
M A N N I N G

John Larsen

With Suspense and Concurrent Mode

React Hooks
in Action

WITH SUSPENSE AND CONCURRENT MODE

JOHN LARSEN

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Helen Stergius
Technical development editor: John Guthrie

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Keri Hales

Technical proofreader: Clive Harber
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617297632
Printed in the United States of America

www.manning.com

 To Mum, for all the books. And to Dad, for all the gadgets.

contents
preface xi
acknowledgments xiii
about this book xiv
about the author xviii
about the cover illustration xix

PART 1 .. 1

1 React is evolving 3
1.1 What is React? 3

Building a UI from components 4 ■ Synchronizing state
and UI 6 ■ Understanding component types 10

1.2 What’s new in React? 12
1.3 React Hooks can add state to function components 13

Stateful function components: Less code, better organization 14
Custom hooks: Easier code reuse 17 ■ Third-party hooks provide
ready-made, well-tested functionality 18

1.4 Better UX with Concurrent Mode and Suspense 21
Concurrent Mode 22 ■ Suspense 23

1.5 React’s new publication channels 24
v

CONTENTSvi
1.6 Whom is this book for? 25
1.7 Getting started 25

2 Managing component state with the useState hook 27
2.1 Setting up the bookings manager app 28

Generating the app skeleton with create-react-app 30 ■ Editing the
four key files 31 ■ Adding a database file for the application 36
Creating page components and a UserPicker.js file 37

2.2 Storing, using, and setting values with useState 38
Assigning new values to variables doesn’t update the UI 39
Calling useState returns a value and an updater function 42
Calling the updater function replaces the previous state value 46
Passing a function to useState as the initial value 49 ■ Using the
previous state when setting the new state 50

2.3 Calling useState multiple times to work with multiple
values 53
Using a drop-down list to set state 53 ■ Using a check box
to set state 56

2.4 Reviewing some function component concepts 60

3 Managing component state with the useReducer hook 65
3.1 Updating multiple state values in response

to a single event 66
Taking users out of the movie with unpredictable state changes 66
Keeping users in the movie with predictable state changes 68

3.2 Managing more complicated state with useReducer 70
Updating state using a reducer with a predefined set of actions 71
Building a reducer for the BookablesList component 73
Accessing component state and dispatching actions with
useReducer 76

3.3 Generating the initial state with a function 79
Introducing the WeekPicker component 81 ■ Creating utility
functions to work with dates and weeks 82 ■ Building the reducer
to manage dates for the component 83 ■ Passing an initialization
function to the useReducer hook 84 ■ Updating BookingsPage to
use WeekPicker 85

3.4 Reviewing some useReducer concepts 86

CONTENTS vii
4 Working with side effects 92
4.1 Exploring the useEffect API with simple examples 93

Running side effects after every render 93 ■ Running an effect only
when a component mounts 95 ■ Cleaning up side effects by
returning a function 97 ■ Controlling when an effect runs by
specifying dependencies 99 ■ Summarizing the ways to call the
useEffect hook 103 ■ Calling useLayoutEffect to run an effect
before the browser repaints 103

4.2 Fetching data 104
Creating the new db.json file 104 ■ Setting up a JSON
server 105 ■ Fetching data within a useEffect hook 106
Working with async and await 108

4.3 Fetching data for the BookablesList component 109
Examining the data-loading process 110 ■ Updating the reducer
to manage loading and error states 111 ■ Creating a helper
function to load data 113 ■ Loading the bookables 114

5 Managing component state with the useRef hook 118
5.1 Updating state without causing a re-render 119

Comparing useState and useRef when updating state values 119
Calling useRef 121

5.2 Storing timer IDs with a ref 122
5.3 Keeping references to DOM elements 125

Setting focus on an element in response to an event 126
Managing a text box via a ref 129

6 Managing application state 134
6.1 Passing shared state to child components 135

Passing state from a parent by setting props on the children 136
Receiving state from a parent as a prop 136 ■ Receiving an
updater function from a parent as a prop 138

6.2 Breaking components into smaller pieces 140
Seeing components as part of a bigger app 141 ■ Organizing
multiple components within a page’s UI 142 ■ Creating a
BookableDetails component 143

6.3 Sharing the state and dispatch function from
useReducer 146
Managing state in the BookablesView component 147 ■ Removing
an action from the reducer 148 ■ Receiving state and dispatch in
the BookablesList component 148

CONTENTSviii
6.4 Sharing the state value and updater function from
useState 151
Managing the selected bookable in the BookablesView component 152
Receiving the bookable and updater function in BookablesList 153

6.5 Passing functions to useCallback to avoid redefining them 159
Depending on functions we pass in as props 159 ■ Maintaining
function identity with the useCallback hook 161

7 Managing performance with useMemo 164
7.1 Breaking the cook’s heart by calling, “O, shortcake!” 165

Generating anagrams with an expensive algorithm 166
Avoiding redundant function calls 169

7.2 Memoizing expensive function calls with useMemo 170
7.3 Organizing the components on the Bookings page 171

Managing the selected bookable with useState 173 ■ Managing the
selected week and booking with useReducer and useState 173

7.4 Efficiently building the bookings grid with useMemo 176
Generating a grid of sessions and dates 177 ■ Generating a lookup for
bookings 180 ■ Providing a getBookings data-loading function 182
Creating the BookingsGrid component and calling useMemo 182
Coping with racing responses when fetching data in useEffect 186

8 Managing state with the Context API 194
8.1 Needing state from higher up the component tree 195

Displaying a call-to-action message when the page first loads 196
Displaying booking information when a visitor selects a booking 198
Displaying an edit button for a user’s bookings: The problem 199
Displaying an edit button for a user’s bookings: The solution 200

8.2 Working with custom providers and multiple
contexts 206
Setting an object as the context provider’s value 206 ■ Moving
the state to a custom provider 207 ■ Working with multiple
contexts 213 ■ Specifying a default value for a context 216

9 Creating your own hooks 218
9.1 Extracting functionality into custom hooks 220

Recognizing functionality that could be shared 223 ■ Defining
custom hooks outside your components 224 ■ Calling custom
hooks from custom hooks 225

CONTENTS ix
9.2 Following the Rules of Hooks 227
Call hooks only at the top level 228 ■ Call hooks only from React
functions 228 ■ Using an ESLint plugin for the rules of hooks 229

9.3 Extracting further examples of custom hooks 229
Accessing window dimensions with a useWindowSize hook 229
Getting and setting values with a useLocalStorage hook 231

9.4 Consuming a context value with a custom hook 233
9.5 Encapsulating data fetching with a custom hook 235

Creating the useFetch hook 236 ■ Using the data, status, and error
values the useFetch hook returns 237 ■ Creating a more specialized
data-fetching hook: useBookings 238

10 Using third-party hooks 245
10.1 Accessing state in the URL with React Router 246

Setting up routes to enable nesting 248 ■ Adding nested routes
to the Bookables page 249 ■ Accessing URL parameters with the
useParams hook 250 ■ Navigating with the useNavigate hook 252

10.2 Getting and setting query string search parameters 256
Getting search parameters from the query string 258 ■ Setting the
query string 262

10.3 Streamlining data-fetching with React Query 266
Introducing React Query 267 ■ Giving components access to a
React Query client 269 ■ Fetching data with useQuery 270
Accessing data in the query cache 273 ■ Updating server state
with useMutation 276

PART 2 ...281

11 Code splitting with Suspense 283
11.1 Importing code dynamically with the import

function 284
Setting up a web page to load JavaScript when a button
is clicked 284 ■ Using default and named exports 285
Using static imports to load JavaScript 286 ■ Calling the
import function to dynamically load JavaScript 287

11.2 Importing components dynamically with lazy and
Suspense 288
Converting a component to a lazy component with the lazy
function 289 ■ Specifying fallback content with the Suspense

CONTENTSx
component 292 ■ Understanding how lazy and Suspense work
together 295 ■ Code splitting an app on its routes 296

11.3 Catching errors with error boundaries 298
Checking out the error boundary example in the React docs 299
Creating our own error boundary 300 ■ Recovering from
errors 303

12 Integrating data fetching with Suspense 305
12.1 Data fetching with Suspense 306

Upgrading promises to include their status 308 ■ Using the
promise status to integrate with Suspense 309 ■ Fetching data as
early as possible 310 ■ Fetching new data 311 ■ Recovering
from errors 314 ■ Checking the React docs 315

12.2 Using Suspense and error boundaries with React
Query 317

12.3 Loading images with Suspense 319
Using React Query and Suspense to provide an image-loading
fallback 320 ■ Prefetching images and data with React
Query 323

13 Experimenting with useTransition, useDeferredValue,
and SuspenseList 327

13.1 Making smoother transitions between states 328
Avoiding receded states with useTransition 329 ■ Giving users
feedback with isPending 331 ■ Integrating transitions with
common components 332 ■ Holding on to old values with
useDeferredValue 334

13.2 Using SuspenseList to manage multiple fallbacks 336
Showing data from multiple sources 337 ■ Controlling multiple
fallbacks with SuspenseList 338

13.3 Concurrent Mode and the future 340

index 343

preface
As a high school teacher and a programmer, I was in a great position to develop appli-
cations to support teaching, learning, and organization within schools. I could see
firsthand and day-to-day the requirements of students, teachers, and support staff and
work with them to build intuitive apps and tools that made it easier to plan, communi-
cate, understand, and play. I started with quiz apps and matching games written in
JavaScript, and then created lesson-planning and resource-booking apps that made
use of jQuery and templating. Then the science department wanted a way to order
equipment for lessons, the leadership team wanted a way for staff to pass on announce-
ments, and the ICT technicians wanted a way for staff to report and manage problems
with software and hardware. How about a seating plans app, a content management
system for news stories on the website, a bespoke calendar, an interactive duty roster,
or a sports match diary, all with a consistent look and feel?

 While each project had its own requirements, there was a lot of overlap, and simi-
lar methods could be used across apps. To speed things along, I switched to JavaScript
end-to-end with Node.js, Express, Handlebars, Backbone, and Marionette. For the
most part, it all worked well, although making updates as requirements changed was
sometimes fiddly. In particular, the flow of data between the models, views, and con-
trollers wasn’t always smooth. The users were happy, but I could see the underlying
problems in the code and knew I’d have to get back to it and straighten out the twists
and turns at some point.

 Then I came across React, and all my problems were solved! Okay, not quite. But
React’s model of components, props, state, and automatic re-rendering clicked with
xi

PREFACExii
me in a way no other framework had before. One by one, I converted the existing
apps to React. Every time, they became simpler, easier to understand, and easier to
maintain. Common components could be reused, and I could make changes and add
new features quickly and with confidence. While not quite a React zealot (I’m a fan of
framework diversity), I was definitely a convert and enjoyed the developer experience
and the user response.

 Now with React Hooks, my code has taken another positive step along the simplicity
scale. Code that was split across class component life-cycle methods can be collocated,
either within function components or in external custom hooks. It’s easy to isolate,
maintain, and share code for particular functionality, whether it’s for setting a docu-
ment title, accessing local storage, managing context values, measuring onscreen ele-
ments, subscribing to a service, or fetching data. And hooking into the functionality of
existing libraries like React Router, Redux, React Query, and React Spring has become
easier, too. Using React Hooks offers a new way of thinking about React components,
and although it has some initial gotchas to look out for, it’s a definite change for the
better in my view.

 The switch to hooks is part of an underlying change in the way React will work
going forward. Concurrent Mode will become the new normal, enabling time-slicing
wizardry where rendering doesn’t block the main thread and high-priority updates
like user input can be rendered straightaway, even while the UI for other components
is being built. Selective hydration will allow React to load component code just in time
for user interactions, and the Suspense API will let developers more carefully specify
loading states while code and resources load.

 The React team is focused on building a great developer experience so that devel-
opers can build great user experiences. Further changes are still to come, and best
practices will continue to emerge, but I hope React Hooks in Action with Suspense and
Concurrent Mode gives you a solid grasp of the existing changes and prepares you for
the exciting developments on the horizon.

acknowledgments
This is where I’d normally thank friends and family for their patience as I’ve been
locked away in a bunker, furiously clacking those typewriter keys, creating my master-
piece, as everyone else gets on with life as normal. But, what with one thing and
another in 2020, it’s been far from life as normal. So, I’d like to thank anyone and
everyone who’s made things better in any way, large or small, for those around them,
in difficult times.

 Thank you to Helen Stergius, my editor at Manning, for her patience and encour-
agement; writing a book is a long process but is made much easier with the support
and advice of a great editor like Helen. Thanks also to John Guthrie and Clive Harber
for their attention to detail and honest, constructive feedback; they really helped to
make the code and explanations clearer and more consistent. I would also like to
thank Deirdre Hiam, my production editor; Sharon Wilkey, my copyeditor; Keri Hales,
my proofreader, and Aleksandar Dragosavljević, my reviewing editor.

 To all the reviewers: Annie Taylor Chen, Arnaud Castelltort, Bruno Sonnino,
Chunxu Tang, Clive Harber, Daniel Couper, Edin Kapic, Gustavo Filipe Ramos
Gomes, Isaac Wong, James Liu, Joe Justesen, Konstantinos Leimonis, Krzysztof
Kamyczek, Rob Lacey, Rohit Sharma, Ronald Borman, Ryan Burrows, Ryan Huber,
and Sairam Sai, your suggestions helped make this a better book.
xiii

about this book
React Hooks in Action with Suspense and Concurrent Mode is a book for experienced React
developers. It introduces the hooks now built into React and shows how to use them
when developing apps with React function components, managing state in and across
components, and synchronizing component state via external APIs. It demonstrates
how the hooks approach is great for encapsulation and reuse, for simplifying compo-
nent code, and for preparing for changes to come. It also explores some of the more
experimental Suspense and Concurrent Mode APIs that the React team is still work-
ing on.

Who should read this book
If you’ve used React before and want to see how hooks can help improve your code,
shifting your components from class-based to function-based and integrating with
Suspense and Concurrent Mode to improve the developer and user experiences,
then this book will show you the way. You should already be able to create a new app
with create-react-app and install packages with npm (or Yarn). The code exam-
ples use modern JavaScript syntax and patterns like destructuring, default parame-
ters, the spread operator, and the optional chaining operator, so, while there are
brief explanations when they’re first used, the more comfortable you are with their
use, the better.
xiv

ABOUT THIS BOOK xv
How this book is organized: A roadmap
React Hooks in Action has 13 chapters across two parts. The book’s page at Manning’s
website also includes articles that offer extra examples and explanations that didn’t fit
within the main flow of the book.

 Part 1 introduces the syntax and use of the new, stable, non-experimental, built-in
React Hooks. It also shows how to roll your own custom hooks and make the most of
third-party hooks made available by existing React libraries:

■ We start in chapter 1 with an overview of recent and upcoming changes in
React, with a particular focus on how React Hooks help you organize, maintain,
and share your component code.

■ Chapter 2 introduces our first hook, useState. Components can use it to man-
age state values and to trigger re-rendering when the values change.

■ Sometimes multiple state values are linked together, with a change in one caus-
ing changes in others. The useReducer hook, covered in chapter 3, provides a
way to manage multiple state changes in one place.

■ React aims to keep the UI in sync with your app’s state. Sometimes your app
needs to retrieve state from somewhere else or display it outside the document,
maybe in the browser title, for example. When your app performs side effects
by reaching outside its components, you should wrap the code by using the
useEffect hook, discussed in chapter 4, to keep all the pieces synchronized.

■ Chapter 5 uses the useRef hook to update state without causing a re-render
(when working with a timer ID, for example) and to maintain references to ele-
ments on the page, like text boxes on forms.

■ Our apps use multiple components, and chapter 6 investigates strategies for
sharing state, passing it down via props. The chapter shows how to share the
updater and dispatch functions from useState and useReducer and how to cre-
ate an unchanging reference to a function with the useCallback hook.

■ Components sometimes rely on functions to generate or transform data in
some way. If those functions take a relatively long time to do their thing, you
want to call them only when absolutely necessary. Chapter 7 shows how to enlist
the help of the useMemo hook to limit when expensive functions run.

■ Sometimes the same state values are used widely by many components across
an app. Chapter 8 explains how to use React’s Context API and useContext
hook to share state without passing props down through multiple levels of
components.

■ React Hooks are just functions. You can move code that calls hooks into func-
tions outside your components. Such functions, or custom hooks, can then be
shared among components and across projects. Chapter 9 explains why and
how you’d create custom hooks, with plenty of examples, and highlights the
Rules of Hooks.

ABOUT THIS BOOKxvi
■ Popular React libraries have been updated to work with hooks. Chapter 10 makes
use of third-party hooks from React Router, for managing state in the URL, and
React Query for painlessly syncing your UI with state stored on a server.

Part 2 explains how to more effectively load component code for larger apps and use
Suspense components and error boundaries to organize fallback UI as resources are
loading. It then dives into experimental APIs for integrating data loading with Sus-
pense and working in Concurrent Mode:

■ Chapter 11 discusses code splitting, combining React.lazy for lazy-loading
components, Suspense components for showing fallback UI as your compo-
nents lazily load, and error boundaries for showing fallback UI if something
goes wrong.

■ In chapter 12, we head into more experimental territory, looking at how librar-
ies might integrate data fetching and image loading with Suspense.

■ Finally, in chapter 13, we explore some volatile APIs that work only in Concurrent
Mode. The useTransition and useDeferredValue hooks and the SuspenseList
component are all designed to improve the user experience during state changes
in your apps. Exactly how they work is still changing, but the chapter gives you a
heads-up about the problems they’re trying to solve.

While the book’s main example app is built up over the course of the book, you
should have no problems if you want to head straight for a certain chapter or hook. If
you want to run individual code examples, you can check out the corresponding repo
branch and go from there.

 The chapters also include exercises to practice the ideas just presented. They mostly
ask you to replicate the approach from one page of the example app on another page.
For example, the book may show you how to update the Bookables page and then ask
you to do the same for the Users page. Getting your hands dirty with the code is an
effective learning strategy for many, but you can always check out the solution code
from the repo if necessary.

About the code
The book includes an ongoing example, a bookings app, that we build up from chap-
ter to chapter. The example provides a great context for discussing React Hooks and
seeing them in action. But the focus of the book is on the hooks, not the bookings
app, so, while most of the app’s code is in the book, some updated listings are avail-
able in the example app’s GitHub repo but are not shown in the book. The repo is at
https://github.com/jrlarsen/react-hooks-in-action. I’ll point out when you need to go
to the repo for the latest changes. Waypoints in the development of the example app
are on separate branches in the repo.

 Some short examples also are not part of the main bookings app. Their code is
either on CodeSandbox for React-based examples, or on JS Bin for vanilla JavaScript

https://github.com/jrlarsen/react-hooks-in-action

ABOUT THIS BOOK xvii
examples. The code listings in the book include links to GitHub, CodeSandbox, or JS
Bin as appropriate.

 The examples were all thoroughly tested using React 17.0.1. Chapter 13 is an
exception; it uses the experimental release of React, so its examples are not guaran-
teed to work with any version other than the one used on its branches in the repo.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, or because it is
the focus of the surrounding discussion.

 In some cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum
Purchase of React Hooks in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/book/react-hooks-in-action/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
The official React documentation at https://reactjs.org is a thorough, well-written
resource and is in the process of being rewritten. Definitely check it out. This book’s
page at www.manning.com/books/react-hooks-in-action also has a few articles that
expand on certain sections and ideas.

https://reactjs.org/
http://www.manning.com/books/react-hooks-in-action
https://livebook.manning.com/book/react-hooks-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
JOHN LARSEN has been programming since the 1980s, starting with BASIC on a Com-
modore VIC-20 and moving on to Java, PHP, C#, and JavaScript. He’s the author of Get
Programming with JavaScript, also from Manning. A mathematics teacher in the UK for
25 years, he taught computing to high-schoolers and developed web-based programs
to support teaching, learning, and communication in schools. More recently, John has
taught English in Japan and is working hard to improve his Japanese language skills.
xviii

about the cover illustration
The figure on the cover of React Hooks in Action is captioned “Femme de la Carie,” or
Woman from Caria. The illustration is taken from a collection of dress costumes from
various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de
Différents Pays, published in France in 1797. Each illustration is finely drawn and col-
ored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xix

Part 1

Part 1 of React Hooks in Action with Suspense and Concurrent Mode introduces
React Hooks and covers the key hooks in the first stable release of React 17.
You’ll see how to manage state within function components, share state with
children and deeper descendants, and synchronize state with outside services,
servers, and APIs. You’ll also learn how to create your own hooks (while follow-
ing the rules) and make the most of third-party hooks from established libraries
like React Router, React Query, and React Spring.

 A booking app acts as a consistent context for the examples presented, and
you’ll see how to load and manage data and orchestrate the interactions between
components and react to the actions of users. But first, what are hooks, and why
are they a step in the right direction?

React is evolving
React is a JavaScript library for building beautiful user interfaces. The React team
wants the developer experience to be as great as possible so that developers are
inspired and enabled to create delightful, productive user experiences. React Hooks
in Action with Suspense and Concurrent Mode is your guide to some of the latest addi-
tions to the library, additions that can simplify your code, improve code reuse, and
help make your applications slicker and more responsive, leading to happier devel-
opers and happier users.

 This chapter gives a brief overview of React and its new features to whet your
appetite for the details that follow later in the book.

1.1 What is React?
Say you are creating a user interface (UI) for the web, the desktop, for a smart-
phone, or even for a virtual reality (VR) experience. You want your page or app to
display a variety of data that changes over time, like authenticated user info, filter-
able product lists, data visualization, or customer details. You expect the user to
interact with the app, choosing filters and data sets and customers to view, filling in
form fields, or even exploring a VR space! Or maybe your app will consume data
from a network or from the internet, like social media updates, stock tickers, or
product availability. React is here to help.

 React makes it easy to build user interface components that are composable and
reusable and that react to changes in data and to user interactions. A page from a
social media site includes buttons, posts, comments, images, and video, among many
other interface components. React helps update the interface as the user scrolls
down the page, opens up posts, adds comments, or transitions to other views. Some
3

4 CHAPTER 1 React is evolving
components on the page might have repeated subcomponents, page elements with the
same structure but different content. And those subcomponents could be made up of
components too! There are image thumbnails, repeated buttons, clickable text, and
icons aplenty. Taken as a whole, the page has hundreds of such elements. But by break-
ing such rich interfaces into reusable components, development teams can more easily
focus on specific areas of functionality and put the components to use on multiple pages.

 Making it easy to define and reuse components, and compose them into complex but
understandable and usable interfaces is one of React’s core purposes. Other frontend
libraries are out there (like AngularJS, Vue.js, and Ember.js), but this is a React book, so
we concentrate on how React approaches components, data flow, and code reuse.

 Over the next few sections, we take a high-level look at how React helps developers
build such apps, highlighting five of its key features:

 Building UI from reusable, composable components
 Describing UI by using JSX—a blend of HTML-style templating and JavaScript
 Making the most of JavaScript without introducing too many idiomatic constraints
 Intelligently synchronizing state and UI
 Helping manage the fetching of code, assets, and data

1.1.1 Building a UI from components

Social media sites show rich, hierarchical, multilayered user interfaces that React can
help you design and code. But for now, let’s start with something a bit simpler to get a
feel for the features of React.

 Say you want to build a quiz app to help learners test themselves on facts they’ve
been studying. Your component should be able to show and hide questions, and show
and hide answers. One question-and-answer pair might look something like figure 1.1.

 You could create a component for the question section and a component for the
answer section. But the structure of the two components is the same: each has a title,
some text to show and hide, and a button to do the showing and hiding. React makes
it easy to define a single component, say a TextToggle component, that you can use
for both the question and the answer. You pass the title and text and whether the text

Figure 1.1 Part of a quiz app
showing a question and an answer

5What is React?
should be shown to each of your TextToggle components. You pass the values as
properties (or props), something like this:

<TextToggle title="Question" text="Who created JavaScript?" show={true} />

<TextToggle title="Answer" text="Brendan Eich" show={false} />

Wait! What now? Is that HTML? XML? JavaScript? Well, programming with React is pro-
gramming in JavaScript. But React provides an HTML-like syntax for describing your UI
called JSX. Before running your app, the JSX needs to be preprocessed to convert it into
the actual JavaScript that creates the elements of your user interface. At first it seems a bit
strange, mixing HTML with your JavaScript, but it turns out the convenience is a big
plus. And once your code finally runs in the browser (or other environment), it really is
just JavaScript. A package called Babel is almost always used to compile the code you write
into the code that will run. You can find out more about Babel at https://babeljs.io.

 This chapter offers only a high-level overview of React, so we won’t explore JSX any
further here. It’s worth mentioning up front, though, because it’s a widely used part of
React development. In fact, in my opinion, React’s JavaScriptiness is one of its appeals—
although other opinions are available—and, for the most part, it doesn’t introduce many
constraints. While best practices have emerged and continue to do so, being a good
JavaScript programmer and being a good React programmer are very similar skills.

 So, say you’ve created the TextToggle component; what’s next? With React, you
can define new components made up of existing components. You can encapsulate
the question card, showing the question and the answer, as its own QuestionCard
component. And if you want to show multiple questions at once, your Quiz compo-
nent UI could be made up of multiple QuestionCard components.

 Figure 1.2 shows two QuestionCard components making up a Quiz component.
The Quiz component is a container for the QuestionCards and has no visible pres-
ence apart from the cards it contains.

 So, the Quiz component is made up of QuestionCard components, and they, in turn,
are made up of TextToggle components, which are made up of standard HTML ele-
ments—an h2, a p, and a button, for example. Ultimately, the Quiz component comprises
all native UI elements. Figure 1.3 shows the simple hierarchy for your Quiz component.

Figure 1.2 Quiz component showing two QuestionCard components

https://babeljs.io/

6 CHAPTER 1 React is evolving
React makes this component creation and composition much easier. And once you’ve
crafted your components, you can reuse them and share them easily, too. Imagine a
learning resource site with different pages for different topics. On each page, you
could include your Quiz component, just passing it the quiz data for that topic.

 Many React components are available to download in package management repos-
itories like npm. There’s no need to re-create common use cases, simple or complex,
when well-used, well-tested examples of drop-down menus, date pickers, rich text edi-
tors, and probably quiz templates, also, are ready and waiting to be used.

 React also provides mechanisms and patterns for passing your app’s data to the
components that need them. In fact, that synchronization, of state and UI, goes to the
heart of what React is and what it does.

1.1.2 Synchronizing state and UI

React keeps an app’s user interface synchronized with its data. The data held in your
app at any moment is called the app’s state and might include, for example, current
posts, details about the logged-in user, whether comments are shown or hidden, or
the content of a text input field. If new data arrives over the network or a user updates
a value via a button or text input, React works out what changes need to be made to
the display and efficiently updates it.

 React intelligently schedules the order and timing of the updates to optimize the
perceived performance of your app and improve the user experience. Figure 1.4 rep-
resents this idea, that React responds to a change in a component’s state by re-render-
ing the user interface.

 But updating state and re-rendering is not a one-off task. A visitor using your app is
likely to cause a multitude of state changes, and React will need to repeatedly ask your
components for the latest UI that represents those latest state values. It’s your compo-
nents’ job to convert their state and props (the properties passed to them) into a
description of their user interface. React then takes those UI descriptions and sched-
ules updates to the browser’s Document Object Model (DOM) where necessary.

Figure 1.3 Quiz component hierarchy

7What is React?
CYCLE DIAGRAMS

To represent the ongoing cycle of state changes and UI updates, this book uses circu-
lar cycle diagrams to illustrate the interactions between your components and React.
Figure 1.5 is a simple example, showing how React calls your component code when
the component first appears and when a user updates a value.

 The cycle diagrams are accompanied by tables, like table 1.1, describing the dia-
grams’ steps in more detail. The diagram and table pair don’t necessarily cover every-
thing that is happening but pull out the key steps to help you understand the similarities
and differences related to the way components work in different scenarios.

 For example, this section’s figure doesn’t show how the event handler works with
React to update the state; that detail is added in later diagrams when introducing the
relevant React Hooks.

Table 1.1 Some key steps when React calls and re-calls a function component

Step What happens? Discussion

1 React calls the component. To generate the UI for the page, React traverses the tree of
components, calling each one. React will pass each compo-
nent any props set as attributes in the JSX.

2 The component specifies an
event handler.

The event handler may listen for user clicks, timers firing,
or resources loading, for example. The handler will change
the state when it runs later. React will hook up the handler
to the DOM when it updates the DOM in step 4.

3 The component returns its UI. The component uses the current state value to generate its
user interface and returns it, finishing its work.

4 React updates the DOM. React compares the description of the UI the component
returns with the current description of the app’s UI. It effi-
ciently makes any necessary changes to the DOM and sets
up or updates event handlers as necessary.

5 The event handler fires. An event fires, and the handler runs. The handler changes
the state.

Figure 1.4 When a value in a
component’s state changes, React
re-renders the user interface.

8 CHAPTER 1 React is evolving
6 React calls the component. React knows the state value has changed so must recalcu-
late the UI.

7 The component specifies an
event handler.

This is a new version of the handler and may use the newly
updated state value.

8 The component returns its UI. The component uses the current state value to generate its
user interface and returns it, finishing its work.

9 React updates the DOM. React compares the description of the UI the component
returns with the previous description of the app’s UI. It effi-
ciently makes any necessary changes to the DOM and sets
up or updates event handlers as necessary.

Table 1.1 Some key steps when React calls and re-calls a function component (continued)

Step What happens? Discussion

Figure 1.5 React calls and re-calls your component to generate a description of its UI using
the latest state.

9What is React?
The illustrations also use consistent icons to represent key objects and actions discussed
in the surrounding text, such as components, state values, event handlers, and UI.

STATE IN THE QUIZ APP

Social media pages, like the one discussed at the start of the chapter, usually require a
lot of state, with new posts being loaded and users liking posts, adding comments, and
interacting with components in a variety of ways. Some of that state, like the current
user, may be shared across many components, whereas other state, like a comment,
may be local to a post.

 In the Quiz app, you have a question-and-answer component, a QuestionCard,
shown again in figure 1.6. Users can show and hide each question and answer and
move to the next available question.

The QuestionCard component state includes the information needed to display the
current question and answer:

 The question number
 The number of questions
 The question text
 The answer text
 Whether the question is hidden or shown
 Whether the answer is hidden or shown

Clicking the answer’s Show button changes the state of the component. Maybe an
isAnswerShown variable switches from false to true. React will notice that the state
has changed, will update the displayed component to show the answer text, and tog-
gle the button’s text from Show to Hide (figure 1.7).

 Clicking the Next button changes the question number. It will switch from ques-
tion 1 to question 2, as shown in figure 1.8. If the questions and answers for the whole
quiz are in memory, React can update the display straightaway. If they need to be
loaded from a file or service, React can wait while the data is being fetched before
updating the UI or, if the network is slow, show a loading indicator like a spinner.

Figure 1.6 The question-and-answer
component with the answer hidden

10 CHAPTER 1 React is evolving
The simple Quiz app example doesn’t need much state to perform its duties. Most
real-world apps are more complicated. Deciding where state should live—whether a
component should manage its own state, whether some components should share state,
and whether some state should be globally shared—is an important part of building
apps. React provides mechanisms for all three scenarios, and published packages, like
Redux, MobX, React Query, and Apollo Client, for example, offer approaches to man-
age state via a data store outside your components.

 In the past, whether or not your component managed some of its own state deter-
mined the method of component creation you would use; React provides two main
methods: function components and class components, as discussed in the next section.

1.1.3 Understanding component types

To define a component, React lets you use two JavaScript structures: a function or a
class. Before React Hooks, you would use a function when the component didn’t need
any local state (you would pass it all its data via props):

function MyComponent (props) {
 // Maybe work with the props in some way.
 // Return the UI incorporating prop values.
}

You would use a class when the component needed to manage its own state, perform
side effects (like loading its data or getting hands-on with the DOM), or directly respond
to events:

Figure 1.7 The question-and-answer
component with the answer shown

Figure 1.8 The question-and-answer
component showing the second question.
The answer has been hidden.

11What is React?
class MyComponent extends React.Component {
 constructor (props) {
 super(props);

 this.state = {
 // Set up state here.
 };
 }

 componentDidMount () {
 // Perform a side effect like loading data.
 }

 render () {
 // Return the UI using prop values and state.
 }
}

The addition of React Hooks means you can now use function components to manage
state and side effects:

function MyComponent (props) {
 // Use local state.
 const [value, setValue] = useState(initialValue);
 const [state, dispatch] = useReducer(reducer, initialState);

 useEffect(() => {
 // Perform side effect.
 });

 return (
 <p>{value} and {state.message}</p>
);
}

The React team recommends the use of functions for components in new projects
(although there is no plan to remove class components, so no need for big rewrites of
existing projects). Table 1.2 lists the component types and their descriptions.

Table 1.2 Component types and their descriptions

Component type Description

Stateless function component A JavaScript function that is passed properties and returns UI

Function component A JavaScript function that is passed properties and uses hooks to
manage state and perform side effects, as well as returning UI

Class component A JavaScript class that includes a render method that returns UI. It
may also set up state in its constructor function and manage state
and perform side effects in its life-cycle methods.

Class components set up their
state in a constructor function.

Class components can include
methods for various stages in
their life cycle.

Class components have
a render method that
returns their UI.

Use hooks to
manage state.

Use hooks to manage
side effects.

Return UI directly
from the function.

12 CHAPTER 1 React is evolving
Function components are just JavaScript functions that return a description of their
user interface. When writing components, developers usually use JSX to specify the
UI. The UI might depend on properties passed to the function. With stateless func-
tion components, that’s where the story ends; they turn properties into UI. More
generally, function components can now include state and work with side effects.

 Class components are built using the JavaScript class syntax, extending from a
React.Component or React.PureComponent base class. They have a constructor func-
tion, where state can be initialized, and methods that React calls as part of the compo-
nent life cycle; for instance, when the DOM has been updated with the latest
component UI or when the properties passed to the component change. They also
have a render method that returns a description of the component’s UI. Class compo-
nents were the way to create stateful components that could cause side effects.

 We’ll see in section 1.3 how function components with hooks provide a better way
of creating stateful components and managing side effects than classes. First, let’s take
a more general look at what’s new in React and how the new features make working
with React even better.

1.2 What’s new in React?
React 16 included a rewrite of core functionality that has paved the way for a steady
rollout of new library features and approaches. We’ll explore several of the newest
additions in the chapters that follow. The new features include the following:

 Stateful function components (useState, useReducer)
 Context API (useContext)
 Cleaner side-effect management (useEffect)
 Simple but powerful code reuse patterns (custom hooks)
 Code splitting (lazy)
 Faster initial loading and intelligent rendering (Concurrent Mode—experimental)
 Better feedback for loading states (Suspense, useTransition)
 Powerful debugging, inspection, and profiling (Development Tools and Profiler)
 Targeted error handling (error boundaries)

Component side effects
React components generally transform state into UI. When component code performs
actions outside this main focus—perhaps fetching data like blog posts or stock
prices from the network, setting up a subscription to an online service, or directly
interacting with the DOM to focus form fields or measure element dimensions—we
describe those actions as component side effects.

We want our app and its components to behave predictably, so should make sure any
necessary side effects are deliberate and visible. As you’ll see in chapter 4, React
provides the useEffect hook to help us set up and manage side effects in our func-
tional components.

13React Hooks can add state to function components
The words starting with use—useState, useReducer, useContext, useEffect, and
useTransition—are examples of React Hooks. They are functions that you can call
from React function components and that hook into key React functionality: state, life
cycle, and context. React Hooks let you add state to function components, cleanly
encapsulate side effects, and reuse code across your project. By using hooks, you do
away with the need for classes, reducing and consolidating your code in an elegant
way. Section 1.3 discusses React components and hooks in a little more detail.

 Concurrent Mode and Suspense provide the means to be more deliberate about
when code, data, and assets are loaded and to wrangle loading states and fallback con-
tent like spinners in a coordinated manner. The aim is to improve the user experience
as applications load and states change and to improve the developer experience, mak-
ing it easier to hook into these new behaviors. React can pause the rendering of
expensive but nonurgent components and switch to urgent tasks, like reacting to user
interactions, to keep your application responsive and to smooth the perceived path
for user productivity.

 The React documentation at https://reactjs.org is a great resource, providing
clear, well-structured explanations of the philosophy, API, and recommended use of
the library, as well as blog posts from the team and links to live code examples, confer-
ence talks on the new features, and other React-related resources. While this book will
concentrate on hooks, Suspense, and Concurrent Mode, do check out the official
docs to find out more about the other additions to React. In particular, take a look at
the blog post on React 17 (https://reactjs.org/blog/2020/10/20/react-v17.html).
The next major version of React was released in October 2020 but contains no new
developer-facing features. Instead, it includes changes to make it easier to gradually
upgrade React apps as well as further experimental development of Concurrent Mode
and its APIs.

1.3 React Hooks can add state to function components
As discussed in section 1.1.2, one of React’s core strengths is how it synchronizes appli-
cation and component state with the UI. As the state changes, based on user interac-
tions or data updates from the system or network, React intelligently and efficiently
works out what changes should be made to the DOM in a browser or to the UI, more
generally, in other environments.

 The state could be local to a component, raised to a component higher in the tree,
and shared among siblings via properties, or global and accessed via React’s Context
mechanism or higher-order components (functions that take a component as an argu-
ment and return a new component that wraps the passed-in component but that has
extra functionality). For a component to have state, it used to be that you’d use a class
component with the JavaScript class extending from React.Component. Now, with
React Hooks, you can add state to function components.

https://reactjs.org
https://reactjs.org/blog/2020/10/20/react-v17.html

14 CHAPTER 1 React is evolving
1.3.1 Stateful function components: Less code, better organization

Compared to classes, function components with hooks encourage cleaner, leaner code
that can be easily tested, maintained, and reused. The function component is a JavaScript
function that returns a description of its user interface. That UI depends on proper-
ties passed in and state managed or accessed by the component. Figure 1.9 shows a
diagram representing a function component.

The figure shows a Quiz component that performs a couple of side effects:

 It loads its own question data—both initial data and new questions when the
user chooses a new question set.

 It subscribes to a user service—the service provides updates about other quiz
users currently online so the user can join a team or challenge a rival.

In JavaScript, functions can contain other functions, so the component can contain
event handlers that react to user interactions with the UI, for example, to show, hide,
or submit answers, or to move to the next question. Within the component, you can

Figure 1.9 A Quiz function component
with state and encapsulated code for
loading data and managing a subscription
to a service

15React Hooks can add state to function components
easily encapsulate side effects, like fetching the question data or subscribing to the
user service. You can also include cleanup code for those side effects to cancel any
unfinished data fetching and unsubscribe from the user service. Using hooks, those
features can even be extracted into their own functions outside the component, ready
for reuse or sharing.

 Here are some of the results of using the new function component approach
rather than the older class-based approach:

 Less code
 Better code organization with related code kept together along with any cleanup

code
 Extraction of features to external functions that can be reused and shared
 More easily testable components
 No need to call super()in a class constructor
 No need to work with this and bind handlers
 Simpler life-cycle model
 Local state in scope for handlers, side effect functions, and the returned UI

All of the items in this list facilitate writing code that’s easier to understand and so
easier to work with and maintain. That’s not to say nuances might not trip up devel-
opers working with the new approaches for the first time, but I’ll highlight those
nuances as we delve more deeply into each concept and their connections through-
out this book.

 React Hooks in Action outlines the functional approach to component building,
rather than using classes. But it’s sometimes worth comparing the new methods with
the old to motivate adoption and because it’s interesting (and, in the case of hooks, a
little cool!) to see the differences. If you’re new to React and have never seen the code
for class components, don’t worry. Rest assured that the function components we’ll be
using for the rest of the book are the preferred approach going forward. The follow-
ing discussion should still give you an idea of how this new approach simplifies and
organizes the code needed to create React components.

 The title of this section is “Stateful function components: Less code, better orga-
nization.” Better than what? Well, with class components, state was set up in the
constructor function, event handlers were bound to this, and side-effect code was
split across multiple life-cycle methods (componentDidMount, componentWillUnmount,
componentWillUpdate, and so on). It was common for code relating to different
effects and features to sit side-by-side in a life-cycle method. You can see in figure 1.10
how the Quiz class component code for loading question data and subscribing to the
user service is split across methods and how some methods include a mix of code for
the two tasks.

 Function components with hooks no longer need all the life-cycle methods because
effects can be encapsulated into hooks. The change leads to neater, better organized

16 CHAPTER 1 React is evolving
super(props)

Figure 1.10 A class component with code spread across life-cycle methods, and a function
component with the same functionality but with less, better organized code

17React Hooks can add state to function components
code, as seen in the Quiz function component in figure 1.10. The code has been
much more sensibly organized with the two side effects separated and their code
consolidated in one place for each effect. The improved organization makes it eas-
ier to find the code for a particular effect, see how a component works, and main-
tain it in the future. In fact, keeping a feature or effect’s code in one place makes it
much easier to extract into an external function of its own, and that’s what we’ll dis-
cuss next.

1.3.2 Custom hooks: Easier code reuse

Function components with hooks encourage you to keep related side-effect logic in
one place. If the side effect is a feature that many components will need, you can take
the organization a step further and extract the code into its own external function;
you can create what is called a custom hook.

 Figure 1.11 shows how the question loading and user service subscription tasks for
the Quiz function component could be moved into their own custom hooks. Any state
that is used solely for those tasks can be moved into the corresponding hook.

Figure 1.11 The code for fetching question data and for subscribing to a user service can be
extracted into custom hooks. The accompanying state can also be managed by the hooks.

18 CHAPTER 1 React is evolving
There’s no magic here; it’s just how functions usually work in JavaScript: the function
is extracted from the component and then called from the component. Once you
have a custom hook, you aren’t restricted to calling it from your original component.
You can use it across many components, share it with your team, or publish it for oth-
ers to use.

 Figure 1.12 shows the new super-slim Quiz function component using the use-
Users custom hook and the useFetch custom hook to carry out the user service sub-
scription and question-fetching tasks that, previously, it carried out on its own. But
now a second component, Chat, makes use of the useUsers custom hook too. Hooks
make this kind of feature sharing much easier in React; custom hooks can be imported
and used wherever they are needed in your portfolio of applications.

 Each custom hook can maintain its own state, whatever it needs to perform its
duties. And because hooks are just functions, if components need access to any of the
hook’s state, the hook can include the state in its return value. For example, a custom
hook that fetches user info for a specified ID could store the fetched user data locally
but return it to any components that call the hook. Each hook call encapsulates its
own state, just like any other function.

 To get a sense of the variety of common tasks that programmers have easily
abstracted into custom hooks, take a look at the useHooks website at https://usehooks
.com (figure 1.13).

 It showcases easy-to-use recipes, including these:

 useRouter—Wraps the new hooks made available by React Router
 useAuth—Enables any component to get the current auth state and re-render if

it changes
 useEventListener—Abstracts the process of adding and removing event listen-

ers to components
 useMedia—Makes it easy to use media queries in your component logic

It’s well worth researching on sites like useHooks or in package repositories like npm
whether hooks exist that fit your use cases before rolling your own. If you already use
libraries or frameworks for common scenarios like data fetching or state manage-
ment, check the latest versions to see if they’ve introduced hooks to make working
with them easier. We’ll take a look at a few such packages in the next section.

1.3.3 Third-party hooks provide ready-made, well-tested functionality

Sharing functionality across components is not new; it’s been an essential part of
React development for some time. Hooks offer a much cleaner way of sharing code
and hooking into functionality than the older methods of higher-order components
and render props, which often lead to highly nested code (“wrapper hell”) and false
code hierarchies.

https://usehooks.com
https://usehooks.com
https://usehooks.com

19React Hooks can add state to function components
Figure 1.12 You can extract code into custom hooks for reuse and sharing. The Quiz component
calls both the useUsers and useFetch hooks. The Chat component calls the useUsers hook.

20 CHAPTER 1 React is evolving
Third-party libraries that work with React have been quick to release new versions that
make the most of hooks’ simpler API and more direct methods of integration. We
take a very brief look at three examples in this section:

 React Router for page navigation
 Redux as an application data store
 React Spring for animation

REACT ROUTER

React Router provides components to help developers manage navigation between
pages in their apps. Its custom hooks make it easy to access common objects involved
in navigation: useHistory, useLocation, useParams, and useRouteMatch. For exam-
ple, useParams gives access to any parameters matched in a page’s URL:

URL: /quiz/:title/:qnum
Code: const {title, qnum} = useParams();

Figure 1.13 The useHooks website has many examples of custom hooks.

21Better UX with Concurrent Mode and Suspense
REDUX

For some applications, a separate store for state might be appropriate. Redux is a pop-
ular library for creating such stores and it is often combined with React via the React
Redux library. Since version 7.1, React Redux offers hooks to make interacting with
the store easier: useSelector, useDispatch, and useStore. For example, useDispatch
lets you dispatch an action to update the state in the store. Say you have an application
to build question sets for quizzes and you want to add a question:

const dispatch = useDispatch();
dispatch({type: "add question", payload: /* question data */});

The new custom hooks remove some of the boilerplate code that was associated with
connecting a React application to a Redux store. React also has a built-in hook, use-
Reducer, which might provide a simpler model for dispatching actions to update state
and remove the perceived need for Redux in some cases.

REACT SPRING

React Spring is a Spring-based animation library that currently provides five hooks to
access its functionality: useSpring, useSprings, useTrail, useTransition, and use-
Chain. For example, to animate between two values, you can opt for useSpring:

const props = useSpring({opacity: 1, from: {opacity: 0}});

React Hooks have made it easier for library authors to provide developers with sim-
pler APIs that don’t clutter their code with potentially deeply nested false component
hierarchies. Similarly, a couple of other new React features, Concurrent Mode and
Suspense, enable library authors and app developers to better manage asynchronous
processes within their code and provide smoother, more responsive user experiences.

1.4 Better UX with Concurrent Mode and Suspense
We want to develop great experiences for our users that help them interact with our
applications smoothly and enjoyably. That might mean them getting a job done in a
productivity app, connecting with friends on a social platform, or capturing a crystal
in a game. Whatever their goal, the interfaces we design and code should be a means
to an end rather than a stumbling block. But our apps may need to load a lot of code,
fetch a lot of data, and try to manipulate the data to provide the information the user
needs, even as they switch quickly from view to view, scrolling and clicking and tap-
ping as they go.

 A large part of the motivation for the rewrites of React for versions 16 and 17 was
to build the architecture to cope with the multiple demands put upon a user interface
as it loads and manipulates data while users continue interacting with the application.
Concurrent Mode is a core piece of that new architecture, and Suspense components
fit the new mode naturally. But what problems do they solve?

 Say you have an app that shows products in a long list and has a text box that users
type in to filter the list. Your app updates the list as the user types. Each keystroke

22 CHAPTER 1 React is evolving
triggers the code to filter the list anew, requiring React to draw the updated list com-
ponents to the screen. The expensive filtering process and recalculation and updat-
ing of the UI hogs the processing time, reducing the responsiveness of the text
box. The experience for the user is one of a lagging, slow text box that doesn’t
show text as the user types. Figure 1.14, while obviously not being a perfect repre-
sentation of how a browser might schedule code to run, does illustrate the point
that long-running operations can slow updates to the screen, causing a poorer expe-
rience for users.

Wouldn’t it be great if the app could prioritize the text box updates and keep the user
experience smooth, pausing and restarting the filtering duties around the typing? Say
hello to Concurrent Mode!

1.4.1 Concurrent Mode

With Concurrent Mode, React can schedule tasks in a more granular way, pausing its
work building elements, checking for differences, and updating the DOM for previ-
ous state changes to make sure it responds to user interactions, for example. In the
preceding filtering app example, React can pause rendering of the filtered list to
make sure the text that the user is typing appears in the text box.

 So how does Concurrent Mode enable this magic? The new React architecture
breaks its tasks into smaller units of work, providing regular points for the browser or
operating system to inform the application that a user is trying to interact with it.
React’s scheduler can then decide what jobs to do based on the priority of each. Rec-
onciling and committing changes to one part of the component tree can be paused or

Figure 1.14 Without Concurrent Mode, interactions like keystrokes are blocked by long-running
updates.

23Better UX with Concurrent Mode and Suspense
abandoned to make sure components with higher priority are updated first, as illus-
trated in figure 1.15.

 It’s not just user interactions that can benefit from this intelligent scheduling;
responses to incoming data, lazily loaded components or media, or other asynchro-
nous processes can also enjoy a smoother user-interface upgrade. React can continue
to display a fully interactive existing UI (rather than a spinner) while it renders the UI
for updated state in memory, switching to the new UI when enough of it is ready. Con-
current Mode enables a couple of new hooks, useTransition and useDeferredValue,
that improve the user experience, smoothing the change from one view to another or
one state to another. It also goes hand in hand with Suspense, both a component for
rendering fallback content and a mechanism for specifying that a component is wait-
ing for something, like loading data.

1.4.2 Suspense

As you have seen, React applications are built from components in a hierarchical tree.
To display the current state of your app onscreen (using the DOM, for instance),
React traverses your components and creates element trees, descriptions of the intended
UI, in memory. It compares the latest tree with the previous one and intelligently
decides what DOM updates need to be made to realize the intended UI. Concurrent
mode lets React pause processing of parts of the element tree, either to work on
higher-priority tasks or because the current component isn’t ready to be processed.

React can pause or discard
rendering work to make
higher-priority changes,
like updating the text box.

unnecesary tasks,
React arrives at the
desired UI more quickly.

By discarding

Figure 1.15 In Concurrent Mode, React can pause longer-running updates to quickly react to
user interactions.

24 CHAPTER 1 React is evolving
 Components built to work with Suspense can now suspend if they are not ready to
return their UI (remember, components are either functions or have a render method
and convert properties and state into UI). They might be waiting for component code
or assets or data to load and just don’t yet have the information they need to fully
describe their UI. React can pause processing of a suspended component and carry
on traversing the element tree. But how does that look on the screen? Will there be a
hole in your user interface?

 In addition to specifying a mechanism for components to suspend, React provides
a Suspense component that you can use to plug holes that suspended components
have left in your user interface. Wrap sections of your UI in Suspense components and
use their fallback properties to let React know what content to show if one or more
of the wrapped components suspends:

<Suspense fallback={<MySpinner />}>
 <MyFirstComponent />
 <MySecondComponent />
</Suspense>

Suspense allows the developer to deliberately manage loading states for multiple com-
ponents, either showing fallbacks for individual components, groups of components,
or the app as a whole. It provides a mechanism for library authors to update their APIs
to work with the Suspense component, so their asynchronous features can make full
use of the loading state management that Suspense provides.

1.5 React’s new publication channels
To enable application developers and library authors to make the most of stable fea-
tures in production but still prepare for upcoming features, the React team has
started publishing code in separate channels:

 Latest—Stable semver release
 Next—Tracks the master branch of React development
 Experimental—Includes experimental APIs and features

For production, developers should stick with the Latest release; it’s the one you get
when installing React from npm (or another package manager). Much of Concurrent
Mode and Suspense for data fetching are on the experimental channel at the time of
writing. They are in the pipeline, but changes to the API may occur. The React and
Relay (for data fetching) teams have been using many of the experimental features on
the new Facebook website for some time. Such active use enables them to develop a
strong understanding of the new approaches in context and at scale. By opening up
the discussion of new features early and making them available in an experimental
channel, the React team enables library authors to test integrations and new APIs, and
application developers to start adapting to new mindsets and nuances.

25Summary
1.6 Whom is this book for?
This book is for experienced JavaScript developers who want to learn about the latest
features in React. It focuses on React Hooks, Concurrent Mode, and Suspense, using
plenty of code examples to get you up to speed and ready to use these features in your
own projects (although not necessarily in production yet for those features currently
in React’s Experimental channel). In addition to providing simple, practical exam-
ples, the book spends a little time probing a bit deeper into the reasoning behind
some of the features and the nuances that developers would do well to be aware of.

 This is not an introduction to React as a whole and won’t cover the React ecosys-
tem, build tools, styling, or testing in any detail. The reader should have a knowledge
of basic React concepts and be able to create, build, and run a React application. The
book will occasionally use class component examples as comparisons to the new func-
tion component approach but will not focus on teaching the class-based approach,
higher-order components, or render props in any depth. (Don’t worry if you don’t
know all those terms; you don’t need to know about them to learn the new concepts.)

 Readers should be comfortable with some of the more recent JavaScript syntax
additions, like const and let, object and array destructuring, default parameters, the
spread operator and array methods like map, filter, and reduce. Some of the com-
parisons with class components will obviously be using JavaScript’s class syntax, so
familiarity with that would be useful but is not essential.

1.7 Getting started
The code examples for the book’s main example, a bookings app, are on GitHub at
https://github.com/jrlarsen/react-hooks-in-action and are downloadable from the
book’s page at the Manning website (www.manning.com/books/react-hooks-in-
action). Each step in the example apps development is on a separate Git branch, and
the book’s code listings include the name of the relevant branch. Smaller, standalone
React examples are hosted on CodeSandbox (https://codesandbox.io), and a few sim-
ple vanilla JavaScript examples are on JS Bin (https://jsbin.com). Links to sandboxes
and bins will accompany the book’s listings.

Summary
 Use React to create reusable components that make up an app by turning state

into UI.
 Use JSX and props to describe the UI in an HTML-like syntax.
 Create function components that collocate related code and functionality.
 Use React Hooks to encapsulate and share functionality for components, per-

forming side effects, and hooking into moments in the component’s life cycle.
 Create your own custom hooks and use those provided by third-party libraries.
 Use Suspense components to provide fallbacks for components that take time

to return their UI.

https://github.com/jrlarsen/react-hooks-in-action
https://codesandbox.io
https://jsbin.com
http://www.manning.com/books/react-hooks-in-action
http://www.manning.com/books/react-hooks-in-action

26 CHAPTER 1 React is evolving
 Explore the experimental Concurrent Mode to work with multiple versions of
the UI in memory, making it easier to transition smoothly from one interface to
another in response to changes in state.

 Be aware of React’s three publication channels: Latest, Next, and Experimental.
 Check out the React docs on https://reactjs.org.

https://reactjs.org

Managing component
state with the useState hook
If you’re building React apps, you’re expecting the data your app uses to change
over time. Whether it’s fully server-rendered, a mobile app, or all in a browser, your
application’s user interface should represent the current data, or state, at the time
of rendering. Sometimes multiple components throughout the app will use the
data, and sometimes a component doesn’t need to share its secrets and can man-
age its own state without the help of mammoth, application-wide, state-store behe-
moths. In this chapter, we keep it personal and concentrate on components taking
care of themselves, without regard for other components around them.

This chapter covers
 Asking React to manage component state values

by calling useState

 Changing state values and triggering re-renders
with an updater function

 Using the previous state to help generate new
state values

 Managing multiple pieces of state

 Considering how React and components interact
to persist and update state and synchronize
state and UI
27

28 CHAPTER 2 Managing component state with the useState hook
 Figure 2.1 is a very basic illustration of React’s job: it should use the current state to
render the UI. If the state changes, React should re-render the UI. The illustration
shows a name in a friendly message. When the name value changes, React updates the
UI to show the new name in its message. We usually want the state and UI to be in sync
(although we might choose to delay synchronization during state transitions—when
fetching the latest data, for example).

React provides a small number of functions, or hooks, to enable it to track values in
your components and keep the state and UI in sync. For single values, React gives us
the useState hook, and that’s the hook we explore in this chapter.

 We’ll look at how to call the hook, what it returns, and how to use it to update the
state, triggering React to update the UI. Components often need more than one piece
of state to do their jobs, so we’ll see how to call useState multiple times to handle
multiple values. It’s not just a matter of documenting the useState API (you can go to
the official React docs for that). We’ll use the discussion of the useState hook to help
you better understand what function components are and how they work. To that end,
we’ll finish the chapter with a review of the key concepts met as our code listings have
evolved.

 Talking of code listings, in this chapter, we’ll start work on the app that will form
the main example throughout this book. The example acts as a consistent context in
which we use React Hooks to solve common coding problems. A little bit of house-
keeping is required to set up the app, but once that’s done, we’ll be able to concen-
trate on a single component for the rest of the chapter.

2.1 Setting up the bookings manager app
Your fun but professional company has numerous resources that can be booked by
staff: meeting rooms, AV equipment, technician time, table football, and even party
supplies. One day, the boss asks you to set up the skeleton of an app for the company

Figure 2.1 When you change
a value in a component, React
should update the UI.

29Setting up the bookings manager app
network that lets staff book the resources. The app should have three pages, for Book-
ings, Bookables, and Users, as shown in figure 2.2. (Technically, it’s a single-page
application, and the pages are really components, but we’ll keep calling them pages
because from the user’s perspective, they’re switching from page to page.)

By the end of this section, you’ll be able to display each page and use the links to navi-
gate between them. The project folder at the end of the section will include public
and src folders that look like those in figure 2.3.

Figure 2.2 The Bookings app has three pages: Bookings, Bookables, and Users.

Figure 2.3 The public and src
folders after our initial setup

30 CHAPTER 2 Managing component state with the useState hook
You can see how the subfolders inside the components folder correspond to the three
pages. We have six jobs to do to get the app into the shape shown in the figure:

1 Use create-react-app to generate the skeleton for our bookings app.
2 Remove the create-react-app generated files we won’t be using.
3 Edit four of the files that are left in the public and src folders.
4 Install a few packages from npm.
5 Add a database file to give the app some data to display.
6 Create subfolders for each page and put the page components in them.

Alternatively, you can find the code examples for the ongoing bookings example app
on GitHub at https://github.com/jrlarsen/react-hooks-in-action, with branches set up
for each evolution of the code. Each listing for the example app includes the name of
the branch to check out, linked (in the ebook) to the GitHub repo. For example, after
you’ve cloned the repo, to get the code for the first branch, enter this command:

git checkout 0201-pages

Install the project dependencies with this command:

npm i

Run the project with this command:

npm start

You can then skip to section 2.2.
 For those who want to get their hands dirty building most of the app from scratch,

the first thing we need is a React app.

2.1.1 Generating the app skeleton with create-react-app

React’s create-react-app utility generates projects with preset linting and compila-
tion workflows set up. It also comes with a development server that’s perfect for us as
we work through the ever-evolving stages of our app. Let’s use create-react-app to
generate a new React project called react-hooks-in-action. We don’t need to install
create-react-app with npm before running it; we can run it from its repository by
using the npx command:

npx create-react-app react-hooks-in-action

The command will take a little while to do its thing, and you should end up with a
whole bunch of generated files in a react-hooks-in-action folder. When I ran the
create-react-app command, my computer used npm to install the files. If you have
Yarn installed, create-react-app will use that instead, and you’ll get a yarn.lock file

https://github.com/jrlarsen/react-hooks-in-action

31Setting up the bookings manager app
instead of package-lock.json. (npx is a handy command that’s included when you
install npm. Its author, Kat Marchán, explains the thinking behind it in the Medium
article “Introducing npx” at http://mng.bz/RX2j.)

 We don’t need all of the installed files for our app, so let’s quickly delete a few.
From the public folder inside the react-hooks-in-action folder, remove all but index.html.
From the src folder, remove all but App.css, App.js, and index.js. Figure 2.4 highlights
the files to remove.

Figure 2.5 shows the four main files left in the public and src folders. We use them to
run our app, importing the components we build throughout the book.

 The four files are set up for React’s demo page, not our bookings app. It’s time for
a few tweaks.

2.1.2 Editing the four key files

Our little workhorse files will get the app up and running. Let me introduce you to:

 /public/index.html—The web page that contains the app
 /src/App.css—Some styles to organize elements on the page

Figure 2.4 Our project doesn’t need many of the default files generated
by create-react-app.

https://shortener.manning.com/RX2j

32 CHAPTER 2 Managing component state with the useState hook
 /src/components/App.js—The root component that contains all the others
 /src/index.js—The file that imports the App component and renders it to the

index.html page

INDEX.HTML

Inside the public folder, edit the index.html file. A lot of the boilerplate generated by
create-react-app can come out. The div element with an id of root must stay; it’s
the container element for the app. React will render the App component into that div.
You can also set the title for the page, as shown in the following listing.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>Bookings App</title>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>

That’s all we need for the web page. The App component will appear in the div, and
all our other components—for bookable items, bookings, users, and their separate
pages—will be managed by the App component.

APP.CSS

This book isn’t here to teach you Cascading Style Sheets (CSS), so it doesn’t focus on
listings of styles. At times, CSS will be used in combination with events in components
(when loading data, for example), and the relevant styles will be highlighted at those

Branch: 0201-pages, File: /public/index.html

Listing 2.1 The HTML skeleton for the bookings app

Figure 2.5 The four files we need to set up in the public and src folders

Set the title
for the page.

Make sure there is a
div with an id of root.

33Setting up the bookings manager app
times. The stylesheet will develop over time, so, if you’re interested, take a look in the
repo. The initial styles can be found at Branch: 0201-pages, File: /src/App.css. (If you’re
not particularly interested in the evolution of the CSS throughout the project but want
to code along with the JavaScript, just grab the App.css file from the finished project.)

 The styles use CSS grid properties to position the main components on each page,
and some CSS variables to define common colors for text and backgrounds.

