–216
CreatePost component without Enzyme

205–213
reasons for 195–197
stateless functional component 201–205
types of testing 194–195
with Jest 197–200

reducers 262–263
updates to 274–276

testing pyramid 195
textarea element 119
textarea input 116
third-party libraries 129–150

enhancing component with maps 132–150
CreatePost, updating 145–150
DisplayMap component, creating using refs

133–138
LocationTypeAhead component,

creating 139–144
overview 6, 293
sending posts to Letters Social API

130–132

this.props.children prop 40
this.setState property 46, 84
this.setState() method 93, 96
this.state property 43–44
time to interactive. See TTI
tools 7
tradeoffs, of React 10–12
Travis CI 196
TTI (time to interactive) 283
two-way data binding 74
typechecking inputs 70

U

uncaught errors 109
unit tests 194
universal SSR 296
unmounting lifecycle methods 96–97
updater function 67
updates 16
updating

lifecycle methods 93–96
tests 274–276

user key 69
user prop 189
users 7–9

V

validation, of forms 123–125
value property 120
virtual DOM 15
visual regression testing 204

W

web-based public API 27

X

X HTTP library 11
Licensed to Samir Mashlum <smashlum@gmail.com>

RELATED MANNING TITLES
React Quickly
Painless web apps with React, JSX, Redux, and
GraphQL
by Azat Mardan

ISBN: 9781617293344
528 pages, $49.99
August 2017

Redux in Action
by Marc Garreau and Will Faurot

ISBN: 9781617294976
312 pages, $44.99
May 2018

Redux in Motion
A test-driven approach
by Thomas Tuts

Course duration: 3h 11m
47 exercises
Live video: $49.99

Functional Programming in JavaScript
How to improve your JavaScript programs
using functional techniques
by Luis Atencio

ISBN: 9781617292828
272 pages, $44.99
August 2009
For ordering information go to www.manning.com

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.manning.com/books/react-quickly
https://www.manning.com/books/redux-in-action
https://www.manning.com/livevideo/redux-in-motion
https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/react-quickly
https://www.manning.com/books/redux-in-action
https://www.manning.com/livevideo/redux-in-motion
https://www.manning.com/books/functional-programming-in-javascript

YOU MAY ALSO BE INTERESTED IN
Vue.js in Action
by Erik Hanchett with Benjamin Listwon

ISBN: 9781617294624
375 pages, $44.99
July 2018

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages, $44.99
August 2016

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
568 pages, $49.95
July 2018

Angular in Action
by Jeremy Wilken

ISBN: 9781617293313
320 pages, $44.99
March 2018
For ordering information go to www.manning.com

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.manning.com/books/vue-js-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/angular-in-action
https://www.manning.com/books/vue-js-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/angular-in-action

Mark Tielens Thomas

F
acebook created React to help deliver amazing user experi-
ences on a website with thousands of components and an
incomprehensible amount of traffi c. The same powerful

tools are available to you too! The key is a clever design for
managing state, data fl ow, and rendering, so your application
is easy to think about and runs smoothly. Add an incredibly
rich ecosystem of components and libraries, and you’ve got a
recipe for building web apps that will delight both developers
and users.

React in Action teaches you to think like a pro about user
interfaces and building them with React. This practical book
gets you up and running quickly with hands-on examples in
every chapter. You’ll master core topics like rendering, lifecycle
methods, JSX, data fl ow, forms, routing, integrating with
third-party libraries, and testing. And the included application
design ideas will help make your apps pop. As you learn to
integrate React into full-stack applications, you’ll explore state
management with Redux and server-side rendering, and even
dabble in React Native for mobile UIs.

What’s Inside
● React from the ground up
● Implementing a routing system with components
● Server-side rendering in Node.js
● Working with third-party libraries
● Testing React components

Written for developers familiar with HTML, CSS, and
JavaScript.

Mark Thomas is an experienced software engineer who works
daily with React, JavaScript, and Node.js. He loves clean code,
beautiful systems, and good coffee.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/react-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

React IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Read this. Work with
 React. Never look back.”

—Michal Paszkiewicz
Transport for London

“One stop—for concepts
as well as for real-world

 examples and integrations.”
—Phaneendra Bommareddy

Openlogix

“A must-have for anyone
wanting to create applications

using React and Redux!”—Andrew Courter, Pivotal

“Easy to follow, clearly
demonstrates all necessary

steps, includes plenty of code
examples, and never leaves

you in the dark.”
—Olivier Ducatteeuw
University of Leuven

See first page

	React in Action
	brief contents
	Part 1 Meet React 1

	contents
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	About the code
	Software and hardware requirements

	about the author
	about the cover illustration
	Part 1 Meet React
	1 Meet React
	1.1 Meet React
	1.1.1 Who this book is for
	1.1.2 A note on tooling
	1.1.3 Who uses React?