APP.JS
The App component is the root component for our application. It displays the header
with its links and user-picker drop-down, as shown in figure 2.6.

The App component also sets up routes to the three main pages, as shown in listing 2.2.
The router shows the appropriate page to the user by matching the URL with a page
component. The App.js file has been moved to a new components folder. It imports a
number of components that we create later in the chapter.

import {
 BrowserRouter as Router,
 Routes,
 Route,
 Link
} from "react-router-dom";

import "../App.css";

import {FaCalendarAlt, FaDoorOpen, FaUsers} from "react-icons/fa";

import BookablesPage from "./Bookables/BookablesPage";
import BookingsPage from "./Bookings/BookingsPage";
import UsersPage from "./Users/UsersPage";
import UserPicker from "./Users/UserPicker";

export default function App () {
 return (
 <Router>
 <div className="App">
 <header>
 <nav>

Branch: 0201-pages, File: /src/components/App.js

Listing 2.2 The App component

Figure 2.6 The header with three links and a drop-down list

Import the routing
elements from
react-router-dom.

Import the icons for
the navigation links.

Import the separate
page components
and the UserPicker.

Wrap the app in a
Router component
to enable routing.

34 CHAPTER 2 Managing component state with the useState hook

h

age

 <Link to="/bookings" className="btn btn-header">
 <FaCalendarAlt/>
 Bookings
 </Link>

 <Link to="/bookables" className="btn btn-header">
 <FaDoorOpen/>
 Bookables
 </Link>

 <Link to="/users" className="btn btn-header">
 <FaUsers/>
 Users
 </Link>

 </nav>

 <UserPicker/>
 </header>

 <Routes>
 <Route path="/bookings" element={<BookingsPage/>}/>
 <Route path="/bookables" element={<BookablesPage/>}/>
 <Route path="/users" element={<UsersPage/>}/>
 </Routes>
 </div>
 </Router>
);
}

Notice that there is no import React from "react" at the top of the listing. React com-
ponents used to need that line so they would work when the JSX in them was con-
verted into regular JavaScript. But the tools that compile React, like create-react-
app, can transform JSX in the latest versions of React without needing the import
statement. Read about this change on the React blog (http://mng.bz/2ew8).

 The app uses React Router version 6 to manage the display of its three pages. At
the time of writing, React Router 6 is a beta release available via React Router’s Next
channel. Install it like this:

npm i history react-router-dom@next

Find out more about React Router on its GitHub page (https://github.com/React-
Training/react-router). We use the Link component to display our page links in the
header, and Route elements to conditionally display page components depending on
the matched URL. For example, if the user visits /bookings, the BookingsPage com-
ponent will be displayed:

<Route path="/bookings" element={<BookingsPage/>}/>

Use Link
components along

with the Router.

Use the “to”
attribute to

specify where
the link goes.

Use imported
icons to decorate

the links.

Place the UserPicker in
the header.

Wrap the collection of
Route components in
a Routes component.

Use a Route for
each path you

want to match.

Match a pat
to display a
particular p
component.

Specify the component
to display for the

matched path.

https://shortener.manning.com/2ew8
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router

35Setting up the bookings manager app
For now, you don’t need to worry about React Router; it’s just managing the links and
the display of our page components. We’ll make much more use of it in chapter 10,
when we start to use some of the custom hooks it provides to access matched URLs
and query string parameters.

 As you can see in figure 2.7, we’ve decorated the header links with icons from Font
Awesome (https://fontawesome.com).

The icons are available as part of the react-icons package, so we need to install the
package:

npm i react-icons

The react-icons GitHub page (https://github.com/react-icons/react-icons) includes
details of the icon sets available in the package, along with links to relevant licensing
information.

 The App component also imports the three page components—BookablesPage,
BookingsPage, and UsersPage—and the UserPicker component. We create those in
section 2.1.4.

INDEX.JS
React needs a JavaScript file to act as a starting point for the application. In the src
folder, edit the index.js file to look like the following listing. It imports the App compo-
nent and renders it into the root div seen in the index.html file back in listing 2.1.

import ReactDOM from "react-dom";
import App from "./components/App";

ReactDOM.render(
 <App />,
 document.getElementById("root")
);

And that’s the four existing files tweaked! We still need to create the page components
for the App component to import and the UserPicker drop-down for the header.
First, the app will need some bookables and users to show. Let’s give it some data.

Branch: 0201-pages, File: /src/index.js

Listing 2.3 The top-level JavaScript file

Figure 2.7 The header includes Font
Awesome icons beside each link.

Import the App
component.

Specify App as the
component to render.

Specify where to render
the App component.

https://fontawesome.com/
https://github.com/react-icons/react-icons

36 CHAPTER 2 Managing component state with the useState hook
2.1.3 Adding a database file for the application

Our application needs a few types of data, including users, bookables, and bookings.
We start off by importing all of the data from a single JavaScript Object Notation
(JSON) file, static.json. We just need some bookables and users to show in lists, so the
initial data file isn’t too complicated, as you can see in the following listing. (You can
copy the data from the listing’s branch on GitHub by visiting the specified file.)

{
 "bookables": [/* array of bookable objects */],

 "users": [/* array of user objects */],

 "bookings": [],

 "sessions": [
 "Breakfast",
 "Morning",
 "Lunch",
 "Afternoon",
 "Evening"
],

 "days": [
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
]
}

Each element in the array of bookables is an object that looks something like this:

{
 "id": 3,
 "group": "Rooms",
 "title": "Games Room",
 "notes": "Table tennis, table football, pinball! Please tidy up!",
 "sessions": [0, 2, 4],
 "days": [0, 2, 3, 4, 5, 6]
}

The bookables are stored in an array of bookable objects, assigned to the bookables
property. Each bookable has id, group, title, and notes properties. The data in the
book’s code repo has slightly longer notes, but the structure is the same. Each book-
able also specifies the days and sessions for which it can be booked.

Branch: 0201-pages, File: /src/static.json

Listing 2.4 The bookings app data structure

Assign an array of
bookables data to the
bookables property.

Specify the users who
can use the app.

Leave the bookings
empty for now.

Configure the
available sessions.

Configure the days
of the week.

37Setting up the bookings manager app
 Users are also stored as objects, with this structure:

{
 "id": 1,
 "name": "Mark",
 "img": "user1.png",
 "title": "Envisioning Sculptor",
 "notes": "With the company for 15 years, Mark has consistently…"
}

The bookables will be listed by the BookablesPage component and the users by the
UsersPage component. We’d better get those pages built!

2.1.4 Creating page components and a UserPicker.js file

As we add functionality to the app, we use components to encapsulate that functional-
ity and to demonstrate techniques that working with hooks offers. We put our compo-
nents in folders related to the page they’re on. Create three new folders within the
components folder and name them Bookables, Bookings, and Users. For the skeleton
app, create three structurally identical placeholder pages like the one in the following
listing. Call them BookablesPage, BookingsPage, and UsersPage.

export default function BookablesPage () {
 return (
 <main className="bookables-page">
 <p>Bookables!</p>
 </main>
);
}

We finish off the app setup with a UserPicker component in the following listing. For
now, it just shows the word Users in a drop-down list. We populate it with data later in
the chapter.

export default function UserPicker () {
 return (
 <select>
 <option>Users</option>
 </select>
);
}

Branch: 0201-pages, File: /src/components/Bookables/BookablesPage.js

Listing 2.5 The BookablesPage component

Branch: 0201-pages, File: /src/components/Users/UserPicker.js

Listing 2.6 The UserPicker component

Assign each page a class so
the CSS file can set out the
page as appropriate.

38 CHAPTER 2 Managing component state with the useState hook
All the pieces are in place for our ongoing exploration of hooks in the context of
the bookings app. Test that it’s working by starting the create-react-app develop-
ment server:

npm start

If all’s well, you can navigate between the three pages, with each shouting its identity
at you: Bookables! Bookings! Users! Let’s calm down the Bookables page by displaying
the bookables from the database.

2.2 Storing, using, and setting values with useState
Your React applications look after a certain state: values that are shown in the user
interface or that help manage what’s shown. The state may include posts on a forum,
comments for those posts, and whether the comments are shown, for example. When
users interact with the app, they change its state. They may load more posts, toggle
whether comments are visible, or add their own comments. React is there to make
sure state and UI are in sync. When the state changes, React needs to run the compo-
nents that use that state. The components return their UI by using the latest state val-
ues. React compares the returned UI with the existing UI and efficiently updates the
DOM as necessary.

 Some state is shared across the application, some is shared by a few components,
and some is managed locally by a component itself. If components are just functions,
how can they persist their state across renders? Are their variables not lost when they
finish executing? And how does React know when the variables change? If React is
faithfully trying to match the state and the UI, it definitely needs to know about
changes to the state, right?

 The simplest way to persist state across calls to your components and keep React in
the loop when you change a component’s state is the useState hook. The useState
hook is a function that enlists React’s help to manage state values. When you call the
useState hook, it returns both the latest state value and a function for updating the
value. Using the updater function keeps React in the loop and lets it do its syncy
business.

 This section introduces the useState hook, covering why we need it and how it’s
used. In particular, we look at the following:

 Why just assigning values to variables doesn’t let React do its job
 How useState returns both a value and a function for updating that value
 Setting an initial value for the state, both directly as a value and lazily as a function
 Using the updater function to let React know you want to change the state
 Making sure you have the latest state when you call the updater function and

need to use an existing value to generate a new value

That list might seem a little scary, but the useState hook is very easy to use (and you’ll
be using it a lot!), so don’t worry; we’re just covering all the bases. Before we call

39Storing, using, and setting values with useState

Fil
booka
just th

the
useState for the first time, let’s see what happens if we just try to manage the state
ourselves.

2.2.1 Assigning new values to variables doesn’t update the UI

Figure 2.8 shows what we want from our first attempt at the BookablesList compo-
nent: a list of four bookable rooms with the Lecture Hall selected.

To display the list of rooms, the BookablesList component needs to get its hands on
the data for the list. It imports the data from our static.json database file. The compo-
nent also needs to track which bookable is currently selected. Listing 2.7 shows the
code for the component, with a room selection hardcoded by setting bookableIndex
to 1. (Notice we’re on a new Git branch; switch to it with the command git checkout 0202-
hard-coded.)

import {bookables} from "../../static.json";

export default function BookablesList () {

 const group = "Rooms";

 const bookablesInGroup = bookables.filter(b => b.group === group);

 const bookableIndex = 1;

 return (
 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"

Branch: 0202-hard-coded, File: /src/components/Bookables/BookablesList.js

Listing 2.7 The BookablesList component with hardcoded selection

Figure 2.8 The BookablesList
component showing a list of rooms
with the selected room highlighted

Use object destructuring
to assign the bookables
data to a local variable.

Set the group of bookables to be shown.

ter the
bles to
ose in
group.

Hardcode the index of
the selected bookable.

Map over the bookables to
create a list item for each one.

Set the class by comparing the
current index to the selected index.

40 CHAPTER 2 Managing component state with the useState hook
 >
 {b.title}
 </button>

))}

);
}

The code assigns the array of bookables from the static.json file to a local variable
called bookables. We could’ve taken an extra step:

import data from "../../static.json";

const {bookables} = data;

But we don’t need the data for anything else, so we did our assignment to bookables
directly inside the import:

import {bookables} from "../../static.json";

This destructuring approach is one we use often throughout the book.
 With the array of bookables in hand, we filter it to get just those bookables in the

specified group:

const group = "Rooms";

const bookablesInGroup = bookables.filter(b => b.group === group);

The filter method returns a new array, and we assign that to the bookablesInGroup
variable. We then map over the bookablesInGroup array to generate the list of book-
ables for display. Within the map function, I use short variable names, b for bookable
and i for index, because they’re used right away, close to their assignment. I think
their meaning is clear, but you may prefer more descriptive variable names.

 To display our new component, we need to wire it into the BookablesPage compo-
nent. The following listing shows the two changes needed.

import BookablesList from "./BookablesList";

export default function BookablesPage () {
 return (
 <main className="bookables-page">
 <BookablesList/>
 </main>
);
}

Branch: 0202-hard-coded, File: /src/components/Bookables/BookablesPage.js

Listing 2.8 The BookablesPage component showing the BookablesList

Import the new
component.

Replace the
placeholder text with
the component.

41Storing, using, and setting values with useState
Have a go at changing the hardcoded index value in BookablesList. The component
will always highlight the bookable with the specified index—so far, so good. But, it’s all
very well changing the code to change the highlighted room. What we really want is
for the user to change it by clicking a bookable, so let’s add an event handler to each
list item button. Clicking a bookable should select it, and the UI should update to
highlight the selected item. The following listing includes a changeBookable function
and an onClick event handler that calls it.

import {bookables} from "../../static.json";

export default function BookablesList () {
 const group = "Rooms";
 const bookablesInGroup = bookables.filter(b => b.group === group);

 let bookableIndex = 1;

 function changeBookable (selectedIndex) {
 bookableIndex = selectedIndex;
 console.log(selectedIndex);
 }

 return (
 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => changeBookable(i)}
 >
 {b.title}
 </button>

))}

);
}

Clicking one of the rooms now assigns that room’s index to the bookableIndex vari-
able. Et voilà! Oh. Hang on . . . If you run the code in listing 2.9 and try clicking differ-
ent rooms, you’ll see that the highlighting doesn’t change. But, the code does update
the bookableIndex value! You can check the console to see the index being logged.
Why is the new selection not shown on the screen? Why has React not updated the UI?
Why do people always ignore me?

Branch: 0203-direct-change, File: /src/components/Bookables/BookablesList.js

Listing 2.9 Adding an event handler to the BookablesList component

Declare the variable with let because
it will be assigned new values.

Declare a function that assigns the
index of the clicked bookable to
the bookableIndex variable.

Include an onClick handler
that passes the index of
the clicked bookable to the
changeBookable function.

42 CHAPTER 2 Managing component state with the useState hook
 It’s okay, deep breaths. Remember, components are functions that return UI.
React calls the functions to get a description of the UI. How does React know when to
call the function and update the UI? Just because you change the value of a variable
within your component function doesn’t mean React will notice. If you want to get
noticed, you can’t just say “Hello, World!” to people in your head; you have to say it
out loud. Figure 2.9 shows what happens when you directly change a value in a com-
ponent: React doesn’t notice. It’s happy, whistling away, polishing its widgets—and the
UI stays rock-solid, unchanged.

So how do we get React’s attention and let it know it has work to do? We call the use-
State hook.

2.2.2 Calling useState returns a value and an updater function

We want to alert React that a value used within a component has changed so it can
rerun the component and update the UI. Just updating the variable directly won’t do.
We need a way of changing that value, some kind of updater function, that triggers
React to call the component with the new value and get the updated UI, as shown in
figure 2.10.

Figure 2.9 Directly
changing a variable in our
component code doesn’t
update the UI.

Figure 2.10 Rather than changing a value directly, we call an updater function. The
updater function changes the value, and React updates the display with the recalculated
UI from the component.

43Storing, using, and setting values with useState
To avoid our component state value disappearing when the component code finishes
running, we get React to manage the value for us. That’s what the useState hook is
for. Every time React calls our component to get ahold of its UI, the component can
ask React for the latest state value and for a function to update the value. The compo-
nent can use the value when generating its UI and use the updater function when
changing the value, for example, in response to a user clicking an item in a list.

 Calling useState returns a value and its updater function in an array with two ele-
ments, as shown in figure 2.11.

You could assign the returned array to a variable, and then access the two elements
individually, by index, like this:

const selectedRoomArray = useState();

const selectedRoom = selectedRoomArray[0];

const setSelectedRoom = selectedRoomArray[1];

But it’s more common to use array destructuring and assign the returned elements to
variables in one step:

const [selectedRoom, setSelectedRoom] = useState();

Array destructuring lets us assign elements in an array to variables of our choosing.
The names selectedRoom and setSelectedRoom are arbitrary and our choice, although
it’s common to start the variable name for the second element, the updater function,
with set. The following would work just as well:

const [myRoom, updateMyRoom] = useState();

const [selectedRoom, setSelectedRoom] = useState(initialValue);

Value:
React assigns the
current value to
the first element.

Updater function:
React assigns the
updater function to
the second element.

Array with two elements

Initial value:
Pass the initial
value to the
useState hook.

Figure 2.11 The useState function returns an array with two elements: a value and an updater
function.

The useState function returns an array.

The first element is the value.

The second element is the
function for updating the value.

44 CHAPTER 2 Managing component state with the useState hook
If you want to set an initial value for the variable, pass the initial value as an argument
to the useState function. When React first runs your component, useState will
return the two-element array as usual but will assign the initial value to the first ele-
ment of the array, as shown in figure 2.12.

The first time the following line of code is executed within a component, React
returns the value Lecture Hall as the first element in the array. The code assigns that
value to the selected variable:

const [selected, setSelected] = useState("Lecture Hall");

Let’s update the BookablesList component to use the useState hook to ask React to
manage the value of the selected item’s index. We pass it 1 as the initial index. You
should see the Lecture Hall highlighted when the BookablesList component first
appears on the screen, as shown again in figure 2.13.

The following listing shows the updated code for the component. It includes an
onClick event handler that uses the updater function assigned to setBookableIndex
to change the selected index when a user clicks a bookable.

const [selected, setSelected] = useState();"Lecture Hall"

Initial value
assigned on first call"Lecture Hall"

Figure 2.12 When the component first runs, React assigns the initial value you pass to
useState to the selected variable.

Figure 2.13 The BookablesList
component with Lecture Hall selected

45Storing, using, and setting values with useState
import {useState} from "react";
import {bookables} from "../../static.json";

export default function BookablesList () {
 const group = "Rooms";
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const [bookableIndex, setBookableIndex] = useState(1);

 return (
 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => setBookableIndex(i)}
 >
 {b.title}
 </button>

))}

);
}

React runs the BookablesList component code, returning the value for bookable-
Index from the call to useState. The component uses that value when generating the
UI to set the correct className attribute for each li element. When a user clicks a
bookable, the onClick event handler uses the updater function, setBookableIndex,
to tell React to update the value it’s managing. If the value has changed, React knows
it’ll need a new version of the UI. React runs the BookablesList code again, assigning
the updated state value to bookableIndex, letting the component generate the
updated UI. React can then compare the newly generated UI to the old version and
decide how to update the display efficiently.

 With useState, React is now listening. I don’t feel so lonely anymore. It’s living up
to its promise of keeping the state in sync with the UI. The BookablesList compo-
nent describes the UI for a particular state and provides a way for users to change the
state. React then does its magic, checking whether the new UI is different from the old
(diffing), batching and scheduling updates, deciding on an efficient way to update DOM
elements, and then doing the deed and reaching out to the DOM on our behalf. We fix-
ate on the state; React does its diffing and updates the DOM.

Branch: 0204-set-index, File: /src/components/Bookables/BookablesList.js

Listing 2.10 Triggering a UI update when changing the selected room

Import the
useState hook.

Call useState and assign
the returned state value
and updater function to

variables.

Use the state
value when
generating
the UI.

Use the updater
function to change
the state value.

46 CHAPTER 2 Managing component state with the useState hook
CHALLENGE 2.1
Create a UsersList component that shows the list of users from the database. Enable
the selection of a user and wire the component into the UsersPage. (Remember, if
you haven’t already, you can copy the full database file from the app’s GitHub repo.)

CHALLENGE 2.2
Update the UserPicker drop-down list component so that it shows the users as
options in the list. Don’t worry about wiring up any event handlers for now. The chal-
lenge tasks are implemented in the 0205-user-lists branch.

In listing 2.10, we passed an initial value of 1 to useState. A user clicking a different
bookable replaces that value with another number. What if we want to store something
more complicated, like an object, as state? In that case, we need to be a bit more care-
ful when updating the state. Let’s see why.

2.2.3 Calling the updater function replaces the previous state value

If you’re coming from the class-based approach to component building in React,
you’re used to state being an object with different properties for different state values.
Moving to function components, you may try to replicate that state-as-an-object
approach. It may feel more natural to have a single state object and have new state
updates merge with the existing state.

 But the useState hook is easy to use and easy to call multiple times, once for each
state value you want React to monitor. It’s worth getting used to separate calls to use-
State for each state property, as discussed further in section 2.4, rather than clinging
to what’s familiar. If you need to work with objects as state values or want to group
some related values together (maybe a length and width, for example), you should be
aware of how setState as a function component updater function is different from
this.setState you use with a class component. In this section, we take a brief look at
updating the state of an object in the two types of components.

THE CLASS COMPONENT APPROACH

With classes, you set up the state as an object in the constructor (or as a static property
on the class):

class BookablesList extends React.Component {
 constructor (props) {
 super(props);

 this.state = {
 bookableIndex: 1,
 group: "Rooms"
 };
 }
}

To update the state (in an event handler, for example), you call this.setState, pass-
ing an object with any changes you want to make:

47Storing, using, and setting values with useState
handleClick (index) {
 this.setState({
 bookableIndex: index
 });
}

React merges the object you passed to setState with the existing state. In the preced-
ing example, it updates the bookableIndex property but leaves the group property
alone, as shown in figure 2.14.

THE FUNCTION COMPONENT APPROACH

In contrast, for the new hooks approach, the updater function replaces the previous
state value with the value you pass to the function. Now, that’s straightforward if you
have simple state values, like this:

const [bookableIndex, setBookableIndex] = useState(1);

setBookableIndex(3); // React replaces the value 1 with 3.

But if you decide to store JavaScript objects in state, you need to tread carefully. The
updater function will replace the old object entirely. Say you initialize the state like this:

function BookablesList () {
 const [state, setState] = useState({
 bookableIndex: 1,

Merge:
React merges the new
property with the old state.

{

bookableIndex: 1,

group: "Rooms"

}

bookableIndex: 3

{

}

group: "Rooms"

this.setState({

})

bookableIndex: 3
,

Figure 2.14 In a class component, calling the updater function (this.setState) merges the
new properties with the existing state object.

48 CHAPTER 2 Managing component state with the useState hook
 group: "Rooms"
 });
}

If you call the updater function, setState, with just the changed bookableIndex prop-
erty, then you lose the group property:

function handleClick (index) {
 setState({
 bookableIndex: index
 });
}

The old state object is replaced by the new one, as shown in figure 2.15.

So, if you really need to use an object with the useState hook, copy across all the prop-
erties from the old object when you set a new property value:

function handleClick (index) {
 setState({
 ...state,
 bookableIndex: index
 });
}

Replace:
React replaces the old state
with the value passed to
the updater function.{

bookableIndex: 1,

group: "Rooms"

}

setState(

)

{
bookableIndex: 3

} {
bookableIndex: 3

}

Figure 2.15 In a function component, calling an updater function (returned by useState) replaces
the old state value with whatever you pass to the updater function.

49Storing, using, and setting values with useState
Notice how the spread operator, ...state, is used in the preceding snippet to copy all
of the properties from the old state to the new. In fact, to ensure that you have the lat-
est state when setting new values based on old, you can pass a function as the argu-
ment to the updater function, like this:

function handleClick (index) {
 setState(state => {
 return {
 ...state,
 bookableIndex: index
 };
 });
}

React will pass in the latest state as the first argument. This function version of the
updater function is discussed in more detail in section 2.2.5.

 With that brief caveat about working with objects out of the way, there’s one more
feature of the useState hook API we need to mention before calling useState multi-
ple times with abandon. Occasionally, you might need to hold off on calculating
expensive initial values. There’s a function for that.

2.2.4 Passing a function to useState as the initial value

Sometimes a component may need to do some work to calculate an initial value for a
piece of state. Maybe the component is passed a tangled string of data from a legacy
storage system and needs to extract a nugget of useful info from among the frayed
knots. Unravelling the string may take a while, and you want to do the work only once.
This approach is wasteful:

function untangle (aFrayedKnot) {
 // perform expensive untangling manoeuvers
 return nugget;
}

function ShinyComponent ({tangledWeb}) {
 const [shiny, setShiny] = useState(untangle(tangledWeb));

 // use shiny value and allow new shiny values to be set
}

Whenever ShinyComponent runs, maybe in response to setting another piece of state,
the expensive untangle function runs as well. But useState uses its initial value argu-
ment on only the first call. After the first call, it won’t use the value that untangle
returns. Running the expensive untangle function again and again is a waste of time.

 Luckily, the useState hook accepts a function as its argument, a lazy initial state, as
shown in figure 2.16.

Pass a function
to setState.

Use the old state value when
setting the new one.

50 CHAPTER 2 Managing component state with the useState hook
React executes the function only the first time the component is rendered. It uses the
function’s return value as the initial state:

function ShinyString ({tangledWeb}) {
 const [shiny, setShiny] = useState(() => untangle(tangledWeb));

 // use shiny value and allow new shiny values to be set
}

Use the lazy initial state if you need to undertake expensive work to generate an initial
value for a piece of state.

2.2.5 Using the previous state when setting the new state

It would be great if users could more easily cycle through the bookables in the
BookablesList component. Let’s add a Next button that does the cycling, as shown in
figure 2.17. If we move the focus to the Next button, users can activate it by using the
keyboard.

 The Next button needs to increment the bookableIndex state value, wrapping
back around to 0 when it goes past the last bookable. The following listing shows the
implementation of the Next button.

The return value is
assigned as the initial
value on the first call.

"Lecture Hall"

Lazy initial state:
Pass a function to
the useState hook.

const [selected, setSelected] = useState(

);

"Lecture Hall"() => { return ; }

Figure 2.16 You can pass a function to useState as the initial value. React will use the
function’s return value as the initial value.

51Storing, using, and setting values with useState

er

import {useState} from "react";
import {bookables} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

export default function BookablesList () {
 const group = "Rooms";
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const [bookableIndex, setBookableIndex] = useState(1);

 function nextBookable () {
 setBookableIndex(i => (i + 1) % bookablesInGroup.length);
 }

 return (
 <div>
 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => setBookableIndex(i)}
 >
 {b.title}
 </button>

))}

 <p>
 <button
 className="btn"

Branch: 0206-next-button, File: /src/components/Bookables/BookablesList.js

Listing 2.11 Passing a function to setBookableIndex

Figure 2.17 Clicking the Next button selects the next bookable in the list.

Import a Font
Awesome icon.

Create an
event handl
for the Next
button.

Pass the updater
function a function to
increment the index.

52 CHAPTER 2 Managing component state with the useState hook
 onClick={nextBookable}
 autoFocus
 >
 <FaArrowRight/>
 Next
 </button>
 </p>
 </div>
);
}

In the event handler for the Next button, nextBookable, we call the updater function,
setBookableIndex, passing it a function:

setBookableIndex(i => (i + 1) % bookablesInGroup.length);

The function uses the % operator that gives the remainder when dividing. When i + 1
is the same as the number of bookables, bookablesInGroup.length, the remainder is
0, and the index cycles back to the start. But why not just use the state value for the
index that we already have?

setBookableIndex((bookableIndex + 1) % bookablesInGroup.length);

By using hooks to hand over management of our state values to React, we don’t just
ask it to update values and trigger re-renders; we also give it permission to efficiently
schedule when any updates take place. React can intelligently batch updates together
and ignore redundant updates.

 When we want to update a state value based on its previous value, as in our Next
button example, instead of passing the updater function a value to set, we can pass it a
function. React will pass that function the current state value and will use the return
value of that function as the new state value. All the pieces are shown in figure 2.18.

Include a button to call the
nextBookable function.

setBookableIndex(oldValue => oldValue + 1);

Value to set:
The function uses the
old value and returns
a new value.

Old value:
The function is
passed the
current value.

Function argument:
Pass the updater function
a function rather than
a value to set.

Updater function:
This is the updater
function returned by
the useState hook.

Figure 2.18 Pass the updater function a function that uses the old state value and returns a
new state value.

53Calling useState multiple times to work with multiple values
By passing a function, we ensure that any new values that are based on old values have
the latest information with which to work.

 Listing 2.11 uses a separate function, nextBookable, for responding to clicks on
the Next button but puts the handler for responding to clicks on bookables inline in
the onClick attribute. This is just a personal choice; when a handler does more than
call a simple updater function, I tend to put it in its own function rather than inline.
In the case of listing 2.11, we could just as easily have the Next button handler inline
or the bookable click handler in its own named function.

 So, we can call useState to ask React to manage a value for us. But, surely, we’ll need
more than a single state value in our component. Let’s see how to handle multiple state
values as we give users the ability to choose groups in the BookablesList component.

2.3 Calling useState multiple times to work
with multiple values
Having seen how useState works in some detail, it’s time to get our money’s worth.
We’re not limited to a solitary piece of information, or even a solitary object with
many properties. If we’re interested in multiple values to drive a component’s UI, we
can just keep calling that hook: useState for this, useState for that, useState for the
other. We can useState all the things!

 In this section, we add to the BookablesList component, first letting users switch
between groups of bookables, and then displaying the details about the selected book-
able. Remember, it’s our job to fixate on the state, so we need to work with a few values:

 The selected group
 The selected bookable
 Whether the component has the bookable availability (days and sessions) showing

By the end of this section, we call useState for all three state values. We embed the
values returned into our UI and use the updater functions to change the state when
the user chooses a group or a bookable or toggles the display of details.

2.3.1 Using a drop-down list to set state

Let’s start by updating the BookablesList component so that users can select a type
of resource to book: Rooms or Kit. Two instances of the component are shown in fig-
ure 2.19, the first showing bookables in the Rooms group, and the second showing
bookables in the Kit group.

 We want the user to make two selections: the group to display, Rooms or Kit, and
the bookable within the group. Changing either variable should update the display,
so we want React to track them both. Should we create some kind of state object to
pass to React via the useState hook? Well, no. The easiest approach is just to call
useState twice:

const [group, setGroup] = useState("Kit");
const [bookableIndex, setBookableIndex] = useState(0);

54 CHAPTER 2 Managing component state with the useState hook

Ass

ar
u

nam
the g

va
React uses the order of the calls to determine which tracked variable is which. In the
previous code snippet, every time React invokes the component code, the first call
to useState assigns the first tracked value to the group variable, and the second call to
useState assigns the second tracked value to the bookableIndex variable. setBookable-
Index updates the second tracked value, and setGroup updates the first.

 Your boss keeps glancing your way, so let’s get the group-picking functionality
implemented for the BookablesList component. The following listing shows the lat-
est code.

import {useState} from "react";
import {bookables} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

export default function BookablesList () {
 const [group, setGroup] = useState("Kit");
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const [bookableIndex, setBookableIndex] = useState(0);
 const groups = [...new Set(bookables.map(b => b.group))];

 function nextBookable () {
 setBookableIndex(i => (i + 1) % bookablesInGroup.length);
 }

 return (
 <div>
 <select
 value={group}
 onChange={(e) => setGroup(e.target.value)}

Branch: 0207-groups, File: /src/components/Bookables/BookablesList.js

Listing 2.12 The BookablesList component with two useState calls

Figure 2.19 Two views of the BookablesList component with a drop-down list for selecting
the type of bookable: the first with Rooms selected and the second with Kit selected.

Use the first tracked
state value to hold the
selected group.

Use the second
tracked state
value to hold
the selected
bookable
index.

ign an
ray of
nique
group
es to

roups
riable.

Include an event
handler to update
the selected group.

55Calling useState multiple times to work with multiple values

C

 >
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => setBookableIndex(i)}
 >
 {b.title}
 </button>

))}

 <p>
 <button
 className="btn"
 onClick={nextBookable}
 autoFocus
 >
 <FaArrowRight/>
 Next
 </button>
 </p>
 </div>
);
}

The code assigns the group variable the initial value of Kit, so the component starts
off showing the list of bookables in the Kit group. When a user selects a new group
from the drop-down list, the setGroup updater function lets React know the value has
changed. To get the group names for the drop-down list, we put the bookables data
through a few transformations. First, we create an array of just the group names:

bookables.map(b => b.group) // array of group names

Then, we create a Set from the array of group names. Sets contain only unique values,
so any duplicates will be discarded:

new Set(bookables.map(b => b.group)) // set of unique group names

Finally, we create a new array and spread the Set elements into it. The new array con-
tains only unique group names. Exactly what we’re after!

[...new Set(bookables.map(b => b.group))] // array of unique group names

reate a drop-
down list to

show each
group in the

bookables
data.

56 CHAPTER 2 Managing component state with the useState hook
If the JS-Fu is a bit dense, you could always create a getUniqueValues utility function
to make things more readable:

function getUniqueValues (array, property) {
 const propValues = array.map(element => element[property]);
 const uniqueValues = new Set(propValues);
 const uniqueValuesArray = [...uniqueValues];

 return uniqueValuesArray;
}

const groups = getUniqueValues(bookables, "group");

We’ll stick with the terse version because it never changes.
 I hope you agree, working with two pieces of state is pretty easy. We just call use-

State twice. To update the state, we call the appropriate updater function. The user
makes a selection, an event handler updates the state, and React does the diffing and
tickles the DOM. Let’s do it again!

2.3.2 Using a check box to set state

Our next job is to add a details section to the component to give our office colleagues
a bit more info about each bookable. We make the display of each bookable’s avail-
ability optional. Figure 2.20 shows the BookablesList component with the Show
Details check box checked; the days and sessions for which the bookable is available
are visible.

Figure 2.20 The BookablesList component with the availability showing. The Show Details check box to the
right of the title is checked.

57Calling useState multiple times to work with multiple values
Figure 2.21 shows the component with the check box unchecked; the days and ses-
sions are hidden.

In addition to the selected group and the selected bookable index, we now have a
third piece of state: we need to track whether the details for the selected bookable are
displayed. The following listing shows the BookablesList component tracking our
three variables via useState hook calls.

import {useState, Fragment} from "react";
import {bookables, sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

export default function BookablesList () {
 const [group, setGroup] = useState("Kit");
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const [bookableIndex, setBookableIndex] = useState(0);
 const groups = [...new Set(bookables.map(b => b.group))];

 const bookable = bookablesInGroup[bookableIndex];

 const [hasDetails, setHasDetails] = useState(false);

 function nextBookable () {
 setBookableIndex(i => (i + 1) % bookablesInGroup.length);
 }

Branch: 0208-bookable-details, File: /src/components/Bookables/BookablesList.js

Listing 2.13 The Bookables component tracking three variables

Figure 2.21 The BookablesList component with the availability hidden. The Show Details check box to the
right of the title is not checked.

Import
React.Fragment
to wrap multiple
elements.

Assign the currently
selected bookable to
its own variable.

Use a third
tracked state
value to hold if
the details are
shown.

58 CHAPTER 2 Managing component state with the useState hook
 return (
 <Fragment>
 <div>
 /* unchanged UI for list of bookables */
 </div>

 {bookable && (
 <div className="bookable-details">
 <div className="item">
 <div className="item-header">
 <h2>
 {bookable.title}
 </h2>

 <label>
 <input
 type="checkbox"
 checked={hasDetails}
 onChange={() => setHasDetails(has => !has)}
 />
 Show Details
 </label>

 </div>

 <p>{bookable.notes}</p>

 {hasDetails && (
 <div className="item-details">
 <h3>Availability</h3>
 <div className="bookable-availability">

 {bookable.days
 .sort()
 .map(d => <li key={d}>{days[d]})
 }

 {bookable.sessions
 .map(s => <li key={s}>{sessions[s]})
 }

 </div>
 </div>
)}
 </div>
 </div>
)}
 </Fragment>
);
}

The component uses the current bookableIndex to access the selected bookable from
the bookablesInGroup array:

const bookable = bookablesInGroup[bookablesIndex];

Show the details only if a
bookable is selected.

Include a new UI
section for the selected
bookable’s details.

Let users toggle the
details with a check box.

Include an event
handler to update

if the details are
shown.

Show the details only
if hasDetails is true.

Display a list
of available
days.

Display a list
of available

sessions.

59Calling useState multiple times to work with multiple values
There’s no need to call useState to store the bookable object itself because it can be
derived from the index value already in state. The UI includes a new section to show
the details of the selected bookable. But the component shows the section only if
there’s a bookable to display:

{bookable && (
 <div className="bookable-details">
 // details UI
 </div>
)}

Similarly, the extra info about the selected bookable is visible only if the hasDetails
state value is true; in other words, the check box is checked:

{hasDetails && (
 <div className="item-details">
 // Bookable availability
 </div>
)}

It seems like our work on the BookablesList component is done. We have our list
of bookables from the currently selected group and the ability to toggle the display of
details for the selected bookable. But before you pat yourself on the back and book
out the games room and party supplies, follow these three steps:

1 Select the Games Room; its details are then displayed.
2 Switch the group to Kit. The list of kit bookables is displayed with no bookable

selected, and the details disappear. (Which bookable is selected?)
3 Click the Next button. The second item of Kit, Wireless Mics, is selected and its

details appear.

There’s a whiff of stale data in the air. Can you work out what’s happening? We want
user interactions to lead to predictable changes in state. Sometimes that means a sin-
gle interaction should lead to multiple pieces of state changing. The next chapter
investigates the problem and introduces reducers, a mechanism for orchestrating more
complicated state changes and eliminating stale odors. But before we switch hooks,
we’ll review what building the BookablesList component has taught us about func-
tion components in general. And before that, here’s a challenge!

CHALLENGE 2.3
Update the UsersList component to show details for the selected user. Display the
user’s name, title, and notes. A possible approach is shown in figure 2.22, with code in
the 0209-user-details branch of the book’s GitHub repo.

60 CHAPTER 2 Managing component state with the useState hook
2.4 Reviewing some function component concepts
At this point, our BookablesList component is very simple. But some fundamental
concepts are already at work, concepts that underpin our understanding of function
components and React Hooks. Having a strong grasp of these concepts will make our
future discussions throughout the book and your expert use of hooks much easier. In
particular, here are five key concepts:

 Components are functions that accept props and return a description of their UI.
 React invokes the components. As functions, the components run their code

and then end.
 Some variables may persist within closures created by event handlers. Others

are destroyed when the function ends.
 We can use hooks to ask React to manage values for us. React can pass compo-

nents the latest values and updater functions for those values.
 By using the updater functions, we let React know of changing values. It can

rerun the components to get the latest description of the UI.

The component cycle diagram in figure 2.23 shows some of the steps involved when
our BookablesList component runs and a user clicks a bookable. Table 2.1 discusses
each step.

Figure 2.22 The UsersList component showing details for the selected user

61Reviewing some function component concepts
Table 2.1 Some key steps when using useState

Step What happens? Discussion

11 React calls the component. To generate the UI for the page, React traverses the tree of
components, calling each one. React will pass each component
any props set as attributes in the JSX.

12 The component calls
useState for the first time.

The component passes the initial value to the useState func-
tion. React sets the current value for that useState call from
that component.

13 React returns the current
value and an updater function
as an array.

The component code assigns the value and updater function to
variables for later use. The second variable name often starts
with set (for example, value and setValue).

14 The component sets up an
event handler.

The event handler may listen for user clicks, for example. The
handler will change the state when it runs later. React will hook
up the handler to the DOM when it updates the DOM in step 6.

Figure 2.23 Stepping through the key moments when using useState

62 CHAPTER 2 Managing component state with the useState hook
In order to discuss concepts with clarity and precision, from time to time we take stock
of the keywords and objects we’ve encountered so far. Table 2.2 describes some of the
terms we’ve come across.

15 The component returns its UI. The component uses the current state value to generate its
user interface and returns it, finishing its work.

16 React updates the DOM. React updates the DOM with any changes needed.

17 The event handler calls the
updater function.

An event fires, and the handler runs. The handler uses the
updater function to change the state value.

18 React updates the state
value.

React replaces the state value with the value passed by the
updater function.

19 React calls the component. React knows that the state value has changed and so must
recalculate the UI.

10 The component calls use-
State for the second time.

This time, React will ignore the initial value argument.

11 React returns the current state
value and the updater function.

React has updated the state value. The component needs the
latest value.

12 The component sets up an
event handler.

This is a new version of the handler and may use the newly
updated state value.

13 The component returns its UI. The component uses the current state value to generate its
user interface and returns it, finishing its work.

14 React updates the DOM. React compares the newly returned UI with the old and effi-
ciently updates the DOM with any changes needed.

Table 2.2 Some of the key terms we’ve met

Icon Term Description

Component A function that accepts props and returns a description of its UI.

Initial value The component passes this value to useState. React sets the
state value to this initial value when the component first runs.

Updater function The component calls this function to update the state value.

Event handler A function that runs in response to an event of some kind—for
example, a user clicking a bookable. Event handlers often call
updater functions to change the state.

UI A description of the elements that make up a user interface. The
state values are often included somewhere in the UI.

Table 2.1 Some key steps when using useState (continued)

Step What happens? Discussion

63Summary
Summary
 Call the useState hook when you want React to manage a value for a compo-

nent. It returns an array with two elements: the state value and an updater func-
tion. You can pass in an initial value if required:

const [value, setValue] = useState(initialValue);

 If you need to perform an expensive calculation to generate the initial state,
pass it to useState in a function. React will run the function to get this lazy ini-
tial state only when it first calls the component:

const [value, setValue] = useState(() => { return initialState; });

 Use the updater function that useState returns to set a new value. The new
value replaces the old value. React will schedule a re-render if the value has
changed:

setValue(newValue);

 If your state value is an object, make sure to copy over unchanged properties
from the previous state when your updater function is updating only a subset of
the properties:

setValue({
 ...state,
 property: newValue
});

 To be sure you’re working with the latest state value when calling the updater
function and setting a new value based on the old one, pass the updater func-
tion a function as its argument. React will assign the latest state value to the
function argument:

setValue(value => { return newValue; });

setValue(state => {
 return {
 ...state,
 property: newValue
 };
});

 If you have multiple pieces of state, you can call useState multiple times. React
uses the order of the calls to consistently assign values and updater functions to
the correct variables:

const [index, setIndex] = useState(0); // call 1
const [name, setName] = useState("Jamal"); // call 2
const [isPresenting, setIsPresenting] = useState(false); // call 3

64 CHAPTER 2 Managing component state with the useState hook
 Focus on the state and how events will update the state. React will do its job of
synchronizing the state and the UI:

function Counter () {
 const [count, setCount] = useState(0);

 return (
 <p>{count}
 <button onClick={() => setCount(c => c + 1)}> + </button>
 </p>
);
}

Consider what state the
component needs.

Display the state.

Update the state in
response to events.

Managing
component state with
the useReducer hook
As your applications grow, it’s natural for some components to handle more state,
especially if they supply different parts of that state to multiple children. When you
find you always need to update multiple state values together or your state update
logic is so spread out that it’s hard to follow, it might be time to define a function to
manage state updates for you: a reducer function.

 A simple, common example is for loading data. Say a component needs to load
posts for a blog on things to do when stuck at home during a pandemic. You want
to display loading UI when new posts are requested, error UI if a problem arises,

This chapter covers
 Asking React to manage multiple, related state values

by calling useReducer

 Putting component state management logic in a single
location

 Updating state and triggering re-renders by dispatching
actions to a reducer

 Initializing state with initialization arguments and
initialization functions
65

66 CHAPTER 3 Managing component state with the useReducer hook
and the posts themselves when they arrive. The component’s state includes values for
the following:

 The loading state—Are you in the process of loading new posts?
 Any errors—Has an error been returned from the server, or is the network down?
 The posts—A list of the posts retrieved.

When the component requests posts, you might set the loading state to true, the
error state to null, and the posts to an empty array. One event causes changes to three
pieces of state. When the posts are returned, you might set the loading state to false
and the posts to those returned. One event causes changes to two pieces of state. You
can definitely manage these state values with calls to the useState hook but, when you
always respond to an event with calls to multiple updater functions (setIsLoading,
setError, and setPosts, for example), React provides a cleaner alternative: the use-
Reducer hook.

 In this chapter, we start by addressing a problem with the BookablesList compo-
nent in the bookings app: something is amiss with our state management. We then
introduce reducers and the useReducer hook as a way of managing our state. Section
3.3 shows how to use a function to initialize the state for a reducer as we start work on
a new component, the WeekPicker. We finish the chapter with a review of how the
useReducer hook fits in with our understanding of function components.

 Can you smell that? There’s a definite whiff in the air. Something’s been left out
that should’ve been tidied up. Something stale. Let’s purge that distracting pong!

3.1 Updating multiple state values in response
to a single event
You’re free to call useState as many times as you want, once for each piece of state
you need React to manage. But a single component may need to hold many values in
state, and often those pieces of state are related; you may want to update multiple
pieces of state in response to a single user action. You don’t want to leave some pieces
of state unattended to when they should really be tidied up.

 Our BookablesList component currently has a problem when users switch from
one group to another. It’s not a big problem, but in this section we discuss what the
problem is, why it’s a problem, and how we can solve it by using the useState hook.
That sets us up for the useReducer hook in section 3.2.

3.1.1 Taking users out of the movie with unpredictable state changes

We don’t want clunky, unpredictable interfaces preventing users from getting on with
tasks. If the UI keeps pulling their attention away from their desired focus or makes
them wait with no feedback or sends them off down dead ends, their thought process
is interrupted, their work becomes more difficult, and their day is ruined.

 It’s like when you’re watching a movie, and a strange camera movement, or fren-
zied editing, or blatant product placement, or Ed Sheeran pulls you out of the story.

67Updating multiple state values in response to a single event
Your train of thought is gone. You become overly aware that it’s a movie, and some-
thing’s not quite right. Or when you’re reading a book on programming, and a tor-
tured simile, a strained attempt at humor, perplexing asides, or meta jokes pull you
out of the explanation. You become overly aware that you’re reading a desperate
author, and something’s not quite right.

 Okay, sorry. Back in the room. Let’s see an example. At the end of section 2.3 in
the preceding chapter, we diagnosed a mild case of jank in our BookablesList com-
ponent’s UI. Users are able to choose a group and then select a bookable from that
group. The bookable’s details are then displayed. But some combinations of bookable
and group selection lead to UI updates that are a little bit off. If you follow these three
steps, you should see the UI updates shown in figure 3.1:

1 Select the Games Room; its details are then displayed.
2 Switch the group to Kit. The list of Kit bookables is displayed with no bookable

selected, and the details disappear.
3 Click the Next button. The second item of Kit, Wireless Mics, is selected, and its

details appear.

Switching from the Rooms group to the Kit group, the component seems to lose track
of which bookable is selected. Clicking the Next button then selects the second item,
skipping the first. It’s not a huge problem—users can still select bookables—but it may
be enough to jar the user out of their focused flow. What’s going on?

 It turns out that the selected bookable and the selected group aren’t completely
independent values in our state. When a user selects the Games Room, the bookable-
Index state value is set to 2; it’s the third item in the list. If they then switch to the Kit

1. Select the Games Room:
The bookable is highlighted in
the list, and its details are shown.

2. Switch to the Kit group:
No bookable is selected,
and no details are shown.

3. Click the Next button:
The second item in the
list is selected, and its
details are shown.

Figure 3.1 Selecting a bookable, switching groups, and then clicking the Next button can lead to
unpredictable state changes.

68 CHAPTER 3 Managing component state with the useReducer hook
group, which has only two items, with indexes 0 and 1, the bookableIndex value no
longer matches up with a bookable. The UI ends up with no bookable selected and
no details displayed. We need to carefully consider the state we want the UI to be in
after a user chooses a group. So, how do we fix our stale index problem and smooth
the path for our users?

3.1.2 Keeping users in the movie with predictable state changes

Building a bookings app for our colleagues, we want to make its use as frictionless as pos-
sible. Say a colleague, Akiko, has clients visiting next week. She’s organizing her schedule
for the visit and needs to book the Meeting Room in the afternoon and then the Games
Room after work. Akiko’s focus is on her task: getting the schedule sorted and preparing
for a great client visit. The bookings app should let her continue to focus on her task. She
should be thinking, “I’ll get those rooms booked and then order the catering,” not
“Um, hang on, which button? Did I click it? Has it frozen? Argh, I hate computers!”

 It's like when you’re watching a movie and you’re completely invested in a charac-
ter’s plight. You don’t notice the camera moves and the editing because they help to
smoothly draw you into the story. You’re no longer in the movie theater; you’re in the
world of the film. The artifice melts away, and the story is everything. Or when you’re
reading a book, and its quirky but relatable characters and propulsive plot pull you
into the narrative. It’s almost as if the book disappears, and you inhabit the characters’
thoughts, feelings, locations, and actions. Eventually, you notice yourself, and realize
you’ve read 100 pages and it’s almost dark. . . .

 Okay, sorry. Back in the room. Let’s get back to the example. After the user selects
a group, we want the UI to be in a predictable state. We don’t want sudden deselec-
tions and skipped bookables. A simple and sensible approach is to always select the
first bookable in the list when a user chooses a new group, as shown in figure 3.2.

1. Select the games Room:
The bookable is highlighted in
the list, and its details are shown.

2. Switch to the Kit group:
The first bookable is
selected, and its
details are shown.

3. Click the Next button:
The second item in the
list is selected, and its
details are shown.

Figure 3.2 Selecting a bookable, switching groups, and then clicking the Next button leads to
predictable state changes.

69Updating multiple state values in response to a single event

th
The group and bookableIndex state values are connected; when we change the group,
we change the index as well. In step 2 of figure 3.2, notice that the first item in the list,
Projector, is automatically selected when the group is switched. The following listing
shows the changeGroup function setting bookableIndex to zero whenever a new group
is set.

import {useState, Fragment} from "react";
import {bookables, sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

export default function BookablesList () {
 const [group, setGroup] = useState("Kit");
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const [bookableIndex, setBookableIndex] = useState(0);
 const groups = [...new Set(bookables.map(b => b.group))];
 const bookable = bookablesInGroup[bookableIndex];
 const [hasDetails, setHasDetails] = useState(false);

 function changeGroup (event) {
 setGroup(event.target.value);
 setBookableIndex(0);
 }

 function nextBookable () {
 setBookableIndex(i => (i + 1) % bookablesInGroup.length);
 }

 return (
 <Fragment>
 <div>
 <select
 value={group}
 onChange={changeGroup}
 >
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

 <ul className="bookables items-list-nav">
 /* unchanged list UI */

 <p>
 /* unchanged button UI */
 </p>
 </div>

 {bookable && (
 <div className="bookable-details">
 /* unchanged bookable details UI */
 </div>
)}

Branch: 0301-related-state, File: /src/components/Bookables/BookablesList.js

Listing 3.1 Automatically selecting a bookable when the group is changed

Create a handler function to
respond to group selection.Update

e group.
Select the first bookable
in the new group.

Specify the new function
as the onChange handler.

70 CHAPTER 3 Managing component state with the useReducer hook
 </Fragment>
);
}

Whenever the group is changed, we set the bookable index to zero; when we call set-
Group, we always follow it with a call to setBookableIndex:

setGroup(newGroup);
setBookableIndex(0);

This is a simple example of related state. When components start to get more com-
plicated with multiple events causing multiple state changes, tracking those changes
and making sure all related state values are updated together become more and
more difficult.

 When state values are related in such a way, either affecting each other or often
being changed together, it can help to move the state update logic into a single place,
rather than spreading the code that performs changes across event handler functions,
whether inline or separately defined. React gives us the useReducer hook to help us
manage this collocation of state update logic, and we look at that hook next.

3.2 Managing more complicated state with useReducer
As it stands, the BookablesList component example is simple enough that you could
continue to use useState and just call the respective updater functions for each piece
of state within the changeGroup event handler. But when you have multiple pieces of
interrelated state, using a reducer can make it easier to make and understand state
changes. In this section, we introduce the following topics:

 A reducer helps you to manage state changes in a centralized, well-defined way
with clear actions that act on the state.

 A reducer uses actions to generate a new state from the previous state, making it
easier to specify more complicated updates that may involve multiple pieces of
interrelated state.

 React provides the useReducer hook to let your component specify initial state,
access the current state, and dispatch actions to update the state and trigger a
re-render.

 Dispatching well-defined actions makes it easier to follow state changes and to
understand how your component interacts with the state in response to differ-
ent events.

We start, in section 3.2.1, with a description of a reducer and a simple example of a
reducer that manages incrementing and decrementing a counter. In section 3.2.2, we
build a reducer for the BookablesList component that performs the necessary state
changes like switching groups, selecting bookables, and toggling bookable details.
Finally, in section 3.2.3, we incorporate our freshly minted reducer into the Bookables-
List component by using React’s useReducer hook.

71Managing more complicated state with useReducer
3.2.1 Updating state using a reducer with a predefined set of actions

A reducer is a function that accepts a state value and an action value. It generates a new
state value based on the two values passed in. It then returns the new state value, as
shown in figure 3.3.

The state and action can be simple, primitive values like numbers or strings, or more
complicated objects. With a reducer, you keep all of the ways of updating the state in
one place, which makes it easier to manage state changes, particularly when a single
action affects multiple pieces of state.

 We get back to the BookablesList component shortly, after a super-simple exam-
ple. Say your state’s just a counter and there are only two actions you can take: incre-
ment the counter or decrement the counter. The following listing shows a reducer
that manages such a counter. The value of the count variable starts at 0 and changes
to 1, to 2, and then back to 1.

let count = 0;

function reducer (state, action) {

Code on JS Bin: https://jsbin.com/capogug/edit?js,console

Listing 3.2 A simple reducer for a counter

Figure 3.3 A reducer takes a state and an action and returns a new state.

Create a reducer function
that accepts the existing
state and an action.

https://jsbin.com/capogug/edit?js,console

72 CHAPTER 3 Managing component state with the useReducer hook
 if (action === "inc") {
 return state + 1;
 }
 if (action === "dec") {
 return state - 1;
 }
 return state;
}

count = reducer(count, "inc");
count = reducer(count, "inc");
count = reducer(count, "dec");

The reducer handles the incrementing and decrementing actions and just returns the
count unaltered for any other action specified. (Rather than silently ignoring unrec-
ognized actions, you could throw an error, depending on the needs of your applica-
tion and the role the reducer is playing.)

 That seems like a bit of overkill for our two little actions, but having a reducer
makes it easy to extend. Let’s add three more actions, for adding and subtracting arbi-
trary numbers to and from the counter and for setting the counter to a specified
value. To be able to specify extra values with our action, we need to beef it up a bit—
let’s make it an object with a type and a payload. Say we want to add 3 to the counter;
our action looks like this:

{
 type: "add",
 payload: 3
}

The following listing shows the new reducer with its extra powers and calls to the
reducer passing our beefed-up actions. The value of the count variable starts at 0 and
changes to 3, to –7, to 41, and finally to 42.

let count = 0;

function reducer (state, action) {
 if (action.type === "inc") {
 return state + 1;
 }

 if (action.type === "dec") {
 return state - 1;
 }

Code on JS Bin: https://jsbin.com/kokumux/edit?js,console

Listing 3.3 Adding more actions and specifying extra values

Check which action is
specified and update
state accordingly.

Handle missing or
unrecognized actions.

Use the reducer to
increment the counter.

Use the reducer to
decrement the counter.

Now check the
action type for
the two original
actions.

https://jsbin.com/kokumux/edit?js,console

73Managing more complicated state with useReducer
 if (action.type === "add") {
 return state + action.payload;
 }

 if (action.type === "sub") {
 return state - action.payload;
 }

 if (action.type === "set") {
 return action.payload;
 }

 return state;
}

count = reducer(count, { type: "add", payload: 3 });
count = reducer(count, { type: "sub", payload: 10 });
count = reducer(count, { type: "set", payload: 41 });
count = reducer(count, { type: "inc" });

The last call to the reducer right at the end of listing 3.3 specifies the increment
action. The increment action doesn’t need any extra information. It always adds 1 to
count, so the action doesn’t include a payload property.

 Let’s put these ideas of state and actions with a type and payload into practice in
the bookings app by building a reducer for our BookablesList component. Then
we can see how to enlist React’s help to use that reducer to manage the compo-
nent’s state.

3.2.2 Building a reducer for the BookablesList component

The BookablesList component has four pieces of state: group, bookableIndex, has-
Details, and bookables (imported from static.json). The component also has four
actions to perform on that state: set the group, set the index, toggle hasDetails, and
move to the next bookable. To manage four pieces of state, we can use an object with
four properties. It’s common to represent both the state and the action as objects, as
shown in figure 3.4.

 The BookablesList component imports the bookables data from the static.json
file. That data won’t change while the BookablesList component is mounted, and we
include it in the initial state for the reducer, using it to find the number of bookables
in each group.

 The following listing shows a reducer for the BookablesList component using
objects for both the state and the actions. We export it from its own file, reducer.js, in
the /src/components/Bookables folder.

Use the action
payload to perform
the new actions.

Pass an object
to specify each
action.

74 CHAPTER 3 Managing component state with the useReducer hook

Use a
statem
organ

code fo
action
export default function reducer (state, action) {
 switch (action.type) {

 case "SET_GROUP":
 return {
 ...state,
 group: action.payload,
 bookableIndex: 0
 };

 case "SET_BOOKABLE":
 return {
 ...state,
 bookableIndex: action.payload
 };

 case "TOGGLE_HAS_DETAILS":
 return {
 ...state,
 hasDetails: !state.hasDetails
 };

Branch: 0302-reducer, File: /src/components/Bookables/reducer.js

Listing 3.4 A reducer for the BookablesList component

{
group: "Rooms",
bookableIndex: 0,
hasDetails: false,
bookables: [...]

}

{
type: "SET_BOOKABLE",
payload: 1

}

{
group: "Rooms",
bookableIndex: 1,
hasDetails: false,
bookables: [...]

}

Figure 3.4 Pass the reducer a state object and an action object. The reducer updates the state
based on the action type and payload. The reducer returns the new, updated state.

switch
ent to

ize the
r each
 type.

Specify the action type
as the comparison for
each case.

Create a case block
for each action type.

Update the group and
set the bookableIndex
to 0.

Use the spread operator
to copy existing state
properties.

Override existing state
properties with any changes.

75Managing more complicated state with useReducer
 case "NEXT_BOOKABLE":
 const count = state.bookables.filter(
 b => b.group === state.group
).length;

 return {
 ...state,
 bookableIndex: (state.bookableIndex + 1) % count
 };

 default:
 return state;
 }
}

Each case block returns a new JavaScript object; the previous state is not mutated.
The object spread operator is used to copy across properties from the old state to the
new. You then set the property values that need updating on the object, overriding
those from the previous state, like this:

return {
 ...state,
 group: action.payload,
 bookableIndex: 0
};

With only four properties in total in our state, we could have set them all explicitly:

return {
 group: action.payload,
 bookableIndex: 0,
 hasDetails: state.hasDetails,
 bookables: state.bookables
};

Using the spread operator protects the code as it evolves; the state may gain new prop-
erties in the future, and they all need to be copied across.

 Notice that the SET_GROUP action updates two properties. In addition to updating
the group to be displayed, it sets the selected bookable index to 0. When switching to
a new group, the action automatically selects the first bookable and, as long as the
group has at least one bookable, the component shows the details for the first book-
able if the Show Details toggle is checked.

 The reducer also handles a NEXT_BOOKABLE action, removing from the Bookables
component the onus for calculating indexes when moving from one bookable to the
next. This is why including the bookables data in the reducer’s state is helpful; we use
the count of bookables in a group to wrap from the last bookable to the first when
incrementing bookableIndex:

case "NEXT_BOOKABLE":
 const count = state.bookables.filter(

Count the bookables in
the current group.

Use the count to
wrap from the last
index to the first.

Always include
a default case.

Spread the properties of the old
state object into the new one.

Override any properties
that need updating.

Copy across previous values
for unchanged properties.

Use the bookables data to count the
bookables in the current group.

76 CHAPTER 3 Managing component state with the useReducer hook
 b => b.group === state.group
).length;

 return {
 ...state,
 bookableIndex: (state.bookableIndex + 1) % count
 };

We have a reducer set up, but how do we fold it into our component? How do we
access the state object and call the reducer with our actions? We need the useReducer
hook.

3.2.3 Accessing component state and dispatching actions
with useReducer

The useState hook lets us ask React to manage single values for our component.
With the useReducer hook, we can give React a bit more help in managing values by
passing it a reducer and the component’s initial state. When events occur in our appli-
cation, instead of giving React new values to set, we dispatch an action, and React uses
the corresponding code in the reducer to generate a new state before calling the com-
ponent for the latest UI.

 When calling the useReducer hook, we pass it the reducer and an initial state. The
hook returns the current state and a function for dispatching actions, as two elements
in an array, as shown in figure 3.5.

As we did with useState, here with useReducer we use array destructuring to assign
the two elements of the returned array to two variables with names of our choosing.

Use the modulus
operator to wrap
from the last index
to the first.

const [state, dispatch] = useReducer(reducer, initialState);

State:
The current
value of each
property

Reducer:
Uses an action
to create a new
state from the old

Dispatch function:
Passes an action
to the reducer

Initial state:
The value of each
property when the
component first runs

Figure 3.5 Call useReducer with a reducer and an initial state. It returns the current
state and a dispatch function. Use the dispatch function to dispatch actions to the reducer.

77Managing more complicated state with useReducer

r,

e

A

valu

varia
The first element, the current state, we assign to a variable we call state, and the sec-
ond element, the dispatch function, we assign to a variable we call dispatch:

const [state, dispatch] = useReducer(reducer, initialState);

React pays attention to only the arguments passed to useReducer (in our case,
reducer and initialState) the first time React invokes the component. On subse-
quent invocations, it ignores the arguments but still returns the current state and the
dispatch function for the reducer.

 Let’s get the useReducer hook up and running in the BookablesList component
and start dispatching some actions! The following listing shows the changes.

import {useReducer, Fragment} from "react";
import {bookables, sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

import reducer from "./reducer";

const initialState = {
 group: "Rooms",
 bookableIndex: 0,
 hasDetails: true,
 bookables
};

export default function BookablesList () {
 const [state, dispatch] = useReducer(reducer, initialState);

 const {group, bookableIndex, bookables, hasDetails} = state;

 const bookablesInGroup = bookables.filter(b => b.group === group);
 const bookable = bookablesInGroup[bookableIndex];
 const groups = [...new Set(bookables.map(b => b.group))];

 function changeGroup (e) {
 dispatch({
 type: "SET_GROUP",
 payload: e.target.value
 });
 }

 function changeBookable (selectedIndex) {
 dispatch({
 type: "SET_BOOKABLE",
 payload: selectedIndex
 });
 }

Branch: 0302-reducer, File: /src/components/Bookables/BookablesList.js

Listing 3.5 The BookablesList component using a reducer

Import the
useReducer hook.

Import the reducer
from listing 3.4.

Specify an
initial state.

Call useReduce
passing the
reducer and th
initial state.

ssign
state
es to
local
bles.

Dispatch an action
with a type and a
payload.

78 CHAPTER 3 Managing component state with the useReducer hook
 function nextBookable () {
 dispatch({ type: "NEXT_BOOKABLE" });
 }

 function toggleDetails () {
 dispatch({ type: "TOGGLE_HAS_DETAILS" });
 }

 return (
 <Fragment>
 <div>
 // group picker

 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => changeBookable(i)}
 >
 {b.title}
 </button>

))}

 // Next button
 </div>

 {bookable && (
 <div className="bookable-details">
 <div className="item">
 <div className="item-header">
 <h2>
 {bookable.title}
 </h2>

 <label>
 <input
 type="checkbox"
 checked={hasDetails}
 onChange={toggleDetails}
 />
 Show Details
 </label>

 </div>
 <p>{bookable.notes}</p>
 {hasDetails && (
 <div className="item-details">
 // details
 </div>

Dispatch an action
that doesn’t need
a payload.

Call the new
changeBookable
function.

Call the new
toggleDetails
function.

79Generating the initial state with a function
)}
 </div>
 </div>
)}
 </Fragment>
);
}

Listing 3.5 imports the reducer we created in listing 3.4, sets up an initial state object,
and then, in the component code itself, passes the reducer and initial state to use-
Reducer. Next, useReducer returns the current state and the dispatch function, and
we assign them to variables, state and dispatch, using array destructuring. The list-
ing uses an intermediate state variable and then destructures the state object into
individual variables—group, bookableIndex, bookables, and hasDetails—but you
could do the object destructuring directly inside the array destructuring:

const [
 {group, bookableIndex, bookables, hasDetails},
 dispatch
] = useReducer(reducer, initialState);

In the event handlers, the BookablesList component now dispatches actions rather
than updating individual state values via useState. We use separate event handler
functions (changeGroup, changeBookable, nextBookable, toggleDetails), but you
could easily dispatch actions inline within the UI. For example, you could set up the
Show Details check box like this:

 <label>
 <input
 type="checkbox"
 checked={hasDetails}
 onChange={() => dispatch({ type: "TOGGLE_HAS_DETAILS" })}
 />
 Show Details
 </label>

Either approach is fine, as long as you (and your team) find the code easy to read and
understand.

 Although the example is simple, you should appreciate how a reducer can help
structure your code, your state mutations, and your understanding, particularly as the
component state becomes more complex. If your state is complex and/or the initial
state is expensive to set up or is generated by a function you’d like to reuse or import,
the useReducer hook has a third argument you can use. Let’s check it out.

3.3 Generating the initial state with a function
You saw in chapter 2 that we can generate the initial state for useState by passing a
function to the hook. Similarly, with useReducer, as well as passing an initialization
argument as the second argument, we can pass an initialization function as the third

80 CHAPTER 3 Managing component state with the useReducer hook
argument. The initialization function uses the initialization argument to generate the
initial state, as shown in figure 3.6.

 As usual, useReducer returns an array with two elements: the state and a dispatch
function. On the first call, the state is the return value of the initialization function.
On subsequent calls, it is the state at the time of the call:

const [state, dispatch] = useReducer(reducer, initArgument, initFunction);

Use the dispatch function to dispatch actions to the reducer. For a particular call to
useReducer, React will always return the same dispatch function. (Having an unchang-
ing function is important when re-renders may depend on changing props or depen-
dencies, as you’ll see in later chapters.)

 In this section, we put useReducer’s initialization function argument to use as we
start work on a second component for the bookings app, the WeekPicker component.
We split the work into five subsections:

 Introducing the WeekPicker component
 Creating utility functions to work with dates and weeks
 Building the reducer to manage dates for the component
 Creating WeekPicker, passing an initialization function to the useReducer hook
 Updating BookingsPage to use WeekPicker

const [state, dispatch] = useReducer(reducer, initArg, initFn);

State:
The current
value of each
property

Reducer:
Uses an action
to create
a new state
from the old

Dispatch function:
Passes an action
to the reducer

Initialization argument:
The value passed to
the initialization
function

Initialization function:
Uses the initialization
argument to generate
the initial state for the
reducer

Figure 3.6 The initialization function for useReducer uses the initialization argument to generate the
reducer’s initial state.

81Generating the initial state with a function
3.3.1 Introducing the WeekPicker component

So far in the bookings app, we’ve been concentrating on the BookablesList compo-
nent, displaying a list of bookables. To set the groundwork for actually booking a
resource, we need to start thinking about calendars; in the finished app, our users will
pick a date and session from a bookings grid calendar, as shown in figure 3.7.

Let’s start small and just consider the interface for switching between one week and
the next. Figure 3.8 shows a possible interface for picking the week to show in the
bookings grid. It includes the following:

 The start and end dates for the selected week
 Buttons to move to the next and previous weeks
 A button to show the week containing today’s date

Later in the book, we’ll add an input for jumping straight to a specific date. For now,
we’ll stick with our three buttons and week date text. To get the start and end dates for

Figure 3.7 The bookings page will include a list of bookables, a bookings grid, and a week picker.

Figure 3.8 The WeekPicker component shows the start and end dates for the
chosen week and has buttons to navigate between weeks.

82 CHAPTER 3 Managing component state with the useReducer hook
a specified week, we need a couple of utility functions to wrangle JavaScript’s date
object. Let’s conjure those first.

3.3.2 Creating utility functions to work with dates and weeks

Our bookings grid will show one week at a time, running from Sunday to Saturday. On
any particular date, we show the week that contains that date. Let’s create objects that
represent a week, with a particular date in the week and the dates for the start and end
of the week:

week = {
 date,
 start,
 end
};

For example, take Wednesday, April 1, 2020. The start of the week was Sunday, March
29, 2020, and the end of the week was Saturday, April 4, 2020:

week = {
 date, // 2020-04-01
 start, // 2020-03-29
 end // 2020-04-04
};

The following listing shows a couple of utility functions: one to create a new date from
an old date, offset by a number of days, and the second to generate the week objects.
The file is called date-wrangler.js and is in a new /src/utils folder.

export function addDays (date, daysToAdd) {
 const clone = new Date(date.getTime());
 clone.setDate(clone.getDate() + daysToAdd);
 return clone;
}

export function getWeek (forDate, daysOffset = 0) {
 const date = addDays(forDate, daysOffset);
 const day = date.getDay();

 return {
 date,
 start: addDays(date, -day),
 end: addDays(date, 6 - day)
 };
}

The getWeek function uses the getDay method of JavaScript’s Date object to get the
day-of-the-week index of the specified date: Sunday is 0, Monday is 1, . . . , Saturday is

Branch: 0303-week-picker, File: /src/utils/date-wrangler.js

Listing 3.6 Date-wrangling utility functions

JavaScript Date object
for a particular date Date object for the

start of the week
containing dateDate object for the

end of the week

Assign each property a
JavaScript Date object
for the specified date.

Shift the date by the
number of days specified.

Immediately
shift the date.

Get the day index for the new
date, for example, Tuesday = 2.

For example, if it’s Tuesday,
shift back by 2 days.

For example, if it’s Tuesday,
shift forward by 4 days.

83Generating the initial state with a function
6. To get to the start of the week, the function subtracts the same number of days as
the day index: for Sunday, it subtracts 0 days; for Monday, it subtracts 1 day; . . . ; for
Saturday, it subtracts 6 days. The end of the week is 6 days after the start of the week,
so to get the end of the week, the function performs the same subtraction as for the
start of the week but also adds 6. We can use the getWeek function to generate a week
object for a given date:

const today = new Date();
const week = getWeek(today);

We can also specify an offset number of days as the second argument if we want the
week object for a date relative to the date in the first argument:

const today = new Date();
const week = getWeek(today, 7);

The getWeek function lets us generate week objects as we navigate from week to week
in the bookings app. Let’s use it to do just that in a reducer.

3.3.3 Building the reducer to manage dates for the component

A reducer helps us to centralize the state management logic for our WeekPicker com-
ponent. In a single place, we can see all of the possible actions and how they update
the state:

 Move to the next week by adding seven days to the current date.
 Move to the previous week by subtracting seven days from the current date.
 Move to today by setting the current date to today’s date.
 Move to a specified date by setting the current date to the action’s payload.

For each action, the reducer returns a week object as described in the previous sec-
tion. Although we really need to track only a single date, we would need to generate
the week object at some point, and abstracting the week object generation along with
the reducer seems sensible to me. You can see how the possible state changes translate
to a reducer in the following listing. We put the weekReducer.js file in the Bookings
folder.

import {getWeek} from "../../utils/date-wrangler";

export default function reducer (state, action) {
 switch (action.type) {
 case "NEXT_WEEK":
 return getWeek(state.date, 7);
 case "PREV_WEEK":
 return getWeek(state.date, -7);
 case "TODAY":

Branch: 0303-week-picker, File: /src/components/Bookings/weekReducer.js

Listing 3.7 The reducer for WeekPicker

Get the week object for the
week containing today’s date.

Get the week object for the week
containing the date a week from today.

Import the
getWeek function.

Return a week object
for 7 days ahead.

Return a week object
for 7 days before.

84 CHAPTER 3 Managing component state with the useReducer hook

o

Rec
the in
date

p

 return getWeek(new Date());
 case "SET_DATE":
 return getWeek(new Date(action.payload));
 default:
 throw new Error(`Unknown action type: ${action.type}`)
 }
}

The reducer imports the getWeek function to generate the week object for each state
change. Having the getWeek function available to import means we can also use it as an
initialization function when we call the useReducer hook in the WeekPicker component.

3.3.4 Passing an initialization function to the useReducer hook

The WeekPicker component lets users navigate from week to week to book resources
in the company. We set up the reducer in the preceding section; now it’s time to use it.
The reducer needs an initial state, a week object. The following listing shows how we
can use the getWeek function to generate the initial week object from a date we pass to
WeekPicker as a prop. The WeekPicker.js file is also in the Bookings folder.

import {useReducer} from "react";
import reducer from "./weekReducer";
import {getWeek} from "../../utils/date-wrangler";
import {FaChevronLeft, FaCalendarDay, FaChevronRight} from "react-icons/fa";

export default function WeekPicker ({date}) {
 const [week, dispatch] = useReducer(reducer, date, getWeek);

 return (
 <div>
 <p className="date-picker">
 <button
 className="btn"
 onClick={() => dispatch({type: "PREV_WEEK"})}
 >
 <FaChevronLeft/>
 Prev
 </button>

 <button
 className="btn"
 onClick={() => dispatch({type: "TODAY"})}
 >
 <FaCalendarDay/>
 Today
 </button>

 <button
 className="btn"
 onClick={() => dispatch({type: "NEXT_WEEK"})}

Branch: 0303-week-picker, File: /src/components/Bookings/WeekPicker.js

Listing 3.8 The WeekPicker component

Return
a week

bject for
today.

Return a week object
for a specified date.

Import the getWeek
date-wrangler function.

eive
itial
as a
rop.

Generate the
initial state,
passing date
to getWeek.

Dispatch actions
to the reducer to
switch weeks.

85Generating the initial state with a function
 >
 Next
 <FaChevronRight/>
 </button>
 </p>
 <p>
 {week.start.toDateString()} - {week.end.toDateString()}
 </p>
 </div>
);
}

Our call to useReducer passes the specified date to the getWeek function. The getWeek
function returns a week object that is set as the initial state. We assign the state that
useReducer returns to a variable called week:

const [week, dispatch] = useReducer(reducer, date, getWeek);

In addition to letting us reuse the getWeek function to generate state (in the reducer
and the WeekPicker component), the initialization function (useReducer’s third
argument) also allows us to run expensive state generation functions once only, on
the initial call to useReducer.

 At last, a new component! Let’s hook it up to BookingsPage.

3.3.5 Updating BookingsPage to use WeekPicker

The following listing shows an updated BookingsPage component that imports and
renders the WeekPicker component. The resulting page is shown in figure 3.9.

Use the
current state
to display the
date info.

Figure 3.9 The BookingsPage component with the WeekPicker component in place

86 CHAPTER 3 Managing component state with the useReducer hook
import WeekPicker from "./WeekPicker";

export default function BookingsPage () {
 return (
 <main className="bookings-page">
 <p>Bookings!</p>
 <WeekPicker date={new Date()}/>
 </main>
);
}

BookingsPage passes the WeekPicker component the current date. The week picker
first appears showing the start and end dates of the current week, from Sunday to Sat-
urday. Have a go navigating from week to week and then click the Today button to
jump back to the present week. It’s a simple component but helps drive the bookings
grid in chapters to come. And it provides an example of useReducer’s initialization
function argument.

 Before this chapter’s formal Summary section, let’s briefly recap some of the key
concepts we’ve encountered, building your understanding of function components
and hooks.

3.4 Reviewing some useReducer concepts
A bit more jargon has crept into this discussion, so just in case all the actions, reduc-
ers, and dispatch functions are causing some dizziness, table 3.1 describes the terms
with examples. Take a breather!

Branch: 0303-week-picker, File: /src/components/Bookings/BookingsPage.js

Listing 3.9 The BookingsPage component using WeekPicker

Table 3.1 Some of the key terms we’ve met

Icon Term Description Example

Initial state The values of variables and prop-
erties when the component first
runs

{
 group: "Rooms",
 bookableIndex: 0,
 hasDetails: false
}

Action Information that the reducer uses
to update the state

{
 type: "SET_BOOKABLE",
 payload: 1
}

Import the WeekPicker
component.

Include the WeekPicker
in the UI, passing it the
current date.

87Reviewing some useReducer concepts
Once we pass the reducer and initial state to React via our call to useReducer, it man-
ages the state for us. We just have to dispatch actions, and React will use the reducer to
update the state depending on which action it receives. Remember, our component
code returns a description of its UI. Having updated the state, React knows it may
need to update the UI, so it will call our component code again, passing it the latest
state and the dispatcher function when the component calls useReducer. To reinforce
the functional nature of our components, figure 3.10 illustrates each step when React
first calls the BookablesList component and a user then fires an event by selecting a
group, choosing a bookable, or toggling the Show Details check box.

 Table 3.2 lists the steps from figure 3.10, describing what is happening and includ-
ing short discussions of each one.

 Each time it needs the UI, React invokes the component code. The component
function runs to completion, and local variables are created during execution, and
destroyed or referenced in closures when the function ends. The function returns a
description of the UI for the component. The component uses hooks, like useState
and useReducer, to persist state across invocations and to receive updater and dis-
patch functions. Event handlers call the updater functions or dispatch actions in
response to user actions, and React can update the state and call the component code
again, restarting the cycle.

Reducer A function React passes the cur-
rent state and an action. It cre-
ates a new state from the current
state, depending on the action.

(state, action) => {
 // check action

 // update state based
 // on action type and
 // action payload

 // return new state
};

State The values of variables and
properties at a particular point
in execution

{
 group: "Rooms",
 bookableIndex: 1,
 hasDetails: false
}

Dispatch
function

A function for dispatching actions
to the reducer. Use it to tell the
reducer what action to take.

dispatch({
 type: "SET_BOOKABLE",
 payload: 1
});

Table 3.1 Some of the key terms we’ve met (continued)

Icon Term Description Example

88 CHAPTER 3 Managing component state with the useReducer hook
Table 3.2 Some key steps when using useReducer

Step What happens? Discussion

11 React calls the component. To generate the UI for the page, React traverses the tree of
components, calling each one. React will pass each compo-
nent any props set as attributes in the JSX.

12 The component calls
useReducer for the first
time.

The component passes the initial state and the reducer to the
useReducer function. React sets the current state for the
reducer as the initial state.

Figure 3.10 Stepping through the key moments when using useReducer

89Summary
Summary
 If you have multiple pieces of interrelated state, consider using a reducer to

clearly define the actions that can change the state. A reducer is a function
to which you pass the current state and an action. It uses the action to generate
a new state. It returns the new state:

function reducer (state, action) {
 // use the action to generate a new state from the old state.
 // return newState.
}

13 React returns the current
state and the dispatch func-
tion as an array.

The component code assigns the state and dispatch function
to variables for later use. The variables are often called
state and dispatch, or we might destructure the state into
further variables.

14 The component sets up an
event handler.

The event handler may listen for user clicks, timers firing, or
resources loading, for example. The handler will dispatch an
action to change the state.

15 The component returns its UI. The component uses the current state to generate its user
interface and returns it, finishing its work. React compares
the new UI to the old and updates the DOM.

16 The event handler dis-
patches an action.

An event fires, and the handler runs. The handler uses the
dispatch function to dispatch an action.

17 React calls the reducer. React passes the current state and the dispatched action to
the reducer.

18 The reducer returns the new
state.

The reducer uses the action to update the state and returns
the new version.

19 React calls the component. React knows the state has changed and so must recalculate
the UI.

10 The component calls use-
Reducer for the second time.

This time, React will ignore the arguments.

11 React returns the current
state and the dispatch
function.

The state has been updated by the reducer, and the compo-
nent needs the latest values. The dispatch function is the
exact same function as React returned for the previous call
to useReducer.

12 The component sets up an
event handler.

This is a new version of the handler and may use some of the
newly updated state values.

13 The component returns its UI. The component uses the current state to generate its user
interface and returns it, finishing its work. React compares
the new UI to the old and updates the DOM.

Table 3.2 Some key steps when using useReducer (continued)

Step What happens? Discussion

90 CHAPTER 3 Managing component state with the useReducer hook
 Call the useReducer hook when you want React to manage the state and
reducer for a component. Pass it the reducer and an initial state. It returns an
array with two elements, the state and a dispatch function:

const [state, dispatch] = useReducer(reducer, initialState);

 Call the useReducer hook with an initialization argument and an initialization
function to generate the initial state when the hook is first called. The hook
automatically passes the initialization argument to the initialization function.
The initialization function returns the initial state for the reducer. This is useful
when initialization is expensive or when you want to use an existing function to
initialize the state:

const [state, dispatch] = useReducer(reducer, initArg, initFunc);

 Use the dispatch function to dispatch an action. React will pass the current
state and the action to the reducer. It will replace the state with the new state
generated by the reducer. It will re-render if the state has changed:

dispatch(action);

 For anything more than the most basic actions, consider following common
practice and specify the action as a JavaScript object with type and payload
properties:

dispatch({ type: "SET_NAME", payload: "Jamal" });

 React always returns the same dispatch function for a particular call to use-
Reducer within a component. (If the dispatch function changed between calls,
it could cause unnecessary re-renders when passed as a prop or included as a
dependency for other hooks.)

 In the reducer, use if or switch statements to check for the type of action
dispatched:

function reducer (state, action) {
 switch (action.type) {
 case "SET_NAME":
 return {
 ...state,
 name: action.payload
 }
 default:
 return state;

91Summary
 // or return new Error(`Unknown action type: ${action.type}`)
 }
}

In the default case, either return the unchanged state (if the reducer will be
combined with other reducers, for example) or throw an error (if the reducer
should never receive an unknown action type).

Working with side effects
React transforms our data into UI. Each component plays its part, returning its
contribution to the overall user interface. React builds the tree of elements, com-
pares it with what’s already rendered, and commits any necessary changes to the
DOM. When the state changes, React goes through the process again to update the
UI. React is really good at efficiently deciding what should update and scheduling
any changes.

 Sometimes, however, we need our components to reach outside this data-flow
process and directly interact with other APIs. An action that impinges on the outside
world in some way is called a side effect. Common side effects include the following:

 Setting the page title imperatively
 Working with timers like setInterval or setTimeout

This chapter covers
 Recognizing types of side effects in components

 Wrapping side effects with the useEffect hook

 Controlling when an effect runs by specifying a
dependency list

 Returning a cleanup function from an effect

 Using an effect to fetch data for a component
92

93Exploring the useEffect API with simple examples
 Measuring the width, height, or position of elements in the DOM
 Logging messages to the console or other service
 Setting or getting values in local storage
 Fetching data or subscribing and unsubscribing to services

Whatever our components are trying to achieve, it would be risky for them to simply
ignore React and try to perform their tasks blindly. It’s much better to enlist React’s
help to schedule such side effects effectively, considering when and how often they
should run, even as React does its job of rendering each component and committing
changes to the screen. React provides the useEffect hook so that we can better con-
trol side effects and integrate them into the life cycles of our components.

 In this chapter, we come to grips with how the useEffect hook works. We start, in
section 4.1, by trying out simple examples that highlight calling the hook, controlling
when it runs, and specifying how to clean up any effects when a component unmounts.
In section 4.2, we set up a simple server for data in the bookings app example and create
components to practice fetching that data. Finally, in section 4.3, we switch our book-
ings app over from importing database files to fetching data from a server.

 The useEffect hook is our gateway to safe interactions with the outside world.
Let’s take our first steps on the path.

4.1 Exploring the useEffect API with simple examples
Some of our React components are super friendly, reaching out to say “hi” to APIs and
services outside React. Although these components are eternally optimistic and like to
think the best of all those they meet, there are some safeguards to be followed. In this
section, we look at setting up side effects in ways that won’t get out of hand. In partic-
ular, we explore these four scenarios:

 Running side effects after every render
 Running an effect only when a component mounts
 Cleaning up side effects by returning a function
 Controlling when an effect runs by specifying dependencies

To focus on the API, we’ll create some super-simple component examples, rather than
jumping straight into the bookings app as a context. First up, let’s say, “Bonjour, les
side-effects.”

4.1.1 Running side effects after every render

Say you want to add a random greeting to the page’s title in the browser. Clicking your
friendly component’s Say Hi button should generate a new greeting and update the
title. Three such greetings are shown in figure 4.1.

 The document title isn’t part of the document body and isn’t rendered by React.
But the title is accessible via the document property of the window. You can set the title
like this:

document.title = "Bonjour";

94 CHAPTER 4 Working with side effects
Reaching out to a browser API in this way is considered a side effect. We can make that
explicit by wrapping the code in the useEffect hook:

useEffect(() => {
 document.title = "Bonjour";
});

The following listing shows a SayHello component that updates the page title with a
random greeting whenever the user clicks the Say Hi button.

import React, { useState, useEffect } from "react";

export default function SayHello () {
 const greetings = ["Hello", "Ciao", "Hola", "こんにちは"];

 const [index, setIndex] = useState(0);

 useEffect(() => {
 document.title = greetings[index];
 });

 function updateGreeting () {
 setIndex(Math.floor(Math.random() * greetings.length));
 }

 return <button onClick={updateGreeting}>Say Hi</button>
}

Live: https://jhijd.csb.app, Code: https://codesandbox.io/s/sayhello-jhijd

Listing 4.1 Updating the browser title

Figure 4.1 Clicking the Say Hi button updates the page title with a
random greeting.

Import the
useEffect hook.

Pass the useEffect hook
a function, the effect.

Update the browser title
from inside the effect.

https://jhijd.csb.app
https://codesandbox.io/s/sayhello-jhijd

95Exploring the useEffect API with simple examples
The component uses a randomly generated index to pick a greeting from an array.
Whenever the updateGreeting function calls setIndex, React re-renders the compo-
nent (unless the index value doesn’t change).

 React runs the effect function within the useEffect hook after every render,
once the browser has repainted the page, updating the page title as required. Notice
that the effect function has access to the variables within the component because it’s
in the same scope. In particular, it uses the values of the greetings and index vari-
ables. Figure 4.2 shows how you pass an effect function as the first argument to the
useEffect hook.

When you call the useEffect hook in this way, without a second argument, React runs
the effect after every render. But what if you want to run an effect only when a compo-
nent mounts?

4.1.2 Running an effect only when a component mounts

Say you want to use the width and height of the browser window, maybe for a groovy
animation effect. To test out reading the dimensions, you create a little component
that displays the current width and height, just as in figure 4.3.

 The following listing shows the code for the component. It reaches out to read the
innerWidth and innerHeight properties of the window object, so, once again, we use
the useEffect hook.

useEffect(() => { /* perform side effect */ });

Effect function:
A function that
performs a side effect

Function body:
Perform the side effect
with access to variables
in component scope.

()=>{ }

{ }
Figure 4.2 Passing an effect function to the useEffect hook

96 CHAPTER 4 Working with side effects

an
array
depen

argu
import React, { useState, useEffect } from "react";

export default function WindowSize () {
 const [size, setSize] = useState(getSize());

 function getSize () {
 return {
 width: window.innerWidth,
 height: window.innerHeight
 };
 }

 useEffect(() => {
 function handleResize () {
 setSize(getSize());
 }

 window.addEventListener('resize', handleResize);
 }, []);

 return <p>Width: {size.width}, Height: {size.height}</p>
}

Within useEffect, the component registers an event listener for resize events:

window.addEventListener('resize', handleResize);

Live: https://gn80v.csb.app/, Code: https://codesandbox.io/s/windowsize-gn80v

Listing 4.2 Resizing the window

Figure 4.3 Displaying the width and height of a window as it’s resized

Define a function that
returns the dimensions of
the window.

Read the dimensions
from the window object.

Update the state,
triggering a re-render.

Register an event listener
for the resize event.

Pass
 empty
 as the
dency
ment.

https://gn80v.csb.app/
https://codesandbox.io/s/windowsize-gn80v

97Exploring the useEffect API with simple examples
Whenever the user resizes the browser, the handler, handleResize, updates the state
with the new dimensions by calling setSize:

function handleResize () {
 setSize(getSize());
}

By calling the updater function, the component kicks off a re-render. We don’t want
to keep reregistering the event listener every time React calls the component. So how
do we prevent the effect from running after every render? The trick is the empty array
passed as the second argument to useEffect, as illustrated in figure 4.4.

As we see in section 4.1.4, the second argument is for a list of dependencies. React
determines whether to run an effect by checking if the values in the list have changed
since the last time the component called the effect. By setting the list to an empty
array, the list will never change, and we cause the effect to run only once, when the
component first mounts.

 But hang on a second; alarm bells should be ringing. We registered an event lis-
tener . . . we shouldn’t just leave that listener listening away, like a zombie shambling
in a crypt for all eternity. We need to perform some cleaning up and unregister the lis-
tener. Let’s wrangle those zombies.

4.1.3 Cleaning up side effects by returning a function

We have to be careful not to make a mess when we set up long-running side effects
like subscriptions, data requests, timers, and event listeners. To avoid zombies eating
our brains so our memories start to leak, or ghosts shifting the furniture unexpect-
edly, we should carefully undo any effects that may cause undead echoes of our
actions to live on.

useEffect(() => {

// perform a side effect

}, []);

Effect function:
We want to run this
function only once, when
the component mounts.

Dependency list:
An empty list causes the
effect to run once, when the
component first mounts.

()=>{ }

()=>{}[],

Figure 4.4 Passing an empty dependency array causes the effect function to run once, when the
component mounts.

98 CHAPTER 4 Working with side effects
 The useEffect hook incorporates a simple mechanism for cleaning up our effects.
Just return a function from the effect. React runs the returned function when it’s time
to tidy up. The following listing updates our window-measuring app to remove the
resize listener when it’s no longer needed.

import React, { useState, useEffect } from "react";

export default function WindowSize () {
 const [size, setSize] = useState(getSize());

 function getSize () {
 return {
 width: window.innerWidth,
 height: window.innerHeight
 };
 }

 useEffect(() => {
 function handleResize () {
 setSize(getSize());
 }

 window.addEventListener('resize', handleResize);

 return () => window.removeEventListener('resize', handleResize);
 }, []);

 return <p>Width: {size.width}, Height: {size.height}</p>
}

Because the code passes useEffect an empty array as the second argument, the effect
will run only once. When the effect runs, it registers an event listener. React keeps
ahold of the function the effect returns and calls it when it’s time to clean up. In list-
ing 4.3, the returned function removes the event listener. Our memory won’t leak.
Our brains are safe from zombie effects.

 Figure 4.5 shows this latest step in our evolving knowledge of the useEffect hook:
returning a cleanup function.

 Because the cleanup function is defined within the effect, it has access to the vari-
ables within the effect’s scope. In listing 4.3, the cleanup function can remove the
handleResize function because handleResize was also defined within the same effect:

useEffect(() => {
 function handleResize () {
 setSize(getSize());
 }

Live: https://b8wii.csb.app/, Code: https://codesandbox.io/s/windowsizecleanup-b8wii

Listing 4.3 Returning a cleanup function to remove a listener

Return a
cleanup function
from the effect.

Define the
handleResize function.

https://b8wii.csb.app/
https://codesandbox.io/s/windowsizecleanup-b8wii

99Exploring the useEffect API with simple examples
 window.addEventListener('resize', handleResize);

 return () => window.removeEventListener('resize', handleResize);
}, []);

The React Hooks approach, in which components and hooks are just functions,
makes good use of the inherent nature of JavaScript, rather than too heavily relying
on a layer of idiosyncratic APIs conceptually divorced from the underlying language.
That does mean, however, that you need a good grasp of scope and closures to best
understand where to put your variables and functions.

 React runs the cleanup function when it unmounts the component. But that’s not
the only time it runs it. Whenever the component re-renders, React calls the cleanup
function before running the effect function, if the effect runs again. If multiple effects
need to run again, React calls all of the cleanup functions for those effects. Once the
cleanup is finished, React reruns the effect functions as needed.

 We’ve seen the two extremes: running an effect only once and running an effect
after every render. What if we want more control over when an effect runs? There’s
one more case to cover. Let’s populate that dependency array.

4.1.4 Controlling when an effect runs by specifying dependencies

Figure 4.6 is our final illustration of the useEffect API, including dependency values
in the array we pass as the second argument.

 Each time React calls a component, it keeps a record of the values in the depen-
dency arrays for calls to useEffect. If the array of values has changed since the last
call, React runs the effect. If the values are unchanged, React skips the effect. This

useEffect(() => {

// perform a side effect

return function () { /* clean up side effect */ };

}, []);

Cleanup function:
Return a function to clean up
after the effect (e.g., unsubscribe,
stop timers, remove listeners, etc.).

{ }
Figure 4.5 Return a function from the effect. React will run the function to
clean up after the effect.

Reference the handleResize function
from the cleanup function.

100 CHAPTER 4 Working with side effects
saves the effect from running when the values it depends on are unchanged and so
the outcome of its task will be unchanged.

 Let’s look at an example. Say you have a user picker that lets you select a user from
a drop-down menu. You want to store the selected user in the browser’s local storage
so that the page remembers the selected user from visit to visit, as shown in figure 4.7.

The following listing shows the code to achieve the desired effect. It includes two calls
to useEffect, one to get any stored user from local storage, and one to save the
selected user whenever that value changes.

useEffect(() => {

// do something with dep1 and dep2

return () => { /* clean up */ };

}, [dep1, dep2]);

Cleanup function:
Remove listeners,
unsubscribe, etc.

Dependency list:
Run the effect only if the
values in the array change.

{ }

()=>{}[],

Figure 4.6 When calling useEffect, you can specify a list of dependencies and return
a cleanup function.

1. When the page first
loads, the drop-down
shows the default user.

2. The component saves
the value to local storage.

4. The component saves
the value to local storage.

6. The component loads
the value from local storage.

3. Select a user.

{name: {name: "Akiko"} {name: "Akiko"}"Sanjiv"}

5. Refresh the page.

Figure 4.7 Once you select a user, refreshing the page automatically reselects the same user.

101Exploring the useEffect API with simple examples

Sp
s

R

wh
th
ch
import React, { useState, useEffect } from "react";

export default function UserStorage () {
 const [user, setUser] = useState("Sanjiv");

 useEffect(() => {
 const storedUser = window.localStorage.getItem("user");

 if (storedUser) {
 setUser(storedUser);
 }
 }, []);

 useEffect(() => {
 window.localStorage.setItem("user", user);
 }, [user]);

 return (
 <select value={user} onChange={e => setUser(e.target.value)}>
 <option>Jason</option>
 <option>Akiko</option>
 <option>Clarisse</option>
 <option>Sanjiv</option>
 </select>
);
}

The component works as expected, saving changes to local storage and automatically
selecting the saved user when the page is reloaded.

 But to get a better feel for how the function component and its hooks manage all
the pieces, let’s run through the steps for the component as it renders and re-renders
and a visitor to the page selects a user from the list. We look at two key scenarios:

1 The visitor first loads the page. There is no user value in local storage. The visi-
tor selects a user from the list.

2 The visitor refreshes the page. There is a user value in local storage.

As we go through the steps, notice how the dependency lists for the two effects deter-
mine when the effect functions run.

THE VISITOR FIRST LOADS THE PAGE

When the component first runs, it renders the drop-down list of users with Sanjiv
selected. Then the first effect runs. No user is in local storage, so nothing happens.
Then the second effect runs. It saves Sanjiv to local storage. Here are the steps:

1 The user loads the page.
2 React calls the component.

Live: https://c987h.csb.app/, Code: https://codesandbox.io/s/userstorage-c987h

Listing 4.4 Using local storage

Read the
user from
local storage.

Run this effect only
when the component
first mounts.ecify a

econd
effect. Save the user to

local storage.

un this
effect

enever
e user
anges.

https://c987h.csb.app/
https://codesandbox.io/s/userstorage-c987h

102 CHAPTER 4 Working with side effects
3 The useState call sets the value of user to Sanjiv. (It’s the first time the com-
ponent has called useState, so the initial value is used.)

4 React renders the list of users with Sanjiv selected.
5 Effect 1 runs, but there is no stored user.
6 Effect 2 runs, saving Sanjiv to local storage.

React calls the effect functions in the order they appear in the component code.
When the effects run, React keeps a record of the values in the dependency lists, []
and ["Sanjiv"] in this case.

 When the visitor selects a new user (say, Akiko), the onChange handler calls the
setUser updater function. React updates the state and calls the component again.
This time, effect 1 doesn’t run because its dependency list hasn’t changed; it’s still [].
But the dependency list for effect 2 has changed from ["Sanjiv"] to ["Akiko"], so
effect 2 runs again, updating the value in local storage. The steps continue as follows:

7 The user selects Akiko.
8 The updater function sets the user state to Akiko.
9 React calls the component.

10 The useState call sets the value of user to Akiko. (It’s the second time the com-
ponent has called useState, so the latest value, set in step 8, is used.)

11 React renders the list of users with Akiko selected.
12 Effect 1 doesn’t run ([] = []).
13 Effect 2 runs (["Sanjiv"] != ["Akiko"]), saving Akiko to local storage.

THE VISITOR REFRESHES THE PAGE

With local storage set to Akiko, if the user reloads the page, effect 1 will set the user
state to the stored value, Akiko, as we saw in figure 4.7. But before React calls the com-
ponent with the new state value, effect 2 still has to run with the old value. Here are
the steps:

1 The user refreshes the page.
2 React calls the component.
3 The useState call sets the value of user to Sanjiv. (It’s the first time the com-

ponent has called useState, so the initial value is used.)
4 React renders the list of users with Sanjiv selected.
5 Effect 1 runs, loading Akiko from local storage and calling setUser.
6 Effect 2 runs, saving Sanjiv to local storage.
7 React calls the component (because effect 1 called setUser, changing the state).
8 The useState call sets the value of user to Akiko.
9 React renders the list of users with Akiko selected.

10 Effect 1 doesn’t run ([] = []).
11 Effect 2 runs (["Sanjiv"] != ["Akiko"]), saving Akiko to local storage.

103Exploring the useEffect API with simple examples
In step 6, effect 2 was defined as part of the initial render, so it still uses the initial user
value, Sanjiv.

 By including user in the list of dependencies for effect 2, we’re able to control
when effect 2 runs: only when the value of user changes.

4.1.5 Summarizing the ways to call the useEffect hook

Table 4.1 collects the various use cases for the useEffect hook into one place, show-
ing how the different code patterns lead to different execution patterns.

CHALLENGE 4.1
On CodeSandbox (or anywhere you prefer), create an app that updates the docu-
ment title as the window is resized. It should say “Small” or “Medium” or “Large,”
depending on the size of the window.

4.1.6 Calling useLayoutEffect to run an effect before
the browser repaints

Most of the time, we synchronize side effects with state by calling useEffect. React
runs the effects after the component has rendered and the browser has repainted the
screen. Occasionally, we might want to make further changes to state after React has
updated the DOM but before the browser has repainted. We might want to use the
dimensions of DOM elements to set state in some way, for example. Making changes
in useEffect will show users an intermediate state that’ll immediately be updated.

 We can avoid such flashes of changing state by calling the useLayoutEffect hook
instead of useEffect. This hook has the same API as useEffect but runs synchro-
nously after React updates the DOM and before the browser repaints. If the effect
makes further updates to the state, the intermediate state isn’t painted to the screen.

Table 4.1 The various use cases for the useEffect hook

Call pattern Code pattern Execution pattern

No second argument useEffect(() => {
 // perform effect
});

Run after every render.

Empty array as second
argument

useEffect(() => {
 // perform effect
}, []);

Run once, when the compo-
nent mounts.

Dependency array as
second argument

useEffect(() => {
 // perform effect
 // that uses dep1 and dep2
}, [dep1, dep2]);

Run whenever a value in the
dependency array changes.

Return a function useEffect(() => {
 // perform effect
 return () => {/* clean-up */};
}, [dep1, dep2]);

React will run the cleanup
function when the component
unmounts and before rerun-
ning the effect.

104 CHAPTER 4 Working with side effects
You generally won’t need useLayoutEffect, but if you come across problems (maybe
with an element flickering between states), you could try switching from useEffect
for the suspect effect.

 Now that we’ve seen what the useEffect hook can do, it’s time to fetch some data.
Let’s make our app data available via a server rather than as a file import.

4.2 Fetching data
So far in this book, we’ve been importing data for the bookings app example from
the static.json file. But it’s more common to fetch data from a server. To make our
examples a little more realistic, let’s start doing just that. Rather than reach out to a
public server, we’ll run a JSON server locally, using a new db.json file outside the src
folder. We’ll then create a component that fetches data from that server. We cover
the following:

 Creating the new db.json file
 Setting up a JSON server using the json-server package
 Building a component to fetch data from our server, displaying a list of users
 Taking care when using async and await within an effect

4.2.1 Creating the new db.json file

In chapters 2 and 3, we imported data from the static.json file. For our server, copy
across the bookings, users, and bookables data to a new db.json file in the root of the
project. Don’t copy the days and sessions arrays in static.json; we treat that as config
information and continue to import it. (We’ll remove the duplicated data from
static.json after we’ve updated the components that are currently using it.)

// db.json
{
 bookings: [/* empty */],
 users: [/* user objects */],
 bookables: [/* bookable objects */]
}

// static.json
{
 days: [/* names of days */],
 sessions: [/* session names */]
}

In later chapters, we’ll start updating the database file by sending POST and PUT
requests. The create-react-app development server restarts whenever files within
the src folder change. Having the db.json file outside src avoids unnecessary restarts as
we test adding new bookables and making bookings.

105Fetching data
4.2.2 Setting up a JSON server

Until now, we’ve been importing data for the BookablesList, UsersList, and User-
Picker components from a JSON file, static.json:

import {bookables} from "../../static.json";
import {users} from "../../static.json";

To better exemplify the kinds of data-fetching tasks we perform in a real application,
we want to make our data available via HTTP. Luckily, we don’t need to spin up a real
database for our data. We can instead use the json-server npm package. This pack-
age is a really handy, easy way of serving up JSON data as a mock REST API. There’s a
user guide at https://github.com/typicode/json-server, where you can see just how
flexible the package is. To install the package globally using npm, enter this command:

npm install -g json-server

Then, from within the root of our project, start the server with this command:

json-server --watch db.json --port 3001

You should be able to query our database on localhost:3001. Figure 4.8 shows the
terminal output on my machine when I start up the server.

 We’ve made our db.json file JSON data available over HTTP via URL endpoints.
Comparing the data from the file to figure 4.8, you can see that the server has turned

Figure 4.8 The output when running json-server. Properties from within the db.json file have been
turned into endpoints for fetchable resources.

https://github.com/typicode/json-server

106 CHAPTER 4 Working with side effects
each property from the JSON object into an endpoint. For example, to get the list of
users, navigate to localhost:3001/users; and to get the user with an ID of 1, navigate
to localhost:3001/users/1. Nice!

 You can test out the requests in a browser. The results of the two requests just men-
tioned are shown in figure 4.9: first, the list of user objects in an array, and second, the
user object with an ID of 1.

Let’s try out our server and fetch some data from within a useEffect hook.

4.2.3 Fetching data within a useEffect hook

To introduce data fetching from within a useEffect hook, we update the UserPicker
component to fetch the users from our JSON database. Figure 4.10 shows the expanded
drop-down list with the four users.

Remember, React calls effect functions after rendering, so the data won’t be available
for the first render; we set an empty list of users as the initial value and return alterna-
tive UI, a new Spinner component, for the loading state. The following listing shows
the code to fetch the list of users and display it in the drop-down.

Figure 4.9 Two browser responses showing our bookings app data is now available via HTTP

Figure 4.10 Displaying a list of
users fetched from the database

107Fetching data

Up
s
th

alt
UI w
use
import {useState, useEffect} from "react";
import Spinner from "../UI/Spinner";

export default function UserPicker () {
 const [users, setUsers] = useState(null);

 useEffect(() => {

 fetch("http://localhost:3001/users")
 .then(resp => resp.json())
 .then(data => setUsers(data));

 }, []);

 if (users === null) {
 return <Spinner/>
 }

 return (
 <select>
 {users.map(u => (
 <option key={u.id}>{u.name}</option>
))}
 </select>
);
}

The UserPicker code uses the browser’s fetch API to retrieve the list of users from the
database, parses the response as JSON by using the resp.json method, and calls
setUsers to update the local state with the result. The component initially renders a
Spinner placeholder (from the new /src/components/UI folder in the repo), before
replacing it with the list of users. If you want to add latency to the fetch calls, to better
see any loading states, start the JSON server with a delay flag. This snippet delays
responses for 3000 milliseconds, or 3 seconds:

json-server --watch db.json --port 3001 --delay 3000

The effect in listing 4.5 runs only once, when the component mounts. We’re not
expecting the list of users to change, so there’s no need to manage the reloading of
the list. The following list shows the sequence of steps for fetching data from an effect
in this way:

1 React calls the component.
2 The useState call sets the users variable to null.
3 The useEffect call registers the data-fetching effect function with React.
4 The users variable is null, so the component returns the spinner icon.
5 React runs the effect, requesting data from the server.

Branch: 0401-user-picker, File: /src/components/Users/UserPicker.js

Listing 4.5 The UserPicker component fetching data

Fetch the data from
inside an effect function.

Make the request to the
database by using the
browser’s fetch API.

Convert the JSON string returned
into a JavaScript object.

date the
tate with
e loaded

users.

Include an empty dependency
array to load the data once,
when the component is first
mounted.Return

ernative
hile the
rs load.

108 CHAPTER 4 Working with side effects
6 The data arrives, and the effect calls the setUsers updater function, triggering
a re-render.

7 React calls the component.
8 The useState call sets the users variable to the returned list of users.
9 The empty dependency array, [], for useEffect is unchanged, so the hook call

does not reregister the effect.
10 The users array has four elements (it’s not null), so the component returns

the drop-down UI.

This method of fetching data, in which the component renders before it kicks off a
request for data, is called fetch on render. Other methods can sometimes offer a smoother
experience for your users, and we’ll take a look at some of those in part 2. But depend-
ing on the complexity and stability of the data source and your application’s needs,
the simplicity of fetching within a call to the useEffect hook might be perfectly ade-
quate and quite appealing.

CHALLENGE 4.2
Update the UsersList component on the UsersPage to fetch the users data from
the server. The 0402-users-list branch has the challenge solution code for the updated
component.

4.2.4 Working with async and await

The fetch call in listing 4.5 returns a promise, and the listing uses the promise’s then
method to process the response:

fetch("http://localhost:3001/users")
 .then(resp => resp.json())
 .then(data => setUsers(data));

JavaScript also offers async functions and the await keyword for working with asyn-
chronous responses, but there are some caveats when combining them with the
useEffect hook. As an initial attempt to convert our data-fetching to async-await, we
might try this:

useEffect(async () => {
 const resp = await fetch("http://localhost:3001/users");
 const data = await (resp.json());
 setUsers(data);
}, []);

But that approach provokes React to show a warning on the console, as shown in fig-
ure 4.11.

 The key message from the browser is as follows:

 Effect callbacks are synchronous to prevent race conditions. Put the async func-
tion inside.

109Fetching data for the BookablesList component
async functions return a promise by default. Setting the effect function as async will
cause trouble because React is looking for the return value of an effect to be a cleanup
function. To solve the issues, remember to put the async function inside the effect
function, rather than making the effect function async itself:

useEffect(() => {
 async function getUsers() {
 const resp = await fetch(url);
 const data = await (resp.json());
 setUsers(data);
 }
 getUsers();
}, []);

Now that we’ve set up the JSON server, tried an example of the fetch-on-render data-
fetching method with the useEffect hook, and taken a moment to consider async-
await syntax, we’re ready to update the bookings app to fetch data for the Book-
ablesList component.

4.3 Fetching data for the BookablesList component
In the preceding section, we saw how a component can load data after its initial render
by including the fetching code within a call to the useEffect hook. More-complicated
applications consist of many components and multiple queries for data that could use
multiple endpoints. You might try to smooth that complexity by moving the state and
its associated data-fetching actions into a separate data store and then connecting
components to the store. But situating the data fetching within the components that
consume the data may be a more direct and understandable approach for your app.
We’ll consider different approaches in chapter 9, when we look at custom hooks, and
in part 2, when we look at models for data fetching.

 For now, we’ll keep things simple and get the BookablesList component to load
its own data. We’ll develop its data-fetching capability over four steps:

Figure 4.11 Our async-await data-fetching effect causes React to issue some warnings.

Define an async function.

Wait for asynchronous
results.

Call the async
function.

110 CHAPTER 4 Working with side effects
 Examining the data-loading process
 Updating the reducer to manage loading and error states
 Creating a helper function to load data
 Loading the bookables

4.3.1 Examining the data-loading process

The UserPicker component, in section 4.2, used the fetch API to load the list of users
from the JSON database server. For the BookablesList component, we consider load-
ing and error states as well as the bookables themselves. What exactly do we want the
updated component to do?

 After the component first renders, it will fire off a request for the data it needs. At
this point, before any data has loaded, we have no bookables or groups to display, so
the component will show a loading indicator, as shown in figure 4.12.

If a problem loading the data occurs—maybe network, server, authorization, or missing
file issues—the component will display an error message like the one in figure 4.13.

If everything goes well and the data arrives, it’ll be displayed in the UI we developed
in chapters 2 and 3. The Meeting Room bookable from the Rooms group is selected,
and its details are showing. Figure 4.14 shows the expected result.

 At this point, the user will be able to interact with the app, selecting groups and
bookables, cycling through the bookables with the Next button, and toggling book-
able details with the Show Details check box.

Figure 4.12 The BookablesList
component shows a loading
indicator while the data is loading.

Figure 4.13 The BookablesList
component shows an error message
if there was a problem loading data.

111Fetching data for the BookablesList component
In chapter 3, we created a reducer to help manage the BookablesList component’s
state. How should we update the reducer to cope with the new functionality?

4.3.2 Updating the reducer to manage loading and error states

We’ve seen what we’re trying to achieve. Now we must consider the component state
needed to drive such an interface. To enable the loading indicator and the error mes-
sage, we add two more properties to the state: isLoading and error. We also set the
bookables as an empty array. The full initial state now looks like this:

{
 group: "Rooms",
 bookableIndex: 0,
 hasDetails: true,
 bookables: [],
 isLoading: true,
 error: false
}

The component will start loading data after the first render, so we set isLoading to
true right from the start. Our initial UI will be the loading indicator.

 To change the state in response to data-fetching events, we add three new action
types to the reducer:

 FETCH_BOOKABLES_REQUEST—The component initiates the request.
 FETCH_BOOKABLES_SUCCESS—The bookables arrive from the server.
 FETCH_BOOKABLES_ERROR—Something went wrong.

Figure 4.14 The BookablesList component shows the list of bookables after the data has loaded.

112 CHAPTER 4 Working with side effects
We discuss the new action types further after the following listing, which shows them
in our updated reducer.

export default function reducer (state, action) {
 switch (action.type) {
 case "SET_GROUP": return { /* unchanged */ }
 case "SET_BOOKABLE": return { /* unchanged */ }
 case "TOGGLE_HAS_DETAILS": return { /* unchanged */ }
 case "NEXT_BOOKABLE": return { /* unchanged */ }

 case "FETCH_BOOKABLES_REQUEST":
 return {
 ...state,
 isLoading: true,
 error: false,
 bookables: []
 };

 case "FETCH_BOOKABLES_SUCCESS":
 return {
 ...state,
 isLoading: false,
 bookables: action.payload
 };

 case "FETCH_BOOKABLES_ERROR":
 return {
 ...state,
 isLoading: false,
 error: action.payload
 };

 default:
 return state;
 }
}

FETCH_BOOKABLES_REQUEST
When the component sends off its request for the bookables data, we want to show the
loading indicator in the UI. In addition to setting isLoading to true, we make sure
there are no existing bookables and clear out any error message.

FETCH_BOOKABLES_SUCCESS
Woo-hoo! The bookables have arrived and are in the action’s payload. We want to dis-
play them, so set isLoading to false and assign the payload to the bookables state
property.

Branch: 0403-bookables-list, File: /src/components/Bookables/reducer.js

Listing 4.6 Managing loading and error states in the reducer

Clear the bookables when
requesting new data.

Pass the loaded
bookables to the
reducer via the payload.

Pass the error to the
reducer via the payload.

113Fetching data for the BookablesList component

Ch
i

FETCH_BOOKABLES_ERROR
Boo! Something went wrong, and the error message is in the action’s payload. We
want to display the error message, so set isLoading to false and assign the payload to
the error state property.

 You can see that a lot of interrelated state changes are going on for each action;
having a reducer to group and centralize those changes is really helpful.

4.3.3 Creating a helper function to load data

When the UserPicker component fetched its data, it didn’t worry about loading states
or error messages; it just went right ahead and called fetch from within a useEffect
hook. Now that we’re doing a bit more to give users some feedback while data is load-
ing, it might be better to create some dedicated data-fetching functions. We want our
data code to perform three key tasks:

 Send the request
 Check the response for errors
 Convert the response to a JavaScript object

The getData function in the following listing performs the three tasks, as required.
We discuss each task in more detail after the listing. The file api.js has been added in
the utils folder.

export default function getData (url) {

 return fetch(url)
 .then(resp => {

 if (!resp.ok) {
 throw Error("There was a problem fetching data.");
 }

 return resp.json();
 });
}

SEND THE REQUEST

The getData function accepts one argument, the url, and passes it on to the fetch
function. (The fetch function also accepts a second argument, an init object, but we
won’t be using that for now.) You can find out more about the fetch API on MDN:
http://mng.bz/1r81. fetch returns a promise that should resolve to a response object
from which we can get our data.

Branch: 0403-bookables-list, File: /src/utils/api.js

Listing 4.7 A function for fetching data

Accept a URL argument.

Pass the URL on to the
browser’s fetch function.

eck if there
s a problem

with the
response.

Throw an error for
any problems.

Convert the response JSON
string into a JavaScript object.

http://mng.bz/1r81

114 CHAPTER 4 Working with side effects
CHECK THE RESPONSE FOR ERRORS

We call then on the promise that fetch returns, setting up a function to do some ini-
tial processing of the response:

return fetch(url)
 .then(resp => {
 // do some initial processing of the response
 });

First, we check the status of the response and throw an error if it’s not ok (the HTTP
status code is not in the range 200 to 299):

if (!resp.ok) {
 throw Error("There was a problem fetching data.");
}

Responses with status codes outside the 200 to 299 range are valid, and fetch doesn’t
automatically throw any errors for them. We do our own check and throw an error if
necessary. We don’t catch any errors here; the calling code should set up any catch
blocks it needs.

CONVERT THE RESPONSE TO A JAVASCRIPT OBJECT

If the response passes muster, we convert the JSON string the server has returned
into a JavaScript object by calling the response’s json method. The json method
returns a promise that resolves to our data object, and we return that promise from
the function:

return resp.json();

The getData function does some preprocessing of the response from fetch, a little
like a piece of middleware. Components that use getData won’t need to make these
preprocessing checks and changes themselves. Let’s see how the BookablesList com-
ponent can use our data-fetching function to load the bookables for display.

4.3.4 Loading the bookables

It’s time to reap the benefits of all those preparations. Listing 4.8 shows the latest
BookablesList component file. The code imports our new getData function and uses
it within a useEffect hook that runs once, when the component first mounts. It also
includes the isLoading and error state values and some associated UI for when data
is loading or there is an error message to display.

import {useReducer, useEffect, Fragment} from "react";
import {sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";

Branch: 0403-bookables-list, File: /src/components/Bookables/BookablesList.js

Listing 4.8 The BookablesList component loading its own data

No longer import
bookables.

115Fetching data for the BookablesList component
import Spinner from "../UI/Spinner";
import reducer from "./reducer";

import getData from "../../utils/api";

const initialState = {
 group: "Rooms",
 bookableIndex: 0,
 hasDetails: true,
 bookables: [],
 isLoading: true,
 error: false
};

export default function BookablesList () {
 const [state, dispatch] = useReducer(reducer, initialState);

 const {group, bookableIndex, bookables} = state;
 const {hasDetails, isLoading, error} = state;

 const bookablesInGroup = bookables.filter(b => b.group === group);
 const bookable = bookablesInGroup[bookableIndex];
 const groups = [...new Set(bookables.map(b => b.group))];

 useEffect(() => {

 dispatch({type: "FETCH_BOOKABLES_REQUEST"});

 getData("http://localhost:3001/bookables")

 .then(bookables => dispatch({
 type: "FETCH_BOOKABLES_SUCCESS",
 payload: bookables
 }))

 .catch(error => dispatch({
 type: "FETCH_BOOKABLES_ERROR",
 payload: error
 }));

 }, []);

 function changeGroup (e) {}
 function changeBookable (selectedIndex) {}
 function nextBookable () {}
 function toggleDetails () {}

 if (error) {
 return <p>{error.message}</p>
 }

 if (isLoading) {
 return <p><Spinner/> Loading bookables...</p>
 }

Import the
getData function.

Set bookables to
an empty array.

Add the new properties
to the initial state.

Destructure the new
properties from state.

Dispatch an action for the
start of the data fetching.

Fetch the data.

Save the loaded
bookables in state.

Update state
with any error.

Return some
simple error UI if
there’s an error.

Return some simple
loading UI while
waiting for data.

116 CHAPTER 4 Working with side effects
 return (/* unchanged UI for bookables and details */);
}

The call to getData is in the effect function. In section 4.3.3, we saw how getData
returns a promise and can throw an error. So, in listing 4.8, we use both a then and a
catch method, dispatching the appropriate actions, discussed in section 4.3.2, from
each. Finally, we use if statements to return UI for loading and error conditions. If
there’s no error and isLoading is false, we return our existing UI for the list of book-
ables and bookable details.

CHALLENGE 4.3
Update the UsersList component to use the getData function and to manage load-
ing and error states. Possible solution code is on the 0404-users-errors branch.

We’ll return to data fetching in chapter 6, when we expand our roster of components
in the bookings app. Before that, in the next chapter, we’ll investigate another way of
managing state in components: the useRef hook.

Summary
 Sometimes our components reach outside the React data-flow process and

directly interact with other APIs, most commonly in the browser. An action that
impinges on the outside world in some way is called a side effect.

 Common side effects include setting the page title imperatively, working with
timers like setInterval or setTimeout, measuring the width or height or posi-
tion of elements in the DOM, logging messages to the console, setting or get-
ting values in local storage, and fetching data or subscribing and unsubscribing
to services.

 Wrap side effects inside an effect function as the first argument to the use-
Effect hook:

useEffect(() => {
 // perform effect
});

React runs the effect function after every render.

 To manage when an effect function runs, pass a dependencies array as the sec-
ond argument to the useEffect hook.

 Pass an empty dependencies array to make React run the effect function once,
when the component mounts:

useEffect(() => {
 // perform effect
}, []);

117Summary
 Include all of the effect function’s dependencies in the dependencies array to
make React run the effect function whenever the values of the specified depen-
dencies change:

useEffect(() => {
 // perform effect
 // that uses dep1 and dep2
}, [dep1, dep2]);

 Return a cleanup function from the effect that React will run before rerunning
the effect function and when the component unmounts:

useEffect(() => {
 // perform effect
 return () => {/* clean-up */};
}, [dep1, dep2]);

 Fetch data from within an effect if you’re using the fetch-on-render approach.
React will render the component and then fire the data-fetching code. It will re-
render the component when the data arrives:

useEffect(() => {
 fetch("http://localhost:3001/users")
 .then(resp => resp.json())
 .then(data => setUsers(data));
}, []);

 To avoid race conditions and to follow the convention of returning nothing or a
cleanup function from the effect function, put async functions inside the effect
function. You can call them immediately, as necessary:

useEffect(() => {
 async function getUsers() {
 const resp = await fetch(url);
 const data = await (resp.json());
 setUsers(data);
 }
 getUsers();
}, []);

 Put separate side effects into separate calls to useEffect. It will be easier to
understand what each effect does, easier to control when the effects run by using
separate dependencies lists, and easier to extract the effects into custom hooks.

 If, on re-render, multiple effects are going to run, React will call all of the cleanup
functions for the rerunning effects before it runs any effects themselves.

Managing component
state with the useRef hook
While most of the values stored by your component will be directly represented in
the user interface of your application, sometimes you’ll use a variable only for the
mechanics of your app rather than for consumption by users. You may want to use
setTimeout or setInterval as part of an animation, so you need to keep hold of
the IDs they return. Or you may want to work with DOM form elements as uncon-
trolled inputs, so you need to keep hold of references to those elements. Either
way, you may not need to display these values to the user, and so changing them
shouldn’t automatically trigger a re-render.

This chapter covers
 Calling the useRef hook to obtain a ref

 Updating a ref by assigning values to its current
property

 Updating state without triggering re-renders

 Setting the ref attribute in JSX to assign DOM
element references to a ref

 Accessing DOM element properties and methods
via a ref
118

119Updating state without causing a re-render
 This chapter starts with two examples that explore changing state without updat-
ing the UI: first a comparison of managing state with useState and useRef, then a
longer example as we manage timers for the BookablesList component’s new Pre-
sentation Mode. The second half of the chapter has two more examples, this time
exploring references to DOM elements: automatically setting focus in the Bookables-
List component and reading the date from a text box for the WeekPicker compo-
nent. The mix of examples will give you a good understanding of how the useRef
hook helps you manage state in your components.

 Okay, 1, 2, 3, let’s go!

5.1 Updating state without causing a re-render
In this section, we use a simple Counter component to introduce refs as a way of per-
sisting state across renders. With the useState hook, calling a state value’s updater
function usually triggers a re-render. With the useRef hook, we can update our value
without a corresponding change to the UI. We start by looking at how the Counter
component behaves when a user clicks away on its buttons, incrementing the counters
(but not necessarily the UI), and the code required to make it behave that way. Then,
having seen useRef in action, we focus on the new hook’s API.

5.1.1 Comparing useState and useRef when updating state values

Figure 5.1 shows four screenshots of the Counter component UI with two buttons, one
labeled count and one labeled ref.current. Each button also has a counter appended to
its button text. The buttons behave in different ways.

 Clicking the Count button increments its counter, as you can see in the figure,
which shows the original component and the result when it’s clicked three times. The
button counter goes up from 1 to 2 to 3 to 4. Each increase is accompanied by a re-
render, so the Counter component shows the latest value.

Figure 5.2 shows the result when you then click the Ref.current button three times.
Its counter doesn’t seem to change. The component shows 1, then 1, then 1. In fact,
the value does increase, from 1 to 2 to 3 to 4. It’s just that changing the ref.current
value doesn’t cause React to re-render, so the Counter component continues to show
an old value.

Figure 5.1 Clicking the Count button increases the count by 1 each time. Because the event handler increments
the count by calling its updater function, React re-renders the component after each change.

120 CHAPTER 5 Managing component state with the useRef hook

In

valu
Clicking the Count button one more time increments its counter from 4 to 5. React
re-renders the component to show the latest value, shown in figure 5.3. Doing so
also updates the value shown by the Ref.current button, and it jumps to 4, its cur-
rent value.