	1.2 What does React not do?
	1.2.1 Tradeoffs of React

	1.3 The virtual DOM
	1.3.1 The DOM
	1.3.2 The virtual DOM
	1.3.3 Updates and diffing
	1.3.4 Virtual DOM: Need for speed?

	1.4 Components: The fundamental unit of React
	1.4.1 Components in general
	1.4.2 Components in React: Encapsulated and reusable

	1.5 React for teams
	1.6 Summary

	2 <Hello World />: our first component
	2.1 Introducing React components
	2.1.1 Understanding the application data
	2.1.2 Multiple components: Composition and parent-child relationships
	2.1.3 Establishing component relationships

	2.2 Creating components in React
	2.2.1 Creating React elements
	2.2.2 Rendering your first component
	2.2.3 Creating React components
	2.2.4 Creating React classes
	2.2.5 The render method
	2.2.6 Property validation via PropTypes

	2.3 The life and times of a component
	2.3.1 A React state of mind
	2.3.2 Setting initial state

	2.4 Meet JSX
	2.4.1 Creating components using JSX
	2.4.2 Benefits of JSX and differences from HTML

	2.5 Summary

	Part 2 Components and data in React
	3 Data and data flow in React
	3.1 Introducing state
	3.1.1 What is state?
	3.1.2 Mutable and immutable state

	3.2 State in React
	3.2.1 Mutable state in React: Component state
	3.2.2 Immutable state in React: Props
	3.2.3 Working with props: PropTypes and default props
	3.2.4 Stateless functional components

	3.3 Component communication
	3.4 One-way data flow
	3.5 Summary

	4 Rendering and lifecycle methods in React
	4.1 Getting set up with the Letters Social repo
	4.1.1 Getting the source code
	4.1.2 Which version of node should I use?
	4.1.3 Note on tooling and CSS
	4.1.4 Deploying
	4.1.5 The API server and database
	4.1.6 Running the app

	4.2 The render process and lifecycle methods
	4.2.1 Introducing lifecycle methods
	4.2.2 Types of lifecycle methods
	4.2.3 Initial and “will” methods
	4.2.4 Mounting components
	4.2.5 Updating methods
	4.2.6 Unmounting methods
	4.2.7 Catching errors

	4.3 Starting to create Letters Social
	4.4 Summary

	5 Working with forms in React
	5.1 Creating posts in Letters Social
	5.1.1 Data requirements
	5.1.2 Component overview and hierarchy

	5.2 Forms in React
	5.2.1 Getting started with forms
	5.2.2 Form elements and events
	5.2.3 Updating state in forms
	5.2.4 Controlled and uncontrolled components
	5.2.5 Form validation and sanitization

	5.3 Creating new posts
	5.4 Summary

	6 Integrating third-party libraries with React
	6.1 Sending posts to the Letters Social API
	6.2 Enhancing your component with maps
	6.2.1 Creating the DisplayMap component using refs
	6.2.2 Creating the LocationTypeAhead component
	6.2.3 Updating CreatePost and adding maps to posts

	6.3 Summary

	7 Routing in React
	7.1 What is routing?
	7.1.1 Routing in modern front-end web applications

	7.2 Creating a router
	7.2.1 Component routing
	7.2.2 Creating the <Route /> component
	7.2.3 Starting to build the <Router/> component
	7.2.4 Matching URL paths and parameterized routing
	7.2.5 Adding routes to the Router component

	7.3 Summary

	8 More routing and integrating Firebase
	8.1 Using the router
	8.1.1 Creating a page for a post
	8.1.2 Creating a <Link/> component
	8.1.3 Creating a <NotFound/> component

	8.2 Integrating Firebase
	8.2.1 Ensuring a user is logged in

	8.3 Summary

	9 Testing React components
	9.1 Types of testing
	9.1.1 Why test?

	9.2 Testing React components with Jest, Enzyme, and React-test-renderer
	9.3 Writing your first tests
	9.3.1 Getting started with Jest
	9.3.2 Testing a stateless functional component
	9.3.3 Testing the CreatePost component without Enzyme
	9.3.4 Test coverage

	9.4 Summary

	Part 3 React application architecture
	10 Redux application architecture
	10.1 The Flux application architecture
	10.1.1 Meet Redux: A variation on Flux
	10.1.2 Getting set up for Redux

	10.2 Creating actions in Redux
	10.2.1 Defining action types
	10.2.2 Creating actions in Redux
	10.2.3 Creating the Redux store and dispatching actions
	10.2.4 Asynchronous actions and middleware
	10.2.5 To Redux or not to Redux?
	10.2.6 Testing actions
	10.2.7 Creating custom Redux middleware for crash reporting

	10.3 Summary

	11 More Redux and integrating Redux with React
	11.1 Reducers determine how state should change
	11.1.1 State shape and initial state
	11.1.2 Setting up reducers to respond to incoming action
	11.1.3 Combining reducers together in our store
	11.1.4 Testing reducers

	11.2 Bringing React and Redux together
	11.2.1 Containers vs. presentational components
	11.2.2 Using <Provider /> to connect components to the Redux store
	11.2.3 Binding actions to component event handlers
	11.2.4 Updating your tests

	11.3 Summary

	12 React on the server and integrating React Router
	12.1 What is server-side rendering?
	12.1.1 Digging into server-side rendering

	12.2 Why render on the server?
	12.3 You might not need SSR
	12.4 Rendering components on the server
	12.5 Switching to React Router
	12.5.1 Setting up React router

	12.6 Handling authenticated routes with React router
	12.7 Server rendering with data-fetching
	12.8 Summary

	13 An introduction to React Native
	13.1 Introducing React Native
	13.2 React and React Native
	13.3 When to use React Native
	13.4 The simplest “Hello World”
	13.5 Where to go next
	13.6 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	React in Action—back cover