In previous chapters, you’ve seen how to implement a button like the Count button by
using the useState hook. How do we implement the Ref.current button, where state
is persisted across renders but updating the ref doesn’t cause a re-render? The follow-
ing listing shows the code for the button example, including a call to the useRef hook
for the first time.

import React, { useRef, useState } from "react";

function Counter() {
 const [count, setCount] = useState(1);
 const ref = useRef(1);

 const incCount = () => setCount(c => c + 1);

 const incRef = () => ref.current++;

 return (
 <div className="App">
 <button onClick={incCount}>count: {count}</button>

Live: https://gh6xz.csb.app/, Code: https://codesandbox.io/s/counterstatevsref-gh6xz

Listing 5.1 Comparing useState and useRef when updating state

Figure 5.2 Clicking the Ref.current button three times seems to have no effect. In fact, the event
handler does increment ref.current to 2, then 3, then 4, but React does not re-render the
component.

Figure 5.3 Clicking the Count button one more time
increases the count to 5. React re-renders the
component, which now shows the latest values of
count and ref.current.

Initialize the count
value with useState.

itialize
the ref
e with

useRef.

Define a handler that calls
setCount to increment count.

Define a handler that updates the
“current” property of the ref.

Call the handler for
the count value.

https://gh6xz.csb.app/
https://codesandbox.io/s/counterstatevsref-gh6xz

121Updating state without causing a re-render
 <hr />
 <button onClick={incRef}>ref.current: {ref.current}</button>
 </div>
);
}

So, why do the buttons behave differently? Well, one uses the useState hook, and one
uses the useRef hook.

 The Count button gets React to manage its counter state value by calling useState.
The button’s event handler changes the counter with the state value’s updater func-
tion, setCount. Calling the updater function changes the state and triggers a re-render.
React persists the state across renders, each time passing it back to the component,
where it is assigned to the count variable.

 The Ref.current button gets React to manage its counter state value by calling
useRef. The hook returns an object, a ref, which we use to store the state value. Chang-
ing the value stored on the ref doesn’t trigger a re-render. React persists the state
across renders, each time passing the same ref object back to the component, where it
is assigned to the ref variable.

 Both buttons in listing 5.1 include a state value in their button text, {count} and
{ref.current}, and call a handler function when the user clicks them. But what’s
with the .current business? Let’s take a closer look at how to work with useRef.

5.1.2 Calling useRef

In listing 5.1, we obtain a ref from React by calling useRef, passing it an initial value of
1. We assign the ref to a variable, ref:

const ref = useRef(1);

The useRef function returns an object with a current property, as shown in figure 5.4.
Every time React runs the component code, each call to useRef will return the same
ref object for that call.

Call the handler
for the ref value.

const refObject = useRef(initialValue);

Ref:
React returns an
object with a
current property.

Initial value:
Pass the initial
value to the
useRef hook.

Figure 5.4 useRef returns an
object with a current property.

122 CHAPTER 5 Managing component state with the useRef hook
The first time React invokes the component code, it assigns the initial value you pass
the useRef function to the ref object’s current property:

const ref1 = useRef("Towel");
const ref2 = useRef(42);

ref1.current; // "Towel"
ref2.current; // 42

On subsequent renders, React assigns the same ref objects to the respective variables,
based on the order of the useRef calls. You can persist state values by assigning them
to the current properties of the refs:

ref1.current = "Babel Fish";
ref2.current = "1,000,000,000,000";

Assigning new values to the current properties of the ref objects doesn’t trigger a re-
render. But as React always returns the same ref objects, the new values are available
when the component runs again.

 Okay, the button example was a bit simple and a bit weird—who wants broken but-
tons? The time has come for a bit more complexity.

5.2 Storing timer IDs with a ref
In the previous section, you saw how to use the useRef hook to maintain state across
renders for our function components. To update the ref returned from useRef, we set
its current property to the value we want to store. Changing the current property in
this way doesn’t cause a re-render of the component. In this section, we look at a
slightly more complicated example, using the useRef hook to enlist React’s help man-
aging the IDs of timers. We return to the bookings app as our context.

 Say your boss wants you to create a Presentation Mode for the BookablesList com-
ponent. Until you click the Stop button, the component should automatically select
each bookable in turn on a timer, showing its details, as you can see in figure 5.5. Your
boss thinks this would be great for that foyer screen the company bought last year.

 Left alone in Presentation Mode, the component cycles through all of the book-
ables in a group, wrapping back to the first when it leaves the last. We’ll use a timer to
schedule when the component should move on to the next bookable. If the user clicks
the Stop button, Presentation Mode ends, and we cancel any running timer. The fol-
lowing listing shows the ref we use to store the timer ID, the new effect that sets up the
timer, and the UI for the Stop button.

123Storing timer IDs with a ref
import {useReducer, useEffect, useRef, Fragment} from "react";
import {sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";
import Spinner from "../UI/Spinner";
import reducer from "./reducer";
import getData from "../../utils/api";

const initialState = { /* unchanged */ };

export default function BookablesList () {

 // unchanged variable setup

 const timerRef = useRef(null);

 useEffect(() => { /* load data */ }, []);

 useEffect(() => {

 timerRef.current = setInterval(() => {
 dispatch({ type: "NEXT_BOOKABLE" });
 }, 3000);

 return stopPresentation;

 }, []);

Branch: 0501-timer-ref, File: /src/components/Bookables/BookablesList.js

Listing 5.2 Using a ref to hold a timer ID for Presentation Mode

Figure 5.5 In Presentation Mode, the application will automatically advance to each bookable in turn, showing
its details, until you click the Stop button (top right).

Import the
useRef hook.

Assign a ref to the
timerRef variable.

Run an effect when the
component first mounts.

Start an interval timer and
assign its ID to the ref’s
current property.

Return a function
to clear the timer.

124 CHAPTER 5 Managing component state with the useRef hook
 function stopPresentation () {
 clearInterval(timerRef.current);
 }

 function changeGroup (e) { /* unchanged */ }
 function changeBookable (selectedIndex) { /* unchanged */ }
 function nextBookable () { /* unchanged */ }
 function toggleDetails () { /* unchanged */ }

 // unchanged UI for error and loading

 return (
 <Fragment>
 <div>
 { /* list of bookables */ }
 </div>

 {bookable && (
 <div className="bookable-details">
 <div className="item">
 <div className="item-header">
 <h2>
 {bookable.title}
 </h2>

 <label>
 <input
 type="checkbox"
 checked={hasDetails}
 onChange={toggleDetails}
 />
 Show Details
 </label>
 <button
 className="btn"
 onClick={stopPresentation}
 >
 Stop
 </button>

 </div>

 { /* further details */ }
 </div>
 </div>
)}
 </Fragment>
);
}

When we set up the timer in the new effect, the browser’s setInterval method
returns an ID. We can use the ID to clear the timer if necessary (if the user clicks the
Stop button or navigates to another page in the app). The stopPresentation func-
tion needs to access the ID so it can clear the timer. We need to store the ID, but

Use the timer ID
to clear the timer.

Include a Stop
button.

Call the stopPresentation
function from the button.

125Keeping references to DOM elements
there’s no need to re-render the component when we start or stop the timer, so we
don’t want to use the useState hook. We use the useRef hook instead, so we need to
import it:

import {useReducer, useEffect, useRef, Fragment} from "react";

We call useRef, passing it null as the initial value because there’s no timer yet. Every
time the component runs, useRef returns us the same ref object, which we assign to
the timerRef variable:

const timerRef = useRef(null);

We use the ref to store our timer ID by assigning the ID to the ref’s current property:

timerRef.current = setInterval(/* wibbly-wobbly, timey-wimey stuff */, 3000);

The stopPresentation function uses the ID stored in timerRef.current to clear the
timer and end Presentation Mode. The function runs when a user clicks the Stop but-
ton and, thanks to the second effect returning it as a cleanup function, when the user
navigates to another page in the app and the component unmounts:

function stopPresentation () {
 window.clearInterval(timerRef.current);
}

This section presented another example of using a ref to store state so that updating
the state doesn’t cause the component to re-render. There’s no need to re-run the
component code when setting and clearing the timer ID, so using a ref to store its
value makes sense. The next section looks at a very common use case for refs, keeping
references to DOM elements.

5.3 Keeping references to DOM elements
If you’re an old hand at working with refs, you may have been surprised at the use we
put them to in section 5.2, updating state without re-rendering. If that’s the case,
you’re back in your element in this section, where we call on the useRef hook to help
us store references to buttons and form fields. Such references to DOM elements let
us interact with the elements directly, bypassing the usual React state-to-UI flow. In
particular, we look at two common use cases:

 Setting focus on an element in response to an event
 Reading the value of an uncontrolled text box

We see how to get React to automatically assign DOM element references to our refs’
current properties, so we can manipulate or read from those elements directly. Both
examples use components from the bookings app. In section 5.3.2, we add a text box
to the WeekPicker component. But first, we focus on the BookablesList component,
making it easier for users to move from one bookable to the next using the keyboard.

126 CHAPTER 5 Managing component state with the useRef hook
5.3.1 Setting focus on an element in response to an event

Your boss is back with a new suggestion for the bookings app. Forget Presentation
Mode! Wouldn’t it be great if, when a user chooses a bookable, the focus automatically
shifts to the Next button? Then the user could just press the spacebar to move from
bookable to bookable! Figure 5.6 shows the situation.

We could add an extra piece of state, maybe nextHasFocus, and re-render whenever
it changes to give the Next button focus. But the browser has a focus method, so if
we just had a reference to the button element, we could call focus and the job
would be done:

const nextButtonEl = document.getElementById("nextButton");

nextButtonEl.focus();

But, having chosen to use React, we prefer to stay within its state-to-UI flow as much as
possible. The timing of directly reaching out to the DOM with getElementById could
get tricky as React updates the DOM in response to state changes. Also, it’s common
for the same component to be used multiple times in an app, so using multiple instances
of what should be unique id attributes to identify component elements ends up caus-
ing problems rather than solving them. Fortunately, React provides a way of automati-
cally assigning DOM element references to refs created with the useRef hook.

 Listing 5.3 shows the BookablesList component code with three additions to
enable our desired Next button focus behavior. We do the following:

We give the Next button focus.

The user
selects a
bookable.

Figure 5.6 When a user selects a bookable, the focus is automatically
set on the Next button.

127Keeping references to DOM elements
1 Create a new ref, nextButtonRef, to hold a reference to the Next button element.
2 Use the special ref attribute in the JSX to ask React to automatically assign a

reference to the button element to nextButtonRef.current.
3 Use our reference, nextButtonRef.current, to set the focus on the Next button.

import {useReducer, useEffect, useRef, Fragment} from "react";
import {sessions, days} from "../../static.json";
import {FaArrowRight} from "react-icons/fa";
import Spinner from "../UI/Spinner";
import reducer from "./reducer";
import getData from "../../utils/api";

const initialState = { /* unchanged */ };

export default function BookablesList () {
 // unchanged variable setup
 const nextButtonRef = useRef();

 useEffect(() => { /* load data */ }, []);

 // remove timer effect and stopPresentation function

 function changeGroup (e) { */ unchanged */ }

 function changeBookable (selectedIndex) {
 dispatch({
 type: "SET_BOOKABLE",
 payload: selectedIndex
 });
 nextButtonRef.current.focus();
 }

 function nextBookable () { /* unchanged */ }
 function toggleDetails () { /* unchanged */}

 if (error) {
 return <p>{error.message}</p>
 }

 if (isLoading) {
 return <p><Spinner/> Loading bookables...</p>
 }

 return (
 <Fragment>
 <div>
 <select value={group} onChange={changeGroup}>
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

Branch: 0502-set-focus, File: /src/components/Bookables/BookablesList.js

Listing 5.3 Using a ref to set focus

Call useRef and assign the ref to
the nextButtonRef variable.

Use the ref to focus
the Next button.

128 CHAPTER 5 Managing component state with the useRef hook
 <ul className="bookables items-list-nav">
 { /* unchanged */ }

 <p>
 <button
 className="btn"
 onClick={nextBookable}
 ref={nextButtonRef}
 autoFocus
 >
 <FaArrowRight/>
 Next
 </button>
 </p>
 </div>

 {bookable && (
 <div className="bookable-details">
 { /* Stop button removed */ }
 </div>
)}
 </Fragment>
);
}

In listing 5.3, we call the useRef hook and assign the ref it returns to the nextButton-
Ref variable:

const nextButtonRef = useRef();

We don’t assign an initial value; we’re going to get React to automatically assign a
value to the nextButtonRef.current property for us. We need to focus the Next but-
ton, so, rather than reaching out into the DOM ourselves, we assign our ref to the spe-
cial ref attribute of the button in the JSX for the user interface:

<button
 className="btn"
 onClick={nextBookable}
 ref={nextButtonRef}
 autoFocus
>
 <FaArrowRight/>
 Next
</button>

Once React has created the button element for the DOM, it assigns a reference to the
element to the nextButtonRef.current property. We use that reference in the change-
Bookable function to focus the button by calling the element’s focus method:

function changeBookable (selectedIndex) {
 dispatch({

Assign nextButtonRef to
the ref attribute in JSX.

129Keeping references to DOM elements
 type: "SET_BOOKABLE",
 payload: selectedIndex
 });
 nextButtonRef.current.focus();
}

The component calls the changeBookable function whenever a user directly selects a
bookable in the list of bookables. So, directly selecting a bookable will shift focus to
the Next button. That’s exactly what the boss wanted! Good job.

 This example shows how you can create a ref by using the useRef hook and then
ask React to assign a reference for a DOM element to that ref. I’ll admit it’s a little
contrived, but it does show the steps involved. Do be careful when programmatically
setting the focus of elements on the page; be sure it doesn’t confound users’ expecta-
tions, making your app harder to use. It’s a valid technique but may require careful
user testing.

5.3.2 Managing a text box via a ref

Chapter 3 introduced the WeekPicker component as a way to navigate from week to
week in the bookings app. The user could click the Prev and Next buttons to switch
weeks or click the Today button to display the week containing the current day’s date.
Chapter 3’s version of WeekPicker is in figure 5.7.

But if someone working at the company wants to book a meeting room for an event in
a couple of months, they have to click the Next button again and again until they
reach the date they want. Entering a specific date and jumping straight to that week
would be better. Figure 5.8 shows an improved WeekPicker UI with a text box and a
Go button.

Figure 5.7 The WeekPicker component from chapter 3 with buttons for switching
weeks and jumping to the week containing today’s date

Figure 5.8 The WeekPicker component with a text box and a Go button, for direct date entry

130 CHAPTER 5 Managing component state with the useRef hook

D
h

for
b

The reducer for the WeekPicker component already has a SET_DATE action; let’s put it
to use. In the following listing, we add to WeekPicker with a text box and Go button
for the UI, a ref for the text box, and a goToDate handler function for the Go button.

import {useReducer, useRef} from "react";
import reducer from "./weekReducer";
import {getWeek} from "../../utils/date-wrangler";
import {
 FaChevronLeft,
 FaCalendarDay,
 FaChevronRight,
 FaCalendarCheck
} from "react-icons/fa";

export default function WeekPicker ({date}) {
 const [week, dispatch] = useReducer(reducer, date, getWeek);
 const textboxRef = useRef();

 function goToDate () {
 dispatch({
 type: "SET_DATE",
 payload: textboxRef.current.value
 });
 }

 return (
 <div>
 <p className="date-picker">
 // Prev button
 // Today button

 <input
 type="text"
 ref={textboxRef}
 placeholder="e.g. 2020-09-02"
 defaultValue="2020-06-24"
 />

 <button
 className="go btn"
 onClick={goToDate}
 >
 <FaCalendarCheck/>
 Go
 </button>

 // Next button
 </p>
 <p>

Branch: 0503-text-box, File: /src/components/Bookings/WeekPicker.js

Listing 5.4 The WeekPicker with a text box and Go button

Create a ref to hold the
reference to the text box.

efine a
andler

 the Go
utton.

Dispatch the SET_DATE action.

Use the ref to get the text
value in the text box.

Add a text box with a
ref attribute to the UI.

Add the Go
button to the UI.

Assign the handler
to set the date.

131Keeping references to DOM elements
 {week.start.toDateString()} - {week.end.toDateString()}
 </p>
 </div>
);
}

After it renders the component and updates the DOM, React assigns a reference to
the input element, our text box, to the textboxRef variable’s current property. The
goToDate function uses that reference to grab the text from the text box when the
user clicks the Go button:

function goToDate () {
 dispatch({
 type: "SET_DATE",
 payload: textboxRef.current.value
 });
}

So, textboxRef.current holds a reference to the input element, the text box, and
then textboxRef.current.value is the text in the text box.

UNCONTROLLED COMPONENTS

The text in the WeekPicker text box is part of our component’s state. In this example,
our component is not managing the text box state. Our component is not interested
while the user types characters into the text box, although the browser does show the
new characters as the user types. Only when the user clicks the Go button do we read
the text state from the DOM, via our ref, and dispatch it to the reducer. Components
that let the DOM manage their state in this way are called uncontrolled components.

 While the WeekPicker example demonstrates how to use a ref with a form field,
the approach doesn’t really fit with the philosophy of managing state with useState
and useReducer and then displaying that state in the UI. React recommends using
controlled components that make the most of React’s help managing the state.

CONTROLLED COMPONENTS

To convert the WeekPicker component to be fully controlled, we could take back the
text box state from the DOM, using a call to the useState hook instead:

const [dateText, setDateText] = useState("2020-06-24");

We could then set the dateText state as the value property for the text box and use
the accompanying updater function, setDateText, to change the state whenever the
user types in the text box:

return (
 <div>
 <input
 type="text"
 value={dateText}
 onChange={(e) => setDateText(e.target.value)}
 />

Use the dateText state as
the value for the text box.

Update the dateText
state whenever the
user types in the
text box.

132 CHAPTER 5 Managing component state with the useRef hook
 <button onClick={goToDate}>Go</button>
 </div>
);

Finally, in the goToDate function, we would no longer need the reference to the text
box and could simply dispatch the dateText value to the reducer:

function goToDate () {
 dispatch({
 type: "SET_DATE",
 payload: dateText
 });
}

With controlled components, the data flow is from the component to the DOM, in
line with the standard React approach.

Summary
 Call the useRef hook when you want React to manage a state value but don’t

want changes to the value to trigger a re-render. For example, use it for storing
IDs for setTimeout and setInterval or for references to DOM elements. You
can pass it an initial value if required. It returns an object with a current prop-
erty set to the initial value:

const ref = useRef(initialValue);
ref.current; // initialValue

 A call to useRef will return the same ref object each time the component runs.
Persist values in the ref across renders by assigning them to the ref’s current
property:

ref.current = valueToStore;

 React can automatically assign DOM element references to your ref’s current
property. Assign your ref variable to an element’s ref attribute in JSX:

const myRef = useRef();

...

return (
 <button ref={myRef}>Click Me!</button>
);

...

myRef.current;

Create a ref.

Specify the ref in the
JSX ref attribute.

The current property will now
reference the button element.

133Summary
 Use the ref to interact with the DOM element. For example, set focus on the
element:

myRef.current.focus();

 Components that read their state from the DOM are called uncontrolled compo-
nents. You can use refs to access and update the state.

 React recommends you use controlled components. Use the useState hook or the
useReducer hook to manage the state and get React to update the DOM with
the latest state values. Your component will be the one source of truth rather
than splitting state between the component and the DOM.

Managing
application state
Up to this point, we’ve seen how components can manage their own state with the
useState, useReducer, and useRef hooks and load state data with the useEffect
hook. It’s common, however, for components to work together, using shared state
values to generate their UI. Each component may have a whole hierarchy of
descendant components nested within it, chirping and chirruping to be fed data,
so state values may need to reach deep down into the descendant depths.

 In this chapter, we investigate concepts and methods for deciding how to man-
age the availability of state values for child components that need to consume
them, by lifting state to common parents. In chapter 8, we’ll see how and when

This chapter covers
 Passing shared state to those components that need it

 Coping when state isn’t passed down—the props are
missing

 Lifting state up the component tree to make it more
widely available

 Passing dispatch and updater functions to child
components

 Maintaining function identity with the useCallback hook
134

135Passing shared state to child components
React’s Context API can be used to make values available directly to components that
need them. Here, we stick to using props to pass state down to children.

 We start, in section 6.1, with a new Colors component that shares a selected color
with three child components. We see how to update the shared state, managed by the
parent, from a child. The rest of the chapter uses the bookings app example to explore
two approaches to sharing state: passing a state object and a dispatch function for a
reducer to the children and passing a single state value and its updater function to the
children. Both approaches are common patterns and help to highlight some common
questions regarding state, props, effects, and dependencies. We finish with a look at
useCallback, a hook that lets us enlist React’s help to maintain the identity of func-
tions we pass as props, particularly when child components treat those functions as
dependencies.

 For our first trick, let’s refresh our knowledge of props: pick a color, any color. . . .

6.1 Passing shared state to child components
When different components use the same data to build their UI, the most explicit way
to share that data is to pass it as a prop from parent to children. This section intro-
duces passing props (in particular, passing the state value and updater function
returned by useState) by looking at a new example, a Colors component, shown in
figure 6.1. The component includes three UI sections:

 A list of colors with the selected color highlighted
 Text showing the selected color
 A bar with a background set to the selected color

Clicking a color in the list (one of the circles) highlights that selection and updates
the text and the color bar. You can see the component in action on CodeSandbox
(https://hgt0x.csb.app/).

Figure 6.1 The Colors component. When a user selects a color, the menu,
text, and color bar all update. When goldenrod is selected, its menu circle is
larger, the text says “. . . goldenrod!” and the bar’s color is goldenrod.

https://hgt0x.csb.app/

136 CHAPTER 6 Managing application state

6.1.1 Passing state from a parent by setting props on the children

Listing 6.1 shows the code for the Colors component. It imports three child compo-
nents: ColorPicker, ColorChoiceText, and ColorSample. Each child needs the
selected color, so the Colors component holds that state and passes it to them as a
prop, an attribute in the JSX. It also passes the available colors and the setColor
updater function to the ColorPicker component.

import React, {useState} from "react";

import ColorPicker from "./ColorPicker";
import ColorChoiceText from "./ColorChoiceText";
import ColorSample from "./ColorSample";

export default function Colors () {
 const availableColors = ["skyblue", "goldenrod", "teal", "coral"];

 const [color, setColor] = useState(availableColors[0]);

 return (
 <div className="colors">
 <ColorPicker
 colors={availableColors}
 color={color}
 setColor={setColor}
 />
 <ColorChoiceText color={color} />
 <ColorSample color={color} />
 </div>
);
}

The Colors component passes down two types of props: state values to be used in the
children’s UI, colors and color; and a function to update the shared state, setColor.
Let’s look at state values first.

6.1.2 Receiving state from a parent as a prop

Both the ColorChoiceText component and the ColorSample component display the
currently selected color. ColorChoiceText includes it in its message, and ColorSample
uses it to set the background color. They receive the color value from the Colors com-
ponent, as shown in figure 6.2.

 Colors is the closest shared parent of the child components that share the state, so
we manage the state within Colors. Figure 6.3 shows the ColorChoiceText compo-
nent displaying a message that includes the selected color. The component simply
uses the color value as part of its UI; it doesn’t need to update the value.

Live: https://hgt0x.csb.app/, Code: https://codesandbox.io/s/colorpicker-hgt0x

Listing 6.1 The Colors component

Import the child
components.

Define state
values.

Pass the appropriate
state values to the
child components as
props.

https://hgt0x.csb.app/
https://codesandbox.io/s/colorpicker-hgt0x

137Passing shared state to child components
The ColorChoiceText component’s code is in listing 6.2. When React calls the com-
ponent, it passes it as the component’s first argument, an object containing all of the
props set by the parent. The code here destructures the props, assigning the color
prop to a local variable of the same name.

import React from "react";

export default function ColorChoiceText({color}) {
 return color ? (
 <p>The selected color is {color}!</p>
) : (
 <p>No color has been selected!</p>
)
}

What if the parent doesn’t set a color prop? The ColorChoiceText component is happy
for there to be no color prop; it returns alternate UI saying no color was selected.

 The ColorSample component, shown in figure 6.4, displays a bar with its back-
ground set to the selected color.

Live: https://hgt0x.csb.app/, Code: https://codesandbox.io/s/colorpicker-hgt0x

Listing 6.2 The ColorChoiceText component

Figure 6.2 The Colors
component passes the current
color state value to the child
components.

Figure 6.3 The ColorChoiceText component
includes the selected color in its message.

Receive the color
state from the parent
as a prop.

Check that there
is a color.

Use the prop
in the UI.Return alternate UI if the

parent doesn’t set a color.

Figure 6.4 The ColorSample
component displays a bar of the
selected color.

https://hgt0x.csb.app/
https://codesandbox.io/s/colorpicker-hgt0x

138 CHAPTER 6 Managing application state
ColorSample takes a different approach to a missing prop. It returns no UI at all! In
the following listing, you can see the component checking for the color value. If it’s
missing, the component returns null and React renders nothing at that point in the
element tree.

import React from "react";

export default function ColorSample({color}) {
 return color ? (
 <div
 className="colorSample"
 style={{ background: color }}
 />
) : null;
}

You could set a default value for color as part of the prop’s destructuring. Maybe if
the parent doesn’t specify a color, then it should be white?

function ColorSample({color = "white"}) {
 return (
 <div
 className="colorSample"
 style={{ background: color }}
 />
);
}

A default value will work for some components, but for our color-based components
that need to share state, we’d have to make sure all of the defaults were the same. So,
we either have alternate UI or no UI. If the component just won’t work without a
prop, and a default doesn’t make sense, you can throw an error explaining that the
prop is missing.

 Although we won’t explore them in this book, you can also use PropTypes to
specify expected props and their types. React will use the PropTypes to warn of prob-
lems during development (https://reactjs.org/docs/typechecking-with-proptypes.html).
Alternatively, use TypeScript rather than JavaScript and type-check your whole appli-
cation (www.typescriptlang.org).

6.1.3 Receiving an updater function from a parent as a prop

The ColorPicker component uses two state values to generate its UI: a list of available
colors and the selected color. It displays the available color values as list items, and the
app uses CSS to style them as a row of colored circles, as you can see in figure 6.5. The
selected item, goldenrod in the figure, is styled larger than the others.

Live: https://hgt0x.csb.app/, Code: https://codesandbox.io/s/colorpicker-hgt0x

Listing 6.3 The ColorSample component

Receive the state from
the parent as a prop.

Check that there
is a color.

Don’t render any UI if
there’s no color.

Specify a default
value for the prop.

https://reactjs.org/docs/typechecking-with-proptypes.html
http://www.typescriptlang.org
https://hgt0x.csb.app/
https://codesandbox.io/s/colorpicker-hgt0x

139Passing shared state to child components
The Colors component passes the ColorPicker component the two state values it
uses. Colors also needs to provide a way to update the selected color for all three chil-
dren. It delegates that responsibility to the ColorPicker component by passing it the
setColor updater function, as illustrated in figure 6.6.

The following listing shows the ColorPicker component destructuring its props argu-
ment, assigning the three props to local variables: colors, color, and setColor.

import React from "react";

export default function ColorPicker({colors = [], color, setColor}) {
 return (

Live: https://hgt0x.csb.app/, Code: https://codesandbox.io/s/colorpicker-hgt0x

Listing 6.4 The ColorPicker component

Figure 6.5 The ColorPicker component displays a list of colors and
highlights the selected color.

Values:
Colors passes the two
state values to the
ColorPicker component.

Updater function:
Colors also passes the
updater function to the
ColorPicker component.

Figure 6.6 The Colors component passes two state values to ColorPicker. It also passes the
setColor updater function, so the color state value can be set from the child.

Receive the state and updater function from the parent as props.

https://hgt0x.csb.app/
https://codesandbox.io/s/colorpicker-hgt0x

140 CHAPTER 6 Managing application state
 {colors.map(c => (
 <li
 key={c}
 className={color === c ? "selected" : null}
 style={{ background: c }}
 onClick={() => setColor(c)}
 >
 {c}

))}

);
}

The destructuring syntax includes a default value for colors:

{colors = [], color, setColor}

The ColorPicker component iterates over the colors array to create a list item for
each available color. Using an empty array as a default value causes the component to
return an empty unordered list if the parent component doesn’t set the colors prop.

 More interesting (for a book about React Hooks) are the color and setColor
props. These props have come from a call to useState in the parent:

const [color, setColor] = useState(availableColors[0]);

The ColorPicker doesn’t care where they’ve come from; it just expects a color prop
to hold the current color and a setColor prop to be a function it can call to set the
color somewhere. ColorPicker uses the setColor updater function in the onClick
handler for each list item. By calling the setColor function, the child component,
ColorPicker, is able to set the state for the parent component, Colors. The parent
then re-renders, updating all of its children with the newly selected color.

 We created the Colors component from scratch, knowing we needed shared state
to pass down to child components. Sometimes we work with existing components and,
as a project develops, realize they hold state that other siblings may also need. The
next sections look at a couple of ways of lifting state up from children to parents to
make it more widely available.

6.2 Breaking components into smaller pieces
React gives us the useState and useReducer hooks as two ways of managing state in
our apps. Each hook provides a means to update the state, triggering a re-render. As
our app develops, we balance the convenience of being able to access local state
directly from a single component’s effects, handler functions, and UI against the
inconvenience of that component’s state becoming bloated and tangled, with state
changes from one part of the UI triggering re-renders of the whole component.

Use the updater function
to set the parent’s state.

141Breaking components into smaller pieces
 New components in the app may want a piece of the existing state pie, so we now
need to share state that, previously, one component encapsulated. Do we lift state values
and updater functions up to parents? Or maybe lift reducers and dispatch functions?
How does moving state around change the structure of the existing components?

 In this section, we continue building out the bookings app example as a context
for these questions. In particular, we explore the following:

 Seeing components as part of a bigger app
 Organizing multiple components within a page’s UI
 Creating a BookableDetails component

The concepts encountered are nothing new for existing React developers. Our aim
here is to consider if and how they change when using React Hooks.

6.2.1 Seeing components as part of a bigger app

In chapter 5, we left the BookablesList component doing double duty: displaying a
list of bookables for the selected group and displaying details for the selected book-
able. Figure 6.7 shows the component with the list and details visible.

The component managed all of the state: the bookables, the selected group, and the
selected bookable, and flags for displaying details, loading state, and errors. As a sin-
gle function component with no child components, all of the state was in local
scope and available to use when generating the returned UI. But toggling the Show
Details check box would cause a re-render of the whole component, and we had to
think carefully about persisting timer IDs across renders when using Presentation
Mode.

Figure 6.7 The previous BookablesList component, from chapter 5, showed the list of bookables and the
details of the selected bookable.

142 CHAPTER 6 Managing application state
 We also need a list of bookables on the Bookings page. Various components will be
vying for screen real estate, and we want the flexibility to be able to display the list of
bookables separately from the bookable details, as shown in figure 6.8, where the list
of bookables is on the left. In fact, as in the figure, we might not want to display the
bookable details at all, saving that information for the dedicated Bookables page.

To be able to use the list and details sections of the BookableList UI independently,
we’ll create a separate component for the details of the selected bookable. The
BookablesList component will continue to display the groups, list of bookables, and
Next button, but the new BookableDetails component will display the details and man-
age the Show Details check box.

 The BookablesPage component currently imports and renders the BookablesList
component. We need to do a bit of rearranging to use the new version of the list along
with the BookableDetails component.

6.2.2 Organizing multiple components within a page’s UI

Both the BookablesList and the BookableDetails components need access to the
selected bookable. We create a BookablesView component to wrap the list and details
and to manage the shared state. Table 6.1 lists our proliferating bookables compo-
nents and outlines how they work together.

Figure 6.8 The list of bookables (on the left) is also used on the Bookings page.

143Breaking components into smaller pieces
In sections 6.3 and 6.4, we look at two approaches to lifting the state up to the
BookablesView component:

 Lifting the existing reducer from BookablesList to the BookablesView
component

 Lifting the selected bookable from BookablesList to the BookablesView
component

First, as shown in the following listing, we update the page component to import and
show BookablesView rather than BookablesList.

import BookablesView from "./BookablesView";

export default function BookablesPage () {
 return (
 <main className="bookables-page">
 <BookablesView/>
 </main>
);
}

On separate repo branches, we’ll create a different version of the BookablesView
component for each of the two state-sharing approaches we take. The Bookable-
Details component will be the same either way, so let’s build that first.

6.2.3 Creating a BookableDetails component

The new BookableDetails component performs exactly the same task as the second
half of the old BookablesList component UI; it displays the details of the selected
bookable and a check box for toggling part of that info. Figure 6.9 shows the Bookable-
Details component with the check box and bookable title, notes, and availability.

Table 6.1 Bookables components and how they work together

Component Purpose

BookablesPage Shows the BookablesView component (and, later, forms for adding and
editing bookables)

BookablesView Groups the BookablesList and BookableDetails components and
manages their shared state

BookablesList Shows a list of bookables by group and lets the user select a bookable, either
by clicking a bookable or using the Next button

BookableDetails Shows the details of the selected bookable with a check box to toggle the
display of the bookable’s availability

Branch: 0601-lift-reducer, File: src/components/Bookables/BookablesPage.js

Listing 6.5 The BookablesPage component

Import the new
component.

Use the new
component.

144 CHAPTER 6 Managing application state
As illustrated in figure 6.10, the BookablesView component passes in the selected
bookable so that BookableDetails has the information it needs to display.

Figure 6.9 The BookableDetails component with check box, title, notes, and availability

BookablesView passes the
selected bookable to the
BookableDetails component.

State:
The current
value of each
property

Shared state:
BookablesView manages the
shared state for BookablesList
and BookableDetails.

Local state:
BookableDetails manages
its own hasDetails state value.

Prop:

Figure 6.10 BookablesView manages the shared state and passes the selected bookable to
BookableDetails.

145Breaking components into smaller pieces
The code for the new component is in the following listing. The component receives
the selected bookable as a prop but manages its own hasDetails state value.

import {useState} from "react";
import {days, sessions} from "../../static.json";

export default function BookableDetails ({bookable}) {
 const [hasDetails, setHasDetails] = useState(true);

 function toggleDetails () {
 setHasDetails(has => !has);
 }

 return bookable ? (
 <div className="bookable-details item">
 <div className="item-header">
 <h2>{bookable.title}</h2>

 <label>
 <input
 type="checkbox"
 onChange={toggleDetails}
 checked={hasDetails}
 />
 Show Details
 </label>

 </div>

 <p>{bookable.notes}</p>

 {hasDetails && (
 <div className="item-details">
 <h3>Availability</h3>
 <div className="bookable-availability">

 {bookable.days
 .sort()
 .map(d => <li key={d}>{days[d]})
 }

 {bookable.sessions
 .map(s => <li key={s}>{sessions[s]})
 }

 </div>
 </div>
)}
 </div>
) : null;
}

Branch: 0601-lift-reducer, File: src/components/Bookables/BookableDetails.js

Listing 6.6 The BookableDetails component

Receive the current
bookable via props.

Use local state to hold
the hasDetails flag.

Use the updater function to
toggle the hasDetails flag.

Toggle the hasDetails flag
when the check box is clicked.

Use the hasDetails flag
to set the check box.

Use the hasDetails flag
to show or hide the
availability section.

146 CHAPTER 6 Managing application state
No other components in BookablesView care about the hasDetails state value, so it
makes good sense to encapsulate it completely within BookableDetails. If a compo-
nent is the sole user of a certain state, putting that state within the component seems
like an obvious approach.

 BookableDetails is a simple component that just displays the selected bookable.
As long as it receives that state value, it’s happy. Exactly how the BookablesView com-
ponent manages that state is more of an open question; should it call useState or
useReducer or both? The next two sections explore two approaches. Section 6.4
makes quite a few changes to do away with the reducer. But first, section 6.3 takes an
easier path and uses the existing reducer in BookablesList, lifting it up into the
BookablesView component.

6.3 Sharing the state and dispatch function
from useReducer
We already have a reducer that manages all of the state changes for the Bookables-
List component. The state the reducer manages includes the bookables data, the
selected group, and the index of the selected bookable, along with properties for
loading and error states. If we move the reducer up into the BookablesView compo-
nent, we can use the state the reducer returns to derive the selected bookable and
pass it to the child components, as illustrated in figure 6.11.

While BookableDetails needs only the selected bookable, BookablesList needs the
rest of the state the reducer returns and a way to continue dispatching actions as users

BookablesView passes
the selected bookable
to the BookableDetails
component.

State:
The current
value of each
property

Reducer:
Uses an action
to create a new state
from the old

Shared state:
BookablesView uses
a reducer to manage
the shared state for
its children.

Props:
BookablesView passes
the state and the reducer’s
dispatch function to the
BookablesList component.

Prop:

Figure 6.11 BookablesView manages the state with a reducer and passes the selected bookable
or the whole state to its children.

147Sharing the state and dispatch function from useReducer

ate
ithin
.

select bookables and switch groups. Figure 6.11 also shows BookablesView passing the
reducer’s state and dispatch function to BookablesList.

 Lifting the state up from BookablesList into the BookablesView component is
relatively straightforward. We complete it in three steps:

 Managing state in the BookablesView component
 Removing an action from the reducer
 Receiving state and dispatch in the BookablesList component

Let’s start by updating the BookablesView component to take control of the state.

6.3.1 Managing state in the BookablesView component

The BookablesView component needs to import its two children. It can then pass
them the state they need and the means to update that state if required. In the follow-
ing listing, you can see the imports for the new components, the state that Bookables-
View is managing, the call to the useReducer hook, and the UI as JSX, with state
values and the dispatch function set as props.

import {useReducer, Fragment} from "react";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";

import reducer from "./reducer";

const initialState = {
 group: "Rooms",
 bookableIndex: 0,
 bookables: [],
 isLoading: true,
 error: false
};

export default function BookablesView () {
 const [state, dispatch] = useReducer(reducer, initialState);

 const bookablesInGroup = state.bookables.filter(
 b => b.group === state.group
);
 const bookable = bookablesInGroup[state.bookableIndex];

 return (
 <Fragment>
 <BookablesList state={state} dispatch={dispatch}/>
 <BookableDetails bookable={bookable}/>
 </Fragment>
);
}

Branch: 0601-lift-reducer, File: src/components/Bookables/BookablesView.js

Listing 6.7 Moving the bookables state into the BookablesView component

Import all the components
that make up the UI.

Import the reducer that
BookablesList was using.

Set up the initial state
without hasDetails.

Manage the st
and reducer w
BookablesView

Derive the
selected bookable
from state.

Pass state and
dispatch to
BookablesList.

Pass the selected bookable
to BookableDetails.

148 CHAPTER 6 Managing application state
The BookablesView component imports the child components it needs and sets up
the initial state that used to live in the BookablesList component. We’ve removed the
hasDetails property from the state; the new BookableDetails component manages
its own state for whether to show details or not.

6.3.2 Removing an action from the reducer

With the BookableDetails component happily toggling its own details, the reducer
no longer needs to handle an action for toggling a shared hasDetails state value, so
the following case can be removed from reducer.js:

case "TOGGLE_HAS_DETAILS":
 return {
 ...state,
 hasDetails: !state.hasDetails
 };

Apart from that, the reducer can stay as it is. Nice!

6.3.3 Receiving state and dispatch in the BookablesList component

The BookablesList component needs a few tweaks. Instead of relying on its own local
reducer and actions, it’s now dependent on the BookablesView component (or any
other parent component that renders it). The code for BookablesList is relatively
long, so we consider it section by section. The structure of the code looks like this:

export default function BookablesList ({state, dispatch}) {
 // 1. Variables
 // 2. Effect
 // 3. Handler functions
 // 4. UI
}

The following four subsections discuss any changes that are necessary. If you stitch the
pieces together, you’ll have the complete component.

VARIABLES

Apart from the two new props, state and dispatch, there are no additions to
the variables in the BookablesList component. But with the reducer lifted up to the
BookablesView component and the need to display the bookable details removed,
there are some deletions. The following listing shows what’s left.

import {useEffect, useRef} from "react";
import {FaArrowRight} from "react-icons/fa";
import Spinner from "../UI/Spinner";
import getData from "../../utils/api";

Branch: 0601-lift-reducer, File: src/components/Bookables/BookablesList.js

Listing 6.8 BookablesList: 1. Variables

149Sharing the state and dispatch function from useReducer

d

h
export default function BookablesList ({state, dispatch}) {
 const {group, bookableIndex, bookables} = state;
 const {isLoading, error} = state;

 const bookablesInGroup = bookables.filter(b => b.group === group);
 const groups = [...new Set(bookables.map(b => b.group))];

 const nextButtonRef = useRef();

 // 2. Effect
 // 3. Handler functions
 // 4. UI
}

The reducer and its initial state are gone, as is the hasDetails flag. Finally, we no lon-
ger need to display the bookable details, so we removed the bookable variable.

EFFECT

The effect is pretty much unchanged apart from one small detail. In the following
listing, you can see that we have added the dispatch function to the effect’s depen-
dency array.

export default function BookablesList ({state, dispatch}) {
 // 1. Variables

 useEffect(() => {
 dispatch({type: "FETCH_BOOKABLES_REQUEST"});

 getData("http://localhost:3001/bookables")
 .then(bookables => dispatch({
 type: "FETCH_BOOKABLES_SUCCESS",
 payload: bookables
 }))
 .catch(error => dispatch({
 type: "FETCH_BOOKABLES_ERROR",
 payload: error
 }));
 }, [dispatch]);

 // 3. Handler functions
 // 4. UI
}

In the previous version, when we called useReducer from within the BookablesList
component and assigned the dispatch function to the dispatch variable, React knew
that the identity of the dispatch function would never change, so it didn’t need to be
declared as a dependency for the effect. Now that a parent component passes dispatch
in as a prop, BookablesList doesn’t know where it comes from so can’t be sure it

Branch: 0601-lift-reducer, File: src/components/Bookables/BookablesList.js

Listing 6.9 BookablesList: 2. Effect

Assign the state an
dispatch props to
local variables.

Assign the dispatc
prop to a local
variable.

Include dispatch in
the dependency
array for the effect.

150 CHAPTER 6 Managing application state
won’t change. Leaving dispatch out of the dependency array prompts a warning in
the browser console like the one in figure 6.12.

Including dispatch in the dependency array is good practice here; we know it won’t
change (at least for now), so the effect won’t run unnecessarily. Notice that the warn-
ing in figure 6.12 says “If ‘dispatch’ changes too often, find the parent component
that defines it and wrap that definition in useCallback.” We look at using the useCall-
back hook to maintain the identity of functions that are dependencies in section 6.5.

HANDLER FUNCTIONS

Now that the details for the selected bookable are shown by a different component,
we can remove the toggleDetails handler function. Everything else stays the same.
Easy!

UI
Goodbye, bookableDetails div! We completely cut out the second section of the UI,
for displaying the bookable details. The following listing shows the updated, super-
slim BookablesList UI.

export default function BookablesList ({state, dispatch}) {
 // 1. Variables
 // 2. Effect
 // 3. Handler functions

 if (error) {
 return <p>{error.message}</p>
 }

 if (isLoading) {
 return <p><Spinner/> Loading bookables...</p>
 }

 return (
 <div>
 <select value={group} onChange={changeGroup}>
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

Branch: 0601-lift-reducer, File: src/components/Bookables/BookablesList.js

Listing 6.10 BookablesList: 4. UI

Figure 6.12 React warns us when dispatch is missing from the dependency array.

151Sharing the state value and updater function from useState
 <ul className="bookables items-list-nav">
 {bookablesInGroup.map((b, i) => (
 <li
 key={b.id}
 className={i === bookableIndex ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => changeBookable(i)}
 >
 {b.title}
 </button>

))}

 <p>
 <button
 className="btn"
 onClick={nextBookable}
 ref={nextButtonRef}
 autoFocus
 >
 <FaArrowRight/>
 Next
 </button>
 </p>
 </div>
);
}

All that’s left in the UI is the list of bookables with its associated group picker and
Next button. So, we also remove the Fragment component that was grouping the two
big chunks of UI.

 With the bookable details off on their own adventures and the reducer lifted up to
the parent, the changes to the BookablesList component mostly took the form of
deletions. One key addition was the inclusion of dispatch in the dependency array
for the data-loading effect. Housing the state in the BookablesView component (or
maybe even higher up the component tree) seems easy. Stick all the data there, and
pass a dispatch function to any descendant components that need to make changes to
the state. It’s a valid approach, and one sometimes used by users of popular state-store
libraries like Redux. But before throwing all the state up to the top of the app, even if
most components don’t care about most of the state that ends up there, let’s investi-
gate an alternative.

6.4 Sharing the state value and updater function
from useState
In this section, we try a different approach. We lift only the state that needs to be
shared: the selected bookable. Figure 6.13 shows the BookablesView component pass-
ing the selected bookable to its two child components. The BookableDetails and

152 CHAPTER 6 Managing application state
BookablesList components still get exactly what they need, and rather than giving
BookablesView a whole load of state it doesn’t need to share, BookablesList will man-
age the rest of the state and functionality that it needs: the loading indicators and errors.

 Lifting the selected bookable up from BookablesList into the BookablesView
component requires much less work in BookablesView but a number of changes in
BookablesList. We complete the changes in two steps:

 Managing the selected bookable in the BookablesView component
 Receiving the bookable and updater function in BookablesList

The BookablesList component still needs a way to let BookablesView know that a
user has selected a new bookable. BookablesView passes BookablesList the updater
function for the selected bookable. Let’s take a closer look at the latest code for the
BookablesView component.

6.4.1 Managing the selected bookable in the BookablesView
component

As you can see in listing 6.11, the BookablesView component in this version is very
simple; it doesn’t have to deal with the reducer, initial state, or deriving the selected
bookable from state. It includes a single call to the useState hook to manage the
selected bookable state value. It then passes the selected bookable to both children
and the updater function to BookablesList. When a user selects a bookable, the
BookablesList component can use the updater function to let BookablesView know
that the state has changed.

Prop:
BookablesView passes
the bookable state value
to the BookableDetails
component.

Shared state:
BookablesView
manages only the
state that needs
to be shared.

Props:
BookablesView passes the
bookable state value and
its updater function to the
BookablesList component.

Figure 6.13 BookablesView manages only the shared state. It passes the bookable to the
BookableDetails component. It passes the bookable and its updater function to
BookablesList.

153Sharing the state value and updater function from useState
import {useState, Fragment} from "react";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";

export default function BookablesView () {
 const [bookable, setBookable] = useState();

 return (
 <Fragment>
 <BookablesList bookable={bookable} setBookable={setBookable}/>
 <BookableDetails bookable={bookable}/>
 </Fragment>
);
}

BookablesView no longer needs to do the filtering of the bookables for the current
group or grab the current bookable from that filtered list. Let’s see how Bookables-
List changes to adapt to the new approach.

6.4.2 Receiving the bookable and updater function in BookablesList

By letting the BookablesView component manage the selected bookable, we change
how the BookablesList component works. In the reducer version, BookablesView
stored the bookableIndex and group as part of state. Now, with BookablesList receiv-
ing the bookable directly, those state values are no longer needed. The selected book-
able looks something like this:

{
 "id": 1,
 "group": "Rooms",
 "title": "Meeting Room",
 "notes": "The one with the big table and interactive screen.",
 "days": [1, 2, 3],
 "sessions": [1, 2, 3, 4, 5, 6]
}

It includes an id and a group property. Whatever group the selected bookable is in is
the current group; we don’t need a separate group state value. Also, it’s easy to find
the index of the selected bookable within the array of bookables in its group; we don’t
need a bookableIndex state value. With the group, bookableIndex, and hasDetails
state values no longer needed, resulting in a smaller, simpler state, let’s switch back to
using calls to useState rather than a reducer.

 There are changes to all sections of the BookablesList component, so we consider
the code section by section. The structure of the code looks like this:

Branch: 0602-lift-bookable, File: /src/components/Bookables/BookablesView.js

Listing 6.11 Putting the selected bookable in the BookablesView component

Manage the selected
bookable as a state value.

Pass the bookable and its
updater function down.

Pass the
bookable down.

154 CHAPTER 6 Managing application state
export default function BookablesList ({bookable, setBookable}) {
 // 1. Variables
 // 2. Effect
 // 3. Handler functions
 // 4. UI
}

Each of the next four subsections discusses one of the code sections. If you stitch the
pieces together, you’ll have the complete component.

VARIABLES

The BookablesList component now receives the selected bookable as a prop. The
selected bookable includes an id and a group property. We use the group property to
filter the list and the id to highlight the selected bookable.

 The following listing shows the updated BookablesList component receiving
bookable and setBookable as props and setting up three pieces of local state by call-
ing useState three times.

import {useState, useEffect, useRef} from "react";
import {FaArrowRight} from "react-icons/fa";
import Spinner from "../UI/Spinner";
import getData from "../../utils/api";

export default function BookablesList ({bookable, setBookable}) {
 const [bookables, setBookables] = useState([]);
 const [error, setError] = useState(false);
 const [isLoading, setIsLoading] = useState(true);

 const group = bookable?.group;

 const bookablesInGroup = bookables.filter(b => b.group === group);
 const groups = [...new Set(bookables.map(b => b.group))];

 const nextButtonRef = useRef();

 // 2. Effect
 // 3. Handler functions
 // 4. UI
}

Listing 6.12 grabs the current group from the selected bookable by using the optional
chaining operator, ?., a recent addition to JavaScript:

const group = bookable?.group;

If no bookable is selected, the expression bookable?.group returns undefined. It saves
us from checking whether the bookable exists before accessing the group property:

const group = bookable && bookable.group;

Branch: 0602-lift-bookable, File: /src/components/Bookables/BookablesList.js

Listing 6.12 BookablesList: 1. Variables

Import useState rather
than useReducer.

Receive the selected bookable
and updater function as props.

Manage state
with calls to the
useState hook.

Get the current group from
the selected bookable.

155Sharing the state value and updater function from useState
Until a bookable is selected, the group will be undefined and bookablesInGroup will
be an empty array. We need to select a bookable as soon as the bookables data is
loaded into the component. Let’s look at the loading process.

EFFECT

The following listing shows the updated effect code. It now uses updater functions
rather than dispatching actions.

export default function BookablesList ({bookable, setBookable}) {
 // 1. Variables

 useEffect(() => {
 getData("http://localhost:3001/bookables")

 .then(bookables => {
 setBookable(bookables[0]);
 setBookables(bookables);
 setIsLoading(false);
 })

 .catch(error => {
 setError(error);
 setIsLoading(false)
 });

 }, [setBookable]);

 // 3. Handler functions
 // 4. UI
}

The first effect still uses the getData utility function, created in chapter 4, to load the
bookables. But instead of dispatching actions to a reducer, the effect uses all four of
the listing’s updater functions: setBookable (passed in as a prop) and setBookables,
setIsLoading, and setError (from local calls to useState).

 When the data loads, it assigns the data to the bookables state value and calls set-
Bookable with the first bookable in the array:

setBookable(bookables[0]);
setBookables(bookables);
setIsLoading(false);

React is able to sensibly respond to multiple state update calls, like the three just listed.
It can batch updates to efficiently schedule any re-renders and DOM changes needed.

 As we saw with the dispatch prop in the reducer version in section 6.3, React
doesn’t trust functions passed in as props to be the same on each render. In this version,

Branch: 0602-lift-bookable, File: /src/components/Bookables/BookablesList.js

Listing 6.13 BookablesList: 2. Effect

Use the setBookable prop
to select the first bookable.

Use the local updater function
to set the bookables state.

If there’s an error,
set the error state.

Include the external function
in the dependency list.

156 CHAPTER 6 Managing application state
BookingsView passes in the setBookable function as a prop, so we include it in the
dependency array for the first effect. Indeed, we sometimes might define our own
updater functions rather than directly using those that useState returns. We look at
how to make such functions work nicely as dependencies in section 6.5, where we
introduce the useCallback hook.

 If an error was thrown in the course of loading the data, the catch method sets it
as the error state value:

.catch(error => {
 setError(error);
 setIsLoading(false);
);

HANDLER FUNCTIONS

In the previous version of the BookablesList component, the handler functions dis-
patched actions to the reducer. In this new version, the handler functions’ key task is
to set the bookable. In the following listing, notice how each handler function includes
a call to setBookable.

export default function BookablesList ({bookable, setBookable}) {
 // 1. Variables
 // 2. Effect

 function changeGroup (e) {
 const bookablesInSelectedGroup = bookables.filter(
 b => b.group === event.target.value
);
 setBookable(bookablesInSelectedGroup[0]);
 }

 function changeBookable (selectedBookable) {
 setBookable(selectedBookable);
 nextButtonRef.current.focus();
 }

 function nextBookable () {
 const i = bookablesInGroup.indexOf(bookable);
 const nextIndex = (i + 1) % bookablesInGroup.length;
 const nextBookable = bookablesInGroup[nextIndex];
 setBookable(nextBookable);
 }

 // 4. UI
}

The current group is derived from the selected bookable; we no longer have a group
state value. So when a user chooses a group from the drop-down, the changeGroup

Branch: 0602-lift-bookable, File: /src/components/Bookables/BookablesList.js

Listing 6.14 BookablesList: 3. Handler functions

Filter for the
selected group.

Set the bookable to the
first in the new group.

157Sharing the state value and updater function from useState
function doesn’t directly set the new group. Instead, it selects the first bookable in the
chosen group:

setBookable(bookablesInSelectedGroup[0]);

The setBookable updater function is from the BookablesView component and trig-
gers a re-render of BookablesView. BookablesView, in turn, re-renders the Bookables-
List component, passing it the newly selected bookable as a prop. The BookablesList
component uses the bookable’s group and id properties to select the correct group in
the drop-down, show just the bookables in the group, and highlight the selected book-
able in the list.

 The changeBookable function has no surprises: it sets the selected bookable and
moves focus to the Next button. In addition to setting the bookable to the next in the
current group, nextBookable wraps back to the first if necessary.

UI
We no longer have the bookableIndex value in state. The following listing shows how
we use the bookable id instead.

export default function BookablesList ({bookable, setBookable}) {
 // 1. Variables
 // 2. Effect
 // 3. Handler functions

 if (error) {
 return <p>{error.message}</p>
 }

 if (isLoading) {
 return <p><Spinner/> Loading bookables...</p>
 }

 return (
 <div>
 <select value={group} onChange={changeGroup}>
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

 <ul className="bookables items-list-nav">
 {bookablesInGroup.map(b => (
 <li
 key={b.id}
 className={b.id === bookable.id ? "selected" : null}
 >
 <button
 className="btn"
 onClick={() => changeBookable(b)}
 >

Branch: 0602-lift-bookable, File: /src/components/Bookables/BookablesList.js

Listing 6.15 BookablesList: 4. UI

Use the ID to check
whether a bookable

should be highlighted.

Pass the bookable to
the changeBookable
handler function.

158 CHAPTER 6 Managing application state
 {b.title}
 </button>

))}

 <p>
 <button
 className="btn"
 onClick={nextBookable}
 ref={nextButtonRef}
 autoFocus
 >
 Next
 </button>
 </p>
 </div>
);
}

Some key changes to the UI occur in the list of bookables. The code iterates through
the bookables in the same group as the selected bookable. One by one, the bookables
in the group are assigned to the b variable. The bookable variable represents the selected
bookable. If b.id and bookable.id are the same, the current bookable in the list
should be highlighted, so we set its class to selected:

className={b.id === bookable.id ? "selected" : null}

When a user clicks a bookable to select it, the onClick handler passes the whole book-
able object, b, to the changeBookable function, rather than just the bookable’s index:

onClick={() => changeBookable(b)}

And that’s the BookablesList component without a reducer again. A few changes
were made, but with its more focused role of just listing bookables, it’s also simpler
overall.

 Which approach do you find easier to understand? Dispatching actions to a
reducer in the parent or managing most of the state in the component that uses it? In
the first approach, we moved the reducer up to the BookablesView component with-
out making many changes. Could we have simplified the state held in the reducer in
the same way we did for the variables in the second approach? Whichever implemen-
tation you prefer, this chapter gave you a chance to practice calling the useState,
useReducer, and useEffect hooks and consider some of the nuances of passing dis-
patch and updater functions to child components.

CHALLENGE 6.1
Split the UsersList component into UsersList and UserDetails components. Use
the UsersPage component to manage the selected user, passing it to UsersList and
UserDetails. Find a solution on the 0603-user-details branch.

159Passing functions to useCallback to avoid redefining them
6.5 Passing functions to useCallback
to avoid redefining them
Now that our applications are growing, and we have components working together to
provide functionality, it’s natural to be passing state values down to children as props.
As we’ve seen in this chapter, those values can include functions. If the functions are
updater or dispatch functions from useState or useReducer, React guarantees that
their identity will be stable. But for functions we define ourselves, the very nature of
components as functions that React calls means our functions will be defined on every
render. In this section, we explore the problems such redefining can cause and look at
a new hook, useCallback, that can help solve such problems.

6.5.1 Depending on functions we pass in as props

In the previous section, the state for the selected bookable is managed by the Bookables-
View component. It passes both the bookable and its updater function, setBookable,
to BookablesList. BookablesList calls setBookable whenever a user choses a book-
able and also within the effect wrapping the data-fetching code, shown here without
the catch block:

useEffect(() => {
 getData("http://localhost:3001/bookables")
 .then(bookables => {
 setBookable(bookables[0]);
 setBookables(bookables);
 setIsLoading(false);
 });
}, [setBookable]);

We include the setBookable updater function as a dependency. The effect reruns
whenever the values in its dependency list change. But up to now, setBookable has
been an updater function returned by useState and, as such, is guaranteed not to
change value; the data-fetching effect runs only once.

 The parent component, BookablesView, assigns the updater function to the set-
Bookable variable and sets it directly as one of BookablesList’s props. But it’s not
uncommon to do some kind of validation or processing of values before updating state.
Say BookablesView wants to check that the bookable exists and, if it does, add a time-
stamp property before updating state. The following listing shows such a custom setter.

import {useState, Fragment} from "react";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";

export default function BookablesView () {
 const [bookable, setBookable] = useState();

Listing 6.16 Validating and enhancing a value in BookablesView before setting state

Once the data arrives, set the
current bookable to the first.

Include the setBookable
function as a dependency.

160 CHAPTER 6 Managing application state
 function updateBookable (selected) {
 if (selected) {
 selected.lastShown = Date.now();
 setBookable(selected);
 }
 }

 return (
 <Fragment>
 <BookablesList bookable={bookable} setBookable={updateBookable}/>
 <BookableDetails bookable={bookable}/>
 </Fragment>
);
}

BookablesView now assigns the custom updateBookable function as the setBookable
prop for BookablesList. The BookablesList component cares not a jot, and happily
calls the new updater function whenever it wants to select a bookable. So, what’s the
problem?

 If you update the code to use the new updater function and load the Bookables
page, the Network tab of the Developer Tools highlights some disturbing activity: the
bookables are being fetched again and again, as shown in figure 6.14.

The parent component, BookablesView, manages the state for the selected bookable.
Whenever BookablesList loads the bookables data and sets the bookable, Bookables-
View re-renders; React runs its code again, defining the updateBookable function
again and passing the new version of the function to BookablesList. The useEffect
call in BookablesList sees that the setBookable prop is a new function and runs the
effect again, refetching the bookables data and setting the bookable again, restarting
the loop. We need a way to maintain the identity of our updater function, so that it
doesn’t change from render to render.

Check that the bookable exists.

Add a timestamp property.

Set the state.

Pass our handler function
as the updater prop.

Figure 6.14 The Network tab of the
Developer Tools shows bookables
being fetched repeatedly.

161Passing functions to useCallback to avoid redefining them
6.5.2 Maintaining function identity with the useCallback hook

When we want to use the same function from render to render but don’t want it to be
redefined each time, we can pass the function to the useCallback hook. React will
return the same function from the hook on every render, redefining it only if one of
the function’s dependencies changes. Use the hook like this:

const stableFunction = useCallback(funtionToCache, dependencyList);

The function that useCallback returns is stable while the values in the dependency
list don’t change. When the dependencies change, React redefines, caches, and
returns the function using the new dependency values. The following listing shows
how to use the new hook to solve our endless fetch problem.

import {useState, useCallback, Fragment} from "react";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";

export default function BookablesView () {
 const [bookable, setBookable] = useState();

 const updateBookable = useCallback(selected => {
 if (selected) {
 selected.lastShown = Date.now();
 setBookable(selected);
 }
 }, []);

 return (
 <Fragment>
 <BookablesList bookable={bookable} setBookable={updateBookable}/>
 <BookableDetails bookable={bookable}/>
 </Fragment>
);
}

Wrapping our updater function in useCallback means React will return the same
function on every render, unless the dependencies change values. But we’ve used
an empty dependency list, so the values will never change and React will always
return the exact same function. The useEffect call in BookablesList will now see
that its setBookable dependency is stable, and it’ll stop endlessly refetching the
bookables data.

 The useCallback hook can be useful, in exactly the same way, when working with
components that re-render only when their props change. Such components can be
created with React’s memo function, described in the React docs: https://reactjs.org/
docs/react-api.html#reactmemo.

Listing 6.17 Maintaining a stable function identity with useCallback

Import the
useCallback hook.

Pass the updater
function to useCallback.

Specify the
dependencies.

Assign the stable
function as a prop.

https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo

162 CHAPTER 6 Managing application state
 useCallback lets us memoize functions. To prevent the redefinition or recalcula-
tion of values more generally, React also provides the useMemo hook, and we’ll look at
that in the next chapter.

Summary
 If components share the same state value, lift the value up to the closest shared

ancestor component in the component tree and pass the state down via props:

const [bookable, setBookable] = useState();
return (
 <Fragment>
 <BookablesList bookable={bookable}/>
 <BookableDetails bookable={bookable}/>
 </Fragment>
);

 Pass the updater function returned by useState to child components if they
need to update the shared state:

const [bookable, setBookable] = useState();
return <BookablesList bookable={bookable} setBookable={setBookable} />

 Destructure the props parameter, assigning properties to local variables:

export default function ColorPicker({colors = [], color, setColor}) {
 return (
 // UI that uses colors, color and setColor
);
}

 Consider using default values for props. If the prop isn’t set, the default value
will be used:

export default function ColorPicker({colors = [], color, setColor}) {
 return (
 // iterate over colors array
);
}

 Check for undefined or null prop values. Return alternative UI if appropriate:

export default function ChoiceText({color}) {
 return color ? (
 <p>The selected color is {color}!</p>
) : (
 <p>No color has been selected!</p>
);
}

 Return null when it is appropriate to render nothing.

163Summary
 To let a child component update the state managed by a parent, pass the child
an updater function or a dispatch function. If the function is used in an effect,
include the function in the effect’s dependency list.

 Maintain the identity of functions across renders by wrapping them in calls to
the useCallback hook. React will redefine the function only when the depen-
dencies change:

const stableFunction = useCallback(functionToCache, dependencyList);

Managing performance
with useMemo
React is great at making it easy to display data in efficient, appealing, and respon-
sive ways. But simply throwing raw data onto the screen is rare. Whether our apps
are statistical, financial, scientific, entertaining, or whimsical, we almost always
manipulate our data before bringing it to the surface.

 Sometimes that manipulation can be complicated or time-consuming. If the
time and resources spent are necessary to bring the data to life, the outcome may
make up for the cost. But if the user experience is degraded by our computations, we
need to consider ways of streamlining our code. Maybe a quest for more-efficient
algorithms will pay dividends, or maybe our algorithms are already efficient and there
is no way to make them faster. Either way, we shouldn’t perform the computations at

This chapter covers
 Using the useMemo hook to avoid rerunning expensive

computations

 Controlling useMemo with a dependency array

 Considering the user experience as your app re-renders

 Handling race conditions when fetching data

 Using JavaScript’s optional chaining syntax with square
brackets
164

165Breaking the cook’s heart by calling, “O, shortcake!”
all if we know their output will be unchanged. In such a case, React provides the use-
Memo hook to help us avoid unnecessary and wasteful work.

 We start this chapter by being willfully wasteful, running the risk of crashing the
browser with some gratuitously resource-intensive anagram generation. We call on
useMemo to protect the user from some seriously sluggish UI updates. We then bring
the bookings to life in our example app, this time calling useMemo to avoid regenerat-
ing grids of booking slots for no reason. When fetching the bookings for the selected
week and bookable, we examine a method for coping with multiple requests and
responses from within a useEffect call.

 The title of section 7.1 is a little messed up; let’s find out what it’s trying to teach us
about React Hooks.

7.1 Breaking the cook’s heart by calling, “O, shortcake!”
Say you’re trying to develop an anagram app that will find amusing anagrams of
words, names, and phrases. It’s early in the development process and, so far, you have
an app that finds all of the combinations of letters in some source text. In figure 7.1,
your fledgling app is displaying the 12 distinct anagrams of the source text ball. The
app is live on CodeSandbox (https://codesandbox.io/s/anagrams-djwuy).

 You can toggle between All anagrams and Distinct anagrams. For example,
because “ball” has a repeated letter “l,” you could swap their positions and still have

Figure 7.1 The Anagrams app counts and displays anagrams of text entered by the user. The user can
count all anagrams or only distinct anagrams, and can toggle the display of the anagrams.

https://codesandbox.io/s/anagrams-djwuy

166 CHAPTER 7 Managing performance with useMemo
the word “ball.” The two identical words are counted separately in the All category but
not in the Distinct category. You can also hide the generated anagrams, letting the app
find new anagrams behind the scenes as you enter the source text, without having to
render the new anagrams as you type.

 Be careful! The number of anagrams shoots up as the number of letters in the
source text increases. There are n! (n factorial) combinations of n letters. For four let-
ters, that’s 4 × 3 × 2 × 1 = 24 combinations. For ten letters, there are 10!, or 3,628,800,
combinations, as shown in figure 7.2. The app is limited to ten characters—remove
the cap at your own risk!

7.1.1 Generating anagrams with an expensive algorithm

A coworker provides you with the code for finding the anagrams. The algorithm is shown
in the following listing. It could certainly be improved. But whatever the algorithm,
you want to be performing such expensive calculations only if absolutely necessary.

export function getAnagrams(source) {
 if (source.length < 2) {
 return [...source];
 }

Live: https://djwuy.csb.app/, Code: https://codesandbox.io/s/anagrams-djwuy

Listing 7.1 Finding anagrams

Figure 7.2 Be careful! The number of anagrams increases quickly as the source text gets longer. There
are over 3.5 million anagrams of a 10-letter word.

Create a function to find
all combinations of letters
in some source text.

https://djwuy.csb.app/
https://codesandbox.io/s/anagrams-djwuy

167Breaking the cook’s heart by calling, “O, shortcake!”
 const anagrams = [];
 const letters = [...source];

 letters.forEach((letter, i) => {
 const without = [...letters];
 without.splice(i, 1);
 getAnagrams(without).forEach(anagram => {
 anagrams.push(letter + anagram);
 });
 });

 return anagrams;
}

export function getDistinct(anagrams) {
 return [...new Set(anagrams)];
}

The algorithm takes each letter in a word and appends all the anagrams of the
remaining letters. So, for “ball” it would find the following:

 “b” + anagrams of “all”
 “a” + anagrams of “bll”
 “l” + anagrams of “bal”
 “l” + anagrams of “bal”

The main app calls getAnagrams and getDistinct to get the info it needs to display.
The following listing is an earlier implementation. Can you spot any problems?

import React, { useState } from "react";
import "./styles.css";
import { getAnagrams, getDistinct } from "./anagrams";

export default function App() {
 const [sourceText, setSourceText] = useState("ball");
 const [useDistinct, setUseDistinct] = useState(false);
 const [showAnagrams, setShowAnagrams] = useState(false);

 const anagrams = getAnagrams(sourceText);
 const distinct = getDistinct(anagrams);

 return (
 <div className="App">
 <h1>Anagrams</h1>
 <label htmlFor="txtPhrase">Enter some text...</label>
 <input
 type="text"
 value={sourceText}
 onChange={e => setSourceText(e.target.value.slice(0, 10))}
 />

Listing 7.2 The anagrams app before the fix

Call the function recursively
on source text with one
letter removed.

Create a function to remove
duplicates from an array.

Import the anagram
finder functions.

Manage the
source text state.

Include flags for
toggling distinct
anagrams and
anagram display.Use the anagram

functions to
generate the
data.

Cap the
number of

letters.

168 CHAPTER 7 Managing performance with useMemo

 <div className="count">
 {useDistinct ? (
 <p>
 There are {distinct.length} distinct anagrams.
 </p>
) : (
 <p>
 There are {anagrams.length} anagrams of "{sourceText}".
 </p>
)}
 </div>

 <p>
 <label>
 <input
 type="checkbox"
 checked={useDistinct}
 onClick={() => setUseDistinct(s => !s)}
 />
 Distinct
 </label>
 </p>
 <p>
 <label>
 <input
 type="checkbox"
 checked={showAnagrams}
 onChange={() => setShowAnagrams(s => !s)}
 />
 Show
 </label>
 </p>

 {showAnagrams && (
 <p className="anagrams">
 {distinct.map(a => (
 {a}
))}
 </p>
)}
 </div>
);
}

The key problem is that the code calls the expensive anagram functions on every ren-
der. But the anagrams change only if the source text changes. You really shouldn’t
generate the anagrams again if the user clicks either of the check boxes, toggling
between All and Distinct anagrams, or showing and hiding the list. Here are the cur-
rent calls to the anagram functions:

export default function App() {
 // variables

Display the
number of
anagrams.

Display the list
of anagrams.

169Breaking the cook’s heart by calling, “O, shortcake!”

use
 const anagrams = getAnagrams(sourceText);
 const distinct = getDistinct(anagrams);

 return (/* UI */)
}

We need a way of asking React to run the expensive functions only if their output is
likely to be different. For getAnagrams, that’s if the sourceText value changes. For
getDistinct, that’s if the anagrams array changes.

7.1.2 Avoiding redundant function calls

The following listing shows the code for the live example. It wraps the expensive func-
tions in calls to the useMemo hook, providing an array of dependencies for each call.

import React, {useState, useMemo} from "react";
import "./styles.css";
import {getAnagrams, getDistinct} from "./anagrams";

export default function App() {
 const [sourceText, setSourceText] = useState("ball");
 const [useDistinct, setUseDistinct] = useState(false);
 const [showAnagrams, setShowAnagrams] = useState(false);

 const anagrams = useMemo(
 () => getAnagrams(sourceText),
 [sourceText]
);

 const distinct = useMemo(
 () => getDistinct(anagrams),
 [anagrams]
);

 return (/* UI */)
}

In this version, React should call getAnagrams only when sourceText changes, and
should call getDistinct only when anagrams changes. Users can toggle at will without
causing a cascade of costly calls as the app tries to keep up while rebuilding the same
million anagrams again and again.

 You could see the last example, decide there’s no more to learn, and bury your
head in the sand—some emu. Or be too timid to ask for more details—Mouse? Me? But,
be brave, lean on React, and calm those costly calls—useMemo!

Live: https://djwuy.csb.app/, Code: https://codesandbox.io/s/anagrams-djwuy

Listing 7.3 The anagrams app with useMemo

The expensive functions
run on every render.

Import the
useMemo hook.

Call
Memo.

Pass the expensive
function to useMemo.

Specify a list of
dependencies.

Assign the value getDistinct
returns to a variable.

Wrap the call to getDistinct
in another function.

Rerun the getDistinct function only
when the anagrams array changes.

https://djwuy.csb.app/
https://codesandbox.io/s/anagrams-djwuy

170 CHAPTER 7 Managing performance with useMemo
7.2 Memoizing expensive function calls with useMemo
If we have a function, expensiveFn, that takes time and resources to calculate its
return value, then we want to call the function only when absolutely necessary. By call-
ing the function inside the useMemo hook, we ask React to store a value computed by
the function for a given set of arguments. If we call the function inside useMemo again,
using the same arguments as the previous call, it should return the stored value. If we
pass different arguments, it will use the function to compute a new value and update
its store before returning the new value. The process of storing a result for a given set
of arguments is called memoizing.

 When calling useMemo, pass it a create function and a list of dependencies, as shown
in figure 7.3.

The list of dependencies is an array of values and should include all the values the
function uses in its computation. On each call, useMemo compares the dependency list
to the previous list. If each list holds the same values in the same order, useMemo may
return the stored value. If any value in the list has changed, useMemo will call the func-
tion and store and return the function’s return value. To reiterate, useMemo may return
the stored value. React reserves the right to clear its store if it needs to free up mem-
ory. So, it might call the expensive function even if the dependencies are unchanged.

 If you omit the dependency list, useMemo always runs your function, which kind of
defeats the purpose! If you pass an empty array, the values in the list never change, so
useMemo could always return the stored value. It may, however, decide to clear its store
and run your function again anyway. It’s almost certainly best to avoid that kind of
maybe-or-maybe-not behavior.

 That’s how useMemo works. We see it in action again in the bookings example app
in section 7.4, memoizing a function for generating a grid of booking slots. First, we

const memoizedValue = useMemo(() => expensiveFn(a, b), [a, b]);

Dependency list:
The variables that
the expensive process
uses to compute the value

Value:
The value returned
for the given
arguments

()=>{}[],

Create function:
A function that
calls the expensive
process

()=>{ }

Figure 7.3 Call the useMemo hook with a function and a list of dependencies.

171Organizing the components on the Bookings page
use our state-sharing and React Hooks skills to put the Bookings page components
into place and pass them the bits and pieces they need to work nicely together.

7.3 Organizing the components on the Bookings page
So far, the Bookables and Users pages have had all the attention in the bookings app;
it’s about time the Bookings page got some love! We need to put the shared-state con-
cepts from chapter 6 into action and decide which components will manage which
state as we let users view bookings for different bookables and different weeks.

 Figure 7.4 shows the layout of the Bookings page, with the list of bookables on the
left and the bookings info taking up the rest of the page. We have a BookingsPage
component for the page itself, a BookablesList component for the list on the left,
and a Bookings component for the rest of the page. The bookings info includes a
week picker, an area to display a bookings grid, and an area to display the details of
a selected booking.

Figure 7.4 has placeholders for the bookings grid and the booking details. We’ll bring
the bookings grid to life and incorporate the useMemo hook in section 7.4. We’ll popu-
late the booking details and introduce the useContext hook in chapter 8. In this sec-
tion, we put the pieces into place on the page.

 This book uses the bookings app to teach you about React Hooks. To save you time
and effort, I'm focusing more on teaching hooks than I am on teaching you how to

Figure 7.4 The Bookings page includes two components: one for the list of bookables, and one containing the
week picker, bookings grid, and booking details.

172 CHAPTER 7 Managing performance with useMemo
code the bookings app, which could get very repetitive and wouldn't benefit learning
React. So, sometimes, the book sets challenges and points you to the example’s
GitHub repo to get the latest code for certain components. With the Bookings page,
the example app is edging into complexity, so a few more cases of changes in the repo
are not fully listed in the book; I’ll make it clear when you need to check the repo.

 Table 7.1 lists the components in play for the Bookings page, along with their main
function and the shared state they manage. In chapter 8, we’ll use the useContext
hook to access the current user from the BookingDetails component; although we
don’t work with the App component in this chapter, it’s included in the table so you
can see the full hierarchy of components.

We’ll work from the BookingsPage down; the listings should give you a good sense of
the structure of the page and of the flow of state through the hierarchy of compo-
nents. The discussion is split into two subsections, using the shared state as the focus:

 Managing the selected bookable with useState
 Managing the selected week and booking with useReducer and useState

All the pieces shown in table 7.1 will need to be in position before the app returns to a
working state, but the listings aren’t long, so we’ll get there soon.

Table 7.1 Components for the Bookings page

Component Role Managed state Hook

App Render header with links to pages.
Render user picker. Use routes
to render correct page.

Current user useState +
Context API—see
chapter 8

BookingsPage Render BookablesList and
Bookings components.

Selected bookable useState

BookablesList Render list of bookables and let
users select a bookable.

Bookings Render WeekPicker, Bookings-
Grid, and BookingDetails
components.

Selected week and
selected booking

useReducer and
useState

WeekPicker Let users switch between weeks
to view.

BookingsGrid Display a grid of booking slots for
the selected bookable and week.
Populate the grid with any existing
bookings. Highlight the selected
booking.

BookingDetails Display details of the selected
booking.

173Organizing the components on the Bookings page
7.3.1 Managing the selected bookable with useState

Our first piece of shared state is the selected bookable. It’s used by the BookablesList
and Bookings components. (Remember, the Bookings component is the container
for the WeekPicker, BookingsGrid, and BookingDetails components.) Their nearest
shared parent is the Bookings page itself.

 Listing 7.4 shows the BookingsPage component calling useState to manage the
selected bookable. BookingsPage also passes the updater function, setBookable, to
BookablesList so that users can choose a bookable from the list. It no longer directly
imports WeekPicker.

import {useState} from "react";
import BookablesList from "../Bookables/BookablesList";
import Bookings from "./Bookings";

export default function BookingsPage () {
 const [bookable, setBookable] = useState(null);

 return (
 <main className="bookings-page">
 <BookablesList
 bookable={bookable}
 setBookable={setBookable}
 />
 <Bookings
 bookable={bookable}
 />
 </main>
);
}

The page passes the selected bookable to the Bookings component (created next) so
that it can show the bookable’s bookings. To show the correct bookings (and to let
users make new bookings), the Bookings component also needs to know the selected
week. Let’s see how it manages that state itself.

7.3.2 Managing the selected week and booking with useReducer
and useState

Users can switch weeks by using the week picker. They can navigate forward a week or
back a week and jump straight to the week containing today’s date. They can also
enter a date into a text box and go to the week for that date. To share the selected
date with the bookings grid, we lift the week picker’s reducer up into the Bookings
component, as shown in the following listing.

Branch: 0701-bookings-page, File: src/components/Bookings/BookingsPage.js

Listing 7.4 The BookingsPage component

Manage the selected
bookable with the
useState hook.

Pass the bookable
down so it can be
highlighted in the list.

Pass the updater function so
users can select a bookable.

Let the Bookings component
display the bookings for the
selected bookable.

174 CHAPTER 7 Managing performance with useMemo
import {useState, useReducer} from "react";
import {getWeek} from "../../utils/date-wrangler";

import WeekPicker from "./WeekPicker";
import BookingsGrid from "./BookingsGrid";
import BookingDetails from "./BookingDetails";

import weekReducer from "./weekReducer";

export default function Bookings ({bookable}) {

 const [week, dispatch] = useReducer(
 weekReducer, new Date(), getWeek
);

 const [booking, setBooking] = useState(null);

 return (
 <div className="bookings">
 <div>
 <WeekPicker
 dispatch={dispatch}
 />

 <BookingsGrid
 week={week}
 bookable={bookable}
 booking={booking}
 setBooking={setBooking}
 />
 </div>

 <BookingDetails
 booking={booking}
 bookable={bookable}
 />
 </div>
);
}

The Bookings component imports the reducer and passes it in when calling the use-
Reducer hook. It also calls the useState hook to manage the shared selected booking
state for both the BookingsGrid and BookingDetails components.

CHALLENGE 7.1
Update the WeekPicker component so that it receives dispatch as a prop, no longer
calling useReducer itself. It doesn’t need to display the selected date, so remove that
from the end of its returned UI, and remove any redundant imports. Check the repo
for the latest version (src/components/Bookings/WeekPicker.js).

Branch: 0701-bookings-page, File: src/components/Bookings/Bookings.js

Listing 7.5 The Bookings component

Import the existing
reducer for the
week picker.

Destructure the current
bookable from props.

Manage the shared state
for the selected week.

Manage the shared state for
the selected booking.

175Organizing the components on the Bookings page
In section 7.4, we build up the bookings grid to show actual bookings. For the current
repo branch, let’s just add a couple of placeholder components to check that the page
structure is working nicely. The following listing shows our temporary bookings grid.

export default function BookingsGrid (props) {
 const {week, bookable, booking, setBooking} = props;

 return (
 <div className="bookings-grid placeholder">
 <h3>Bookings Grid</h3>
 <p>{bookable?.title}</p>
 <p>{week.date.toISOString()}</p>
 </div>
);
}

The following listing shows our temporary details component.

export default function BookingDetails () {
 return (
 <div className="booking-details placeholder">
 <h3>Booking Details</h3>
 </div>
);
}

Everything should now be in place, and the app should be back in working order. The
Bookings page should look like figure 7.4 (if you have the latest CSS, or roll your own
for the placeholders).

CHALLENGE 7.2
Make a small change to BookablesList, removing the code for moving focus to the
Next button. This will just slim down the component for future changes. The updates
are on the current branch: /src/components/Bookables/BookablesList.js.

With all the components in place and a sense of where the page manages each piece
of shared state, it’s time to introduce a new React Hook to the bookings app. The use-
Memo hook will help us run expensive calculations only when necessary. Let’s see why
we need it and how it helps.

Branch: 0701-bookings-page, File: src/components/Bookings/BookingsGrid.js

Listing 7.6 The BookingsGrid placeholder

Branch: 0701-bookings-page, File: src/components/Bookings/BookingDetails.js

Listing 7.7 The BookingDetails placeholder

176 CHAPTER 7 Managing performance with useMemo
7.4 Efficiently building the bookings grid with useMemo
With the Bookings page structure and hierarchy in place, we’re ready to build up our
most complicated component yet, the BookingsGrid. In this section, we develop the
grid so that it can display booking slots for a bookable in a given week and place any
existing bookings in the grid. Figure 7.5 shows the grid with three rows for sessions
and five columns for dates. Four existing bookings are in the grid, and the user has
selected one of the bookings.

We develop the component in five stages:

1 Generating a grid of sessions and dates—we want to transform our data to make
looking up empty booking slots easier.

2 Generating a lookup for bookings—we want to transform our data to make
looking up existing bookings easier.

3 Providing a getBookings data-loading function—it will handle building the
query strings for our request to the JSON server.

4 Creating the BookingsGrid component—this is the meat of the section and is
where we enlist the help of useMemo.

5 Coping with racing responses when fetching data in useEffect.

In stage 5, we see how to manage multiple requests and responses for data within calls
to the useEffect hook, with later requests superseding earlier ones, and how to man-
age errors. There’s a lot to sink our teeth into, so let’s get started by transforming lists
of days and sessions into two-dimensional booking grids.

Figure 7.5 The bookings grid showing bookings for the selected bookable and week. A booking in the grid has
been selected.

177Efficiently building the bookings grid with useMemo
7.4.1 Generating a grid of sessions and dates

The bookings grid displays empty booking slots and existing bookings in a table, with
sessions as rows and dates as columns. An example grid of booking slots for the Meet-
ing Room bookable is shown in figure 7.6.

Users book different bookables for different sessions and days of the week. When the
user chooses a new bookable, the BookingsGrid component needs to generate a new
grid, for the latest sessions and dates. Figure 7.7 shows the grid generated when the
user switches to the Lounge bookable.

 Each cell in the grid corresponds to a booking slot. We want the grid data to be
structured so that it’s easy to access the data for a specific booking slot. For example,
to access the data for the Breakfast session on August 3, 2020, we use this:

grid["Breakfast"]["2020-08-03"]

For an empty booking slot, the booking data looks like this:

{
 "session": "Breakfast",
 "date": "2020-08-03",
 "bookableId": 4,
 "title": ""
}

Figure 7.6 The bookings grid for the Meeting Room bookable. It has rows for each session and
columns for each date.

178 CHAPTER 7 Managing performance with useMemo
In the data from the database, each bookable specifies the sessions and days for which
it can be booked. Here’s the data for the Meeting Room:

"id": 1,
"group": "Rooms",
"title": "Meeting Room",
"notes": "The one with the big table and interactive screen.",
"sessions": [1, 2, 3],
"days": [1, 2, 3, 4, 5]

The days represent days in the week, where Sunday = 0, Monday = 1, . . . , Saturday = 6.
So, the Meeting Room can be booked for sessions 1, 2, and 3, Monday through Friday,
as we saw in figure 7.6. To get the specific dates for the bookings, rather than just the
day numbers, we also need the start date for the week we want to display. And to get
the specific session names, we need to import the array of session names from the con-
fig file, static.json.

 The grid generator function, getGrid, is in the following listing. The calling code
passes getGrid the current bookable and the start date for the selected week.

Figure 7.7 The bookings grid for the Lounge bookable. The Lounge is available for five sessions on every
day of the week.

179Efficiently building the bookings grid with useMemo
import {sessions as sessionNames} from "../../static.json";
import {addDays, shortISO} from "../../utils/date-wrangler";

export function getGrid (bookable, startDate) {

 const dates = bookable.days.sort().map(
 d => shortISO(addDays(startDate, d))
);

 const sessions = bookable.sessions.map(i => sessionNames[i]);

 const grid = {};

 sessions.forEach(session => {
 grid[session] = {};
 dates.forEach(date => grid[session][date] = {
 session,
 date,
 bookableId: bookable.id,
 title: ""
 });
 });

 return {
 grid,
 dates,
 sessions
 };
}

The getGrid function starts by mapping the day and session indexes to dates and ses-
sion names. It uses a truncated ISO 8601 format for dates:

const dates = bookable.days.sort().map(
 d => shortISO(addDays(startDate, d))
);

The shortISO function has been added to the utils/date-wrangler.js file that also con-
tains the addDays function. shortISO returns the date part of the ISO-string for a
given date:

export function shortISO (date) {
 return date.toISOString().split("T")[0];
}

For example, for a JavaScript date object representing August 3, 2020, shortISO
returns the string "2020-08-03".

Branch: 0702-bookings-memo, File: /src/components/Bookings/grid-builder.js

Listing 7.8 The grid generator

Assign the session names to
the sessionNames variable.

Accept the current bookable and
week start date as arguments.

Use the day numbers and
start date to create an array
of dates for the week.

Use the session names and numbers
to create an array of session names.

Assign an object to grid
for each session.

Assign a booking
object for each date
to each session.

In addition to the grid,
return the dates and
sessions arrays for
convenience.

180 CHAPTER 7 Managing performance with useMemo
 The code in the listing also imports the session names from static.json and assigns
them to the sessionNames variable. The session data looks like this:

"sessions": [
 "Breakfast",
 "Morning",
 "Lunch",
 "Afternoon",
 "Evening"
]

Each session index from the bookable is mapped to its session name:

const sessions = bookable.sessions.map(i => sessionNames[i]);

So, if the selected bookable is the Meeting Room, then bookable.sessions is the
array [1, 2, 3] and sessions becomes ["Morning", "Lunch", "Afternoon"].

 Having acquired the dates and session names, getGrid then uses nested forEach
loops to build up the grid of booking sessions. You could use the reduce array method
here, but I find the forEach syntax easier to follow in this case. (Don’t worry, reduce
fans; the next listing employs its services.)

7.4.2 Generating a lookup for bookings

We also want an easy way to look up existing bookings. Figure 7.8 shows a bookings
grid with existing bookings in four cells.

Figure 7.8 The bookings grid with existing bookings in four cells

181Efficiently building the bookings grid with useMemo
We want to use the session name and date to access the data for an existing booking,
like this:

bookings["Morning"]["2020-06-24"]

The lookup expression should return the data for the Movie Pitch! booking, with this
structure:

{
 "id": 1,
 "session": "Morning",
 "date": "2020-06-24",
 "title": "Movie Pitch!",
 "bookableId": 1,
 "bookerId": 2
}

But the server returns the bookings data as an array. We need to transform the array of
bookings into the handy lookup object. Listing 7.9 adds a new function, transform-
Bookings, to the grid-builder.js file from listing 7.8.

export function transformBookings (bookingsArray) {

 return bookingsArray.reduce((bookings, booking) => {

 const {session, date} = booking;

 if (!bookings[session]) {
 bookings[session] = {};
 }

 bookings[session][date] = booking;

 return bookings;
 }, {});
}

The transformBookings function uses the reduce method to step through each book-
ing in the array and build up the bookings lookup object, assigning the current
booking to its allotted lookup slot. The lookup object that transformBookings cre-
ates has entries for only the existing bookings, not necessarily for every cell in the
bookings grid.

 We now have functions to generate the grid and transform an array of bookings
into a lookup object. But where are the bookings?

Branch: 0702-bookings-memo, File: /src/components/Bookings/grid-builder.js

Listing 7.9 The transformBookings function

Use reduce to step
through each booking
and build up the
bookings lookup.

Destructure the session and
date for the current booking.

Add a property to the lookup
for each new session.

Assign the booking to
its session and date.

Start the bookings lookup
as an empty object.

182 CHAPTER 7 Managing performance with useMemo

7.4.3 Providing a getBookings data-loading function

The BookingsGrid component needs some bookings to display for the selected book-
able and week. We could use our existing getData function from within an effect in
the BookingsGrid component, building up the necessary URL there. Instead, let’s
keep our data-access functions in the api.js file. The following listing shows the part of
the updated file with our new getBookings function.

import {shortISO} from "./date-wrangler";

export function getBookings (bookableId, startDate, endDate) {

 const start = shortISO(startDate);
 const end = shortISO(endDate);

 const urlRoot = "http://localhost:3001/bookings";

 const query = `bookableId=${bookableId}` +
 `&date_gte=${start}&date_lte=${end}`;

 return getData(`${urlRoot}?${query}`);
}

The getBookings function accepts three arguments: bookableId, startDate, and
endDate. It uses the arguments to build up the query string for the required bookings.
For example, to fetch the bookings for the Meeting Room between Sunday, June 21,
2020, and Saturday, June 27, 2020, the query string is as follows:

bookableId=1&date_gte=2020-06-21&date_lte=2020-06-27

The json-server we have running will parse the query string and return the requested
bookings as an array, ready for transformation into a lookup object.

 With the helper functions in place, it’s time to put them to good use as we con-
struct the BookingsGrid component.

7.4.4 Creating the BookingsGrid component and calling useMemo

For a given bookable and week, the BookingsGrid component fetches the bookings
and displays them, highlighting any selected booking. It uses three React Hooks:
useState, useEffect, and useMemo. We break the code for the component across a
number of listings, in this subsection and the next, starting with the imports and com-
ponent skeleton in the following listing.

Branch: 0702-bookings-memo, File: /src/utils/api.js

Listing 7.10 The getBookings API function

Import a function to format dates.

Export the new
getBookings
function.Format the dates for

the query string.

Build up the
query string.

Fetch the bookings,
returning a promise.

183Efficiently building the bookings grid with useMemo

o to
rid.

ator
mo.

r
import {useEffect, useMemo, useState, Fragment} from "react";

import {getGrid, transformBookings} from "./grid-builder";

import {getBookings} from "../../utils/api";

import Spinner from "../UI/Spinner";

export default function BookingsGrid () {

 // 1. Variables
 // 2. Effects
 // 3. UI helper
 // 4. UI

}

The code imports the helper functions created previously and the three hooks. As
you’ll see over the next few listings, we use the useState hook to manage the state
for the bookings and any errors, the useEffect hook to fetch the bookings data
from the server, and the useMemo hook to reduce the number of times we generate
the grid data.

VARIABLES

The Bookings component passes the BookingsGrid component the selected book-
able, the selected week, and the currently selected booking along with its updater
function, as highlighted in the following listing.

export default function BookingsGrid (
 {week, bookable, booking, setBooking}
) {
 const [bookings, setBookings] = useState(null);
 const [error, setError] = useState(false);

 const {grid, sessions, dates} = useMemo(

 () => bookable ? getGrid(bookable, week.start) : {},

 [bookable, week.start]
);

 // 2. Effects
 // 3. UI helper
 // 4. UI
}

Branch: 0702-bookings-memo, File: /src/components/Bookings/BookingsGrid.js

Listing 7.11 The BookingsGrid component: Skeleton

Branch: 0702-bookings-memo, File: /src/components/Bookings/BookingsGrid.js

Listing 7.12 The BookingsGrid component: 1. Variables

Import useMem
memoize the g

Import the new
grid functions.Import a new

data-loading
function.

Destructure
the props.

Handle the bookings
data locally.

Handle loading errors locally.

Wrap the grid gener
function with useMe

Call the grid generato
only if there’s a
bookable.

Regenerate the grid
when the bookable
or week changes.

184 CHAPTER 7 Managing performance with useMemo
BookingsGrid handles the bookings and error state itself with two calls to the use-
State hook. It then uses the getGrid function from section 7.4.2 to generate the grid,
assigning the returned grid, sessions, and dates data to local variables. We’ve decided
to see getGrid as an expensive function, wrapping it with useMemo. Why might it war-
rant such treatment?

 When the user chooses a bookable on the Bookings page, the Bookings compo-
nent displays a grid of booking slots for the bookable’s available sessions and dates. It
generates the data for the grid based on the bookable’s properties and the selected
week. As we’ll see in the next listing, the BookingsGrid component uses the fetch-on-
render, data-loading strategy, sending a request for data after the initial render. The
grid, shown in figure 7.9, displays a loading indicator in the top-left cell and reduces
the opacity of the body cells until the data arrives.

When the data arrives, the grid re-renders, hiding the loading indicator and showing
the bookings for the selected week. Figure 7.10 shows four bookings in the grid.

 With the bookings in place, the user is now free to select an existing booking or an
empty booking slot. In figure 7.11, the user has selected the Movie Pitch! booking
and, yet again, the component has re-rendered, highlighting the cell.

 The component renders for each change in status, as listed in table 7.2, although
the underlying grid data for the booking slots hasn’t changed.

Figure 7.9 The BookingsGrid component displays a loading spinner in its top-left cell and reduces
the opacity of the grid cells while a fetch is in progress.

185Efficiently building the bookings grid with useMemo
Table 7.2 Bookings grid rendering behavior for different events

Event Render with

Initial render Blank grid

Data fetching Loading indicator

Data loaded Bookings in cells

Booking selected Highlighted selection

Figure 7.10 The bookings grid showing four bookings

Figure 7.11 The bookings grid showing a selected booking

186 CHAPTER 7 Managing performance with useMemo
For the events listed, we don’t want to regenerate the underlying grid data on each
re-render, so we use the useMemo hook, specifying the bookable and start date for the
week as dependencies:

const {grid, sessions, dates} = useMemo(
 () => bookable ? getGrid(bookable, week.start) : {},
 [bookable, week.start]
);

By wrapping getGrid in useMemo, we ask React to store the generated grid lookup
and to call getGrid again only if the bookable or start date changes. For the three
re-rendering scenarios in table 7.2 (not for the initial render), React should return
the stored grid, avoiding unnecessary computation.

 In reality, for the size of grids we’re generating, we don’t really need useMemo.
Modern browsers, JavaScript, and React will hardly notice the work required. There’s
also some overhead in requiring React to store functions, return values, and depen-
dency values, so we don’t want to memoize everything. As we saw with the anagrams
example earlier in the chapter, however, sometimes expensive functions can adversely
affect performance, so it’s good to have the useMemo hook in your toolbelt.

 Although the main focus of this chapter is the useMemo hook, a useful technique
for data-fetching within a call to useEffect is worth flagging with a subsection head-
ing. Let’s see how to avoid getting multiple requests and responses knotted.

7.4.5 Coping with racing responses when fetching data in useEffect

When interacting with the bookings app, the user might get a little click-happy and
switch quickly between bookables and weeks, initiating a flurry of data requests. We
want to display the data for only their last selection. Unfortunately, we’re not in con-
trol of when the data returns from the server, and an older request might resolve after
a more recent one, leaving the display out of sync with the user’s selection.

 We could try to implement a way to cancel in-flight requests. If the data response
isn’t too large, however, it’s easier to simply let the requests run their course and ignore
the unwanted data when it arrives. In this subsection, we finish off the BookingsGrid
component, fetching the bookings data, and building the UI for display.

EFFECTS

The BookingsGrid component loads the bookings for the selected bookable and
week. Listing 7.13 shows calls to our helper functions, getBookings and transform-
Bookings, wrapped inside a call to useEffect. The effect runs whenever the week or
bookable changes.

export default function BookingsGrid (
 {week, bookable, booking, setBooking}

Branch: 0702-bookings-memo, File: /src/components/Bookings/BookingsGrid.js

Listing 7.13 The BookingsGrid component: 2. Effects

187Efficiently building the bookings grid with useMemo
) {
 // 1. Variables

 useEffect(() => {
 if (bookable) {
 let doUpdate = true;

 setBookings(null);
 setError(false);
 setBooking(null);

 getBookings(bookable.id, week.start, week.end)
 .then(resp => {
 if (doUpdate) {
 setBookings(transformBookings(resp));
 }
 })
 .catch(setError);

 return () => doUpdate = false;
 }
 }, [week, bookable, setBooking]);

 // 3. UI helper
 // 4. UI
}

The code uses a doUpdate variable to match each request with its data. The variable is
initially set to true:

let doUpdate = true;

For a particular request, the callback function in the then clause will update the state
only if doUpdate is still true:

if (doUpdate) {
 setBookings(transformBookings(resp));
}

When the user selects a new bookable or switches to a new week, React reruns the
component, and the effect runs again to load the newly selected data. The in-flight
data from the previous request is no longer needed. Before rerunning an effect, React
calls any associated cleanup function for the previous invocation of the effect. Our
effect uses the cleanup function to invalidate the in-flight data:

return () => doUpdate = false;

When the previously requested bookings arrive, the then clause from the associated
call to getBookings will see the data is stale and won’t update the state.

Use a variable to track
whether the bookings
data is current.

Call our
getBookings
data-fetching
function.

Check if the bookings
data is current.

Create a bookings lookup
and assign it to state.

Return a cleanup function
to invalidate the data.

Run the effect when
the bookable or
week changes.

188 CHAPTER 7 Managing performance with useMemo
 If the bookings are current, the then clause transforms the linear array of bookings
into a lookup structure by passing the response to the transformBookings function.
The lookup object is assigned to local state with setBookings.

UI HELPER FUNCTION

The contents and behavior of a cell in the bookings grid depend on whether there are
any bookings to display and whether the user has selected the cell. Figure 7.12 shows a
couple of empty cells and a cell for an existing booking, Movie Pitch!

When a user selects a cell, that cell should be highlighted, whether the cell shows an
existing booking or an empty booking slot. Figure 7.13 shows the grid after the user
has selected the Movie Pitch! booking. CSS styles and the cell’s class attribute are
used to change the cell’s appearance.

Listing 7.14 has the code for a cell helper function that returns the UI for a single
cell in the bookings grid. It uses the two lookup objects, bookings and grid, to get
the data for the cell, set the cell’s class, and attach an event handler if there are

Figure 7.12 Cells in the grid represent existing bookings where they
exist, or just the underlying grid data for session and date.

Figure 7.13 The selected cell is displayed using different CSS styles.

189Efficiently building the bookings grid with useMemo

s
bookings. The cell function is in the scope of BookingsGrid and can access the
booking, bookings, grid, and setBookings variables.

export default function BookingsGrid (
 {week, bookable, booking, setBooking}
) {
 // 1. Variables
 // 2. Effects

 function cell (session, date) {
 const cellData = bookings?.[session]?.[date]
 || grid[session][date];

 const isSelected = booking?.session === session
 && booking?.date === date;

 return (
 <td
 key={date}
 className={isSelected ? "selected" : null}
 onClick={bookings ? () => setBooking(cellData) : null}
 >
 {cellData.title}
 </td>
);
 }

 // 4. UI
}

The data for a cell comes either from the existing bookings in the bookings lookup or
from the empty booking slot data in the grid lookup. The code uses optional chain-
ing syntax with square-bracket notation to assign the correct value to the cellData
variable:

const cellData = bookings?.[session]?.[date] || grid[session][date];

The bookings lookup has data for only the existing bookings, but the grid lookup has
data for every session and date. We need the optional chaining for bookings but not
for grid.

 We set the click handler on the cell only if there are bookings. While bookings are
loading, when a user switches bookables or weeks, the handler is set to null and the
user can’t interact with the grid.

UI
The final piece of the BookingsGrid puzzle returns the UI. As ever, the UI is driven by
the state. We check whether the grid of booking slots has been generated, whether the

Branch: 0702-bookings-memo, File: /src/components/Bookings/BookingsGrid.js

Listing 7.14 The BookingsGrid component: 3. UI helper

First check the bookings
lookup, then the grid lookup.

Use optional chaining because
there might not be a booking.

Set a handler
only if booking
have been
loaded.

190 CHAPTER 7 Managing performance with useMemo
bookings have been loaded, and whether there is an error. We then return either
alternative UI (loading text) or additional UI (an error message), or we set class
names to show, hide, or highlight elements. Figure 7.14 shows the bookings grid for
three states:

1 There are no bookings. The grid shows a loading indicator. The grid is inactive,
and the user can’t interact with the grid.

2 The bookings have loaded. The grid hides the loading indicator. The grid is
active, and the user can interact with the grid.

3 The bookings have loaded. The grid hides the loading indicator. The grid is
active, and the user has selected a cell.

In figure 7.15, you can see an error displayed right above the date headings for the grid.

The following listing shows the error section, uses class names to control whether the
grid is active, and calls our UI helper function, cell, to get the UI for each table cell.

1. When the grid is not active,
the user can’t select a cell.

3. When a cell is selected,
it is highlighted.

2. When the grid is active,
the user can select a cell.

Figure 7.14 The display of a cell depends on whether the grid is active and whether a cell has been
selected. While bookings are loading, the UI shows the loading indicator, and the grid is not active.

Figure 7.15 The BookingsGrid component displays any errors above the grid.

191Efficiently building the bookings grid with useMemo

Show
at th

if

th
export default function BookingsGrid (
 {week, bookable, booking, handleBooking}
) {
 // 1. Variables
 // 2. Effects
 // 3. UI helper

 if (!grid) {
 return <p>Loading...</p>
 }

 return (
 <Fragment>
 {error && (
 <p className="bookingsError">
 {`There was a problem loading the bookings data (${error})`}
 </p>
)}

 <table
 className={bookings ? "bookingsGrid active" : "bookingsGrid"}
 >
 <thead>
 <tr>
 <th>

 <Spinner/>

 </th>
 {dates.map(d => (
 <th key={d}>
 {(new Date(d)).toDateString()}
 </th>
))}
 </tr>
 </thead>

 <tbody>
 {sessions.map(session => (
 <tr key={session}>
 <th>{session}</th>
 {dates.map(date => cell(session, date))}
 </tr>
))}
 </tbody>
 </table>
 </Fragment>
);
}

Branch: 0702-bookings-memo, File: /src/components/Bookings/BookingsGrid.js

Listing 7.15 The BookingsGrid component: 4. UI

 an error section
e top of the grid
there’s an error.

Include an
“active”

class when
e bookings

data has
loaded.

Include a loading
indicator in the
top-left cell.

Use the UI helper
function to generate
each table cell.

192 CHAPTER 7 Managing performance with useMemo
If bookings is not null, a class of active is assigned to the table. The CSS for the app
hides the loading indicator and sets the cell opacity to 1 when the grid is active.

 In the code, we inspect the state ourselves and decide what UI to return from
within the component. It’s also possible to use React error boundaries to specify error
UI and React’s Suspense component to specify fallback UI while data is loading, sep-
arately from individual components. We use error boundaries to catch errors and
Suspense components to catch promises (loading data) in part 2.

 Before that, we need to create our BookingDetails component to show the details
of whichever booking slot or existing booking a user clicks. The new component
needs access to the current user of the app, stored all the way up in the root compo-
nent, App. Rather than drilling the user value down through multiple layers of com-
ponent props, we’ll enlist the help of React’s Context API and the useContext hook.

Summary
 Try to avoid unnecessarily rerunning expensive computations by wrapping them

in the useMemo hook.
 Pass useMemo the expensive function you want to memoize:

const value = useMemo(
 () => expensiveFn(dep1, dep2),
 [dep1, dep2]
);

 Pass the useMemo hook a list of dependencies for the expensive function:

const value = useMemo(
 () => expensiveFn(dep1, dep2),
 [dep1, dep2]
);

 If the values in the dependency array don’t change from one call to the next,
useMemo can return its stored result for the expensive function.

 Don’t rely on useMemo to always use a memoized value. React may discard stored
results if it needs to free up memory.

 Use JavaScript’s optional chaining syntax with square brackets to access proper-
ties of variables that may be undefined. Include a period, even when working
with square brackets:

const cellData = bookings?.[session]?.[date]

 When fetching data within a call to useEffect, combine a local variable and the
cleanup function to match a data request with its response:

useEffect(() => {
 let doUpdate = true;

193Summary
 fetch(url).then(resp => {
 if (doUpdate) {
 // perform update with resp
 }
 });

 return () => doUpdate = false;
}, [url]);

If the component re-renders with a new url, the cleanup function for the previ-
ous render will set the previous render’s doUpdate variable to false, preventing
the previous then method callback from performing updates with stale data.

Managing state
with the Context API
We’ve seen state encapsulated within components, lifted to shared parents, in form
fields, persisted across renders, and pulled in from a database, and we’ve used a
whole bunch of hooks to help us set up and work with that state. Our approach has
been to keep the state as close to the components that use it as possible. But it’s not
uncommon for many components, nested on multiple branches, to hunger for the
same juicy worms, the same tidbits of application state, like themes, localization
info, or authenticated user details. Mmmmmmm, tidbits . . . React’s Context API is a
way of delivering juicy state tidbits directly to your nest without passing them down
through multiple layers of intermediaries who, preferring tacos to tidbits, have no
interest in them.

This chapter covers
 Providing state via the Context API and its Provider

component

 Consuming context state with the useContext hook

 Avoiding unnecessary re-renders when updating
state values

 Creating custom context providers

 Splitting shared state across multiple contexts
194

195Needing state from higher up the component tree
 In this chapter, we introduce the Context API, its context objects, Provider com-
ponents, and useContext hook. We focus on our bookings app example, where multi-
ple components need the same juicy tidbit: details of the current user. That sets the
scene for a rundown of the mechanics of the Context API and we see why, when,
where, and how to provide values to whole subtrees of components, and how easy the
useContext hook makes consuming those values. We finish by wrapping context func-
tionality into our own custom contexts and provider components, and that discussion
leads to a deeper understanding of React’s rendering behavior, particularly when
working with the special children prop.

 Can you hear that? It’s nested components chirping for tasty tidbits. It’s feeding
time!

8.1 Needing state from higher up the component tree
The Bookings page in our example app lets visitors select a bookable and week. The
bookings grid on the page then shows the available booking slots and populates the
appropriate cells with any existing bookings. Figure 8.1 shows the Bookings page after
a visitor has selected the Meeting Room bookable and then the Movie Pitch! booking.

In chapter 7, we worked with a placeholder for BookingDetails, the component that
displays further information about the selected booking. Figure 8.1 also shows our
aim for the BookingDetails component in this chapter: it lists a number of the
selected booking’s properties, such as Title and Booking Date. But when the page first

Figure 8.1 After the user selects a booking, the booking details component (on the right) shows information
about the selected booking.

196 CHAPTER 8 Managing state with the Context API
loads, no booking is selected, and the component shows a message encouraging the
visitor to select a booking or a booking slot, as you can see in figure 8.2.

In this chapter, we relieve the BookingDetails component of its placeholder duties
and promote it to perform these three tasks:

 Displaying a call-to-action message when the page first loads
 Displaying booking information when a visitor selects a booking
 Displaying an edit button for a user’s bookings

The third task prompts our investigation of the Context API to make the current user
value available to components across the app. Why does the BookingDetails compo-
nent need to know the user? Let’s find out.

8.1.1 Displaying a call-to-action message when the page first loads

When the Bookings page loads, but before a visitor selects a booking, the Booking-
Details component will display a call-to-action message, shown in figure 8.3.

 Listing 8.1 shows how the BookingDetails component checks for a booking and
either returns UI for the call-to-action message or for an existing booking. The UI for
an existing booking is handled by another component, Booking; we look at that in sec-
tion 8.1.2.

Figure 8.2 Before the user selects a booking, the booking details component (on the right) shows the message
“Select a booking or a booking slot.”

197Needing state from higher up the component tree

g

import Booking from "./Booking";

export default function BookingDetails ({booking, bookable}) {
 return (
 <div className="booking-details">
 <h2>Booking Details</h2>

 {booking ? (
 <Booking
 booking={booking}
 bookable={bookable}
 />
) : (
 <div className="booking-details-fields">
 <p>Select a booking or a booking slot.</p>
 </div>
)}
 </div>
);
}

Listing 8.1 uses the JavaScript ternary operator (a ? b : c) to return the appropriate
UI, the booking, or the message:

{booking ? (
 // return booking UI if there’s a booking
) : (
 // return message UI if there’s not a booking
)}

In later chapters, we add the third UI possibility for a form with its input fields and
submit button. For now, it’s an either/or situation: booking or message. Let’s see the
code for the booking UI.

Branch: 0801-booking-details, File: /src/components/Bookings/BookingDetails.js

Listing 8.1 The BookingDetails component shows a booking or a message

Figure 8.3 When the page first loads, the
BookingDetails component shows a
“Select a booking or a booking slot”
message to the user.

Import the Booking component.

Assign bookin
and bookable
props to local
variables.

Show the booking info only
if a booking is selected.

Use the Booking component
to display the info.

If no booking is
selected, show
a message.

198 CHAPTER 8 Managing state with the Context API
8.1.2 Displaying booking information when a visitor selects a booking

Once the user heeds the call and selects an existing booking, the component displays
its information; details for the Movie Pitch! booking are shown in figure 8.4. (If you
don’t have any booking data, grab db.json from the repo. Get the latest App.css if you
need that too.)

The information includes a number of fields from the booking and one from the
bookable. The following listing shows the Booking component receiving the selected
booking and bookable as props and returning the booking details as a sequence of
labels and paragraphs.

import {Fragment} from "react";

export default function Booking ({booking, bookable}) {

 const {title, date, session, notes} = booking;

 return (
 <div className="booking-details-fields">
 <label>Title</label>
 <p>{title}</p>

 <label>Bookable</label>
 <p>{bookable.title}</p>

Branch: 0801-booking-details, File: /src/components/Bookings/Booking.js

Listing 8.2 The Booking component

Figure 8.4 The BookingDetails
component showing information about
the selected booking and bookable

Assign booking and
bookable props to
local variables.

Assign booking
properties to
local variables.

Show information
from the selected
bookable.

199Needing state from higher up the component tree
 <label>Booking Date</label>
 <p>{(new Date(date)).toDateString()}</p>

 <label>Session</label>
 <p>{session}</p>

 {notes && (
 <Fragment>
 <label>Notes</label>
 <p>{notes}</p>
 </Fragment>
)}
 </div>
)
}

The BookingDetails component now successfully switches between the call-to-action
message when the user is yet to select a booking and the Booking component once
they make their selection. That’s two of the component’s three tasks sorted. Good job!
But the third task is trickier. What’s the problem?

8.1.3 Displaying an edit button for a user’s bookings: The problem

Our newly minted BookingDetails component successfully displays information about
the selected bookable. That’s great! But plans change, and meetings get cancelled or
dates clash. A user should be able to edit their own bookings to update the details or
delete them outright. We need to add a button, like the one next to the Booking Details
heading on the right of figure 8.5, so the user can switch to editing a booking.

Format the
date property
nicely.

Show the Notes field
only if the booking
has notes.

Figure 8.5 When a user selects one of their own bookings, the booking details component (on the right) displays
an edit button with an edit icon to the right of the heading.

200 CHAPTER 8 Managing state with the Context API
Figure 8.6 isolates the BookingDetails component and shows the edit button (a
document-edit icon) on the right of the component’s title. The problem is, we want
to show the button only if the current user booked the selected booking themselves.
For other users, the button should be hidden. The BookingDetails component
needs to know the id of the current user so it can check it against the bookerId for
the selected booking.

The state for the current user lives all the way up at the top of the application compo-
nent hierarchy, in the App component. We could pass the user down through the
intermediate components (App to BookingsPage to Bookings to BookingDetails),
but the components on the way aren’t interested in the user state, and it’s also
needed by the UserPicker component (and will soon be used by the UsersPage com-
ponent too). In this case, a piece of state is needed by several components spread
across the app.

 The Context API offers an alternative way of making the state available to multiple
consumers. How do we provide the state we want to share?

8.1.4 Displaying an edit button for a user’s bookings: The solution

We want to share the current user with all components that need that information, so
let’s create a UserContext object with React’s Context API. We put the context to
share in its own file, /src/components/Users/UserContext.js. The component that
provides the user value, App, and the components that consume the user value, includ-
ing BookingDetails, can import the context to set or read its value. The code is in the
following listing.

Figure 8.6 The booking details component
with the edit button showing on the right of
the heading

201Needing state from higher up the component tree
import {createContext} from "react";

const UserContext = createContext();

export default UserContext;

Yes, that’s it! We use the createContext method and assign the context object it
returns to the UserContext variable. That context object, UserContext, is the key to
sharing the current user value across the app: the App component will use it to set the
value, and consuming components will use it, along with the useContext hook, to
read the value.

 To use the new context object to provide user state for the bookings app, we update
the App component in three key ways:

1 Import the context object.
2 Manage state for the current user by calling the useState hook.
3 Use the context’s Provider component to wrap the Router component.

The following listing shows the updates in place.

import {useState} from "react";

// unchanged imports

import UserContext from "./Users/UserContext";

export default function App () {
 const [user, setUser] = useState();

 return (
 <UserContext.Provider value={user}>
 <Router>
 <div className="App">
 <header>
 <nav>
 // unchanged nav
 </nav>

 <UserPicker user={user} setUser={setUser}/>
 </header>

 <Routes>
 // unchanged routes
 </Routes>
 </div>
 </Router>

Branch: 0802-user-context, File: /src/components/Users/UserContext.js

Listing 8.3 Creating and exporting a context object for our user value

Branch: 0802-user-context, File: /src/components/App.js

Listing 8.4 Importing the context object and providing its value in App

Import the
useState hook.

Import the context
to be shared.

Manage the user state
with the useState hook.

Wrap the app UI in the
context provider.

Pass the user state
and its updater
function to
UserPicker.

202 CHAPTER 8 Managing state with the Context API
 </UserContext.Provider>
);
}

The App component imports the UserContext object and then wraps the UI in the
context’s Provider component, making the user state value available to all compo-
nents in the tree:

<UserContext.Provider value={user}>
 // all app UI
</UserContext.Provider>

The provider doesn’t have to wrap the whole component tree. As the code stands,
with the app passing user and setUser to the UserPicker component as props, we
could wrap just the routes in the provider:

<Router>
 <div className="App">
 <header>
 // nav and user picker
 </header>

 <UserContext.Provider value={user}>
 <Routes>
 // routes
 </Routes>
 </UserContext.Provider>
 </div>
</Router>

But in a later section, we switch the user picker over to using the context rather than
props, so it’s useful to wrap the whole component tree in the provider. For now, the
UserPicker component receives the selected user, and its updater function as props.
The following listing shows how it works with those props.

import {useEffect, useState} from "react";
import Spinner from "../UI/Spinner";

export default function UserPicker ({user, setUser}) {
 const [users, setUsers] = useState(null);

 useEffect(() => {
 fetch("http://localhost:3001/users")
 .then(resp => resp.json())
 .then(data => {
 setUsers(data);
 setUser(data[0]);
 });
 }, [setUser]);

Branch: 0802-user-context, File: /src/components/Users/UserPicker.js

Listing 8.5 Receiving the user and updater function in UserPicker

Assign the user
and setUser props
to local variables.

Once the users have
loaded, set the current
user to the first.

Include setUser as
a dependency.

203Needing state from higher up the component tree
 function handleSelect(e) {
 const selectedID = parseInt(e.target.value, 10);
 const selectedUser = users.find(u => u.id === selectedID);

 setUser(selectedUser);
 }

 if (users === null) {
 return <Spinner/>
 }

 return (
 <select
 className="user-picker"
 onChange={handleSelect}
 value={user?.id}
 >
 {users.map(u => (
 <option key={u.id} value={u.id}>{u.name}</option>
))}
 </select>
);
}

The UserPicker component loads the user data
from the database. Once it has the data, it calls
setUser, received as a prop, to set the current user.
Because of the updated state, the App component
re-renders, setting the updated user as the value on
the user context provider. Because App re-renders,
all its children re-render too. That includes any
descendant components that consume the con-
text, and they’ll pick up the new context value. The
UserPicker will also show the selected user, setting
it as the value of the HTML select element in its
UI. (Notice each option element now has a value
attribute set to the user’s ID.)

 To see the whole updated context process in
action, we need a component that consumes the
user context value. Let’s start with the Booking-
Details component, as set out in the following list-
ing. Remember, we need the user value to decide
whether to show the edit button, shown again in
figure 8.7.

Use the id
to find the
selected user
object.

Set the
selected user.

Specify an event handler
for the drop-down.

Set the current
selection.

Set a value for
each option.

Figure 8.7 The BookingDetails
component shown again with the
edit button to the right of the
heading

204 CHAPTER 8 Managing state with the Context API

Chec
b

belo
th
import {useContext} from "react";

import {FaEdit} from "react-icons/fa";

import Booking from "./Booking";

import UserContext from "../Users/UserContext";

export default function BookingDetails ({booking, bookable}) {

 const user = useContext(UserContext);

 const isBooker = booking && user && (booking.bookerId === user.id);

 return (
 <div className="booking-details">
 <h2>
 Booking Details
 {isBooker && (

 <button
 className="btn"
 >
 <FaEdit/>
 </button>

)}
 </h2>

 {booking ? (
 // booking
) : (
 // message
)}
 </div>
);
}

The component imports the UserContext context object and passes it to the use-
Context hook, assigning the value the hook returns to the user variable. Once Booking-
Details has a user and a booking, it can check whether the booking was booked by
the user:

const isBooker = booking && user && (booking.bookerId === user.id);

If the current user booked the booking, isBooker will be true, and the component
will show the edit button after the heading:

Branch: 0802-user-context, File: /src/components/Bookings/BookingDetails.js

Listing 8.6 The BookingDetails component reading the user from context

Import the useContext hook.

Import the icon for
the edit button.

Import our
shared context.

Call useContext with the
shared context and assign the

value to the user variable.

k if the
ooking
ngs to
e user.

Show the edit button only if the
booking belongs to the user.

Render a button, but don’t
attach a handler yet.

Use the imported edit
icon for the button.

205Needing state from higher up the component tree
<h2>
 Booking Details
 {isBooker && (
 // edit button UI
)}
</h2>

The button doesn’t do anything yet, but it should appear only when the current user
(the one selected in the user picker) is the user who booked the selected booking.
Test out the showing and hiding logic by selecting a different user and then selecting
the different bookings. (When you load the Bookings page, clicking Go in the week
picker will take you to the default date—it’s set up with some bookings, if you’re using
db.json from the repo.)

CHALLENGE 8.1
Update the Users page so that when you switch to the page, it automatically shows the
details for the current user. For example, as shown in figure 8.8, if the current user is
Clarisse and you switch to the Users page, the details for Clarisse will be shown and
Clarisse is selected in the list of users.

Use the same UserContext object we use with the BookingDetails component and
call useContext to get the current user. The completed challenge is on the 0803-users-
page branch in the GitHub repo.

 React’s Context API works well for sharing the selected user in the bookings app.
But it raises a few questions: What if we have more than one value to share? Or a more
complicated value with many properties? And can we avoid triggering a re-render of
the whole component tree when calling setUser? Let’s dig a little deeper into the
nuances of React rendering as we look for answers to those questions.

Figure 8.8 Clarisse is selected as the current user in the user picker (top right). When a visitor switches to the
Users page, Clarisse is automatically selected in the user list (left) and her details are shown (right).

206 CHAPTER 8 Managing state with the Context API
8.2 Working with custom providers and multiple contexts
We’re successfully feeding tasty tidbits of shared state to components nested deep in
our app’s tree. We use a context object’s Provider component to provide a value, and
consumer components call useContext with the same context object to access the
value. Whenever the value changes, the consumers re-render. It would be great if only
the consumers re-rendered for the values shared via the context. In the bookings app,
updating the user state in the App component causes the whole tree to re-render. It’s
not just the tidbit tasters that update; it’s the taco munchers (the components that
aren’t interested in the user) that update too.

 In this section, we look at four ways of extending our use of the context. The first,
using objects as values, can cause problems. The second and third, using custom pro-
viders and multiple contexts, may help us solve those problems. And the last way lets
us specify a default value for our context.

8.2.1 Setting an object as the context provider’s value

In listing 8.4, our App component enlists the help of the useState hook to manage
the current user state. It makes the user value available to descendant components by
setting the value prop of a context object’s Provider component:

<UserContext.Provider value={user}>
 // app JSX
</UserContext.Provider/>

One of those descendants, UserPicker, needs the user state value and its updater
function, setUser. Because it needs more than just the user value, we use good old
props to fulfill its desires:

<UserPicker user={user} setUser={setUser}/>

There’s nothing wrong with passing props. The current version of the app works fine,
and the data flow is easy to follow. But, seeing as we already have the user state value
available in the context of the app, let’s update the UserPicker component to con-
sume that state. We want this:

<UserPicker/>

But the UserPicker needs the user value and the setUser function. Can we put them
both in the context? Sure!

<UserContext.Provider value={{user, setUser}}>
 // app JSX
</UserContext.Provider/>

207Working with custom providers and multiple contexts
Now that we assign a JavaScript object as the value on the provider, the components
consuming the value must destructure the properties they need from the value object.
For example, the BookingDetails component will grab the user value like this:

const {user} = useContext(UserContext);

The assignment now has curly braces around the user variable name. That wasn’t so
bad. But what about the UsersPage component (updated in challenge 8.1)? It previ-
ously assigned the context value to a loggedInUser variable. No problem:

const {user : loggedInUser} = useContext(UserContext);

The colon syntax lets us assign a property to a differently named variable when
destructuring an object. In the previous snippet, the user property of the context
value is assigned to a variable named loggedInUser.

 The final component to use the context value is the UserPicker component. In
fact, because it wants the user and the setUser updater function, it’s the reason we
switched to an object for the value. That’s okay; when destructuring, we can assign all
the properties we need to local variables:

const {user, setUser} = useContext(UserContext);

That’s three different components using the context value in three different ways. In
section 8.2.2, we take things a bit further and develop our own custom provider for
the user context. If you want code for switching the context value to an object, as just
discussed, check the solution branch for challenge 8.2.

CHALLENGE 8.2
Update App.js so that the App component sets an object, with user and setUser prop-
erties, as the value prop on the Provider component for the user context. Update
the BookingDetails, UsersPage, and UserPicker components to use the new object
value via destructuring. The code for the completed challenge is on the 0804-object-
value branch in the GitHub repo.

8.2.2 Moving the state to a custom provider

The current user for the booking app is determined by the UserPicker component
(although in a real app, users would log in). The state value for the current user is
managed by the App component; that’s where the context provider, UserContext
.Provider, wraps the tree of components. When a visitor to the site chooses a user in
the user picker, the UserPicker component calls setUser to update the user state
value in the App component. React notices the state has changed and re-renders the
component that manages that state, App. Because App re-renders, all of its children re-
render, as shown in figure 8.9.

208 CHAPTER 8 Managing state with the Context API
Re-rendering is not inherently bad—we fixate on the state, and React calls the compo-
nents, does its diffing, and tickles the DOM—and if your app is performing well,
there’s no need to complicate the code. But, if slower, more involved components are
in the tree, you might want to avoid re-renders that won’t change the UI. We want a
way of updating the context provider value without setting off a cascade of updates all
the way down the component tree. We want the context consumers (the components
that call useContext) to re-render in response to a change of value on the provider,
not just because the whole tree is re-rendering. Can we avoid updating the state in the
App component?

value={{user, setUser}}

4. Context state:
Components that
consume the context
access the latest value.

Shared state:
App manages the
shared user state
for the app.

1. Update state:
When the state
is updated by calling
setUser, the App
component re-renders.

3. Intermediate components:
All the components down
the tree re-render, even if
they don’t use context.

2. New context value:
When App re-renders,
it sets the latest state
value on the provider.

Figure 8.9 Calling setUser in the App component re-renders the whole tree. The gray band around the
components after the Provider represents the context: UserPicker and BookingDetails access the user
value from the context.

209Working with custom providers and multiple contexts
 Answering that question involves a good understanding of React’s rendering behav-
ior. We discuss the concepts and how to apply them in the following four subsections:

 Creating a custom provider
 Using the children prop to render wrapped components
 Avoiding unnecessary re-renders
 Using the custom provider

CREATING A CUSTOM PROVIDER

If App is managing the user state only so it can pass it to UserContext.Provider, and
we already have a separate file for UserContext, why not manage the state in the same
place as the context? Can we build a UserProvider component that we use to wrap
the component tree and that manages the user state itself? You bet we can! The follow-
ing listing shows our very own custom provider component, UserProvider.

import {createContext, useState} from "react";

const UserContext = createContext();
export default UserContext;

export function UserProvider ({children}) {
 const [user, setUser] = useState(null);

 return (
 <UserContext.Provider value={{user, setUser}}>
 {children}
 </UserContext.Provider>
);
}

UserContext is still the default export, so no files that import and use it directly need
to change. But the context file now has a named export, UserProvider, our custom
provider component. The custom provider calls useState to manage the user value
and to get an updater function. It passes the value and function, wrapped in an object,
to the UserContext.Provider component as the value to share for the context:

<UserContext.Provider value={{user, setUser}}>
 {children}
</UserContext.Provider>

When we use our custom provider, we wrap it around part or all of our app in JSX. All
of the wrapped components get access to the value set by the provider (if they call
useContext with UserContext):

<UserProvider>
 // app components
</UserProvider>

Branch: 0805-custom-provider, File: /src/components/Users/UserContext.js

Listing 8.7 Exporting a custom provider along with the user context

Export the context object
so that other components
can import it.

Assign the special children
prop to a local variable.

Manage the user state
within the component.

Set an object as
the context value.

Render the children
inside the provider.

210 CHAPTER 8 Managing state with the Context API
Let’s look at that children prop in a bit more detail.

USING THE CHILDREN PROP TO RENDER WRAPPED COMPONENTS

Whenever a component wraps other components, React assigns the wrapped compo-
nents to the children prop of the wrapper. For example, here’s a Wrapper component
with a MyComponent component as a child:

<Wrapper>
 <MyComponent/>
</Wrapper>

When React calls Wrapper to get its UI, it passes Wrapper the child component,
MyComponent, assigning it to the children prop. (React has always been doing this; we
just haven’t used the children prop until now.)

function Wrapper ({children}) {

 return <div className="wrapped">{children}</div>

}

When returning its UI, Wrapper uses the components React has assigned to children.
The UI becomes the following:

<div className="wrapped"><MyComponent/></div>

For the Wrapper example, children is a single component. If Wrapper wraps multiple,
sibling components, then children is an array of components. Find out more about
working with the children prop in the React docs: https://reactjs.org/docs/react-
api.html#reactchildren.

 Back in our App component, React assigns to the children prop of UserProvider,
the components that UserProvider wraps. UserProvider uses the children prop to
make sure the UserContext.Provider component still renders the components that
our custom UserProvider component now wraps:

export function UserProvider ({children}) {
 const [user, setUser] = useState(null);

 return (
 <UserContext.Provider value={{user, setUser}}>
 {children}
 </UserContext.Provider>
);
}

It wraps the child components in the user context’s provider and sets the provider’s
value, making the user value and setUser function available to the wrapped chil-
dren. The context and the state are now in the same place. That’s nice for organiza-
tion, understanding, and maintainability. But there’s an optimization benefit too.

React assigns any child
components to the children prop.

Use the child components
when returning the UI.

React assigns the
wrapped components
to the children prop.

Render the wrapped
components within the
provider for a context.

https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren

211Working with custom providers and multiple contexts
AVOIDING UNNECESSARY RE-RENDERS

When a descendant (the user picker, for example) calls setUser to update the user
state value in the UserProvider component, React notices the state has changed and
re-renders the component that manages that state, UserProvider. But for User-
Provider, all of its children don’t re-render, as illustrated in figure 8.10.

It may be unexpected, but it’s standard React rendering behavior; no special memoiz-
ing function is being applied here. What makes UserProvider behave differently from
our App component, when App was managing the user state? What stops React from
rendering the provider’s children?

 It’s because UserProvider accesses its children as a prop, and updating the state
within the component doesn’t change its props. The identity of children doesn’t
change when a descendant calls setUser. It’s exactly the same object as it was before.
There’s no need to re-render all the children, so React doesn’t.

value={{user, setUser}}

4. Context state:
Components that
consume the context
re-render with the
latest value.

Shared state:
UserProvider manages
the shared user state
for the app.

1. Calling setUser:
When a visitor selects
a user, UserPicker calls
setUser with the new
value.

3. Intermediate components:
Because UserProvider’s
children haven’t changed,
components that don’t
use the context don’t
re-render.

2. New context value:
When setUser is called,
UserProvider re-renders,
setting the latest state
value on the provider.

Figure 8.10 When UserProvider re-renders, only the context consumers, not the whole tree, re-render.

212 CHAPTER 8 Managing state with the Context API
 Except for the context consumers! Context consumers always re-render when the
value of the closest provider for their context changes. Our custom provider provides
an updater function to its consumers. When a component calls the updater function,
the custom provider re-renders, updating its context value. React knows the provider’s
children haven’t changed, so doesn’t re-render them. Any components that consume
the context, however, do re-render in response to the change of value on the provider,
not because the whole tree of components has re-rendered.

USING THE CUSTOM PROVIDER

Now that our custom provider is looking after the user state, we can simplify the App
component, removing the import and calling of useState and the need to set a value
on the provider. The following listing shows the slimmer code. Notice, also, that we no
longer set props on UserPicker; it was switched over to using context in challenge 8.2.

// remove import for useState
// unchanged imports

import {UserProvider} from "./Users/UserContext";

export default function App () {
 return (
 <UserProvider>
 <Router>
 <div className="App">
 <header>
 // nav

 <UserPicker/>
 </header>

 <Routes>
 // routes
 </Routes>
 </div>
 </Router>
 </UserProvider>
);
}

Because, in the JSX, UserProvider wraps Router, the Router component is assigned
to the UserProvider component’s children prop, and UserProvider, our custom
provider, wraps it in UserContext.Provider, the actual context provider component.
That way, every component in the app gets access to the user context. In chapter 9,
we’ll see how custom hooks can be used to more easily work with the Context API
from the consumers’ perspective.

Branch: 0805-custom-provider, File: /src/components/App.js

Listing 8.8 Using the custom provider in the App component

Import the
custom provider.

Wrap the app UI
in the provider.

Don’t pass props
to the user picker.

Wrap the app UI
in the provider.

213Working with custom providers and multiple contexts
 Our custom provider assigns an object, {user, setUser}, as the value for the con-
text provider component. In the next section, we look at downsides to using an object
in this way.

8.2.3 Working with multiple contexts

Now that we have a mechanism for sharing values across the whole application, you
may be tempted to create a single, monstrous store for the app’s state and let compo-
nents anywhere consume the bloated, gassy value it provides. But—as you might have
guessed from the previous sentence’s hyperbole—that’s not always the best idea. If a
component needs some state, try to manage it in the component.

 Keeping the state with the component that uses it makes it easier to work with and
reuse the component. If the app develops and a sibling now needs the same state, lift
the state into a shared parent and pass it down via props. If extra levels of nested com-
ponents are introduced between the state and some of the components that use it,
consider component composition before reaching for the Context API. The React docs
have some information about composition: http://mng.bz/PPjY.

 If you find you really do have state that doesn’t change often and that is used by
many components at different levels across your app, the Context API sounds like a
good fit. But even then, a single state object provided by context can be inefficient.
Say your context state value looks like this:

value = {
 theme: "lava",
 user: 1,
 language: "en",
 animal: "Red Panda"
};

<MyContext.Provider value={value}><App/></MyContext.Provider>

Across your component hierarchy, some components use the theme, some the user,
others the language, and yet others use the animal. The problem is, if a single prop-
erty value changes (say the theme changes from lava to cute), all of the components
that consume the context will re-render, even if they’re not interested in the changed
value. A nested component with a craving for just the juiciest state tidbits gets tacos,
tapioca, and a huge lamb tagine too! Fortunately, there’s an easy fix. (Although, if I
can keep the tagine, I’ll be sorted for a few days. Mmmmmmm tagine . . .)

SPLITTING THE CONTEXT VALUES ACROSS MULTIPLE PROVIDERS

You can use as many contexts as you need, and nested components can call the use-
Context hook on just the contexts they consume. Here’s what the providers look like
if each shared value gets its own:

<ThemeContext.Provider value="lava">
 <UserContext.Provider value=1>
 <LanguageContext.Provider value="en">
 <AnimalContext.Provider value="Red Panda">

https://shortener.manning.com/PPjY

214 CHAPTER 8 Managing state with the Context API
 <App/>
 </AnimalContext.Provider>
 </LanguageContext.Provider>
 </UserContext.Provider>
</ThemeContext.Provider>

Then, nested components consume only the values they need and re-render when
their selected values change. Here are two components that access a pair of context
values each:

function InfoPage (props) {
 const theme = useContext(ThemeContext);
 const language = useContext(LanguageContext);

 return (/* UI */);
}

function Messages (props) {
 const theme = useContext(ThemeContext);
 const user = useContext(UserContext);

 // subscribe to messages for user

 return (/* UI */);
}

USING A CUSTOM PROVIDER FOR MULTIPLE CONTEXTS

You want to put your providers as close to the components that consume their con-
texts as possible, wrapping subtrees rather than the whole app. Sometimes, however,
the context really is used across the whole app, and the providers can go at or close to
the root. The code at the root often doesn’t change much, so don’t worry about nest-
ing multiple providers; you don’t have to see the nesting as “wrapper hell” or a “pyra-
mid of doom.” If you prefer, and the providers are likely to stay together, you can
always create a custom provider that groups multiple providers in one place, like this:

function AppProvider ({children}) {
 // maybe manage some state here

 return (
 <ThemeContext.Provider value="lava">
 <UserContext.Provider value=1>
 <LanguageContext.Provider value="en">
 <AnimalContext.Provider value="Red Panda">
 {children}
 </AnimalContext.Provider>
 </LanguageContext.Provider>
 </UserContext.Provider>
 </ThemeContext.Provider>
);
}

215Working with custom providers and multiple contexts
Then the app can use the custom provider(s):

<AppProvider>
 <App/>
</AppProvider>

As we saw in section 8.2.2, using a custom provider with a children prop can help
with unnecessary child component re-renders too.

USING SEPARATE CONTEXTS FOR A STATE VALUE AND ITS UPDATER FUNCTION

When a context provider’s value changes, its consumers re-render. A provider might
also re-render as a result of its parent re-rendering. If the provider’s value is an object
that the code creates every time the provider renders, the value changes on each ren-
der, even if the property values you assign to the object stay the same.

 Take another look at our custom UserProvider component in the bookings app:

export function UserProvider ({children}) {
 const [user, setUser] = useState(null);

 return (
 <UserContext.Provider value={{user, setUser}}>
 {children}
 </UserContext.Provider>
);
}

We assign an object, {user, setUser}, to the value prop of the provider. Every time
the component renders, it’s a fresh object that’s assigned, even if the two properties,
user and setUser, are the same. The consumers of the context—UserPicker, Users-
Page, and BookingDetails—re-render whenever UserProvider re-renders.

 Also, by using an object as the value, if a nested component uses only one of the
properties on the object, it will still re-render when the other property changes (it’s
tidbits and tacos again). In our case, that’s not a problem; setUser never changes, and
the only component that uses it, UserPicker, also uses the user property. But if we
were to build a proper login system, we could easily create a logout button that didn’t
need the current user but that did need to call setUser. There’s no need to re-render
the button every time the user changes.

 So, we have two problems:

 A new object is assigned to the provider value every render.
 Changing one property on the value re-renders consumers that may not con-

sume that value.

We can solve both problems by using two contexts rather than one in our custom pro-
vider, as shown in the following listing.

A new object is assigned
to the value prop on
every render.

216 CHAPTER 8 Managing state with the Context API
import {createContext, useState} from "react";

const UserContext = createContext();
export default UserContext;

export const UserSetContext = createContext();

export function UserProvider ({children}) {
 const [user, setUser] = useState(null);

 return (
 <UserContext.Provider value={user}>
 <UserSetContext.Provider value={setUser}>
 {children}
 </UserSetContext.Provider>
 </UserContext.Provider>
);
}

user and setUser are not re-created every render, and we now use a separate context
and provider for each value, so consumers of one value are not affected by changes to
the other.

 The latest branch also updates the consumer components; they don’t need to
destructure values from a value object, and UserPicker imports and uses the new
UserSetContext context object.

8.2.4 Specifying a default value for a context

Working with the Context API involves providers and consumers: the provider sets a
value, and the consumer reads the value. But working with two separate parts can
require a little trust. What if we call useContext with a context object, but no corre-
sponding provider is set further up the tree? If appropriate, when creating a context
object, we can specify a default value for just such an occurrence, like this:

const MyContext = createContext(defaultValue);

The useContext hook will return the context object’s default value if no value is set by
a corresponding provider for that context. This could be useful if your app uses a
default language or theme; a provider could be used to override the default, but
everything would still work if no provider was included.

Branch: 0806-multiple-contexts, File: /src/components/Users/UserContext.js

Listing 8.9 Using separate providers for a value and its updater function

Create a separate context
for setting the current user.

Set the user
as a value.

Set the updater
function as a value on
its own provider.

217Summary
Summary
 For rarely changing values used by many components, consider using the Con-

text API.
 Create a context object to manage a particular value that components will access:

const MyContext = createContext();

 Export the context object to make it available to other components. (Or create
the context object in the same scope as the provider and consumer components.)

 Import the context object into the provider and consumer component files.
 Wrap the component tree that needs access to the shared state value with the

context object’s provider component, setting the value as a prop:

<MyContext.Provider value={value}>
 <MyComponent />
</MyContext.Provider>

 Access context values with the useContext hook, passing it the context object:

const localValue = useContext(MyContext);

Whenever the context value changes, the consuming component will re-render.

 Optionally, specify a default value for a context when creating it:

const MyContext = createContext(defaultValue);

The useContext hook will return the default value if no provider for the con-
text is set further up the component tree.

 Use multiple contexts for values that aren’t usually consumed together. Con-
sumer components that consume one value can re-render independently of
those that consume another value.

 Create custom providers to manage state for shared values.
 Use the children prop in custom components to avoid re-rendering descen-

dants that don’t consume the context.

Creating your own hooks
React Hooks promise to simplify component code and to promote encapsulation,
reusability, and maintainability. They let function components work closely with
React to manage state and hook into life-cycle events for mounting, rendering, and
unmounting. Function components with hooks collocate related code and remove
the need to mix unrelated code within and across the separate life-cycle methods of
class-based components.

 Figure 9.1 contrasts the location of code in class-based and function-based ver-
sions of a Quiz component that loads question data and subscribes to a user service.
Whereas the class component spreads the functionality across its methods, the Quiz
function component manages local state with calls to useState or useReducer and
wraps up the loading of question data and the subscription to a user service within
separate calls to useEffect.

This chapter covers
 Extracting functionality into custom hooks

 Following the Rules of Hooks

 Consuming a context value with a custom hook

 Encapsulating data fetching with a custom hook

 Exploring further examples of custom hooks
218

219
super(props)

Figure 9.1 React Hooks let us move related code into a single place and stop mixing unrelated code
in life-cycle methods.

220 CHAPTER 9 Creating your own hooks
We could stop there, with function components containing state and effects man-
aged by hooks. The Quiz function component already looks neater and easier to
reason about than the class component. But in the same way that we split longer
functions into a number of shorter functions, we can extract the work the hooks do
into custom hooks outside the component, to simplify the component code and to
prepare the functionality for reuse. For the Quiz component, we could load ques-
tion data with a useFetch hook and subscribe to the service with a useUsers hook,
for example.

 This chapter includes custom hooks, some based on code we’ve seen before
(examples of useEffect from chapter 4, including hooks for fetching data) and some
extending previous code (we create a hook to access context values from chapter 8).
The examples illustrate how custom hooks can be made flexible with parameters and
can provide useful return values with functions, arrays, and objects. But the neatness
and flexibility of hooks do come with a couple of restrictions, summarized as the Rules
of Hooks in section 9.2.

 Before we get serious with the rules or in-depth with the bookings app, let’s start
with a little more detail about why custom hooks are a good thing and with our first
two custom hooks, useRandomTitle and useDocumentTitle.

9.1 Extracting functionality into custom hooks
React hooks let us manage local state in function components, access application
state via context, and hook into life-cycle events to perform and clean up side
effects. By keeping related code in one place, rather than spread across various class
methods, they let us make better use of functions. We can extract commonly used
code into separate functions, simplifying our components. Figure 9.2 shows how the
key functionality of the Quiz component, loading questions and subscribing to a
user service, could be extracted into two functions, or custom hooks, useFetch and
useUsers.

 With appropriately named custom hooks, the code for the Quiz component
becomes shorter and easier to follow, as shown on the left of figure 9.3. It should be
clear that the Quiz component is accessing user information by calling useUsers and
fetching data by calling useFetch.

221Extracting functionality into custom hooks
Moving the functionality into custom hooks also lets us reuse that functionality in mul-
tiple components, and figure 9.3 shows a second component, Chat, calling the same
useUsers hook. Particularly useful hooks can be shared across a team or even pub-
lished and made available to developers across the world.

 Library authors can create hooks to make key functionality available to function
components, and we look at a couple of examples—routing with React Router and
fetching data with React Query—in chapter 10. In this section, we say hello again to a
simple component from chapter 4 that accesses the document’s title from within an
effect. We consider the following:

 Recognizing functionality that could be shared
 Defining custom hooks outside your components
 Calling custom hooks from custom hooks

In creating our first examples, we encounter the naming convention for custom
hooks, setting up the need for a few rules in section 9.2.

Figure 9.2 With custom hooks, we can move some state and functionality into separate functions.

222 CHAPTER 9 Creating your own hooks
Figure 9.3 Many components can call our custom hooks.

223Extracting functionality into custom hooks

U
t

th
ch
9.1.1 Recognizing functionality that could be shared

We have a SayHello component that displays greetings in the document’s title. On
first loading, the component shows a random greeting and a Say Hi button. It updates
the greeting whenever the button is clicked, as shown in figure 9.4.

The component performs two main tasks:

 Chooses a greeting from a list
 Sets the document title to the chosen greeting

In the subsections that follow, we extract the title-setting code into our first custom
hook, useDocumentTitle, and the random title selection into our second, useRandom-
Title. The original code for the SayHello component is shown again in listing 9.1,
where you can see the call to the useEffect hook that sets the document’s title. (The
effect in this listing now has index specified as a dependency; it sets the title only
when the index changes.)

import React, {useState, useEffect} from "react";

function SayHello () {
 const greetings = ["Hello", "Ciao", "Hola", "こんにちは"];
 const [index, setIndex] = useState(0);

 useEffect(() => {
 document.title = greetings[index];
 }, [index]);

 function updateGreeting () {
 setIndex(Math.floor(Math.random() * greetings.length));
 }

 return <button onClick={updateGreeting}>Say Hi</button>
}

Live: https://jhijd.csb.app, Code: https://codesandbox.io/s/sayhello-jhijd

Listing 9.1 Updating the browser title

Figure 9.4 Three views of the
browser document with different
greetings as titles

Import the
useEffect hook.

Pass the useEffect hook
a function, the effect.

Update the browser title
from inside the effect.pdate

he title
only if

e index
anges.

https://jhijd.csb.app
https://codesandbox.io/s/sayhello-jhijd

224 CHAPTER 9 Creating your own hooks
Setting a document’s title is functionality we might like to use on multiple pages and
in multiple projects. As functions, hooks let us extract and share functionality easily.
Components can pass arguments to our hooks, and the hooks can return state values
and functions to give the components the powers they need to complete their tasks.
Let’s see how.

9.1.2 Defining custom hooks outside your components

Setting a document title is a simple example, and you could easily just re-create the
effect whenever you want the functionality. But its simplicity lets us focus on the
extraction to a custom hook without any cognitive strain related to what the effect
does. Listing 9.2 shows the same friendly SayHello component from listing 9.1, this
time with the effect moved into a separate function, useDocumentTitle, outside the
component definition.

import React, {useState, useEffect} from "react";

function useDocumentTitle (title) {
 useEffect(() => {
 document.title = title;
 }, [title]);
}

export default function SayHello () {
 const greetings = ["Hello", "Ciao", "Hola", "こんにちは"];
 const [index, setIndex] = useState(0);

 function updateGreeting () {
 setIndex(Math.floor(Math.random() * greetings.length));
 }

 useDocumentTitle(greetings[index]);

 return <button onClick={updateGreeting}>Say Hi</button>
}

In listing 9.2, the custom hook has been defined outside the component but in the
same file. You could, and often do, move the custom hook into its own file (or a file
with multiple utility hooks) and import it into any components that need it.

 We called the custom hook useDocumentTitle. When using hooks, there are a
couple of rules to follow to keep your components running smoothly, as discussed in
section 9.2, and starting the name of all hooks with “use” helps enforce those rules.
It’s an important enough naming convention to warrant its own sidebar.

Listing 9.2 Extracting an effect into the useDocumentTitle hook

Define the custom hook as a
function whose name begins
with “use.”

Call the original useEffect hook
from within the custom hook.

Update the document title
only if the title changes.

Call the custom hook,
passing it the title to show.

225Extracting functionality into custom hooks

It’s not only components that we can power up by calling custom hooks. Our custom
hooks are free to make the most of extra powers too! It’s just functions calling func-
tions at the end of the day.

9.1.3 Calling custom hooks from custom hooks

In doing their jobs, your freshly sculpted hooks might perform useful tasks that could
be extracted into their own custom hooks, with one hook calling one or more other
hooks. And your hooks can return values to the calling component, either for inclu-
sion in the UI or to update a hook-controlled state. For example, for the SayHello
component in listing 9.2, we could also extract the “choose a random greeting” func-
tionality. Listing 9.3 shows the final, compact form of our title-setting component,
SayHello, with the key title-setting functionality extracted into a useRandomTitle
hook imported from another file (shown in listing 9.4).

import React from "react";
import useRandomTitle from "./useRandomTitle";

const greetings = ["Hello", "Ciao", "Hola", "こんにちは"];

export default function SayHello () {
 const nextTitle = useRandomTitle(greetings);

 return <button onClick={nextTitle}>Say Hi</button>
}

In listing 9.3, we pass the useRandomTitle hook the list of greetings from which to
choose the document title. The hook returns a function we invoke to generate the
next title. We have abstracted how the title is generated into the hook but, by using
sensible hook and variable names, the component code is easy to follow. Figure 9.5
shows the component calling one hook, which calls another.

 Listing 9.4 shows the code for the useRandomTitle hook. It includes two hook calls
of its own, one to the built-in useState hook and one to our useDocumentTitle cus-
tom hook, now moved to its own file (shown in listing 9.5).

Start the names of custom hooks with “use”
To make it clear that a function is a custom hook and should follow the rules of hooks,
start its name with use, for example, useDocumentTitle, useFetch, useUsers, or
useLocalStorage.

Live: https://ynmc2.csb.app/, Code: https://codesandbox.io/s/userandomtitle-ynmc2

Listing 9.3 A compact, title-setting SayHello component

Import our
custom hook.

Pass the custom hook
the greetings to use and
assign the function it
returns to a variable.

Use the function returned
by the hook to update the
document title whenever
the button is clicked.

https://ynmc2.csb.app/
https://codesandbox.io/s/userandomtitle-ynmc2

226 CHAPTER 9 Creating your own hooks

Define
func
out

the h
ult
s.
import {useState} from "react";
import useDocumentTitle from "./useDocumentTitle";

const getRandomIndex = length => Math.floor(Math.random() * length);

export default function useRandomTitle (titles = ["Hello"]) {

 const [index, setIndex] = useState(
 () => getRandomIndex(titles.length)
);

 useDocumentTitle(titles[index]);

 return () => setIndex(getRandomIndex(titles.length));
}

The useRandomTitle custom hook uses the useState hook to manage the index of
the title to be shown. Code that uses the hook doesn’t need to know how the hook
manages the current title; it just needs to be able to ask for a new title to be shown.
The hook returns a function so code that uses the hook can ask for the next title. The

Live: https://ynmc2.csb.app/, Code: https://codesandbox.io/s/userandomtitle-ynmc2

Listing 9.4 The useRandomTitle custom hook calls useDocumentTitle

Figure 9.5 The simplified SayHello component calls the useRandomTitle hook, which calls the
useDocumentTitle hook.

Import our
custom hook.

this
tion
side
ook.

Provide a defa
list of greeting

Provide a function to choose a random
greeting index for the initial state.

Call our imported custom hook
to update the document title.

Return a function so code using
this hook can update the title.

https://ynmc2.csb.app/
https://codesandbox.io/s/userandomtitle-ynmc2

227Following the Rules of Hooks

docu

th
pas
useRandomTitle custom hook also calls our useDocumentTitle custom hook from
earlier, and the following listing shows that custom hook exported from its own file.

import {useEffect} from "react";

export default function useDocumentTitle (title) {
 useEffect(() => {
 document.title = title;
 }, [title]);
}

Listings 9.3, 9.4, and 9.5, together, show how custom hooks can call custom hooks and
return only what’s needed by components that use them. But before we get carried
away by our extraction/abstraction enthusiasm, we need to understand a little about
how React manages these hook calls and how to make sure they work as intended. Yes,
there are rules!

9.2 Following the Rules of Hooks
We’ve seen many advantages of hooks so far in this book and in this chapter. The way
they help to organize and clarify code and their promise of efficient code abstraction
and reuse are both very appealing. But in order for hooks to deliver on their prom-
ises, the React team has made some interesting implementation decisions. While
React doesn’t generally impose too many idioms on your JavaScript, with hooks the
team has laid down some rules:

 Start the names of custom hooks with “use.”
 Call hooks only at the top level.
 Call hooks only from React functions.

When you call hooks like useState and useEffect, you’re enlisting React’s help to
manage state and side effects, batch updates, calculate UI differences, and schedule
DOM changes. For React to successfully and reliably track your components’ state, the
hook calls from those components need to be consistent in order and number. The
three rules of hooks are there to ensure that the call order of your hooks doesn’t
change from one render to the next.

Let’s look at the last two rules in a little more detail.

Live: https://ynmc2.csb.app/, Code: https://codesandbox.io/s/userandomtitle-ynmc2

Listing 9.5 The useDocumentTitle hook exported from its own file

The Rules of Hooks
 Start hook names with “use.”
 Call hooks only at the top level.
 Call hooks only from React functions.

Specify a parameter
for the title.Set the

ment’s
title to
e value
sed in.

Update the document title only
when the title value changes.

https://ynmc2.csb.app/
https://codesandbox.io/s/userandomtitle-ynmc2

228 CHAPTER 9 Creating your own hooks
9.2.1 Call hooks only at the top level

It’s important that components call hooks consistently each time they run. You shouldn’t
call hooks only on some occasions but not on others, and you shouldn’t call them a
different number of times each time a component runs. To help ensure that your
hook calls are consistent, follow these conventions:

 Don’t put hooks inside conditionals.
 Don’t put hooks inside loops.
 Don’t put hooks inside nested functions.

Each of those three scenarios can lead to you skipping hook calls or changing the
number of times you call the hooks for a component.

 If you have an effect that should run only under certain conditions, and the condi-
tions aren’t covered by the dependency array, put the conditions inside the effect
function. Don’t do this:

if (condition) {
 useEffect(() => {
 // perform effect
 }, [dep1, dep2]);
}

Hiding an effect in a condition may skip the effect depending on the condition. But
our effects must always run. Instead, do this :

useEffect(() => {
 if (condition) {
 // perform task.
 }
}, [dep1, dep2]);

This code always calls the hook but checks the condition before performing the
effect’s task.

9.2.2 Call hooks only from React functions

Hooks allow function components to have state and to manage when they use or
cause side effects. Components that use hooks should be easy to understand, main-
tain, and share. Their state should be predictable and reliable. Expected changes of
state should be visible within the component, although you might extract exact imple-
mentations of those state changes into custom hooks. To help your components work
sensibly:

 Do call hooks from React function components.
 Do call hooks from custom hooks (with names starting with “use”).

Don’t call hooks from other, regular JavaScript functions. Keep your hook calls within
function components and custom hooks.

Don’t put the hook call
inside the condition.

Do put the condition
inside the hook call.

229Extracting further examples of custom hooks
9.2.3 Using an ESLint plugin for the rules of hooks

Undoubtedly, these “rules” may raise a few eyebrows. But I think the pros of hooks
outweigh the cons of the three rules. To help you spot when you may have overlooked
the rules in your code, there’s an ESLint plugin called eslint-plugin-react-hooks.
If you’ve used create-react-app to generate your project skeleton, the plugin is
already in place.

9.3 Extracting further examples of custom hooks
In chapter 4, we saw a few other examples of side effects: getting the window size,
using local storage, and fetching data. Although we wrapped the side effects inside
calls to useEffect, they were still within the embrace of the components using them.
But the functionality is worth sharing, so let’s extract and export it.

 In this section, we create a couple more custom hooks:

 useWindowSize—Returns the height and width of the document window
 useLocalStorage—Gets and sets a value using the browser’s local storage API

In section 9.4, we access context via a custom hook, and in section 9.5 we set up a cus-
tom hook to make it easy to fetch data.

 As functions, hooks can return whatever values are needed to expose their function-
ality. We’ve already seen no return value from useDocumentTitle and a function return
value from useRandomTitle. The two examples that follow return two further types of
values: useWindowSize returns an object with properties, and useLocalStorage returns
an array. As you read through the examples, consider how the different return types
work for the custom hooks and the components that use the hooks. First up is a hook
that returns the window length and width as properties of a single object.

9.3.1 Accessing window dimensions with a useWindowSize hook

Say you want to measure the width and height of a browser window and show the
dimensions onscreen, updating them automatically if the user resizes the window. Fig-
ure 9.6 shows the same window reporting its dimensions at two different sizes.

 As we saw in chapter 4, this requires adding and removing event listeners to the
window’s resize event. With a custom hook, we can simplify the component that uses
the dimensions. The following listing shows how simple the WindowSizer component
becomes.

import React from "react";
import useWindowSize from "./useWindowSize";

export default function WindowSizer () {
 const {width, height} = useWindowSize();

 return <p>Width: {width}, Height: {height}</p>
}

Live: https://zswj6.csb.app/, Code: https://codesandbox.io/s/usewindowsize-zswj6

Listing 9.6 A compact component showing the window width and height

Import the custom hook.

Call the hook and assign the
returned dimensions to variables.

Use the dimensions in the UI.

https://zswj6.csb.app/
https://codesandbox.io/s/usewindowsize-zswj6

230 CHAPTER 9 Creating your own hooks
The WindowSizer component gets ahold of the window dimensions in a single line of
code. It doesn’t care how the values are arrived at and doesn’t have to set up and tear
down any event listeners itself:

const {width, height} = useWindowSize();

Any projects and components that need the dimensions can import and use the cus-
tom hook. The hook’s abstracted magic is shown in listing 9.7. It performs the same
actions as the dimension-reporting component from chapter 4, but now the call to
useEffect and the event-related code is separated from any individual component.

import {useState, useEffect} from "react";

function getSize () {
 return {
 width: window.innerWidth,
 height: window.innerHeight
 };
}

export default function useWindowSize () {
 const [size, setSize] = useState(getSize());

Live: https://zswj6.csb.app/, Code: https://codesandbox.io/s/usewindowsize-zswj6

Listing 9.7 The useWindowSize custom hook

Figure 9.6 Displaying the width and height of a window as it’s resized

Define a function that returns
the dimensions of the window.

Read the dimensions from
the window object.

https://zswj6.csb.app/
https://codesandbox.io/s/usewindowsize-zswj6

231Extracting further examples of custom hooks
 useEffect(() => {
 function handleResize () {
 setSize(getSize());
 }

 window.addEventListener('resize', handleResize);

 return () => window.removeEventListener('resize', handleResize);
 }, []);

 return size;
}

The call to useEffect includes an empty dependency array (it runs only when the call-
ing component first mounts), and it returns a cleanup function (it removes the event
listener when the calling component unmounts). The useWindowSize custom hook
returns an object with width and height properties. The next custom hook, useLocal-
Storage, takes a different approach, returning an array with two elements, just like
the useState hook.

9.3.2 Getting and setting values with a useLocalStorage hook

Our fourth custom hook comes from the third useEffect example in chapter 4. We
have a user picker that lets us select a user from a drop-down menu. We store the
selected user in the browser’s local storage, so the page remembers the selected user
from visit to visit, as shown in figure 9.7.

We want our custom hook to manage setting and retrieving the selected user from
local storage. As shown in the following listing, the useLocalStorage hook returns
the user and an updater function to the UserPicker component as two elements in
an array.

Update the state,
triggering a re-render.

Register an event
listener for the
resize event.

Return a cleanup
function to remove

the listener.

Pass an empty array as the
dependency argument.

Return the object containing
the dimensions.

"Sanjiv"}

1. When the page first
loads, the drop-down
shows the default user.

2. The component saves
the value to local storage.

4. The component saves
the value to local storage.

6. The component loads
the value from local storage.

3. Select a user.

{name: {name: "Akiko"} {name: "Akiko"}

5. Refresh the page.

Figure 9.7 Once you select a user, refreshing the page automatically reselects the same user.

232 CHAPTER 9 Creating your own hooks

import React from "react";
import useLocalStorage from "./useLocalStorage";

export default function UserPicker () {
 const [user, setUser] = useLocalStorage("user", "Sanjiv");

 return (
 <select value={user} onChange={e => setUser(e.target.value)}>
 <option>Jason</option>
 <option>Akiko</option>
 <option>Clarisse</option>
 <option>Sanjiv</option>
 </select>
);
}

The UserPicker component uses array destructuring to assign the saved user and the
updater function to local variables, user and setUser. Again, the component doesn’t
care how the custom hook does its thing; it cares only about the saved user (so it can
select the appropriate option in the drop-down list) and the updater function (so any
change to the selection can be saved). The following listing shows the code we extract
into the custom hook.

import {useEffect, useState} from "react";

export default function useLocalStorage (key, initialValue) {
 const [value, setValue] = useState(initialValue);

 useEffect(() => {
 const storedValue = window.localStorage.getItem(key);

 if (storedValue) {
 setValue(storedValue);
 }
 }, [key]);

 useEffect(() => {
 window.localStorage.setItem(key, value);
 }, [key, value]);

 return [value, setValue];
}

The code calls the useState hook to manage the selected user state locally. It also uses
two calls to the useEffect hook, to retrieve any saved value from local storage and to

Live: https://zkl7p.csb.app/, Code: https://codesandbox.io/s/uselocalstorage-zkl7p

Listing 9.8 A user picker component that uses local storage

Live: https://zkl7p.csb.app/, Code: https://codesandbox.io/s/uselocalstorage-zkl7p

Listing 9.9 The useLocalStorage custom hook

Import the
custom hook.

Call the hook
with a key and
initial value.

Use the state and
updater function

returned by the hook.

Accept a key
and an initial
value.

Manage the
state locally.

Get any local
storage value
for the key.Update the local state

if there’s a value from
local storage.

Rerun this effect if
the key changes. Save the latest value

to local storage.

Rerun this effect for
a new key or value.

Return an array.

https://zkl7p.csb.app/
https://codesandbox.io/s/uselocalstorage-zkl7p
https://zkl7p.csb.app/
https://codesandbox.io/s/uselocalstorage-zkl7p

233Consuming a context value with a custom hook
save changed values. Check back in chapter 4 if you want a step-by-step account of how
the two effects work together to use local storage to save and retrieve the selected user.
In this chapter, we move on to a context we first encountered in chapter 8.

9.4 Consuming a context value with a custom hook
In chapter 8, we saw how to use React’s Context API to share values across an appli-
cation or subtree of the application by wrapping components in a context provider
and setting the provider’s value prop. Any components that consume the context
value need to import the provider’s corresponding context object and pass it to the
useContext hook. In the bookings app, multiple components need access to the
current user, and we created a custom provider to make that value available across
the app.

 The consuming components don’t need to know where the values come from or
what mechanism is used to make them available; we can abstract the details behind a
custom hook. For the bookings app, let’s create a useUser hook that provides the cur-
rent user and an updater function for any components that need to set the user. We’ll
use it like this:

const [user, setUser] = useUser();

Or, for components that need only the value, we do this:

const [user] = useUser();

The following listing expands on the custom user provider from chapter 8. The file
exports the existing provider and our new custom hook.

import {createContext, useContext, useState} from "react";

const UserContext = createContext();
const UserSetContext = createContext();

export function UserProvider ({children}) {
 const [user, setUser] = useState(null);

 return (
 <UserContext.Provider value={user}>
 <UserSetContext.Provider value={setUser}>
 {children}
 </UserSetContext.Provider>
 </UserContext.Provider>
);
}

export function useUser () {

Branch: 0901-context-hook, File: /src/components/Users/UserContext.js

Listing 9.10 The useUser custom hook

Don’t export
the contexts.

Export the
custom hook.

234 CHAPTER 9 Creating your own hooks
 const user = useContext(UserContext);
 const setUser = useContext(UserSetContext);

 if (!setUser) {
 throw new Error("The UserProvider is missing.");
 }

 return [user, setUser];
}

The custom hook, useUser, consumes the two context values set up in the provider,
returning the user value and updater function as the two elements in an array. It per-
forms a check to make sure a provider component has been used further up the com-
ponent tree and throws an error if it’s missing.

 With our custom hook ready to go, we can simplify the components that need
access to the current user: UserPicker, UsersPage, and BookingDetails. They no lon-
ger need to import the contexts they consume; they simply import and call the
useUser hook. The following listing shows the UserPicker component.

import {useEffect, useState} from "react";
import Spinner from "../UI/Spinner";

import {useUser} from "./UserContext";

export default function UserPicker () {
 const [user, setUser] = useUser();
 const [users, setUsers] = useState(null);

 useEffect(() => {
 // unchanged
 }, [setUser]);

 function handleSelect (e) { /* unchanged */ }

 if (users === null) {
 return <Spinner/>
 }

 return (/* unchanged UI */);
}

Because the call to useUser returns an array, we can destructure the return value by
using variable names we choose. The UserPicker component uses user and setUser.

 The BookingDetails component needs only the user, so its useUser call can look
like this:

const [user] = useUser();

Branch: 0901-context-hook, File: /src/components/Users/UserPicker.js

Listing 9.11 Calling the useUser hook from the UserPicker component

Consume the contexts
from inside the hook.

Throw an error if the
provider is missing.

Return the two context
values in an array.

Remove unused
imports.

Import the
custom hook.

Call the hook and assign the
user and updater function
to local variables.

235Encapsulating data fetching with a custom hook
The UsersPage component names the current user from the context loggedInUser,
so its useUser call can look like this:

const [loggedInUser] = useUser();

With more functionality moved into custom hooks, the components themselves
become simpler, starting to resemble presentational components that just receive and
display state. Before hooks, presentational components would leave any business logic
to wrapper components. With hooks, the business logic can be more easily encapsu-
lated, reused, and shared.

CHALLENGE 9.1
Update the UsersPage and BookingDetails components to call the useUser hook
rather than the useContext hook. The current branch, 0901-context-hook, already
has the latest code.

9.5 Encapsulating data fetching with a custom hook
It’s common for multiple components in an application to display data, usually
fetched from data sources over a network or over the internet. As our applications get
bigger and the data consumed by components starts to intersect, we may need to
reach for centralized data stores that efficiently manage retrieval, caching, and updat-
ing. (We look at the React Query library in chapter 10.) But many applications func-
tion perfectly well with components fetching their own data, usually within calls to the
useEffect hook. Often, all that changes from component to component is the URL
from which to grab the data.

 In this section, we create a custom hook for fetching data. We supply the hook with
the URL, and it returns the data, along with a status value and maybe an error object if
something goes wrong. We use the hook like this:

const {data, status, error} = useFetch(url);

As you can see, the hook returns an object with the three properties we need. The
hook works equally well for fetching users or bookables in our example app. Book-
ings, however, require a bit of extra work to be most useful, so we’ll create a special-
ized hook for fetching those. This section is divided into three parts:

 Creating the useFetch hook
 Using the data and status values that the useFetch hook returns
 Creating a more specialized data-fetching hook: useBookings

The useFetch hook could be used in multiple projects, so let’s look at it in some
detail.

236 CHAPTER 9 Creating your own hooks
9.5.1 Creating the useFetch hook

Our custom useFetch hook accepts a URL and returns an object with data, status,
and error properties, as shown in listing 9.12. It uses the useState hook to manage
the data (which could be undefined, a primitive, an object, or an array), the status
(which can be idle, loading, success, or error), and the error object (which can be
null or a JavaScript error object). The hook uses our getData API function from
within useEffect, just as our components did in previous chapters.

import {useEffect, useState} from "react";
import getData from "./api";

export default function useFetch (url) {
 const [data, setData] = useState();
 const [error, setError] = useState(null);
 const [status, setStatus] = useState("idle");

 useEffect(() => {
 let doUpdate = true;

 setStatus("loading");
 setData(undefined);
 setError(null);

 getData(url)
 .then(data => {
 if (doUpdate) {
 setData(data);
 setStatus("success");
 }
 })
 .catch(error => {
 if (doUpdate) {
 setError(error);
 setStatus("error");
 }
 });

 return () => doUpdate = false;
 }, [url]);

 return {data, status, error};
}

Rather than using Booleans like isLoading and isError, the useFetch hook uses a
status value, set to a string. (Rather than having strings scattered across the applica-
tion, it would be better to export the possible status values as variables from their own

Branch: 0902-use-fetch, File: /src/utils/useFetch.js

Listing 9.12 The useFetch hook

Set the initial
status as “idle.”

Just before sending a
request, set the status
to “loading.”

If the data comes back
successfully, set the
status to “success.”

If there was a problem
fetching, set the status
to “error.”

237Encapsulating data fetching with a custom hook
file and import them wherever they’re needed. But for the purposes of the example
app, we’ll stick with the simpler, if slightly more error-prone, naked string approach.)
Components that call useFetch can check the status to decide what UI to return. To
see useFetch in action, let’s update the BookablesList component, making use of
the status value.

9.5.2 Using the data, status, and error values
the useFetch hook returns

We designed the useFetch hook to return more than just the data; it also gives us a
status string and an error object. The status is great for deciding what UI to show,
and the updated BookablesList component in listing 9.13 uses it to choose between
an error message, a loading spinner, or the list of bookables.

import {useEffect} from "react";
import {FaArrowRight} from "react-icons/fa";
import Spinner from "../UI/Spinner";

import useFetch from "../../utils/useFetch";

export default function BookablesList ({bookable, setBookable}) {

 const {data : bookables = [], status, error} = useFetch(
 "http://localhost:3001/bookables"
);

 const group = bookable?.group;
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const groups = [...new Set(bookables.map(b => b.group))];

 useEffect(() => {
 setBookable(bookables[0]);
 }, [bookables, setBookable]);

 function changeGroup (event) { /* unchanged */ }
 function nextBookable () { /* unchanged */ }

 if (status === "error") {
 return <p>{error.message}</p>
 }

 if (status === "loading") {
 return <p><Spinner/> Loading bookables...</p>
 }

 return (/* unchanged UI */);
}

Branch: 0902-use-fetch, File: src/components/Bookables/BookablesList.js

Listing 9.13 Calling the useFetch hook from the BookablesList component

Import our new
useFetch hook.

Call useFetch and
destructure the
object it returns.

Select the first bookable
when the bookables load.

Check the status to see if
an error has occurred.

Display the message property
of the error object.

Check the status to see if
the bookables are loading.

238 CHAPTER 9 Creating your own hooks
Listing 9.13 calls useFetch and destructures the object it returns, assigning the prop-
erties to local variables:

const {data : bookables = [], status, error} = useFetch(
 "http://localhost:3001/bookables"
);

It assigns the data property to the bookables variable and includes a default value of
an empty array for when the data property is undefined:

data : bookables = []

If you check our implementation of useFetch in listing 9.12, you’ll see that no initial
value was passed to useState for the data value, and it’s explicitly set to undefined
every time a new data fetch is started. useFetch returns the data fetched from the
server or undefined. When destructuring an object, JavaScript assigns a specified
default value whenever the property value is undefined. BookablesList uses that
behavior to assign an empty array to bookables whenever data is undefined.

CHALLENGE 9.2
Update the UserPicker and UsersList components to call useFetch to get the list of
users from the database. Use the status value to determine what UI to show. Again,
the current branch, 0902-use-fetch, already has the changed files.

9.5.3 Creating a more specialized data-fetching hook: useBookings

Custom hooks make it easy to encapsulate and share functionality across components,
and our useFetch hook makes it easy to fetch data from any component. We have the
BookablesList, UserPicker, and UsersList components all calling useFetch to man-
age their data-loading only when they first mount. For interactive applications, though,
we continue fetching data in response to user choices. For example, the bookings grid
displays bookings for a chosen bookable and week, as shown in figure 9.8, and the
user can choose new bookables and new weeks at will, so we need to fetch new data to
keep everything synchronized.

 To display a grid filled with bookings, we generate the grid for the chosen book-
able and week and transform the bookings data into a form that’s easy to reference
when filling the grid. So, there’s more to it than just fetching the bookings. We’ll split
the code into three parts:

 useBookings—A custom hook to load and transform the booking data
 useGrid—A custom hook to generate the empty grid of booking slots
 BookingsGrid—The updated component that calls the two custom hooks

239Encapsulating data fetching with a custom hook

rs
The relationships of the three parts are shown in figure 9.9, which includes one com-
ponent, three custom hooks, and two built-in React hooks.

 Okay, let’s dig in to the code, starting with the two custom hooks, useBookings and
useGrid, in a new bookingsHooks.js file.

USEBOOKINGS

This is where more specialized custom hooks can come in handy. Listing 9.14 shows
the useBookings hook. It fetches bookings data for a specified bookable ID, start date,
and end date. It also uses our previously created transformBookings function to
return the data in a format that the bookings grid finds easy to work with.

import {shortISO} from "../../utils/date-wrangler";
import useFetch from "../../utils/useFetch";
import {transformBookings} from "./grid-builder";

export function useBookings (bookableId, startDate, endDate) {
 const start = shortISO(startDate);
 const end = shortISO(endDate);

 const urlRoot = "http://localhost:3001/bookings";

 const queryString = `bookableId=${bookableId}` +
 `&date_gte=${start}&date_lte=${end}`;

Branch: 0903-use-bookings, File: /src/components/Bookings/bookingsHooks.js

Listing 9.14 The useBookings hook

Figure 9.8 The BookingsGrid shows bookings for a chosen bookable (Meeting Room) and week (containing
2020-06-24).

Import our useFetch
custom hook.

Use paramete
to specify the
data to fetch.

Build the query string
for the specified data.

240 CHAPTER 9 Creating your own hooks
 const query = useFetch(`${urlRoot}?${queryString}`);

 return {
 bookings: query.data ? transformBookings(query.data) : {},
 ...query
 };
}

The useBookings hook uses the bookableId and the startDate and endDate values
converted to strings, start and end, to build the URL for the specific data we want, in
a format that our data server, json-server, understands:

const queryString = `bookableId=${bookableId}&date_gte=${start}&date_lte=${end}`;

Listing 9.14 splits the query string across two lines to fit this book’s formatting, but
it’s the same string. Our useBookings hook then passes the generated URL to our

Figure 9.9 The BookingsGrid component calls the useBookings and useGrid custom
hooks, and the useBookings hook calls the useFetch custom hook. React’s useMemo and
useEffect hooks are also used.

Call the useFetch hook
with the specific URL.

Transform loaded data
before returning it.

241Encapsulating data fetching with a custom hook
useFetch hook to grab the data, status, and error values wrapped in an object it
assigns to query:

const query = useFetch(`${urlRoot}?${queryString}`);

Finally, just like the useFetch hook, the useBookings hook returns an object with
the data and status and error values. As it’s a more specialized data-fetching hook,
we rename the data property to bookings. We could call it data to make it consis-
tent with useFetch but, seeing as we’re using it only to fetch bookings, calling it
bookings seems like a good choice, and the data property will still be there in the
return object because the query object (data, status, and error) is spread into the
return object too.

USEGRID

Each bookable can be booked only on certain days of the week and for certain ses-
sions during the day. The BookingsGrid component displays the appropriate grid
for the current bookable. But, to run the grid creation logic only when the bookable
changes, we wrap the call to getGrid in the useMemo hook. Although this code could
happily remain within the BookingsGrid itself, we pull it into its own custom hook,
useGrid, shown in the following listing, to continue our component simplification
process.

import {useMemo} from "react";
import {getGrid} from "./grid-builder";

export function useGrid (bookable, startDate) {
 return useMemo(
 () => bookable ? getGrid(bookable, startDate) : {},
 [bookable, startDate]
);
}

The useGrid and useBookings hooks could remain in the same file as BookingsGrid
because that’s the only place they’re used, but we’ll have more booking hooks and
utility functions later in the book, so a dedicated bookingsHooks.js file will work for
us. I’ve mostly tended toward splitting functions, hooks, and components into their
own files for the purposes of the code listings in this book. But don’t feel that that’s a
recommendation; you can follow a course that makes the most sense and is the most
useful to you and your team.

 With our hooks ready and waiting, let’s put the bookings, status, and error, and
grid, sessions, and dates values they return to good use in the BookingsGrid.

Branch: 0903-use-bookings, File: /src/components/Bookings/bookingsHooks.js

Listing 9.15 The useGrid hook

242 CHAPTER 9 Creating your own hooks

ok
BOOKINGSGRID

With our two new custom hooks, useBookings and useGrid, in place, we can update
the BookingsGrid component to call them. As the following listing shows, with func-
tionality hidden away in the custom hooks, BookingsGrid itself is almost exclusively
concerned with displaying the grid and its bookings.

import {Fragment, useEffect} from "react";
import Spinner from "../UI/Spinner";

import {useBookings, useGrid} from "./bookingsHooks";

export default function BookingsGrid (
 {week, bookable, booking, setBooking}
) {
 const {bookings, status, error} = useBookings(
 bookable?.id, week.start, week.end
);

 const {grid, sessions, dates} = useGrid(bookable, week.start);

 useEffect(() => {
 setBooking(null);
 }, [bookable, week.start, setBooking]);

 function cell (session, date) {
 const cellData = bookings[session]?.[date]
 || grid[session][date];

 const isSelected = booking?.session === session
 && booking?.date === date;

 return (
 <td
 key={date}
 className={isSelected ? "selected" : null}
 onClick={
 status === "success"
 ? () => setBooking(cellData)
 : null
 }
 >
 {cellData.title}
 </td>
);
 }

 if (!grid) {
 return <p>Waiting for bookable and week details...</p>
 }

Branch: 0903-use-bookings, File: /src/components/Bookings/BookingsGrid.js

Listing 9.16 The BookingsGrid component

Import our new
custom hooks.

Call the useBookings
hook with the specified
bookable and dates.

Call the
useGrid ho
with the
specified
bookable
and date.

Deselect the booking
when switching weeks
or bookables.

Use the status value to
check if the bookings
are available.

243Summary
 return (
 <Fragment>
 {status === "error" && (
 <p className="bookingsError">
 {`There was a problem loading the bookings data (${error})`}
 </p>
)}
 <table
 className={
 status === "success"
 ? "bookingsGrid active"
 : "bookingsGrid"
 }
 >
 <thead>{ /* unchanged */ }</thead>
 <tbody>{ /* unchanged */ }</tbody>
 </table>
 </Fragment>
);
}

The component now uses the status and error values that useBookings returns to
enable interaction with the grid and show a message if there’s a problem.

 Moving functionality into custom hooks has made our components simpler and
made it easier to share functionality across components and projects. Our custom
hook examples became increasingly sophisticated over the course of the chapter, but
they’re just scratching the surface of what can be achieved. In chapter 10, we intro-
duce third-party hooks for routing and data fetching, and start to see how custom
hooks let us access the power of existing third-party libraries with ease.

Summary
 To simplify components and share functionality that uses React Hooks, create

custom hooks outside the components.
 To make it clear that a function is a custom hook and should follow the Rules of

Hooks, start its name with “use.” Examples include useDocumentTitle, useFetch,
useUsers, and useLocalStorage.

 It’s important that components call hooks consistently each time they run. You
shouldn’t call hooks only on some occasions but not on others, and you
shouldn’t call them a different number of times each time a component runs.
To help ensure that your hook calls are consistent, follow these conventions:
– Don’t put hooks inside conditionals.
– Don’t put hooks inside loops.
– Don’t put hooks inside nested functions.

 If you need side-effect code to run only under certain conditions, put the condi-
tion check inside the effect:

Use the status value to
check for an error.

Display the
error message.

Use the status
value to set the
class of the grid.

244 CHAPTER 9 Creating your own hooks
 useEffect(() => {
 if (condition) {
 // perform task.
 }
 }, [dep1, dep2]);

 Don’t call hooks from regular JavaScript functions; keep your hook calls within
function components and custom hooks.

 To help you spot when you may have misused hooks in your code, use the
ESLint plugin called eslint-plugin-react-hooks. If you’ve used create-
react-app to generate your project skeleton, the plugin is already in place.

 Manage state and effects related to a hook’s functionality within the hook and
return only the value(s) that components need:

 function useWindowSize () {
 const [size, setSize] = useState(getSize());

 useEffect(() => {/* perform effect */}, []);

 return size;
 }

 Pass hooks values they need and return nothing, primitives, functions, objects,
or arrays—whatever is most useful:

 useDocumentTitle("No return value");
 const nextTitle = useRandomTitle(greetings);
 const [user, setUser] = useUser();
 const {data, status, error} = useFetch(url);

Using third-party hooks
Chapter 9 introduced custom hooks as a way to extract functionality from compo-
nents, making the functionality reusable and simplifying the components. Custom
hooks provide a simple, readable way to access all kinds of functionality from a
function component, whether that’s simple tasks like changing the document title
or managing a state value with local storage, or increasingly complex tasks like
fetching data or working with an application state manager. Many existing libraries
have been quick to provide hooks to allow function components to make the most

This chapter covers
 Making the most of third-party hooks

 Accessing state in the URL with React Router’s
useParams and useSearchParams hooks

 Switching to a new route with React Router’s
useNavigate hook

 Efficiently fetching and caching data with React Query’s
useQuery hook

 Updating data on the server with React Query’s
useMutation hook
245

246 CHAPTER 10 Using third-party hooks
of the libraries’ features, and this chapter tries some out to improve the bookings
example app.

 The bookings app has been using React Router to switch between its page compo-
nents for bookings, bookables, and users. But React Router can handle more compli-
cated scenarios, and in sections 10.1 and 10.2 we introduce three of its hooks. The
first, useParams, lets us specify the bookable to show on the Bookables page by includ-
ing its ID in the URL path. The second, useNavigate, lets us navigate to a new URL
when a user clicks the Next button or selects a different group. The third, useSearch-
Params, lets us get and set search parameters in a URL’s query string to specify a book-
able ID and date on the Bookings page.

 We’ve been loading data with our own useFetch hook without considering cach-
ing or re-fetching, techniques that help us more efficiently retrieve data and update
the UI. It’s time to up our data game, and the React Query library can do some great
things for us with minimal setup. In section 10.3, we have a go at using its useQuery
hook and pave the way for sending changes to the server via the useMutation hook.

 Let’s introduce our first third-party custom hook and see how we can access state
that’s specified in a URL.

10.1 Accessing state in the URL with React Router
React Router gives us navigational components (Router, Routes, Route, and Link,
for example) that we use to match UI with URL routes. When a user navigates to a
URL, React Router displays the associated React component for that route and, as
you’ll see, makes any parameters in the URL available to nested components via
hooks. Figure 10.1 shows the home page at https://reactrouter.com, where you can
find out more.

Figure 10.1 The web page for React Router: Learn Once, Route Anywhere

https://reactrouter.com/

247Accessing state in the URL with React Router
The bookings app includes three pages—for Bookings, Bookables, and Users—and
we already use React Router to show the appropriate page depending on the URL:
/bookings, /bookables and /users. The association of the URL with the page compo-
nent is in the App.js file, which includes this code:

<Routes>
 <Route path="/bookings" element={<BookingsPage/>}/>
 <Route path="/bookables" element={<BookablesPage/>}/>
 <Route path="/users" element={<UsersPage/>}/>
</Routes>

But your boss is back and has decided it would be great if visitors could navigate
directly to specific bookables and dates. For example, to show the bookable with an ID
of 3, a visitor would use this URL:

/bookables/3

To see the bookings for the same bookable on June 24, 2020, the visitor would use this:

/bookings?bookableId=3&date=2020-06-24

These URLs contain state for the application, either as part of the URL path (/book-
ables/3) or as search parameters in the query string (bookableId=3&date=2020-
06-24). In section 10.2, we’ll update the Bookings page to work with the query
string and the useSearchParams hook. In this section, we start with the Bookables
page and focus on the URL path and the useParams and useNavigate hooks. The
section is split into four subsections, each working with one component, as shown in
table 10.1.

Let’s take our first steps on the path to parameters by updating App.js to accept the
new routes we’re going to add.

Table 10.1 The four components we’ll change in this section

Section Component Change

10.1.1 App Setting up routes to enable nesting

10.1.2 BookablesPage Adding nested routes to the Bookables page

10.1.3 BookablesView Accessing URL parameters with the useParams hook

10.1.4 BookablesList Navigating with the useNavigate hook

248 CHAPTER 10 Using third-party hooks
10.1.1 Setting up routes to enable nesting

To display the details of a bookable and to edit and create bookables, users will navi-
gate to URLs like these:

/bookables/3
/bookables/3/edit
/bookables/new

Two of the three components associated with the three routes are in figure 10.2: the
details view for the bookable with an ID of 3, and the form for creating a new bookable.

Now that we have multiple routes that start with /bookables, we need to update App.js
to make sure the BookablesPage component is rendered for all of them. The following
listing shows the changed path attribute for the /bookables route with its appended /*.

// imports

export default function App () {
 return (
 <UserProvider>
 <Router>
 <div className="App">

Branch: 1001-bookables-routes, File: /src/components/App.js

Listing 10.1 Extending the BookablesPage route in the App component

Display the details for the
bookable with an ID of 3.

Edit the bookable
with an ID of 3.Create a new

bookable.

/bookables/3

/bookables/new

Show the details for
the bookable with
an ID of 3.

Show the form for
creating a new bookable.
/bookables/new

Figure 10.2 Different views are associated with different URLs. /bookables/3 shows the details
of the bookable with an ID of 3, and /bookables/new shows the form for creating a new bookable.

249Accessing state in the URL with React Router
 <header>
 {/* unchanged */}
 </header>

 <Routes>
 <Route path="/bookings" element={<BookingsPage/>}/>
 <Route path="/bookables/*" element={<BookablesPage/>}/>
 <Route path="/users" element={<UsersPage/>}/>
 </Routes>
 </div>
 </Router>
 </UserProvider>
);
}

Now, any path that starts with /bookables/ will render the BookablesPage compo-
nent. That small change lets the component set up the three nested routes we need.

10.1.2 Adding nested routes to the Bookables page

React Router lets us render different components depending on the location or URL.
We use Route components to match a path with a component to render. In listing 10.1,
we specified that any path starting with /bookables should render the BookablesPage
component. Listing 10.2 sets up some nested routes to show more-specific components
on the Bookables page. (We’ve also added BookableEdit and BookableNew components
to the repo so that the app will compile. We’ll discuss them in section 10.3.)

import {Routes, Route} from "react-router-dom";

import BookablesView from "./BookablesView";
import BookableEdit from "./BookableEdit";
import BookableNew from "./BookableNew";

export default function BookablesPage () {
 return (
 <Routes>
 <Route path="/:id">
 <BookablesView/>
 </Route>
 <Route path="/">
 <BookablesView/>
 </Route>
 <Route path="/:id/edit">
 <BookableEdit/>
 </Route>
 <Route path="/new">
 <BookableNew/>
 </Route>
 </Routes>
);
}

Branch: 1001-bookables-routes, File: /src/components/Bookables/BookablesPage.js

Listing 10.2 Nested routes in the BookablesPage component

Match any URL that
starts with “bookables.”

Specify a set of
nested routes.

Use a parameter to catch
the specified bookable ID.

Render the BookablesView component
even when no ID is specified.

Use a parameter to show an edit
form for the specified bookable ID.

Include a separate route for
the new bookables form.

250 CHAPTER 10 Using third-party hooks
In the listing, we use opening and closing Route tags, rather than an element prop,
just to show that you can specify the UI for a matching route as enclosed JSX rather
than as a prop. We add two routes that render the BookablesView component and two
more routes for creating and editing bookables. The first Route in listing 10.2
includes a parameter to catch the ID of the bookable to display:

<Route path="/:id">
 <BookablesView/>
</Route>

Because these routes are nested within the BookablesPage component, which is ren-
dered by React Router when the URL matches /bookables/*, this route is rendered for
URLs of the form /bookables/:id. For example, when navigating to /bookables/3,
React Router will render the BookablesPage component and then the BookablesView
component within it. React Router will also set the id parameter to 3. So, how do we
access that parameter from within a rendered component? Here comes our first third-
party custom hook!

10.1.3 Accessing URL parameters with the useParams hook

React Router’s useParams hook returns an object with properties corresponding to
URL parameters set up in a Route component’s path attribute. Say we have a Route
component like this one:

<Route path="/milkshake/:flavor/:size" element={<Milkshake/>}/>

Its path attribute includes two parameters, flavor and size. Say, also, that a shake
enthusiast visits this URL:

/milkshake/vanilla/medium

React Router will render the Milkshake component. When the Milkshake compo-
nent calls useParams, the hook will return an object with properties corresponding to
the two parameters:

{
 flavor: "vanilla",
 size: "medium"
}

The Milkshake component could access the parameters by assigning them to local
variables:

const {flavor, size} = useParams();

Mmmm, now I want a milkshake. It’ll have to wait; we have bookables to view. . . .
 The Bookables page renders one of three components. Two of them, Bookables-

View and BookableEdit, need to know which bookable they’re working with. That

Match URLs of the
form /bookables/:id.

251Accessing state in the URL with React Router
bookable’s ID is specified in the URL. Listing 10.3 shows the BookablesView compo-
nent. It used to manage just the selected bookable with useState, but now fetches the
data for all bookables with our useFetch hook from chapter 9 and manages the
selected bookable by accessing the id parameter from the URL. (These changes will
temporarily break the application.)

import {Link, useParams} from "react-router-dom";
import {FaPlus} from "react-icons/fa";

import useFetch from "../../utils/useFetch";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";
import PageSpinner from "../UI/PageSpinner";

export default function BookablesView () {
 const {data: bookables = [], status, error} = useFetch(
 "http://localhost:3001/bookables"
);

 const {id} = useParams();

 const bookable = bookables.find(
 b => b.id === parseInt(id, 10)
) || bookables[0];

 if (status === "error") {
 return <p>{error.message}</p>
 }

 if (status === "loading") {
 return <PageSpinner/>
 }

 return (
 <main className="bookables-page">
 <div>
 <BookablesList
 bookable={bookable}
 bookables={bookables}
 getUrl={id => `/bookables/${id}`}
 />

 <p className="controls">
 <Link
 to="/bookables/new"
 replace={true}
 className="btn">
 <FaPlus/>
 New

Branch: 1001-bookables-routes, File: /src/components/Bookables/BookablesView.js

Listing 10.3 BookablesView accessing ID from the URL

Import the
useParams hook.

Import our useFetch
custom hook.

Retrieve the
bookables
with useFetch.

Assign the ID parameter
value to a local variable.

Use the ID to get the
specified bookable.

Provide a function
to generate URLs
for bookables.

Include a link to the
form for creating
new bookables.

252 CHAPTER 10 Using third-party hooks
 </Link>
 </p>
 </div>

 <BookableDetails bookable={bookable}/>
 </main>
);
}

The BookablesView component calls React Router’s useParams custom hook to get
an object with all the parameters set in the URL. It uses object destructuring to assign
the id parameter to a local variable with the same name:

const {id} = useParams();

The parameters are returned as strings, but each bookable’s id property is a num-
ber, so parseInt is used when finding the specified bookable in the collection of all
bookables:

const bookable = bookables.find(
 b => b.id === parseInt(id, 10)
) || bookables[0];

If the bookable can’t be found, the first bookable in the collection, bookables[0],
is selected instead. Once the bookables have loaded, and assuming there are no
errors, BookablesView renders the BookablesList and BookableDetails compo-
nents. It passes BookablesList a function for generating URLs for each bookable.
Let’s see how that function is used and introduce a second React Router custom
hook, useNavigate.

10.1.4 Navigating with the useNavigate hook

React Router’s useNavigate hook returns a function we can use to set a new URL,
prompting the router to render whichever UI has been associated with the new path.
(Remember, we’re using the beta version of React Router 6, so it’s possible the API
may change. If that happens, I’ll add some extra, updated listings to the GitHub
repo.) Say an app is currently showing a Milkshake component. (Sorry, I just can’t get
them out of my head. So . . . creamy . . .) Say, also, that the user is a neuralgia-phobe
and prefers bubble tea. To provide a way to navigate from the milkshake page to the
bubble tea page, the Milkshake component could do this:

const navigate = useNavigate();

navigate("/bubbletea");

Assigning the URL-setting function to the local navigate variable gives the compo-
nent a way to set the URL, in event handlers, for example. It could also render some
links that point to the new URLs. Let’s use both approaches in the bookings app.

Assign a URL-setting function
to the navigate variable.

Use the function to set a new URL.

253Accessing state in the URL with React Router
 In the BookablesView component, rather than getting the selected bookable and
its updater function with a call to useState, we now specify the selection in the URL.
Here’s the URL for the bookable with an ID of 1:

/bookables/1

To switch to a new bookable, we set a new URL:

/bookables/2

To update the state, we either need a link that points to a new URL or a function that
navigates to the new URL (fired by the Next button, for example):

// JSX
<Link to="/bookables/2">Lecture Hall</Link>

// js
navigate("/bookables/2");

Figure 10.3 shows the app after a user has navigated to /bookables/1. The Bookables-
List component on the left shows the group selector, the list of bookable links in the
current group, and the Next button. The BookablesView component also renders a
New button outside BookablesList.

Use React Router’s
Link component.

Use the function that React Router’s
useNavigate hook returns.

Figure 10.3 The BookablesView component displays the New button and each bookable as links that lead
to a new URL. The Next button and the group selector change the URL by calling a function.

254 CHAPTER 10 Using third-party hooks

Impor
useNav

h

The bookable links and the New button are rendered using Link components, and
the group drop-down and Next buttons navigate within event handlers. Table 10.2 lists
the elements and how they function.

Listing 10.4 shows the BookablesList component using both approaches. The
BookablesList component is used on different pages (the Bookables page and the
Bookings page) that use different structures for their URLs. The component needs to
know how to generate the URL from a bookable ID, so its parent component has to
pass it a function, getUrl, for that purpose.

import {Link, useNavigate} from "react-router-dom";
import {FaArrowRight} from "react-icons/fa";

export default function BookablesList ({bookable, bookables, getUrl}) {
 const group = bookable?.group;
 const bookablesInGroup = bookables.filter(b => b.group === group);
 const groups = [...new Set(bookables.map(b => b.group))];

 const navigate = useNavigate();

 function changeGroup (event) {
 const bookablesInSelectedGroup = bookables.filter(
 b => b.group === event.target.value
);
 navigate(getUrl(bookablesInSelectedGroup[0].id));
 }

 function nextBookable () {
 const i = bookablesInGroup.indexOf(bookable);
 const nextIndex = (i + 1) % bookablesInGroup.length;
 const nextBookable = bookablesInGroup[nextIndex];

Table 10.2 Elements and components used in navigation

Element/component Text Action

select e.g., Rooms Call navigate function

Link Meeting Room Set link to /bookables/1

Link Lecture Hall Set link to /bookables/2

Link Games Room Set link to /bookables/3

Link Lounge Set link to /bookables/4

button Next Call navigate function

Link New Set link to /bookables/new

Branch: 1001-bookables-routes, File: /src/components/Bookables/BookablesList.js

Listing 10.4 BookablesList using two approaches for navigation

t the
igate
ook.

Accept the current bookable,
list of bookables, and getUrl

function as props.

Call the useNavigate hook, assigning
the navigation function to a variable.

Navigate to the
URL for the first
bookable in the
new group.

255Accessing state in the URL with React Router
 navigate(getUrl(nextBookable.id));
 }

 return (
 <div>
 <select value={group} onChange={changeGroup}>
 {groups.map(g => <option value={g} key={g}>{g}</option>)}
 </select>

 <ul className="bookables items-list-nav">
 {bookablesInGroup.map(b => (
 <li
 key={b.id}
 className={b.id === bookable.id ? "selected" : null}
 >
 <Link
 to={getUrl(b.id)}
 className="btn"
 replace={true}
 >
 {b.title}
 </Link>

))}

 <p>
 <button
 className="btn"
 onClick={nextBookable}
 autoFocus
 >
 <FaArrowRight/>
 Next
 </button>
 </p>
 </div>
);
}

(At this point, you should be able to load the Bookables page and the Users page but
not the Bookings page.) React Router’s useNavigate hook returns a function we use to
update the URL, switching to the selected bookable. Listing 10.4 assigns the function to
a local variable called navigate, and the changeGroup and nextBookable functions call
navigate (rather than the setBookable updater function from previous incarnations of
BookablesList). For example, here’s the changeGroup function calling navigate with
the URL for the first bookable in the newly selected group:

function changeGroup (event) {
 const bookablesInSelectedGroup = bookables.filter(
 b => b.group === event.target.value
);
 navigate(getUrl(bookablesInSelectedGroup[0].id));
}

Navigate to the URL for
the next bookable in the
current group.

Specify links with
React Router’s Link
component.

Use the getUrl
function to

generate the URL
for each link.

256 CHAPTER 10 Using third-party hooks
changeGroup uses the getUrl function we pass to BookablesList as a prop. On the
Bookables page, the getUrl function looks like this:

id => `/bookables/${id}`

It just appends the id to the end of the URL. The Bookings page will use a different
getUrl prop that matches that page’s use of URLs to specify state. It uses query strings
and React Router’s useSearchParams hook. Let’s go there now:

navigate("/react-hooks-in-action/10/2");

10.2 Getting and setting query string search parameters
In the preceding section, you saw how to use the path attributes for Route compo-
nents to extract state values for our app. This section introduces another approach for
storing state in the URL: search parameters in the query string. Here’s a URL with two
search parameters:

/path/to/page?key1=value1&key2=value2

The query string, in bold, is at the end of the URL and starts with a question mark.
The search parameters are key1 and key2. The key-value pairs specifying the values
for each parameter are separated by the & character. We can append further parame-
ters if necessary, and it’s easy to include or omit them. Bear in mind these three points
when specifying state in the URL:

 Which state values you want as parameters
 How to cope with missing or invalid parameters
 How to update the URL when the state needs to change

Before you see how React Router lets us work with search parameters (getting them in
section 10.2.1 and setting them in section 10.2.2), let’s briefly consider how the three
points just listed relate to our needs for the Bookings page in the example app.

 On the Bookings page, to show the grid of bookings for the Meeting Room (the
bookable with an ID of 1) for the week containing June 24, 2020 (specified as 2020-06-
24), we want to navigate to the following:

/bookings?bookableId=1&date=2020-06-24

So, our search parameters in the URL are date and bookableId. Figure 10.4 shows
the Bookings page for that URL with the specified bookable highlighted on the left
and the specified date present in the bookings grid.

 But the URL a user enters might not include the date or the bookable ID, so we
need to either throw or report an error when parameters are missing or use sensible
default values. We’ll use the state value policy set out in table 10.3.

Go to section 10.2
of this chapter.

257Getting and setting query string search parameters
As with any user-entered state, we need to make sure it’s valid. The date parameter
must be a date, and the bookableId must be an integer. We’ll treat invalid values as
missing values and follow the policy set out in the table.

 Choosing a bookable (by clicking one in the list, switching groups, or clicking the
Next button) or moving to a different week (by clicking one of the buttons in the
week picker) should update the URL, to set the appropriate date and bookableId
state values, and re-render the page.

 Working with the query string involves getting and setting the search parameter
values. React Router provides the useSearchParams hook for both actions, and we
explore the details of first getting and then setting in the next two subsections as
we update the Bookings page to use state from the URL.

Table 10.3 The state value policy for different URLs

URL State

/bookings?bookableId=1&date=2020-06-24 Use the specified date and bookable.

/bookings?date=2020-06-24 Use the specified date and the first bookable.

/bookings?bookableId=1 Use today’s date and the specified bookable.

/bookings Use today’s date and the first bookable.

Figure 10.4 The Bookings page using key-value pairs in the URL to specify bookable and date

258 CHAPTER 10 Using third-party hooks

Che
t

pa
is
10.2.1 Getting search parameters from the query string

To do its job, the BookingsPage component needs to know the selected bookable and
a date in the week of bookings the user wants to see. Both of those state values will be
in the page’s URL, like this:

/bookings?bookableId=1&date=2020-08-20

We want to access each parameter in the query string by the names in bold:

searchParams.get("date");
searchParams.get("bookableId");

How do we get access to the searchParams object? React Router provides the use-
SearchParams hook that returns an array containing an object with the get method
for accessing the search parameters and a function for setting them:

const [searchParams, setSearchParams] = useSearchParams();

Because we no longer manage the state with useState and are giving users the ability
to enter state in the URL, we need to check the validity of that state more carefully.
Rather than accessing the parameters directly from a component, let’s create a cus-
tom hook to get and sanitize them before using that hook in the BookingsPage and
Bookings components.

CREATING A USEBOOKINGSPARAMS HOOK

In the following listing, our new hook, useBookingsParams, looks for the date and
bookableId parameters in the URL and checks to make sure date is a valid date and
bookableId is an integer. We add the hook to the bookingsHooks.js file.

import {useSearchParams} from "react-router-dom";
import {shortISO, isDate} from "../../utils/date-wrangler";

export function useBookingsParams () {
 const [searchParams] = useSearchParams();

 const searchDate = searchParams.get("date");
 const bookableId = searchParams.get("bookableId");

 const date = isDate(searchDate)
 ? new Date(searchDate)
 : new Date();

 const idInt = parseInt(bookableId, 10);
 const hasId = !isNaN(idInt);

Branch: 1002-get-querystring, File: /src/components/Bookings/bookingsHooks.js

Listing 10.5 Accessing search parameters with the useBookingsParams hook

Get a searchParams object.

Use the searchParams object
to access the date parameter.

Use the searchParams
object to access the
bookableId parameter.

ck that
he date
rameter
 a valid

date. Use today’s date if
the date parameter
is invalid.

Try converting bookableId
to an integer.

259Getting and setting query string search parameters
 return {
 date,
 bookableId: hasId ? idInt : undefined
 };
}

We upgrade the useBookingsParams hook to set query string parameters in section
10.2.2. For now, we don’t need to set the query string, so the hook code in listing 10.5
destructures only the first element from the array that useSearchParams returns:

const [searchParams] = useSearchParams();

Once we have the searchParams object, we call its get method to retrieve the value
for any parameter in the query string. To get the value for the two keys we’re inter-
ested in, we use the following:

const searchDate = searchParams.get("date");
const bookableId = searchParams.get("bookableId");

Having checked the validity of the two values, the new hook returns an object with
date and bookableId properties. Components that call the hook can destructure the
return value:

const {date, bookableId} = useBookingsParams();

USING THE QUERY PARAMETERS IN THE BOOKINGSPAGE COMPONENT

For example, the BookingsPage component must add only that single line of code to
access the two query string search parameters it needs, as shown in the following listing.

import useFetch from "../../utils/useFetch";
import {shortISO} from "../../utils/date-wrangler";
import {useBookingsParams} from "./bookingsHooks";

import BookablesList from "../Bookables/BookablesList";
import Bookings from "./Bookings";
import PageSpinner from "../UI/PageSpinner";

export default function BookingsPage () {
 const {data: bookables = [], status, error} = useFetch(
 "http://localhost:3001/bookables"
);

 const {date, bookableId} = useBookingsParams();

 const bookable = bookables.find(
 b => b.id === bookableId
) || bookables[0];

Branch: 1002-get-querystring, File: /src/components/Bookings/BookingsPage.js

Listing 10.6 BookingsPage accessing query string search parameters

Set bookableId to undefined
if it’s not an integer.

Import the
useBookingsParams
custom hook.

Call useBookingsParams
and destructure the
object it returns.

Use the bookableId
parameter to find the
selected bookable.

260 CHAPTER 10 Using third-party hooks
 function getUrl (id) {
 const root = `/bookings?bookableId=${id}`;
 return date ? `${root}&date=${shortISO(date)}` : root;
 }

 if (status === "error") {
 return <p>{error.message}</p>
 }

 if (status === "loading") {
 return <PageSpinner/>
 }

 return (
 <main className="bookings-page">
 <BookablesList
 bookable={bookable}
 bookables={bookables}
 getUrl={getUrl}
 />
 <Bookings
 bookable={bookable}
 />
 </main>
);
}

If the bookableId value is undefined (it’s missing from the URL or can’t be parsed as
an integer) or there’s no booking with that ID, we fall back to the first bookable in the
list of bookables returned by the server:

const bookable = bookables.find(
 b => b.id === bookableId)
) || bookables[0];

If you find users are confused when they specify an ID that is invalid but are still pre-
sented with bookings for a default bookable, you could choose to throw or report an
error for invalid values instead.

 The BookingsPage component passes a getUrl function to the BookablesList
component (which we updated to accept such a prop in section 10.1), so the list can
generate URLs in the correct format for the current page:

function getUrl (id) {
 const root = `/bookings?bookableId=${id}`;
 return date ? `${root}&date=${shortISO(date)}` : root;
}

getUrl uses the date value derived from the URL search parameter, so it makes sure
date is not falsy before including it in the generated URL.

Check the date
value is defined
before using it.

261Getting and setting query string search parameters

-

.

USING THE DATE QUERY PARAMETER IN THE BOOKINGS COMPONENT

The Bookings component also uses the specified date; it generates an object that rep-
resents the week containing the date. It then uses the week object in three ways:

1 It fetches the bookings for the specified week.
2 It sets the selected booking to null if the user switches to another week.
3 It passes the week object to the BookingsGrid component.

The following listing shows the Bookings component calling the new useBooking-
sParams hook to get the date from the URL and highlights the week-related code in
bold.

import {useEffect, useState} from "react";

import {getWeek, shortISO} from "../../utils/date-wrangler";
import {useBookingsParams, useBookings} from "./bookingsHooks";

import WeekPicker from "./WeekPicker";
import BookingsGrid from "./BookingsGrid";
import BookingDetails from "./BookingDetails";

export default function Bookings ({bookable}) {
 const [booking, setBooking] = useState(null);

 const {date} = useBookingsParams();
 const week = getWeek(date);
 const weekStart = shortISO(week.start);

 const {bookings} = useBookings(bookable?.id, week.start, week.end);
 const selectedBooking = bookings?.[booking?.session]?.[booking.date];

 useEffect(() => {
 setBooking(null);
 }, [bookable, weekStart]);

 return (
 <div className="bookings">
 <div>
 <WeekPicker/>

 <BookingsGrid
 week={week}
 bookable={bookable}
 booking={booking}
 setBooking={setBooking}
 />
 </div>

 <BookingDetails
 booking={selectedBooking || booking}

Branch: 1002-get-querystring, File: /src/components/Bookings/Bookings.js

Listing 10.7 Bookings accessing query string search parameters

Import the
useBookings
Params
custom hook

Call useBookingsParams
and assign the date to a
local variable.

Use the date to generate
a week object.

Create a date string to
use as a dependency.

Get bookings for the
specified week.

Set the currently selected
booking to null if the start
date changes.

Remove props
from WeekPicker.

Pass the week object
to BookingsGrid.

262 CHAPTER 10 Using third-party hooks
 bookable={bookable}
 />
 </div>
);
}

If a user has selected a booking in the grid and then switches to another bookable or
week, the effect in the listing sets the selected booking back to null. It uses a simple
date string, weekStart, in the dependency list rather than the Date object assigned to
week.start. A new Date object is assigned to week.start on every render and, even
though the object might represent the same date, the effect will see it as a new object
when it compares its dependency list elements. We don’t want the selected booking
set to null after every render! Have a go at changing weekStart to week.start in the
dependency list to see the problem for yourself.

 The Bookings and BookingsPage components can now continue to do their jobs
by grabbing state from the URL. If you try switching bookables or manually updating
the URL to new dates, you should see the page load the appropriate bookings. But
switching dates in the UI is managed by the WeekPicker component. It used to man-
age its state with a reducer. Let’s see how to update it to work with the query string
when a user clicks one of its buttons.

10.2.2 Setting the query string

The WeekPicker component lets the user move to the previous week, the next week,
the week containing a specific date, or the week containing today’s date. Figure 10.5
shows the WeekPicker UI with its four buttons and text box.

The state for the currently selected date is stored in the query string. Say it’s 2020 and
the user navigates to the Bookings page to show bookings for the week containing July
20. The URL is as follows:

/bookings?bookableId=1&date=2020-07-20

If today’s date is September 1 and the date in the week picker text box is June 24, we
want the WeekPicker buttons to set the URL to the values shown in table 10.4.

 We could convert the WeekPicker buttons to links that point to the URLs in the
table. But we don’t know the date for the Go button until the user types it into the text
box. As an alternative to links, we’ll keep all of the buttons and set the query string by

Figure 10.5 The WeekPicker component has buttons for switching to different weeks.

263Getting and setting query string search parameters
using a function when the buttons are clicked. In section 10.1.4, you saw how React
Router’s useNavigate hook returns a function we use to set the whole URL. The use-
SearchParams hook provides a way to set just the query string. It returns an array
whose second element is a function we can use for that purpose. For example, here we
assign the setter function to a variable called setSearchParams:

const [searchParams, setSearchParams] = useSearchParams();

To update the URL with new search parameters in the query string, we pass set-
SearchParams an object with properties that will make up the parameters. For exam-
ple, to produce this URL

/bookings?bookableId=3&date=2020-06-24

we would pass setSearchParams this object:

{
 bookableId: 3,
 date: "2020-06-24"
}

At the beginning of section 10.2.1, we created the useBookingsParams hook to get the
date and bookableId parameters (with some simple validation mixed in for good
measure). Now that we want to set the date parameter, we need to update the hook.
The following listing adds a setBookingsDate function to the hook, making the new
function available as a property on the object the hook returns.

export function useBookingsParams () {
 const [searchParams, setSearchParams] = useSearchParams();
 const searchDate = searchParams.get("date");
 const bookableId = searchParams.get("bookableId");

 const date = isDate(searchDate)
 ? new Date(searchDate)
 : new Date();

Table 10.4 Matching URLs with buttons

Button URL

Prev /bookings?bookableId=1&date=2020-07-13

Next /bookings?bookableId=1&date=2020-07-27

Today /bookings?bookableId=1&date=2020-09-01

Go /bookings?bookableId=1&date=2020-06-24

Branch: 1003-set-querystring, File: /src/components/Bookings/bookingsHooks.js

Listing 10.8 Providing a way to set search parameters with useBookingsParams

264 CHAPTER 10 Using third-party hooks
 const idInt = parseInt(bookableId, 10);
 const hasId = !isNaN(idInt);

 function setBookingsDate (date) {
 const params = {};

 if (hasId) {params.bookableId = bookableId}
 if (isDate(date)) {params.date = date}

 if (params.date || params.bookableId !== undefined) {
 setSearchParams(params, {replace: true});
 }
 }

 return {
 date,
 bookableId: hasId ? idInt : undefined,
 setBookingsDate
 };
}

The new setBookingsDate function creates a parameters object and adds properties
for the specified date and existing bookableId value, if they’re valid. If it sets at least
one property, the function passes the parameters object to setSearchParams, updat-
ing the URL with a query string that matches the new parameters:

setSearchParams(params, {replace: true});

Components that consume the search parameters will re-render, using the fresh val-
ues as the latest state. The {replace: true} option causes the browser to replace the
current URL in its history with the new one. This will prevent each visited date from
appearing in the browser’s history. The browser’s Back button won’t step back
through each date selected in the WeekPicker. If you think it would be useful for your
app’s users to be able to navigate back through each selected date, you can omit the
option argument.

 Listing 10.9 shows the WeekPicker component calling useBookingsParams to get
the date parameter and the setter function, setBookingsDate. It uses the setter func-
tion (that it renames goToDate) to update the query string when a user clicks one of
its buttons.

import {useRef} from "react";
import {
 FaChevronLeft,
 FaCalendarDay,
 FaChevronRight,
 FaCalendarCheck
} from "react-icons/fa";

Branch: 1003-set-querystring, File: /src/components/Bookings/WeekPicker.js

Listing 10.9 WeekPicker getting and setting search parameters

Create a function to update the
parameters with a new date.

Create an empty object
to hold the parameters.

Include parameters
only for valid values.

Update the URL with
the new parameters.

Include the new function
in the hook’s return value.

265Getting and setting query string search parameters

import {addDays, shortISO} from "../../utils/date-wrangler";
import {useBookingsParams} from "./bookingsHooks";

export default function WeekPicker () {
 const textboxRef = useRef();

 const {date, setBookingsDate : goToDate} = useBookingsParams();

 const dates = {
 prev: shortISO(addDays(date, -7)),
 next: shortISO(addDays(date, 7)),
 today: shortISO(new Date())
 };

 return (
 <div>
 <p className="date-picker">
 <button
 className="btn"
 onClick={() => goToDate(dates.prev)}
 >
 <FaChevronLeft/>
 Prev
 </button>

 <button
 className="btn"
 onClick={() => goToDate(dates.today)}
 >
 <FaCalendarDay/>
 Today
 </button>

 <input
 type="text"
 ref={textboxRef}
 placeholder="e.g. 2020-09-02"
 id="wpDate"
 defaultValue="2020-06-24"
 />

 <button
 onClick={() => goToDate(textboxRef.current.value)}
 className="go btn"
 >
 <FaCalendarCheck/>
 Go
 </button>

 <button
 className="btn"
 onClick={() => goToDate(dates.next)}
 >

Import the
useBookingsParams
custom hook.

Call the
hook to get
the date
and setter
function.

Create a dates lookup
for the previous,
next, and today’s
weeks.

Call the setter
function with the
appropriate date.

Call the setter
function with
the text box

date.

266 CHAPTER 10 Using third-party hooks
 Next
 <FaChevronRight/>
 </button>
 </p>
 </div>
);
}

Both the Bookables and the Bookings pages now manage some of their state in the
URL. The Bookables page uses separate URLs for creating and editing bookables.
The Bookings page, however, doesn’t use separate URLs for creating and editing
bookings. That’s because the interconnections among booking, bookable, and date
are a little more complicated, and the user may not need to navigate directly to the
edit form for an individual booking. If you feel it would be useful for users to navigate
directly to the views for particular states in your app, you now have the tools to imple-
ment that functionality.

 Whatever path you take for specifying bookables, dates, and bookings, you’ll need
to load in the relevant data. Up to now, we’ve been using our own, fairly naïve
useFetch hook to get ahold of data. It’s time to up our data game with a couple more
third-party hooks.

10.3 Streamlining data-fetching with React Query
The data needs of the bookings app are pretty modest. The most data-intensive com-
ponent is the bookings grid, and even that loads only one grid of bookings at a time.
But we can make improvements that will make the app feel more responsive when the
network is slow. And, if your app’s data needs increase, these kinds of improvements
can make a big difference in your users’ perceptions of your app’s performance—no
one wants a slew of loading spinners strewn across their screen after every interaction!

 The bookings app is a single-page application—although we call our three main
views (Bookings, Bookables, and Users) pages within the app. It uses React Router to
display different components for different URLs. Some of those components use the
same data; the BookablesList fetches all the bookables from the database on both
the Bookings page and the Bookables page, and both the user picker and the Users
page fetch all the users. If the Bookables page has already loaded the bookables, we
shouldn’t need to wait for them to load again when switching to the Bookings page.
This section introduces React Query and makes use of its useQuery and useMutation
hooks. There are four subsections:

 Introducing React Query—What is it? Why is it helpful? Where do we get it?
 Giving components access to a React Query client—Creating a client instance and

setting it as a prop on a provider component that wraps the component tree.
 Fetching data with useQuery—Defining queries, specifying query keys, and using

status and error properties. Background re-fetching and request deduping.
 Updating server state with useMutation—Defining mutations, taking action when

mutations are complete, and working with the query cache.

267Streamlining data-fetching with React Query
10.3.1 Introducing React Query

React Query is a library for managing server state from your React apps. It has defaults
that produce great results with no configuration. Figure 10.6 shows the home page for
the React Query website, https://react-query.tanstack.com/, where you can find docs,
examples, and links to further learning resources. (React Query’s author, Tanner Lins-
ley, has created open source React packages to help with forms, tables, charts, and
more. Check out his GitHub pages at https://github.com/tannerlinsley.)

React Query’s docs list some of the ways it can improve on our own useFetch hook.
They include the following:

 Caching
 Deduping multiple requests for the same data into a single request
 Updating out-of-date data in the background
 Knowing when data is out of date
 Reflecting updates to data as quickly as possible

Switching from our useFetch to React Query’s useQuery is simple. First, we need to
get ahold of the React Query package. You can use the npm package manager to install
it, like this:

npm install react-query

Figure 10.6 The web page for React Query: Performant and powerful data synchronization for React

https://react-query.tanstack.com/
https://github.com/tannerlinsley

268 CHAPTER 10 Using third-party hooks
For the bookings app, React Query will provide caching, merging of multiple requests,
background fetching to get the latest data, and useful status codes and flags for keep-
ing users informed. If you need them, it has a whole host of configuration options to
help you create powerful but streamlined data-driven applications. But why do we
need something like React Query for our bookings app?

 If you haven’t been running json-server with a delay, you may not have noticed
any issues. Switching from page to page and bookable to bookable is swift and
snappy—what a great application! But try adding in that delay; restart json-server
like this:

json-server db.json --port 3001 --delay 3000

With the delay, when we click the link for the Bookables page, we get the loading indi-
cator shown in figure 10.7.

After three seconds, the bookables have loaded, and the expected display appears with
the BookablesList and BookableDetails components. If the network is slow, there’s
no problem having a loading indicator; we just need to be patient. But, if from the
Bookables page we navigate to the Bookings page, we get the loading indicator again
as the Bookings page reloads the bookables. In fact, every page reloads existing data.

Figure 10.7 When navigating to the Bookables page, we get a loading indicator as the bookables data
loads.

269Streamlining data-fetching with React Query
Here’s a list of some of the ways the three main types of data are reloaded following
user interactions:

 Bookables—Both the Bookings page and the Bookables page fetch the full list of
bookables.

 Bookings—The Bookings and BookingsGrid components load the same list of
bookings. On the Bookings page, switching from one bookable to another and
then back again reloads the bookings for the first bookable, and switching from
one week to the next and back again reloads the bookings for the first week.

 Users—Even after the UserPicker component has loaded the list of users, switch-
ing to the Users page will load them again.

To prevent this data-fetching duplication, should we move all the data-fetching
code into a central store and access that single source from the components that
need it? With React Query, we don’t need to do any of the work involved in creating
such a store. It lets us keep the data-fetching code in the components that need the
data, but behind the scenes it manages a data cache, passing already-fetched data to
components when they ask for them. Let’s see how to give our components access
to that cache.

10.3.2 Giving components access to a React Query client

For components to access a shared React Query cache, we make the cache available by
wrapping our app JSX in a provider component. React Query uses a client object to
hold the cache and configuration and to provide further functionality. The following
listing shows how to create a client and pass it to the provider component that wraps
the app’s component tree.

import {QueryClient, QueryClientProvider} from "react-query";

// other imports

const queryClient = new QueryClient();

export default function App () {
 return (
 <QueryClientProvider client={queryClient}>
 <UserProvider>
 <Router>
 {/* unchanged JSX */}
 </Router>
 </UserProvider>
 </QueryClientProvider>
);
}

Branch: 1004-use-query, File: /src/components/App.js

Listing 10.10 Wrapping the app in a QueryClientProvider component

Import the client constructor and
provider component from React Query.

Create a client
instance.

Wrap the app in
the provider,
setting the client
as a prop.

270 CHAPTER 10 Using third-party hooks
Wrapping the component tree in the provider makes the client object available to
React Query’s hooks when we call the hooks from descendant components. Let’s start
by fetching data with the useQuery hook.

10.3.3 Fetching data with useQuery

Our own useFetch custom hook is a simple solution to data fetching that works well
when network speeds are fast but shows its limitations when latency is introduced. To
create apps that consistently feel responsive and avoid unnecessary loading states, we
want a way for components to fetch data from the server that doesn’t make us wait for
previously fetched data. React Query will manage caching for us and provides the
useQuery hook for fetching data.

 React Query’s useQuery hook is similar to our own useFetch hook in that it
returns an object with properties for the data, status, and error object. But where we
passed useFetch a URL, we pass useQuery a key and an asynchronous function that
returns the data:

const {data, status, error} = useQuery(key, () => fetch(url));

useQuery uses the key to identify the data in its cache; it can return the data corre-
sponding to existing keys straightaway and then fetch the latest data from the server in
the background. The key can be a string or a more complicated array or object that
can be serialized.

USING A STRING AS THE QUERY KEY

The simplest key we can pass to useQuery is a primitive value like a string. For exam-
ple, in the bookings app, we can fetch the list of bookables like this:

const {data: bookables = [], status, error} = useQuery(
 "bookables",
 () => getData("http://localhost:3001/bookables")
);

We use the string "bookables" as the key. Whenever any component subsequently
calls useQuery with "bookables" as the key, React Query will return the previously
fetched bookables data from its cache and then fetch the latest data in the back-
ground. That behavior makes the UI seem super-responsive. You’ll be able to see the
behavior in action after we update both BookablesView and BookingsPage to call use-
Query rather than useFetch to retrieve the list of bookables from the server. The fol-
lowing listing updates the BookablesView component first.

import {Link, useParams} from "react-router-dom";
import {FaPlus} from "react-icons/fa";

Branch: 1004-use-query, File: /src/components/Bookables/BookablesView.js

Listing 10.11 BookablesView with useQuery

Specify a key
for the query.

Provide an asynchronous
data-fetching function.

271Streamlining data-fetching with React Query
import {useQuery} from "react-query";
import getData from "../../utils/api";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";
import PageSpinner from "../UI/PageSpinner";

export default function BookablesView () {
 const {data: bookables = [], status, error} = useQuery(
 "bookables",
 () => getData("http://localhost:3001/bookables")
);

 const {id} = useParams();
 const bookable = bookables.find(
 b => b.id === parseInt(id, 10)
) || bookables[0];

 /* unchanged UI */
}

The only change to BookablesView in listing 10.11 is the switch from useFetch to
useQuery.

CHALLENGE 10.1
This is an easy one! Change the BookingsPage component so that it calls useQuery to
load the bookables. Use bookables as the query key. This change has already been
made on the 1004-use-query branch.

 Because the Bookables page and the Bookings page use the same query key, which-
ever is loaded second will be able to grab the bookables data from the cache. With
BookablesView and BookingsPage both calling useQuery with the same key, to see the
cache in action, follow these steps:

1 Start json-server with a delay of two or three seconds.
2 Navigate to the Bookables page at /bookables. You should see the page-level

loading spinner and then the list of bookables with the first bookable selected.
3 Click the Bookings link at the top left of the page. The Bookings page will be

rendered straightaway, without a page-level loading spinner. React Query has
used the bookables data from its cache.

4 Click the Bookables link at the top left of the page. The Bookables page will
be rendered straightaway. Again, React Query provides the bookables data from
its cache.

Because the Bookings page and the Bookables page use the same query key, bookables,
when calling the useQuery hook, React Query knows to return the existing data for that
key immediately. It re-fetches the data in the background and re-renders the compo-
nent when the latest data arrives. The useQuery hook accepts more-complicated keys.
For example, the Bookings and BookingsGrid components fetch bookings data

Import the
useQuery hook.

Import our data-fetching
utility function.

Call the
useQuery hook.

Specify a key for
the query.

Provide an asynchronous
data-fetching function.

272 CHAPTER 10 Using third-party hooks
dependent on a number of variables. Let’s see how to fold multiple variables into the
query key we pass to useQuery.

USING AN ARRAY AS THE QUERY KEY

The Bookings page fetches booking data for a bookable between a start date and an
end date. React Query needs to be able to track cached data for each combination of
bookable, start date, and end date, so, when fetching bookings, we specify the query
key as an array like this:

["bookings", bookableId, start, end]

If we specify a key that has previously been used (say, by clicking a bookable), then a
second bookable, and then back to the first bookable, React Query can return data
from the cache that matches the key.

 The following listing shows the updated useBookings custom hook that Bookings
and BookingsGrid use to fetch bookings.

import {useQuery} from "react-query";

export function useBookings (bookableId, startDate, endDate) {
 const start = shortISO(startDate);
 const end = shortISO(endDate);

 const urlRoot = "http://localhost:3001/bookings";

 const queryString = `bookableId=${bookableId}` +
 `&date_gte=${start}&date_lte=${end}`;

 const query = useQuery(
 ["bookings", bookableId, start, end],
 () => getData(`${urlRoot}?${queryString}`)
);

 return {
 bookings: query.data ? transformBookings(query.data) : {},
 ...query
 };
}

The Bookings and BookingsGrid components call useBookings with the same argu-
ments, resulting in equal keys. Now that we’ve switched to calling useQuery instead of
useFetch, React Query sees that the keys are equal and merges the duplicate requests
into one.

 Navigate to the Bookings page and have a go at switching from one bookable to
another and back again or from one week to another and back again. Because the
query cache already contains the requested data, switching back to a previously selected

Branch: 1004-use-query, File: /src/components/Bookings/bookingsHooks.js

Listing 10.12 useBookings calling useQuery

Call the useQuery hook.

Specify an array as
the query key.

Provide an asynchronous
data-fetching function.

273Streamlining data-fetching with React Query
bookable or week should instantly render the bookings for that selection. Such UI
snappiness leads to user happiness!

CHALLENGE 10.2
The UserPicker and UsersList components both fetch the list of users from the
database. Update their code to call useQuery instead of useFetch. Test the change by
navigating to the Bookables page and then clicking the Users link. The Users page on
the 1005-query-users branch should render immediately, without a loading spinner.

10.3.4 Accessing data in the query cache

The Bookables page now fetches the full list of bookables by calling the useQuery
hook with a query key of bookables. For a period of time, React Query associates the
key with the bookables data in its cache (check the docs for details on how and when
the cached data is marked as stale). React Query makes the cache available should you
want to access the fetched data directly or manipulate it in some way. In section 10.3.4,
we update the cache when mutating the server state. In this section, we access the
cache to improve the responsiveness of the Edit Bookable form.

 In section 10.1, we used React Router to set up nested routes on the Bookables page.
The routes let users view bookables, create new bookables, and edit existing bookables.
To edit the bookable with an ID of 3, the user navigates to /bookables/3/edit. There
are two ways of navigating:

 On the Bookables page, select a bookable and click the Edit button.
 Enter the URL directly in the browser’s address bar.

Both options display the BookableEdit component, with the details of the specified
bookable filled in and Delete, Cancel, and Save buttons, as shown in figure 10.8. The
second option will need to load the bookable data from the server, showing a loading
spinner while the bookable loads. But for the first option, the Bookables page will
already have loaded the full list of bookables. Can the form just grab the existing data
from the cache, avoiding the loading spinner?

 React Query makes the cache available to components via the client object that we
assigned to the provider in section 10.3.2. Call React Query’s useQueryClient hook to
get ahold of the client object:

const queryClient = useQueryClient();

We can use the associated query key and the getQueryData method to access already-
fetched data. For example, to get the list of bookables in the cache:

const bookables = queryClient.getQueryData("bookables");

If we want a bookable with a specified ID, we call the find array method, like this:

const bookable = bookables?.find(b => b.id === id);

274 CHAPTER 10 Using third-party hooks
So, we can retrieve a particular booking from the cache, but how do we tell useQuery
to return the existing booking rather than fetching it from the server? The following
listing shows the BookableEdit component calling useQuery with a third argument, a
config object that includes an initialData property. We discuss it after the listing.

import {useParams} from "react-router-dom";
import {useQueryClient, useQuery} from "react-query";

import useFormState from "./useFormState";
import getData from "../../utils/api";

import BookableForm from "./BookableForm";
import PageSpinner from "../UI/PageSpinner";

export default function BookableEdit () {
 const {id} = useParams();
 const queryClient = useQueryClient();

 const {data, isLoading} = useQuery(
 ["bookable", id],
 () => getData(`http://localhost:3001/bookables/${id}`),
 {
 initialData:

Branch: 1006-query-cache, File: /src/components/Bookables/BookableEdit.js

Listing 10.13 The BookableEdit component accessing the cache

Figure 10.8 The Edit Bookable form is populated with data from the selected bookable.

Import the
useQueryClient hook.

Call the hook and assign
the client to a variable.

Assign the initial data and subsequent
fetched data to the data variable.

Use the initialData
property to assign an
initial value to data.

275Streamlining data-fetching with React Query
 queryClient.getQueryData("bookables")
 ?.find(b => b.id === parseInt(id, 10))
 }
);

 const formState = useFormState(data);

 function handleDelete() {}
 function handleSubmit() {}

 if (isLoading) {
 return <PageSpinner/>
 }

 return (
 <BookableForm
 formState={formState}
 handleSubmit={handleSubmit}
 handleDelete={handleDelete}
 />
);
}

React Query’s useQuery hook accepts a config object as a third argument:

const {data, isLoading} = useQuery(key, asyncFunction, config);

The config lets the calling code control all kinds of query-related functionality, such as
cache expiry, retry policies when fetching-errors occur, callback functions, whether to
work with Suspense and error boundaries (see chapter 11), and the setting of initial
data. BookableEdit sets the initialData config property so that, when first called,
and if the initial data exists, useQuery won’t bother fetching the data from the server:

const {data, isLoading} = useQuery(
 ["bookable", id],
 () => getData(`http://localhost:3001/bookables/${id}`),
 {
 initialData:
 queryClient.getQueryData("bookables")
 ?.find(b => b.id === parseInt(id, 10))
 }
);

If the initial data is undefined (when a user loads the bookings app by navigating
directly to the Edit Bookable form, for example) or on subsequent renders, useQuery
will go ahead and fetch the data. useQuery sets properties on the object it returns,
including Booleans for different status values. Just as an example, the BookableEdit
component uses the isLoading Boolean to check for status === "loading".

 The Edit Bookable and New Bookable forms use a custom useFormState hook and
BookableForm component to manage and display the form fields. Fleshing out the
forms here won’t teach us anything new about hooks, so this is one of those moments

Use a key to get specific
data from the cache.

Find the bookable
for the specified ID.

Set the bookable data as
the state for the form.

Use the isLoading
Boolean returned
by useQuery.

276 CHAPTER 10 Using third-party hooks

useMu
asyn
where I ask you to take a look in the repo to get the necessary code and to see how
they do their jobs. Notice also that the BookableDetails component now includes an
Edit button to open the Edit Bookable form. Feel free to see the changes as a chal-
lenge and try implementing the forms before checking the repo.

 So, we have an edit form that shows the existing bookable data. But how do we save
any changes we make to the database? Instead of calling useQuery, we call useMutation.
Let’s get it working for new bookables.

10.3.5 Updating server state with useMutation

React Query helps us synchronize our React app UI with state stored on a server.
We’ve seen how useQuery simplifies the process of fetching that state, caching it tem-
porarily in the browser. We also want to update state on the server, and React Query
provides the useMutation hook for that purpose.

 On the Bookables page, we can bring up the New Bookable form and enter infor-
mation in its fields, but we can’t save our creations. We want to mutate that state! We
need a function that’ll send the new bookable to the server, something like this:

createBookable(newBookableFields);

The following listing shows the BookableNew component calling createBookable in
its handleSubmit function. It gets the createBookable mutation function by calling
useMutation, and we discuss the necessary syntax after the listing.

import {useNavigate} from "react-router-dom";
import {useQueryClient, useMutation} from "react-query";

import useFormState from "./useFormState";
import {createItem} from "../../utils/api";

import BookableForm from "./BookableForm";
import PageSpinner from "../UI/PageSpinner";

export default function BookableNew () {
 const navigate = useNavigate();
 const formState = useFormState();
 const queryClient = useQueryClient();

 const {mutate: createBookable, status, error} = useMutation(

 item => createItem("http://localhost:3001/bookables", item),

 {
 onSuccess: bookable => {
 queryClient.setQueryData(
 "bookables",

Branch: 1007-use-mutation, File: /src/components/Bookables/BookableNew.js

Listing 10.14 BookableNew saving data to the server with useMutation

Import React
Query hooks.

Import the createItem
API function.

Call useMutation, assigning
the mutation function to the

createBookable variable.

Pass
tation an
chronous
function.

Set an onSuccess callback.

Add the new bookable to the
“bookables” query cache.

277Streamlining data-fetching with React Query
 old => [...(old || []), bookable]
);

 navigate(`/bookables/${bookable.id}`);
 }
 }
);

 function handleSubmit() {
 createBookable(formState.state);
 }

 if (status === "error") {
 return <p>{error.message}</p>
 }

 if (status === "loading") {
 return <PageSpinner/>
 }

 return (
 <BookableForm
 formState={formState}
 handleSubmit={handleSubmit}
 />
);
}

The useMutation hook returns an object containing the mutate function and status
values:

const {mutate, status, error} = useMutation(asyncFunction, config);

When you call mutate, React Query runs asyncFunction and updates the status
properties (for example, status, error, data, and isLoading). When calling use-
Mutation, the BookableNew component assigns the mutation function to a variable
called createBookable:

const {mutate: createBookable, status, error} = useMutation(…);

BookableNew passes useMutation an asynchronous function to post the fields for the
new bookable to the server. It uses the createItem function from /src/utils/api.js:

const {mutate: createBookable, status, error} = useMutation(

 item => createItem("http://localhost:3001/bookables", item),

 { /* config */ }
);

Navigate to the newly
created bookable.

Call the createBookable
mutation function with
the fields for the new
bookable.

278 CHAPTER 10 Using third-party hooks
The config object includes an onSuccess property, a function that runs after the server
state has been successfully changed. The function adds the new bookable to the
bookables cache and navigates to the new bookable:

onSuccess: bookable => {
 queryClient.setQueryData(
 "bookables",
 old => [...(old || []), bookable]
);

 navigate(`/bookables/${bookable.id}`);
}

CHALLENGE 10.3
Hook up the BookableEdit component so that it saves changes to bookables and
allows the deletion of bookables. Create separate mutations for each action and call
them from the handleSave and handleDelete functions. (You could add editItem
and deleteItem methods to api.js and call those in the mutations.) The 1008-edit-
bookable branch has solution code with lots of comments.

CHALLENGE 10.4
This is a big one! Implement a BookingForm component so users can create, edit,
and delete bookings on the Bookings page. The BookingDetails component should
show either a Booking component with non-editable details of the selected booking,
or the BookingForm component when a user wants to edit or create a booking. The
solution branch, 1009-booking-form, creates custom hooks for the three mutations
(useCreateBooking, useUpdateBooking, and useDeleteBooking) in the bookings-
Hooks.js file.

NOTE I haven’t implemented any form validation in the bookings app. In a
real app, we’d add validation on both the client and the server.

NOTE The repo has two more branches for this chapter, 1010-react-spring
and 1011-spring-challenge, that use the React Spring library to add animated
transitions to the Bookings page, sliding the bookings grid down for switched
bookables and across for switched dates. It’s one fun extra use of third-party
hooks.

Summary
 With React Router, render the same component for routes that start with a

specified path. For example, render BookablesPage for URLs that start with
/bookables/:

 <Route path="/bookables/*" element={<BookablesPage/>}/>

Receive the newly created
bookable from the server.

Append the new bookable
to the cache of bookables.

Navigate to the new
bookable in the UI.

279Summary
 As an alternative to the element prop, wrap JSX within opening and closing
Route tags:

<Route path="/bookables/*">
 <BookablesPage/>
</Route>

 Nest routes by including a Routes component in a component already matched
by a Route higher up the component tree. For example, BookablesPage can
include its own nested routes, with URLs /bookables and /bookables/new by
returning UI like this:

 <Routes>
 <Route path="/">
 <BookablesView/>
 </Route>
 <Route path="/new">
 <BookableNew/>
 </Route>
 </Routes>

 Use parameters in routes by prepending parameter names with a colon:

 <Route path="/:id" element={<BookablesView/>}/>

 Access the parameter in a component by calling React Router’s useParams
hook. useParams returns an object with parameters and their values. Destruc-
ture the parameters from the object:

 const {id} = useParams();

 Navigate with React Router’s useNavigate hook:

const navigate = useNavigate();
navigate("/url/of/page");

 Access search parameters in a URL’s query string with React Router’s use-
SearchParams hook:

 const [searchParams, setSearchParams] = useSearchParams();

For the URL /bookings?bookableId=1&date=2020-08-20, access the parameters
like this:

 searchParams.get("date");
 searchParams.get("bookableId");

280 CHAPTER 10 Using third-party hooks
 Set the query string by passing an object to setSearchParams:

 setSearchParams({
 date: "2020-06-26",
 bookableId: 3
 });

 Use React Query to efficiently fetch and cache server state on the browser. Wrap
your app JSX in a provider and pass the provider a client object:

const queryClient = new QueryClient();

export default function App () {
 return (
 <QueryClientProvider client={queryClient}>
 {/* app JSX */}
 </QueryClientProvider>
);
}

 To fetch data, pass a key and a fetch function to the useQuery hook:

 const {data, status, error} = useQuery(key, () => fetch(url));

 Pass a configuration object to useQuery as a third argument:

 const {data, isLoading} = useQuery(key, asyncFunction, config);

 Set initial data by using the config object:

 const {data, isLoading} = useQuery(key, asyncFn, {initialData: […]});

 Use the getQueryData method and a key to access previously fetched data from
the queryClient object:

const queryClient = useQueryClient();
const {data, isLoading} = useQuery(
 currentKey,
 asyncFunction,
 {
 initialData: queryClient.getQueryData(otherKey)
 }
);

 Create a mutation function for updating server state by calling React Query’s
useMutation function:

 const {mutate, status, error} = useMutation(asyncFunction, config);

 Use the mutation function to update state on the server:

 mutate(updatedData);

Part 2

React’s evolution encompasses more than just hooks. The React team is
working hard to make the experience of developing and using React applica-
tions as intuitive and enjoyable as possible by implementing flexible but power-
ful APIs that provide safe and sensible defaults. The team’s motivations are
driven in a large part by developing the Facebook application, but they also listen
carefully to the community and take their time to get emerging models right.

 The team has been working on Concurrent Mode for some time, and part 2
will give you insight into what’s to come. Concurrent Mode lets React work on
multiple versions of your UI simultaneously—pausing, restarting, and discarding
rendering tasks to make your apps seem as responsive and predictable as possible.

 Chapter 11 shows how you can use the Suspense component and error
boundaries to decouple fallback UI from components for lazy loading and error
reporting and recovery. Chapters 12 and 13 then head into more experimental
territory, exploring how data fetching and image loading might integrate with
Suspense and how you can use two further hooks, useTransition and use-
DeferredValue, to present the best UI to users as state changes in your apps.

Code splitting
with Suspense
It’s common for app users to interact with some components more than others. In
the bookings app, for example, users often visit the Bookings page without switch-
ing to the Bookables or Users pages, and on the Bookables page they may never
bring up the New or Edit forms. To manage the amount of code loaded by the
browser at any one time, we can use a technique called code splitting ; rather than
loading all of an app’s code at once, we load it in chunks, as it’s needed.

 So far in this book, all of our examples have used static imports. At the top of
each JavaScript file, we include import statements to specify dependencies, the code
in external files that the current file uses. At build time, bundlers like webpack

This chapter covers
 Importing code dynamically with the import function

 Loading components when they’re needed with
React.lazy

 Specifying fallback UI declaratively with Suspense
components

 Understanding how lazy and Suspense work together

 Specifying error fallback UI declaratively with error
boundaries
283

284 CHAPTER 11 Code splitting with Suspense
inspect our code, follow the paths to the imported files, and generate a bundle, a file
that contains all the code the app actually uses. Our web pages then request the
bundle.

 This tree-shaking process, which avoids duplicate code and discards unused code,
can help keep the bundle well organized and as small as possible. For larger applica-
tions and/or slower connections, “as small as possible” can still be big enough to take
a while to load. Maybe loading all of the code up front isn’t the best idea. If parts of
the app are less likely to be used or contain particularly bulky components, it can be
helpful to reduce the size of the initial bundle and then load further bundles only
when the user visits a certain route or initiates a particular interaction.

 In React, we work with components. We want to dynamically import some compo-
nents into our applications only when they’re needed. But React calls the components
when it’s time to render them. If the component isn’t loaded when it’s time to render
it, what should React do? We don’t want the whole app to pause and wait for the com-
ponent. For bigger components or those that don’t usually take part in initial user
interactions, we can do these four things:

 Load the component code only when we try to render the component.
 Show a placeholder while the component loads.
 Continue rendering the rest of the app.
 Replace the placeholder with the component after it’s loaded.

In this chapter, we look at how to put those four points into action by using React’s
lazy method and Suspense component. Our discussion of placeholder UI will also
lead us to error boundaries, a way of giving React something to render if errors occur.
First up, it’ll be useful to understand how JavaScript lets us import code dynamically.

11.1 Importing code dynamically with the import function
In this section, we look at dynamically importing JavaScript from one module into
another. We won’t be using React, but the concepts are important for when we come
to dynamically load components in our React apps. There are four subsections:

 Setting up a web page to load JavaScript when a button is clicked
 Making JavaScript available from a file using default and named exports
 Using static imports to load JavaScript
 Calling the import function to dynamically load JavaScript

11.1.1 Setting up a web page to load JavaScript when a button
is clicked

Say we have an app that displays a button. When we click the button, two messages are
displayed, as shown in figure 11.1.

 To demonstrate module importing, let’s split the app into three files: index.html,
index.js, and helloModule.js. The following listing shows the HTML, including the

285Importing code dynamically with the import function
button, two paragraphs to hold the two messages, and a script element to load the
code file, index.js, that’ll wire up the button to display the messages.

<!DOCTYPE html>
<html>
 <head>
 <title>Dynamic Imports</title>
 <meta charset="UTF-8" />
 </head>

 <body>
 <button id="btnMessages">Show Messages</button>
 <hr />
 <p id="messagePara"></p>
 <p id="hiPara"></p>

 <script src="src/index.js"></script>
 </body>
</html>

We don’t yet have the index.js file, but we do know that it’ll use some handy utility
functions for injecting text into existing HTML elements. The utility functions live in
their own module. Let’s see that module and how it makes the functions available.

11.1.2 Using default and named exports

Our handy utility functions live in a JavaScript module, helloModule.js. The module is
shown in the following listing and uses the export and default keywords to specify
values that other files will be able to import. One of the messaging functions is the
default export, and the other is a named export.

export default function sayMessage (id, msg) {
 document.getElementById(id).innerHTML = msg;
}

Live: https://vg0ke.csb.app, Code: https://codesandbox.io/s/jsstaticimport-vg0ke

Listing 11.1 An HTML file for displaying two messages (index.html)

Live: https://vg0ke.csb.app, Code: https://codesandbox.io/s/jsstaticimport-vg0ke

Listing 11.2 Creating a module with default and named exports (helloModule.js)

Figure 11.1 Clicking the button
shows two messages.

Include a button to
display the two messages.

Include paragraph elements
as targets for the messages.

Load the script that’ll
wire up the button.

Make the sayMessage
function the default
export.

https://vg0ke.csb.app
https://codesandbox.io/s/jsstaticimport-vg0ke
https://vg0ke.csb.app
https://codesandbox.io/s/jsstaticimport-vg0ke

286 CHAPTER 11 Code splitting with Suspense
export function sayHi (id) {
 sayMessage(id, "Hi");
}

Files can have a single default export and multiple named exports. They don’t have to
export everything, only those values (in our case, functions) that they want other files
to be able to import. We have our super-handy, message-injecting functions ready to
go, so let’s get importing!

11.1.3 Using static imports to load JavaScript

Our app performs the vital task of showing messages when the user clicks a button.
The last file we need, index.js, sets up an event handler to wire up the button with the
action of displaying the messages. But it doesn’t start from scratch; we have some
handy utility functions available, after all. So index.js imports the messaging functions
from the helloModule.js module and calls them from the event handler. The standard
approach to importing values exported from other modules is to import them stati-
cally at the top of a file, as shown in the following listing.

import showMessage, {sayHi} from "./helloModule";

function handleClick () {
 showMessage("messagePara", "Hello World!");
 sayHi("hiPara");
}

document
 .getElementById("btnMessages")
 .addEventListener("click", handleClick);

We assign the default export from helloModule to the local showMessage variable (we
can choose the variable name), and assign the named export, sayHi, to a local vari-
able using the matching variable name between curly braces—it’s named sayHi in
helloModule.js, so we have to use sayHi in index.js.

 That all works as expected; it’s a simple example. But say the module we want to
import is a much bigger file (at least pretend it is for now), and say, too, that most
users don’t click the button very often. Can we avoid loading the hefty module unless
it’s needed? That would really help us load the main app more quickly.

Live: https://vg0ke.csb.app, Code: https://codesandbox.io/s/jsstaticimport-vg0ke

Listing 11.3 Static import (index.js)

Make the sayHi function a
named export.

Import the two
messaging functions.

Call the imported functions.

Call the handler when
the button is clicked.

https://vg0ke.csb.app
https://codesandbox.io/s/jsstaticimport-vg0ke

287Importing code dynamically with the import function

11.1.4 Calling the import function to dynamically load JavaScript

How about loading the code that the button uses only if the button is clicked? The fol-
lowing listing shows index.js loading code dynamically with the import function.

function handleClick() {
 import("./helloModule")
 .then((module) => {
 module.default("messagePara", "Hello World!");
 module.sayHi("hiPara");
 });
}

document
 .getElementById("btnMessages")
 .addEventListener("click", handleClick);

There’s no need to load a big file if it won’t be used, so the module is loaded only
when the button is clicked. The handleClick function uses the import function to
load the module:

import("./helloModule")

The import function returns a promise that resolves to the exported module. We call
the promise’s then method to work with the module after it’s loaded:

import("./helloModule").then((module) => { /* use module */ });

Alternatively, we can use async/await syntax:

async function handleClick() {
 const module = await import("./helloModule");
 // use module
}

The exported values (both functions, in our case) are available as properties of the
module object. The default export is assigned to the default property, and named
exports are assigned to properties of the same name. The helloModule.js file has a
default export and a sayHi named export, so these are available as module.default
and module.sayHi:

module.default("messagePara", "Hello World!");
module.sayHi("hiPara");

Rather than calling the functions as methods of the module object, we can destruc-
ture the module object as shown in the following listing.

Live: https://n41cc.csb.app/, Code: https://codesandbox.io/s/jsdynamicimport-n41cc

Listing 11.4 Dynamically loading code with the import function (index.js)

Call the import function to
dynamically load a module. Assign the module

to a local variable.

Use the module properties to
call the exported functions.

https://n41cc.csb.app/
https://codesandbox.io/s/jsdynamicimport-n41cc

288 CHAPTER 11 Code splitting with Suspense
function handleClick() {
 import("./helloModule")
 .then(({default: showMessage, sayHi}) => {
 showMessage("messagePara", "Hello World!");
 sayHi("hiPara");
 });
}

document
 .getElementById("btnMessages")
 .addEventListener("click", handleClick);

Within the destructuring, we assign the default export to a variable with a more appro-
priate name, showMessage. Again, the async/await version is quite clean:

async function handleClick() {
 const {default: showMessage, sayHi} = await import("./helloModule");
 showMessage("messagePara", "Hello World!");
 sayHi("hiPara");
}

So, that’s a quick introduction to dynamic imports. But we want to dynamically import
React components; how can we delay the importing of components without breaking
React’s rendering process? Now that we need the knowledge, let’s load up the low-
down on lazy.

11.2 Importing components dynamically
with lazy and Suspense
In the preceding section, we used the import function to dynamically load JavaScript
code. We loaded the code only when it was needed, when the user clicked a button.
But we were also in control of rendering; we imperatively attached event handlers and
tweaked the DOM with calls to addEventListener and getElementById and by setting
the innerHTML property.

 When working with React, we should concentrate on updating the state and let
React manage the DOM. How can we combine lazily loading components with React’s
need to control the rendering process? We need some way of declaratively letting
React know what to do if a component it wants to render is not yet ready. This section
looks at the two pieces we can use to solve the problem, first separately and then
together, before applying the solution to the bookings app example. Our four subsec-
tions are as follows:

 Converting a component to a lazy component with the lazy function
 Specifying fallback content with the Suspense component
 Understanding how lazy and Suspense work together
 Code splitting an app on its routes

Listing 11.5 Destructuring module properties from a dynamic import

Destructure the module,
assigning exported functions
to local variables.

Use the local variables to
call the exported functions.

289Importing components dynamically with lazy and Suspense
First, we have a date with an overlarge calendar component in a news app. In its case,
laziness is a virtue.

11.2.1 Converting a component to a lazy component
with the lazy function

Say we have an app in the company that shows the latest company news and announce-
ments. Coworkers check the app all the time to keep up-to-date. The app also includes
a full-featured calendar component that can either be viewed on the main page along
with the other content or opened in its own view.

 However, coworkers check the calendar only from time to time. Rather than includ-
ing the calendar component code when the app first loads, we want to load the calendar
code only when a user clicks a Show Calendar button. Figure 11.2 roughly illustrates the
setup, with a region for the main app and two ways of opening the calendar.

We’ll use the same component, CalendarWrapper, for the two calendar regions under
the main app (but imagine one would open the calendar in place and the other
would replace the current view). The following listing shows the JSX for the app’s UI
with a main region and the two calendar regions.

<div className="App">
 <main>Main App</main>
 <aside>
 <CalendarWrapper />
 <CalendarWrapper />
 </aside>
</div>

Listing 11.6 The app includes a main region and two calendar regions

Figure 11.2 Our company news app loads the Calendar component code only when
a user clicks one of the Show Calendar buttons.

290 CHAPTER 11 Code splitting with Suspense
The code for a CalendarWrapper component is in the following listing. The compo-
nent starts by displaying the Show Calendar button. When a user clicks the button,
CalendarWrapper switches to displaying a LazyCalendar component.

function CalendarWrapper() {
 const [isOn, setIsOn] = useState(false);
 return isOn ? (
 <LazyCalendar />
) : (
 <div>
 <button onClick={() => setIsOn(true)}>Show Calendar</button>
 </div>
);
}

Listing 11.7 uses the LazyCalendar component, a special component that isn’t
imported until it’s rendered for the first time. But where does that come from?
Assuming we already have a Calendar component in a module called Calendar.js, we
can combine a dynamic import with React’s lazy function to convert Calendar into
LazyCalendar:

const LazyCalendar = lazy(() => import("./Calendar.js"));

We pass lazy a function that returns a promise. More generally, the process looks
like this:

const getPromise = () => import(modulePath);

const LazyComponent = lazy(getPromise);

We pass lazy a function, getPromise, that React calls when it’s time to render the
component for the first time. The getPromise function returns a promise that
resolves to a module. The module’s default export must be a component.

 But we don’t have a Calendar module (we’re imagining it to be a large file) so, for
the sake of our example, and to reinforce the idea that modules are objects with
default and named properties, let’s mock up a module and make it lazy by using the
following code.

const module = {
 default: () => <div>Big Calendar</div>
};

function getPromise() {
 return new Promise(
 (resolve) => setTimeout(() => resolve(module), 3000)

Listing 11.7 A component with a button for displaying the calendar

Listing 11.8 Creating a pretend module and making its component lazy

Include a lazily
loaded component.

Create a function that
returns a promise.

Pass the promise-generating
function to React.lazy.

Assign a function component
to the default property.

Return a promise that
resolves to our module.

291Importing components dynamically with lazy and Suspense
);
}

const LazyCalendar = lazy(getPromise);

Great! We have all the pieces in place to try out our first lazy component:

 A “huge” calendar component (() => <div>Big Calendar</div>)
 A module with the calendar component assigned to its default property
 A promise that resolves to the module (after three seconds)
 A function, getPromise, that creates and returns the promise
 A lazy component, LazyCalendar, created by passing getPromise to lazy
 A wrapper component, CalendarWrapper, that shows LazyCalendar only after a

user clicks a button
 An App component that includes two CalenderWrapper components

The following listing puts all the pieces into place. It’s part of a React application on
CodeSandbox. The code to create and use the lazy component is in bold.

import React, { lazy, useState } from "react";
import "./styles.css";

const module = {
 default: () => <div>Big Calendar</div>
};

function getPromise() {
 return new Promise(
 (resolve) => setTimeout(() => resolve(module), 3000)
);
}

const LazyCalendar = lazy(getPromise);

function CalendarWrapper() {
 const [isOn, setIsOn] = useState(false);
 return isOn ? (
 <LazyCalendar />
) : (
 <div>
 <button onClick={() => setIsOn(true)}>Show Calendar</button>
 </div>
);
}

export default function App() {
 return (
 <div className="App">
 <main>Main App</main>

Live: https://9qj5f.csb.app, Code: https://codesandbox.io/s/lazycalendarnosuspense-9qj5f

Listing 11.9 Running our app with a lazy component

Create a lazy component by
passing getPromise to lazy.

Set a component as the default
export from a module.

Resolve a promise
with the module.

Convert the component-resolving
promise into a lazy component.

Use the lazy component
like any other component.

https://9qj5f.csb.app
https://codesandbox.io/s/lazycalendarnosuspense-9qj5f

292 CHAPTER 11 Code splitting with Suspense
 <aside>
 <CalendarWrapper />
 <CalendarWrapper />
 </aside>
 </div>
);
}

Remember, for real modules we use a dynamic import; we pass lazy a function that
calls the import function. So, if the Calendar component is the default export from a
Calendar.js module, we’d create the lazy component like this:

const LazyCalendar = lazy(() => import("./Calendar.js"));

But wait! If you follow the link to CodeSandbox and click one of the Show Calendar
buttons, you’ll see we have a problem, an evil error! (Actually, like most React errors,
it’s quite a friendly error; it tells us exactly what we have to do.) The error is shown in
figure 11.3. It tells us to “Add a <Suspense fallback=. . .> component higher in the tree
to provide a loading indicator or placeholder to display.” Let’s follow its advice.

11.2.2 Specifying fallback content with the Suspense component

It takes time to load a component, and our imaginary Calendar component code is a
big, beefy file. What should our app do when it’s time to show the calendar but it
hasn’t yet loaded? We need some kind of loading indicator to let the user know the
calendar is on the way. Maybe something as simple as in figure 11.4, just text saying
“Loading . . . ”.

 Fortunately, as the error in figure 11.3 points out, React provides an easy way to
specify fallback UI: the Suspense component. Use the Suspense component to wrap
UI that contains one or more lazy components in its tree:

<Suspense fallback={<div>Loading...</div>}>
 <CalendarWrapper />
</Suspense>

Figure 11.3 Our app starts out fine, but clicking a Show Calendar button
causes an error: “A React component suspended while rendering, but no
fallback UI was specified.”

293Importing components dynamically with lazy and Suspense
Use the fallback prop to specify what you want the Suspense component to render
until all its lazy descendants have returned some UI. In the following listing, we wrap
both CalendarWrapper components in their own Suspense component so that the
app knows what to do if one of the wrapper’s LazyCalendar components is loading.

<div className="App">
 <main>Main App</main>
 <aside>
 <Suspense fallback={<div>Loading...</div>}>
 <CalendarWrapper />
 </Suspense>
 <Suspense fallback={<div>Loading...</div>}>
 <CalendarWrapper />
 </Suspense>
 </aside>
</div>

If you follow the link to the new version on CodeSandbox and click the Show Calen-
dar button, you’ll see the “Loading . . . ” fallback from figure 11.4 for three seconds
and then the Calendar component will render, saying, “Big Calendar,” as shown in fig-
ure 11.5.

 Once the Calendar component has loaded, it doesn’t need to load again, so click-
ing the second Show Calendar button will immediately render the second Calendar
component. In listing 11.10, each CalendarWrapper component is wrapped in its
own Suspense component. But a single Suspense component might be all you need.
The following code snippet shows a single Suspense component for both Calendar-
Wrapper components.

Live: https://h0hgg.csb.app, Code: https://codesandbox.io/s/lazycalendar-h0hgg

Listing 11.10 Wrapping both calendar regions in Suspense components

Figure 11.4 When the user first clicks the Show Calendar button, the app displays a
loading indicator until the component has loaded.

Wrap UI that contains
lazy components in
Suspense components.

Use the fallback prop to
specify placeholder UI.

https://h0hgg.csb.app
https://codesandbox.io/s/lazycalendar-h0hgg

294 CHAPTER 11 Code splitting with Suspense
<Suspense fallback={<div>Loading...</div>}>
 <CalendarWrapper />
 <CalendarWrapper />
</Suspense>

If you wrap both components in this way, clicking a Show Calendar button for the first
time will display the shared “Loading . . . ” fallback shown in figure 11.6.

When a lazy component is first rendered, React will look all the way up the compo-
nent tree and use the first Suspense component that it finds. That Suspense com-
ponent will render its fallback UI in place of its children. If no Suspense component is
found, React will throw the error we saw back in figure 11.3.

Figure 11.5 Once the Calendar component has loaded, it replaces the fallback
content.

Figure 11.6 Multiple components can be wrapped in a single Suspense component.
The fallback content is shown if any descendant is loading.

295Importing components dynamically with lazy and Suspense
 The ability to specify fallback UI separate from the components that are loading
gives us greater flexibility when tweaking our UI for the best possible user experience.
But how do the separate components work together? How exactly does React look up
the component tree for a Suspense component? What mechanism do lazy compo-
nents use to either render a loaded component or pass rendering to parents? Well,
I’m here to help. I’ll tell you how they do it, and that’s a promise.

11.2.3 Understanding how lazy and Suspense work together

We can think of lazy components as having an internal status of uninitialized, pend-
ing, resolved, or rejected. When React first tries to render a lazy component, the com-
ponent is uninitialized but has a promise-returning function React calls to load the
module. For example, here the promise-returning function is getPromise:

const getPromise = () => import("./Calendar");
const LazyCalendar = lazy(getPromise);

The promise should resolve to a module whose default property is the component.
Once it’s resolved, React can set the status of the lazy component to resolved and
return the component, ready to be rendered, something like this:

if (status === "resolved") {
 return component;
} else {
 throw promise;
}

The else clause contains the key to communicating with Suspense components fur-
ther up the tree: if the promise has not resolved, React will throw it, just as you’d
throw an error. Suspense components are set up to catch promises, rendering fallback
UI if the promise is pending.

 To recap, table 11.1 shows the steps React takes when it encounters a lazy compo-
nent in the tree. It performs the first action it can.

Table 11.1 The steps React takes when it encounters a lazy component

If the LazyComponent
object contains

Actions

A component Call the component.

An unresolved promise Throw the promise.

A function that returns a promise Call the function to get the promise.

Store the promise in the LazyComponent object.

Call the promise’s then method so that when the promise
resolves, the component is stored in the LazyComponent object.

Throw the promise.

296 CHAPTER 11 Code splitting with Suspense

ad the
age
nents.
Seasoned promise-wranglers may be wondering what happens if the promise is rejected,
maybe because of a network error. Suspense components don’t handle the UI for
errors; that’s the remit of the error boundary, which we discuss in section 11.3. Before
that, let’s split the booking app into lazy-loaded routes.

11.2.4 Code splitting an app on its routes

You now know how to split our app into separate bundles by lazy-loading some of the
components. There’s no need to load a lot of code if it’s not going to be used. Instead,
as the user opts to use certain functionality, the code for that functionality can be
loaded, with some fallback UI displayed while it loads.

 Our booking app example is already split into separate routes for bookings, book-
ables, and users. The routes seem like a sensible place to start splitting our code. The
following listing updates the App component, lazy-loading each page component and
wrapping the Routes component in a Suspense component.

import {lazy, Suspense} from "react";

// previous imports with the three pages removed

import PageSpinner from "./UI/PageSpinner";

const BookablesPage = lazy(() => import("./Bookables/BookablesPage"));
const BookingsPage = lazy(() => import("./Bookings/BookingsPage"));
const UsersPage = lazy(() => import("./Users/UsersPage"));

const queryClient = new QueryClient();

export default function App () {
 return (
 <QueryClientProvider client={queryClient}>
 <UserProvider>
 <Router>
 <div className="App">
 <header>
 <nav>
 {/* unchanged */}
 </nav>

 <UserPicker/>
 </header>

 <Suspense fallback={<PageSpinner/>}>
 <Routes>
 <Route path="/bookings" element={<BookingsPage/>}/>
 <Route path="/bookables/*" element={<BookablesPage/>}/>
 <Route path="/users" element={<UsersPage/>}/>
 </Routes>

Branch: 1101-lazy-suspense, File: /src/components/App.js

Listing 11.11 Lazy-loading page components in App

Import the lazy function and
the Suspense component.

Lazy-lo
three p
compo

Wrap the page routes in a
Suspense component with
PageSpinner fallback.

Use the lazy-loaded
page components

just like any other.

297Importing components dynamically with lazy and Suspense
 </Suspense>
 </div>
 </Router>
 </UserProvider>
 </QueryClientProvider>
);
}

Now, if a user first visits the Users page, say, only the code for the App component, the
UsersPage component, and their dependencies is loaded. Code for BookingsPage
and BookablesPage is not included. While the components load, our usual Page-
Spinner component is rendered under the top menu bar.

 The BookablesPage component includes some nested routes, and the user might
navigate directly to any one of them without choosing to visit the others. Loading all
of the code at once is unnecessary, so let’s get lazy once again in the following listing.

import {lazy} from "react";
import {Routes, Route} from "react-router-dom";

const BookablesView = lazy(() => import("./BookablesView"));
const BookableEdit = lazy(() => import("./BookableEdit"));
const BookableNew = lazy(() => import("./BookableNew"));

export default function BookablesPage () {
 return (
 <Routes>
 <Route path="/:id">
 <BookablesView/>
 </Route>
 <Route path="/">
 <BookablesView/>
 </Route>
 <Route path="/:id/edit">
 <BookableEdit/>
 </Route>
 <Route path="/new">
 <BookableNew/>
 </Route>
 </Routes>
);
}

This time, we don’t wrap the routes in a Suspense component. Our existing fallback
in App will happily deal with any suspending components (components that throw
pending promises) below it in the tree. The PageSpinner is an appropriate fallback
because all three components—BookablesView, BookablesEdit, and BookablesNew—
are page-level components. They all replace whatever was on the page before them

Branch: 1101-lazy-suspense, File: /src/components/Bookables/BookablesPage.js

Listing 11.12 Lazy-loading nested components for BookablesPage

Lazy-load the
components.

Use the components
in exactly the same
way as before.

298 CHAPTER 11 Code splitting with Suspense
(excluding the ever-present menu bar at the top). Feel free to experiment with add-
ing Suspense components around the nested routes; a “Loading Edit Form . . . ” mes-
sage might be useful.

 Suspense components handle pending promises. What happens when a compo-
nent throws a rejected promise or, more conventionally, throws an error while render-
ing? If Suspense components don’t want to know, what does? It’s time to set some
boundaries for those pesky errors.

11.3 Catching errors with error boundaries
React doesn’t provide a component for catching errors thrown in child components.
But it does provide a couple of life-cycle methods that class components can imple-
ment if they want to catch and report errors. If one of your class components
implements one or both of those methods, it is considered an error boundary.

 If you wrap all or part of the component tree in the error boundary, it will render
fallback UI if one of the wrapped components throws an error. Figure 11.7 shows the
kind of fallback UI we might use in the bookings app if an error is thrown by one of
the page components or one of their descendants.

Say we have such an error boundary component, ErrorBoundary, and we want it to
catch errors for any of our routes in the bookings app. We want to be able to specify
where the error boundary goes, and which components are replaced by the fallback
UI when an error is thrown. We want to use ErrorBoundary like this:

Figure 11.7 Rather than unmounting the app, an error boundary can show some fallback UI
if an error occurs.

299Catching errors with error boundaries

U

fro
c

R
new
wh
e
c

<UserProvider>
 <Router>
 <div className="App">
 <header>{/* unchanged menu */}</header>

 <ErrorBoundary>
 <Suspense fallback={<PageSpinner/>}>
 <Routes>{/* unchanged */}</Routes>
 </Suspense>
 </ErrorBoundary>

 </div>
 </Router>
</UserProvider>

Only the page components are replaced by the fallback; the app continues to show
the menu in the header element, as you can see at the top of figure 11.7. The figure
also shows the fallback UI, the message “Something went wrong,” that the app displays
in response to an error in a child component.

 But where does that UI come from? And what are the life-cycle methods we have to
implement in our error boundary class component? A good place to start (as always)
is in the React docs.

11.3.1 Checking out the error boundary example in the React docs

To catch any errors thrown when our child components render, we need a class com-
ponent that implements one or both of the life-cycle methods getDerivedState-
FromError and componentDidCatch. The following listing shows an error boundary
component that implements those methods, from the React docs on reactjs.org. It has
the hardcoded fallback UI shown in figure 11.7.

class ErrorBoundary extends React.Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 // Update state so the next render will show the fallback UI.
 return { hasError: true };
 }

 componentDidCatch(error, errorInfo) {
 // You can also log the error to an error reporting service
 logErrorToMyService(error, errorInfo);
 }

React docs: https://reactjs.org/docs/error-boundaries.html

Listing 11.13 The ErrorBoundary component on reactjs.org

Leave some UI outside
the error boundary.

se an error
boundary to
catch errors
m wrapped
omponents.

Catch promises from
wrapped components.

Render wrapped
components when
all is well.

Extend React’s Component class
to create an error boundary.

Include a hasError
property in state.

eturn
 state
en an

rror is
aught.

Logs errors if
they are caught.

https://reactjs.org/docs/error-boundaries.html

300 CHAPTER 11 Code splitting with Suspense
 render() {
 if (this.state.hasError) {
 // You can render any custom fallback UI
 return <h1>Something went wrong.</h1>;
 }

 return this.props.children;
 }
}

The component manages state with a hasError property that flags whether or not the
component has caught an error. The componentDidCatch method also logs any error
information to an external logging service. Finally, the render method returns the
wrapped components or, if the getDerivedStateFromError method has set the error
flag to true, hardcoded fallback UI:

<h1>Something went wrong.</h1>

But listing 11.13 is just an example error boundary. Let’s make our own.

11.3.2 Creating our own error boundary

The error boundary from the React docs is just one possibility. We may want some-
thing tailored more to our apps. The fallback UI in figure 11.8, for example, includes
an instruction for the user to “Try reloading the page.”

Rather than just switching one hardcoded message for another, let’s have a go at
implementing an error boundary that lets us specify different fallbacks each time we

Renders fallback UI
if there’s an error.

Render the wrapped components
if there’s no error.

Figure 11.8 Our ErrorBoundary component allows us to specify custom UI as the fallback
when an error occurs.

301Catching errors with error boundaries
use it. The following listing shows just such a component. We’re not going to log any
errors, so we leave out the componentDidCatch method, and users of the component
can specify UI in a fallback prop.

import {Component} from "react";

export default class ErrorBoundary extends Component {
 constructor (props) {
 super(props);
 this.state = {hasError: false};
 }

 static getDerivedStateFromError () {
 return {hasError: true};
 }

 render() {
 const {
 children,
 fallback = <h1>Something went wrong.</h1>
 } = this.props;

 return this.state.hasError ? fallback : children;
 }
}

We’ll put the new error boundary to use straightaway in the bookings app, as a catch-
all for errors thrown on any of our three pages. In the following listing, the App com-
ponent now wraps the Suspense and Routes components with ErrorBoundary.

// other imports, including Fragment

import ErrorBoundary from "./UI/ErrorBoundary";

const BookablesPage = lazy(() => import("./Bookables/BookablesPage"));
const BookingsPage = lazy(() => import("./Bookings/BookingsPage"));
const UsersPage = lazy(() => import("./Users/UsersPage"));

const queryClient = new QueryClient();

export default function App () {
 return (
 <QueryClientProvider client={queryClient}>
 <UserProvider>
 <Router>

Branch: 1102-error-boundary, File: /src/components/UI/ErrorBoundary.js

Listing 11.14 A simple, customizable ErrorBoundary component

Branch: 1102-error-boundary, File: /src/components/App.js

Listing 11.15 App with an error boundary

Get the wrapped
components from props. Get the fallback

from props, or use a
default fallback.

Render the fallback
or the wrapped
components.

Import our error
boundary.

302 CHAPTER 11 Code splitting with Suspense
 <div className="App">
 <header>{/* unchanged */}</header>

 <ErrorBoundary
 fallback={
 <Fragment>
 <h1>Something went wrong!</h1>
 <p>Try reloading the page.</p>
 </Fragment>
 }
 >
 <Suspense fallback={<PageSpinner/>}>
 <Routes>
 <Route path="/bookings" element={<BookingsPage/>}/>
 <Route path="/bookables/*" element={<BookablesPage/>}/>
 <Route path="/users" element={<UsersPage/>}/>
 </Routes>
 </Suspense>
 </ErrorBoundary>

 </div>
 </Router>
 </UserProvider>
 </QueryClientProvider>
);
}

We wrap the app’s main routes in an error boundary. To test it out, let’s throw an error
from a descendant component. In the BookableForm component, just before it
returns its UI, add this line:

throw new Error("Noooo!");

Now, reload the app, navigate to the Bookables page, and click the New button under
the list of bookables or the Edit button at the top right of the bookable details header.
Dismiss the error overlay shown in figure 11.9; it’s added by Create React App and
won’t appear in production. You should see the fallback UI in figure 11.8.

 If a single page of an app includes multiple components and the failure of one
component doesn’t break the others—the user can keep using the page—then con-
sider wrapping that component in its own error boundary. There’s no need to bar
users from working functionality elsewhere when error boundaries can safely quaran-
tine wobbly widgets. It would be nice to be able to stabilize the wobbly ones, though,
and we can further customize our error boundary components to make it easier to
recover from errors.

Wrap the main
routes in the

error boundary.

Provide some
fallback UI. Maybe include advice

on what to do.

Wrap the main routes
in the error boundary.

303Summary
11.3.3 Recovering from errors

Asking users to refresh the page is one approach that might work for errors not
caught lower down the component tree. But, especially for error boundaries around
specific widgets within the main app, like chat windows or stock tickers, or social
media streams, you might want to give the users a button to click to try resetting or
reloading a specific component within the app. In chapter 12, we’ll use a prebuilt
error boundary package from npm called react-error-boundary. It provides handy
extra functionality to make its error boundary more flexible and reusable. Check it
out on GitHub at https://github.com/bvaughn/react-error-boundary.

 Chapter 12 continues this chapter’s theme of giving React something to render
while it waits for the final UI to be ready. Rather than waiting for components to load,
we’ll be waiting for data or images. Join me there for our first explorations of experi-
mental React features.

Summary
 Include dependencies as static imports at the top of a JavaScript file. Bundlers

like webpack can then perform tree shaking to create a bundle, a single file
containing all the code that the app uses.

 To load JavaScript dependencies only in response to a user action or other
event, dynamically load modules with the import function:

 function handleClick() {
 import("./helloModule")

Figure 11.9 In development mode, Create React App’s server overlays the page with an error message. Press
Esc or click the X to dismiss the overlay, revealing the error boundary’s fallback UI.

https://github.com/bvaughn/react-error-boundary

304 CHAPTER 11 Code splitting with Suspense
 .then(module => {/* use module */});
 }

 The dynamic import returns a promise that returns a module. Access default
and named exports on the module object:

 function handleClick() {
 import("./helloModule")
 .then(module => {
 module.default("messagePara", "Hello World!");
 module.sayHi("hiPara");
 });
 }

 Use React.lazy to load components only when they are first rendered. Pass
lazy a function that returns the promise from a dynamic import. The promise
must resolve to a module whose default property is a component:

 const LazyComponent = React.lazy(() => import("./MyComponent"));

 Use Suspense components to tell React what to render while waiting for lazy
components to load. (Suspense components catch pending promises thrown
by not-yet-loaded components.)

 <Suspense fallback={<p>Just one moment...</p>}>
 { /* UI that could contain a lazy component */ }
 </Suspense>

 Use error boundary components to tell React what to render if an error occurs
while rendering a child component. Error boundaries are class components
that implement one or both of the life-cycle methods getDerivedStateFrom-
Error and componentDidCatch:

 <ErrorBoundary>
 { /* App or subtree */ }
 </ErrorBoundary>

 Customize error boundaries to provide tailored fallback UI and error-recovery
strategies.

Integrating data
fetching with Suspense
The React team has a mission to maintain and develop a product that makes it as
easy as possible for developers to create great user experiences. In addition to writ-
ing comprehensive documentation, providing intuitive and instructive developer
tools, authoring descriptive and easily actionable error messages, and ensuring
incremental upgrade paths, the team wants React to make it easy to provide fast-
loading, responsive, and scalable applications. Concurrent Mode and Suspense
offer ways to improve the user experience, orchestrating the loading of code and
resources, enabling simpler, intentional loading states, and prioritizing updates
that let users get on with their work or play.

 But the React team doesn’t want hooking into Concurrent Mode to be a burden
on developers; they want as many of the benefits as possible to be automatic and

This chapter covers
 Wrapping promises to access their status

 Throwing promises and errors when fetching data

 Using Suspense components to specify fallback UI when
loading data and images

 Fetching data and resources as early as possible

 Recovering from errors when using error boundaries
305

306 CHAPTER 12 Integrating data fetching with Suspense
any new APIs to be intuitive and in step with existing mindsets. So, Concurrent Mode
is still flagged as experimental as the APIs are tested and tweaked. Hopefully, we won’t
be kept in suspense for much longer! [No! We agreed, no suspense jokes—ed]

 We’ll get into more of the philosophy and promise of Concurrent Mode in chap-
ter 13. This chapter’s a bit of a bridge between the stable, production use of lazy compo-
nents and Suspense from chapter 11 and the tentative APIs of deferred rendering,
transitions, and SuspenseList components in chapter 13. Here we use the ideas about
thrown promises to consider what data fetching with Suspense might look like. The
code examples are not for production but offer an insight into what library authors
might need to consider in order to work well with Concurrent Mode and Suspense.

12.1 Data fetching with Suspense
In chapter 11, we saw that Suspense components show fallback UI when they catch a
thrown promise. There, we were lazy-loading components, and React coordinated the
throwing of promises via the lazy function and dynamic imports:

const LazyCalendar = lazy(() => import("./Calendar"));

When trying to render the lazy component, React first checks the component’s status; if
the dynamically imported component has loaded, React goes ahead and renders it, but
if it’s pending, React throws the dynamic import promise. If the promise is rejected, we
need an error boundary to catch the error and show appropriate fallback UI:

<ErrorBoundary>
 <Suspense fallback="Loading...">
 <LazyCalendar/>
 </Suspense>
</ErrorBoundary>

On reaching the LazyCalendar component, React can use the loaded component,
throw an existing pending promise, or start the dynamic import and throw the new
pending promise.

 We want something similar for components that load data from a server. Say we
have a Message component that loads and displays a message. In figure 12.1, the Message
component has loaded the message “Hello Data!” and is displaying it.

While data is loading, we want to use a Suspense component to display a fallback like
the one in figure 12.2 which says, “Loading message . . . ”.

Figure 12.1 The Message component loads a message and displays it.

307Data fetching with Suspense
And if there’s an error, we want an ErrorBoundary component to display a fallback
like the one in figure 12.3, which says, “Oops!”

The JSX to match our expectations will be something like this:

<ErrorBoundary fallback="Oops!">
 <Suspense fallback="Loading message...">
 <Message/>
 </Suspense>
</ErrorBoundary>

But while we have the lazy function for lazy components, there is no stable, built-in
mechanism for components that are loading data. (There is a react-cache package,
but it’s experimental and unstable.)

 Maybe we can come up with a way of loading data that throws promises or errors as
appropriate. In doing so, we’ll gain a little insight into some of the steps that data-
fetching libraries will need to implement, but it’s just an insight and definitely not a
recommendation for production code. (Once Concurrent Mode and data-fetching
strategies for React have settled, and battle-testing has defeated real-world issues and
edge cases, look to the libraries like Relay, Apollo, and React Query for efficient, flexi-
ble, fully integrated data fetching.) Take a look at the following listing for our Message
component. It includes a speculative getMessageOrThrow function.

function Message () {
 const data = getMessageOrThrow();
 return <p className="message">{data.message}</p>;
}

Listing 12.1 The Message component calls a function to retrieve data

Figure 12.2 While the data is loading, a Suspense component displays a
fallback message.

Figure 12.3 If there’s an error, an ErrorBoundary component displays an
error message.

Call a function that returns data
or throws a promise or error.

Include the
data in the UI.

308 CHAPTER 12 Integrating data fetching with Suspense
We want the getMessageOrThrow function to return the data if it’s available. If there’s
a promise that hasn’t yet resolved to our data, the function should throw it. If the
promise has been rejected, the function should throw an error.

 The problem is, if there’s a promise for our data (like the one the browser’s fetch
API returns, for example), we don’t have a way of checking its status. Is it pending?
Has it resolved? Has it been rejected? We need to wrap the promise in code that’ll
report its status.

12.1.1 Upgrading promises to include their status

To work with Suspense and ErrorBoundary components, we need to use the status
of a promise to dictate our actions. Table 12.1 matches the status with the required
action.

The promise won’t report its own status, so we want some kind of checkStatus func-
tion that returns the current status of the promise and its resolved value or rejection
error if available. Something like this:

const {promise, status, data, error} = checkStatus();

Or, because we’ll never get data and error at the same time, something like this:

const {promise, status, result} = checkStatus();

We’d then be able to use conditionals like if (status === "pending") to decide whether
to throw promises or errors or to return values.

 The following listing shows a getStatusChecker function that takes a promise and
returns a function that gives us access to the promise’s status.

export function getStatusChecker (promiseIn) {
 let status = "pending";
 let result;

 const promise = promiseIn
 .then((response) => {
 status = "success";
 result = response;
 })

Table 12.1 The action for each promise status

Status of promise Action

Pending Throw the promise.

Resolved Return the resolved value—our data.

Rejected Throw the rejection error.

Listing 12.2 Getting a function to access the status of a promise

Pass in the promise whose
status we want to track.

Set up a variable to hold
the status of the promise.

Set up a variable for
the resolved value
or rejection error.

On success, assign the
resolved value to result.

309Data fetching with Suspense

Re
fu
th

lat

th
 .catch((error) => {
 status = "error";
 result = error;
 });

 return () => ({promise, status, result});
}

Using the getStatusChecker function, we can get the checkStatus function we need
to track the status of a promise and react accordingly. For example, if we have a fetch-
Message function that returns a promise and loads message data, we could get a status-
tracking function like this:

const checkStatus = getStatusChecker(fetchMessage());

Okay, that’s great; we have a promise-status-tracking function. To integrate with Sus-
pense, we need our data-fetching function to use that promise status to either return
data, throw a promise, or throw an error.

12.1.2 Using the promise status to integrate with Suspense

Here’s our Message component again:

function Message () {
 const data = getMessageOrThrow();
 return <p className="message">{data.message}</p>;
}

We want to be able to call a data-fetching function—in this case, getMessageOr-
Throw—that automatically integrates with Suspense by throwing promises or errors as
appropriate or returns our data after it’s loaded. The following listing shows the make-
Thrower function that takes a promise and returns just such a function, one that uses
the promise’s status to act appropriately.

export function makeThrower (promiseIn) {
 const checkStatus = getStatusChecker(promiseIn);

 return function () {
 const {promise, status, result} = checkStatus();

 if (status === "pending") throw promise;
 if (status === "error") throw result;
 return result;
 };
}

Listing 12.3 Returning a data-fetching function that throws as appropriate

On error, assign the
rejection error to result.

Return a function to
access the current
status and result.

Pass in the data-
fetching promise.

Get a status-
tracking function
for the promise.

turn a
nction
at can
throw.

Get the
est status
whenever
e function
is called.

Use the status to
throw or return.

310 CHAPTER 12 Integrating data fetching with Suspense
For the Message component, we’ll use makeThrower to transform the promise that the
fetchMessage function returns into a data-fetching function that can throw promises
or errors:

const getMessageOrThrow = makeThrower(fetchMessage());

But when do we start fetching? Where do we put that line of code?

12.1.3 Fetching data as early as possible

We don’t have to wait until a component has rendered to start loading the data it
needs. We can kick off fetching outside the component, using the fetch promise to
build a throw-ready data-access function that the component can use. Listing 12.4
shows a full App example for our Message component. The browser executes the code
when it loads, starting the data fetch. Once React renders App and then the nested
Message, Message calls getMessageOrThrow, which accesses the existing promise.

import React, {Suspense} from "react";
import {ErrorBoundary} from "react-error-boundary";
import fetchMessage from "./api";
import {makeThrower} from "./utils";
import "./styles.css";

function ErrorFallback ({error}) {
 return <p className="error">{error}</p>;
}

const getMessageOrThrow = makeThrower(fetchMessage());

function Message () {
 const data = getMessageOrThrow();
 return <p className="message">{data.message}</p>;
}

export default function App () {
 return (
 <div className="App">
 <ErrorBoundary FallbackComponent={ErrorFallback}>
 <Suspense
 fallback={<p className="loading">Loading message...</p>}
 >
 <Message />
 </Suspense>
 </ErrorBoundary>
 </div>
);
}

Live: https://t1lsy.csb.app, Code: https://codesandbox.io/s/suspensefordata-t1lsy

Listing 12.4 Using the Message component

Start fetching as
soon as possible.

Access the data or throw
an error or promise.

Use the data if
available.

Catch thrown
errors.

Catch
thrown

promises.

https://t1lsy.csb.app
https://codesandbox.io/s/suspensefordata-t1lsy

311Data fetching with Suspense
Our error boundary is the ErrorBoundary component from the react-error-boundary
package, mentioned in chapter 11. We specify its fallback by setting the Fallback-
Component prop. The fetchMessage function accepts two arguments to help you test
the Suspense and ErrorBoundary fallbacks: a delay in milliseconds and a canError
Boolean to randomly cause errors. If you want the request to take three seconds and
sometimes fail, then change the call to the following:

const getMessageOrThrow = makeThrower(fetchMessage(3000, true));

In listing 12.4, the Message component can call getMessageOrThrow because it’s in
the same scope. That won’t always be the case, so you may want to pass the data-access
function to Message as a prop. You may also want to load new data in response to a
user action. Let’s see how to work with props and events to make the data-fetching
more flexible.

12.1.4 Fetching new data

Say we want to upgrade our Message component to include a Next button, as shown in
figure 12.4.

Clicking the Next button will load and display a new message. While the new message
is loading, Message will suspend (the getMessageOrThrow function or its equivalent will
throw its promise), and the Suspense component will show the “Loading message . . .”
fallback UI from figure 12.2 again. Once the promise resolves, Message will display the
newly loaded message, “Bonjour,” as shown in figure 12.5.

Figure 12.4 The Message component now displays a Next button.

Figure 12.5 Clicking the Next button loads a new message.

312 CHAPTER 12 Integrating data fetching with Suspense
For each new message that we load, we need a new promise and a new data-fetching
function that can throw. In listing 12.6, we’ll update the Message component to accept
the data-fetching function as a prop. First, listing 12.5 shows the App component man-
aging the current data-fetching function in state and passing it to Message.

const getFirstMessage = makeThrower(fetchMessage());

export default function App () {
 const [getMessage, setGetMessage] = useState(() => getFirstMessage);

 function next () {
 const nextPromise = fetchNextMessage();
 const getNextMessage = makeThrower(nextPromise);
 setGetMessage(() => getNextMessage);
 }

 return (
 <div className="App">
 <ErrorBoundary FallbackComponent={ErrorFallback}>
 <Suspense
 fallback={<p className="loading">Loading message...</p>}
 >
 <Message
 getMessage={getMessage}
 next={next}
 />
 </Suspense>
 </ErrorBoundary>
 </div>
);
}

We pass useState an initialization function that returns the data-fetching function for
the first message, getFirstMessage. Notice, we don’t call getFirstMessage; we return
it, setting it as the initial state.

 App also provides a next function for loading the next message and placing the
new data-fetching function in state. The first thing the next function does is start
fetching the next message:

const nextPromise = fetchNextMessage();

Our API on CodeSandbox includes the fetchNextMessage function that requests
the next message and returns a promise. To integrate with Suspense by throwing a
pending promise, next needs to get a promise-throwing function for the data-fetching
promise:

const getNextMessage = makeThrower(nextPromise);

Live: https://xue0l.csb.app, Code: https://codesandbox.io/s/suspensefordata2-xue0l

Listing 12.5 The App component holds the current getMessage function in state

Fetch the first message
straight away.

Keep the current data-
fetching function in state.

Start
fetching
the next

message.

Get a data-fetching
function that can throw
the promise or error.

Update the state to
hold the latest data-
fetching function.

Pass the current data-fetching
function to the Message component.

Give the Message
component a way to
request the next message.

https://xue0l.csb.app
https://codesandbox.io/s/suspensefordata2-xue0l

313Data fetching with Suspense
The final step is to update the state; it’s holding the current promise-throwing func-
tion. Both useState and the updater function it returns, setGetMessage in this case,
accept a function as an argument. If you pass them a function, they call useState to
get its initial state and setGetMessage to get the new state. Because the state value
we’re trying to store is a function itself, we can’t pass it directly to these state-setting
functions. We don’t do this:

useState(getFirstMessage); // NOT THIS

And we don’t do this:

setGetMessage(getNextMessage); // NOT THIS

Instead, we pass useState and setGetMessage functions that return the functions we
want to set as state:

useState(() => getFirstMessage); // Return the initial state, a function

And we use this:

setGetMessage(() => getNextMessage); // Return the new state, a function

We don’t want to call getNextMessage here; we just want to set it as the new state
value. Setting the state value causes App to re-render, passing Message the latest data-
fetching function as the getMessage prop.

 The updated Message component is in the following listing. It shows the compo-
nent accepting getMessage and next as props and includes the Next button in the UI.

function Message ({getMessage, next}) {
 const data = getMessage();
 return (
 <>
 <p className="message">{data.message}</p>
 <button onClick={next}>Next</button>
 </>
);
}

Message calls getMessage, which returns the new message data or throws. When a
user clicks the Next button, Message calls next, starting to fetch the next message
straightaway. And re-rendering straightaway. We’re using the render-as-you-fetch approach,
specifying Suspense and ErrorBoundary fallbacks for React to render when compo-
nents throw promises or errors.

Live: https://xue0l.csb.app, Code: https://codesandbox.io/s/suspensefordata2-xue0l

Listing 12.6 Pass Message props for data fetching

Accept the data-fetching function
and button handler as props.

Include a Next
button in the UI.

https://xue0l.csb.app
https://codesandbox.io/s/suspensefordata2-xue0l

314 CHAPTER 12 Integrating data fetching with Suspense
 Speaking of errors, our App component is using the ErrorBoundary component
from the react-error-boundary package. It has a few more tricks up its sleeve,
including easy error recovery. Let’s cast our next spell.

12.1.5 Recovering from errors

Figure 12.6 shows what we’re after; when an error occurs, we want to give users a Try
Again button to click, to reset the error state and try rendering the app again.

In listing 12.5, we assigned the ErrorFallback component as the FallbackComponent
prop for the ErrorBoundary:

<ErrorBoundary FallbackComponent={ErrorFallback}>
 {/* app UI */}
</ErrorBoundary>

The following listing shows a new version of our ErrorFallback component. When
ErrorBoundary catches an error and renders the fallback, it automatically passes a
resetErrorBoundary function to ErrorFallback.

function ErrorFallback ({error, resetErrorBoundary}) {
 return (
 <>
 <p className="error">{error}</p>
 <button onClick={resetErrorBoundary}>Try Again</button>
 </>
);
}

The ErrorFallback UI now includes a Try Again button that calls the resetError-
Boundary function to remove the error state and render the error boundary’s chil-
dren rather than the error fallback UI. In addition to resetting the error state on the
error boundary, resetErrorBoundary will also call any reset function that we assign to

Live: https://7i89e.csb.app/, Code: https://codesandbox.io/s/errorrecovery-7i89e

Listing 12.7 Adding a button to ErrorFallback

Figure 12.6 The ErrorBoundary component UI now includes a Try Again button
to reset the error boundary and load the next message.

Receive the resetError-
Boundary function from
ErrorBoundary as a prop.

Include a button that calls
resetErrorBoundary.

https://7i89e.csb.app/
https://codesandbox.io/s/errorrecovery-7i89e

315Data fetching with Suspense
the error boundary’s onReset prop. In the following listing, we tell ErrorBoundary
to call our next function and load the next message whenever we reset the boundary.

export default function App () {
 const [getMessage, setGetMessage] = useState(() => getFirstMessage);

 function next () {/* unchanged */}

 return (
 <div className="App">
 <ErrorBoundary
 FallbackComponent={ErrorFallback}
 onReset={next}
 >
 <Suspense
 fallback={<p className="loading">Loading message...</p>}
 >
 <Message getMessage={getMessage} next={next} />
 </Suspense>
 </ErrorBoundary>
 </div>
);
}

The error boundary now does something to try to shake the app’s error state: it tries
to load the next message. Here are the steps it goes through when the Message com-
ponent throws an error trying to load a message:

1 The Message component throws an error.
2 ErrorBoundary catches the error and renders the ErrorFallback component,

including the Try Again button.
3 The user clicks the Try Again button.
4 The button calls resetErrorBoundary, removing the error state from the

boundary.
5 The error boundary re-renders its children and calls next to load the next

message.

Check out the GitHub repository for react-error-boundary to see the rest of its
super-helpful error-related tricks: https://github.com/bvaughn/react-error-boundary.

12.1.6 Checking the React docs

In our brief foray into one experimental way of integrating data fetching with Sus-
pense, we created two key functions:

 getStatusChecker—Provides a window into the status of a promise
 makeThrower—Upgrades a promise into one that returns data or that throws an

error or promise

Live: https://7i89e.csb.app/, Code: https://codesandbox.io/s/errorrecovery-7i89e

Listing 12.8 Adding an onReset prop to ErrorBoundary

Include an onReset function
that ErrorBoundary will call
if reset.

https://7i89e.csb.app/
https://codesandbox.io/s/errorrecovery-7i89e
https://github.com/bvaughn/react-error-boundary

316 CHAPTER 12 Integrating data fetching with Suspense
We used makeThrower to create functions like getMessageOrThrow that the Message
component used to get the latest message, throw an error, or throw a promise (sus-
pend). We stored the data-fetching functions in state and passed them to children
via props.

 The React docs also have an experimental, just for information, be careful—no,
really be careful—example of integrating our own promises with Suspense, shown in
the following listing, that does the job of our getStatusChecker and makeThrower
functions in one wrapPromise function. Read the rationale behind the code in the
docs: http://mng.bz/JDBK.

// Suspense integrations like Relay implement
// a contract like this to integrate with React.
// Real implementations can be significantly more complex.
// Don't copy-paste this into your project!
function wrapPromise(promise) {
 let status = "pending";
 let result;
 let suspender = promise.then(
 r => {
 status = "success";
 result = r;
 },
 e => {
 status = "error";
 result = e;
 }
);
 return {
 read() {
 if (status === "pending") {
 throw suspender;
 } else if (status === "error") {
 throw result;
 } else if (status === "success") {
 return result;
 }
 }
 };
}

The wrapPromise function doesn’t return a function directly; it returns an object with
a read method. So, rather than assigning a function to a local variable, getMessage,
like this

const getMessage = makeThrower(fetchMessage());

function Message () {
 const data = getMessage();

Code: https://codesandbox.io/s/frosty-hermann-bztrp?file=/src/fakeApi.js

Listing 12.9 The wrapPromise function from the React docs examples

The code is for
interest rather than
production use.

The code names the
wrapped promise a
suspender.

The function returns
an object with a
read method.

Assign the data-fetching
function to getMessage.Call getMessage to

get data or throw.

http://mng.bz/JDBK
https://codesandbox.io/s/frosty-hermann-bztrp?file=/src/fakeApi.js

317Using Suspense and error boundaries with React Query
 // return UI that shows data
}

we assign an object to a local variable, messageResource, like this:

const messageResource = wrapPromise(fetchMessage());

function Message () {
 const data = messageResource.read();

 // return UI that shows data
}

Which approach is better? Well, I bet the React team thought carefully about its exam-
ples and considered many more scenarios in which the concept of a resource with a
read method was found to be easier to think about and work with than directly stor-
ing, passing, and calling naked data-fetching functions. Having said that, I think our
step-by-step exploration of the concepts and procedures involved in integrating data
fetching with Suspense has been useful.

 Ultimately, this is all still theoretical and experimental and is highly likely to
change. Unless you’re a data-fetching library author yourself, you’ll find the nitty-
gritty details will be handled by the libraries you use. We’ve been using React Query
for our data work; does it integrate with Suspense?

12.2 Using Suspense and error boundaries
with React Query
React Query provides an experimental config option to switch on Suspense for que-
ries. Rather than returning status and error information, queries will throw promises
and errors. You can find out more about the experimental Suspense integration in the
React Query documentation (http://mng.bz/w9A2).

 For the bookings app, we’ve been using the status value that useQuery returns to
conditionally render loading spinners and error messages. All of our data-loading
components have code like this:

 const {data, status, error} = useQuery(
 "key",
 () => getData(url)
);

 if (status === "error") {
 return <p>{error.message}</p>
 }

 if (status === "loading") {
 return <PageSpinner/>
 }

 return ({/* UI with data */});

Assign the object with
data-fetching method
to messageResource.

Call the read method
to get data or throw.

When loading data,
assign status value to
a local variable.

Check status
and return
appropriate UI.

http://mng.bz/w9A2

318 CHAPTER 12 Integrating data fetching with Suspense
But we’ve now seen how Suspense and ErrorBoundary components let us decouple
the loading and error UI from individual components. The bookings app has page-
level Suspense and ErrorBoundary components in place, so let’s switch over our que-
ries to use the existing components.

import {Link, useParams} from "react-router-dom";
import {FaPlus} from "react-icons/fa";

import {useQuery} from "react-query";
import getData from "../../utils/api";

import BookablesList from "./BookablesList";
import BookableDetails from "./BookableDetails";
// no need to import PageSpinner

export default function BookablesView () {
 const {data: bookables = []} = useQuery(
 "bookables",
 () => getData("http://localhost:3001/bookables"),
 {
 suspense: true
 }
);

 const {id} = useParams();
 const bookable = bookables.find(
 b => b.id === parseInt(id, 10)
) || bookables[0];

 // no status checks or loading/error UI

 return ({/* unchanged UI */});
}

The updated BookablesView component passes a configuration option to useQuery
when loading the bookables data:

const {data: bookables = []} = useQuery(
 "bookables",
 () => getData("http://localhost:3001/bookables"),
 {
 suspense: true
 }
);

That config option tells useQuery to suspend (throw a promise) when loading its ini-
tial data and to throw an error if something goes wrong.

Branch: 1201-suspense-data, File: /src/components/Bookables/BookablesView.js

Listing 12.10 The BookablesView component with Suspense integration

Pass a config object with
suspense set to true.

Remove the status-checking
code for loading and error
states.

319Loading images with Suspense
CHALLENGE 12.1
Update the BookingsPage and UsersList components to use Suspense when loading
their data. Remove any unnecessary loading and error state UI that’s embedded within
the components. The current branch includes the changes: 1201-suspense-data.

12.3 Loading images with Suspense
Suspense works great with lazily-loaded components and, at least tentatively, can be
integrated with the promises that arise naturally when loading data. How about other
resources like scripts and images, for example? The key is the promise: if we can wrap
our requests in promises, we can (at least experimentally) work with Suspense and
error boundaries to provide fallback UI. Let’s look at a scenario for integrating image
loading with Suspense.

 Your boss is keen for you to make the Users page more useful, wanting you to
include an avatar image for each user and, later, details of each user’s bookings and
tasks. We’ll get to the bookings and tasks in the next chapter. Here, we aim to include
an avatar image like the Japanese castle shown in figure 12.7.

The 1202-user-avatar branch of the GitHub repo includes separate components for
the list of users and the details of the selected user, UsersList and UserDetails, with
management of the selected user in the UsersPage component. The repo also has ava-
tar images in the /public/img folder. UsersPage now passes UserDetails just the ID
of the selected user, and the UserDetails component loads the user’s details and
then renders the avatar as a standard img element:

<div className="user-avatar">

</div>

Unfortunately, at slow network speeds and with large avatar image files, the images can
take a while to load, leading to the poor user experience shown in figure 12.8, where the
image (a butterfly on a flower) appears bit by bit. You can use your browser’s developer
tools to throttle the network speed.

Figure 12.7 The UserDetails component includes an avatar image for each user.

320 CHAPTER 12 Integrating data fetching with Suspense
In this section, we explore a couple of ways of improving the user experience for slow-
loading images within our user interface:

 Using React Query and Suspense to provide an image-loading fallback
 Prefetching images and data with React Query

Together, the two approaches help provide users with a predictable user interface
where, hopefully, slow-loading assets won’t call attention to themselves, degrading the
experience of using the app.

12.3.1 Using React Query and Suspense to provide
an image-loading fallback

We want to show some kind of fallback while images load, maybe a shared avatar
placeholder with a small file size, like the head silhouette image shown in figure 12.9.

To integrate with Suspense, we need an image-loading process that throws a promise
until the image is ready to use. We create the promise manually, around the DOM
HTMLImageElement Image constructor like this:

Figure 12.8 When switching users, the avatar image might take a while to load, potentially resulting in a poor
user experience. Here, only half of the image has loaded so far.

Figure 12.9 While the avatar image is loading, we can show a placeholder image that has a small file size and
that could be loaded earlier.

321Loading images with Suspense

e
const imagePromise = new Promise((resolve) => {
 const img = new Image();
 img.onload = () => resolve(img);
 img.src = "path/to/image/image.png"
});

We then need an image-loading function that throws the promise while it’s pending:

const getImageOrThrow = makeThrower(imagePromise);

And, finally, a React component that calls the function, rendering the image after it
has loaded:

function Img () {
 const imgObject = getImageOrThrow();

 return
}

But we don’t want to be continually reloading the image on every render, so we need
some kind of cache. Well, we already have one of those built into React Query. So, rather
than building our own cache and throwing our own promises, let’s hook into React
Query’s Suspense integration (not forgetting that it’s experimental). The following list-
ing shows an Img component that throws pending promises until its image has loaded.

function Img ({src, alt, ...props}) {
 const {data: imgObject} = useQuery(
 src,
 () => new Promise((resolve) => {
 const img = new Image();
 img.onload = () => resolve(img);
 img.src = src;
 }),
 {suspense: true}
);

 return
}

Using multiple Img components with the same source won’t try to load the image mul-
tiple times; React Query will return the cached Image object. (The image itself will be
cached by the browser.)

 In the bookings app, we want an Avatar component that uses Suspense to show a
fallback while the image is loading. The following listing uses the Img component
along with a Suspense component to achieve our goal.

Branch: 1203-suspense-images, File: /src/components/Users/Avatar.js

Listing 12.11 An Img component that uses React Query

Create a new
image object.

Resolve the promise when
the image finishes loading.

Start loading the image
by specifying its source.

Get the image object
or throw a promise.

Once the image is available,
render a standard img element.

Use React Query for caching,
deduping, and throwing.

Use the image src
as the query key.

Pass useQuery a function that
creates an image-loading promise.

Throw pending promises
and errors.

Return a standard
img element after th
image has loaded.

322 CHAPTER 12 Integrating data fetching with Suspense
import {Suspense} from "react";
import {useQuery} from "react-query";

export default function Avatar ({src, alt, fallbackSrc, ...props}) {
 return (
 <div className="user-avatar">
 <Suspense
 fallback={}
 >

 </Suspense>
 </div>
);
}

The UserDetails component can now use an Avatar to show a fallback image until
the desired image has loaded, as implemented in the following listing.

import {useQuery} from "react-query";
import getData from '../../utils/api';
import Avatar from "./Avatar";

export default function UserDetails ({userID}) {
 const {data: user} = useQuery(
 ["user", userID],
 () => getData(`http://localhost:3001/users/${userID}`),
 {suspense: true}
);

 return (
 <div className="item user">
 <div className="item-header">
 <h2>{user.name}</h2>
 </div>

 <Avatar
 src={`http://localhost:3001/img/${user.img}`}
 fallbackSrc="http://localhost:3001/img/avatar.gif"
 alt={user.name}
 />

 <div className="user-details">
 <h3>{user.title}</h3>
 <p>{user.notes}</p>
 </div>
 </div>
)
}

Branch: 1203-suspense-images, File: /src/components/Users/Avatar.js

Listing 12.12 An Avatar component that uses Img and Suspense

Branch: 1203-suspense-images, File: /src/components/Users/UserDetails.js

Listing 12.13 Using the Avatar component in UserDetails

Specify fallbackSrc
and src props.

Use the
fallbackSrc prop

to show an image
as a Suspense

fallback.

Use the Img component
to integrate with the

Suspense component.

Pass in the ID of
the user to show.

Load the
data for the
specified user.

Show an avatar,
specifying the image
and fallback sources.

323Loading images with Suspense
We could even preload the fallback image by adding a link element with rel=
"prefetch" to the page’s head element, or by imperatively preloading it in a parent
component. Let’s look at preloading data and images now.

12.3.2 Prefetching images and data with React Query

At the moment, the UserDetails component doesn’t render the Avatar until the
user data has finished loading. We wait for the user data before requesting the image
we need, creating a waterfall, as shown in figure 12.10.

The second row shows the data for user 2 loading. The third row shows the image for
user 2, user2.png, loading. Here are the steps from click to image when we select a
user in the users list:

1 A user is selected.
2 UserDetails loads the user information, suspending until the data loads.
3 Once the data has loaded, UserDetails renders its UI, including the Avatar

component.
4 Avatar renders the Img component, which requests the image and suspends

until the image has loaded.
5 Once the image has loaded, Img renders its UI, an img element.

The image doesn’t start loading until the user data has arrived. But the image file-
name is predictable. Can we start loading the image at the same time as the user infor-
mation, as shown in the last two rows of figure 12.11?

Figure 12.10 The Waterfall panel shows that the image for user 2 (user2.png) isn’t requested until the
data for user 2 has finished loading.

Figure 12.11 We want the user 2 image and data to load concurrently, as in the last two rows of the figure.

324 CHAPTER 12 Integrating data fetching with Suspense
The user selection is managed in the UsersPage component by the switchUser func-
tion. To get the concurrent loading shown in figure 12.11, let’s get React Query to
start fetching the user data and image at the same time. The following listing includes
the two new prefetchQuery calls.

// other imports

import {useQueryClient} from "react-query";
import getData from "../../utils/api";

export default function UsersPage () {
 const [loggedInUser] = useUser();
 const [selectedUser, setSelectedUser] = useState(null);
 const user = selectedUser || loggedInUser;
 const queryClient = useQueryClient();

 function switchUser (nextUser) {
 setSelectedUser(nextUser);

 queryClient.prefetchQuery(
 ["user", nextUser.id],
 () => getData(`http://localhost:3001/users/${nextUser.id}`)
);

 queryClient.prefetchQuery(
 `http://localhost:3001/img/${nextUser.img}`,
 () => new Promise((resolve) => {
 const img = new Image();
 img.onload = () => resolve(img);
 img.src = `http://localhost:3001/img/${nextUser.img}`;
 })
);
 }

 return user ? (
 <main className="users-page">
 <UsersList user={user} setUser={switchUser}/>

 <Suspense fallback={<PageSpinner/>}>
 <UserDetails userID={user.id}/>
 </Suspense>
 </main>
) : null;
}

By fetching data and images as early as possible, we don’t keep users waiting as long
and reduce the chance of needing our fallback image. But switching to a new user still
hits the visitor with a loading spinner (like the one in figure 12.12) if they haven’t

Branch: 1204-prefetch-query, File: /src/components/Users/UsersPage.js

Listing 12.14 Preloading images and data on the Users page

Prefetch the user
information.

Prefetch the user
avatar image.

Render the user details,
including the avatar.

325Summary
viewed that user before. Switching from the details panel to a loading spinner and
back to the next details panel is not the smoothest experience.

 Rather than the jarring experience of replacing the details with a spinner, it would
be better if we could hold off, and switch straight from one set of user details to
another, avoiding the receded loading state, the feeling of going back to a spinner.
React’s Concurrent Mode promises to make such deferred transitions much easier,
and you’ll see how in chapter 13 when we introduce our last two hooks: useTransi-
tion and useDeferredValue.

Summary
 Experiment with data-fetching integration for Suspense but don’t use it in pro-

duction code yet; it’s not stable and will probably change.
 When the time comes, use well-tested, reliable data-fetching libraries to manage

Suspense integration for you.
 To tentatively explore data fetching with Suspense, wrap promises with func-

tions that can check their status:

 const checkStatus = getStatusChecker(promise);

 To integrate with Suspense, data-fetching functions should throw pending
promises and errors or return loaded data. Create a function to turn a data-
fetching promise into one that throws as necessary:

 const getMessageOrThrow = makeThrower(promise);

 Use the prepared data-fetching function within a component to get data for the
UI or to throw as appropriate:

 function Message () {
 const data = getMessageOrThrow();
 return <p>{data.message}</p>
 }

Figure 12.12 Switching to another user brings up a loading spinner on slower connections.

326 CHAPTER 12 Integrating data fetching with Suspense
 Start loading data as early as possible, maybe in event handlers.
 Provide ways for users to recover the app from error states. Libraries like react-

error-boundary can help.
 Check out the React docs and its linked examples to gain further insight into

these techniques and to see their use of resources with read methods (http://
mng.bz/q9AJ).

 Use similar promise-wrangling techniques to load other resources like images
or scripts.

 Harness libraries like React Query (in Suspense mode) to manage caching and
multiple requests when fetching data or images.

 Load resources earlier by calling React Query’s queryClient.prefetchQuery
method.

 Avoid waterfalls, whereby later data-fetches wait for previous ones before start-
ing, if possible.

http://mng.bz/q9AJ
http://mng.bz/q9AJ
http://mng.bz/q9AJ

Experimenting
with useTransition,

useDeferredValue,
and SuspenseList
Concurrent Mode lets React work on multiple versions of our UI at once, showing
older versions that are still fully interactive until newer versions are ready. This can
mean that, for brief periods, the latest state doesn’t match the current UI in the
browser and React gives us some hooks and components to manage the feedback
we give to our users. The aim is to improve the user experience of our apps, mak-
ing them feel more responsive and orchestrating updates so our users immediately
understand what is stale, what is updating, and what is fresh.

 Concurrent Mode is still experimental, so the two new hooks we introduce in
this chapter, useTransition and useDeferredValue, are experimental too. They

This chapter covers
 Delaying UI updates with the useTransition hook

 Flagging inconsistent state and UI with the isPending
Boolean

 Using old and new values simultaneously with the
useDeferredValue hook

 Managing multiple fallbacks with the SuspenseList
component

 Understanding the promise of Concurrent Mode
327

328 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
give React permission to keep showing old UI or old values while components load
new data or calculate new values. This helps us avoid receded states, whereby the UI falls
back from a useful, interactive component to a previous loading state.

 In the previous two chapters, we spent a lot of time wrapping components that
could suspend in Suspense components, specifying appropriate fallbacks. As the num-
ber of Suspense components on a page increases, we risk infecting our users with fall-
back fever, making everything start spinning. One potential cure is the SuspenseList
component, a soothing bandage that controls spinners, promoting them from a sick-
ness to sign of health.

 Let’s explore these experimental solutions as we improve the Users page in the
bookings app.

13.1 Making smoother transitions between states
When we first load the Users page, we see a spinner as the details for the current user
load. That’s fine; we might expect some spinners when first loading a page. But when
we subsequently select a new user for the first time, the UI goes back to showing a
spinner, as you can see in figure 13.1. (If necessary, start json-server with a delay to
simulate slower connections.)

Waiting for data to load may be unavoidable, but we can try to improve the perceived
responsiveness of the page by avoiding the display of spinners, and continuing to
show the old data while the new data loads.

 In this section, we explore our last two built-in hooks, useTransition and use-
DeferredValue, as ways of improving the user experience by delaying the update of
the UI as data loads. To use these hooks, our app needs to be in Concurrent Mode,
and for that we need the experimental version of React. Install it like this:

npm install react@experimental react-dom@experimental

Figure 13.1 Selecting a new user (Clarisse) in the list of users causes a spinner to replace the user details panel.
This can be jarring; it feels like a backward step. We call it a receded state.

329Making smoother transitions between states
If there is a problem with React Query insisting on a stable version of React, you could
uninstall React Query before installing React’s experimental release. Then reinstall
React Query with the –force flag, like this:

npm install react-query --force

Then, update index.js to render the app as in the following listing.

import ReactDOM from 'react-dom';
import App from './components/App.js';

const root = document.getElementById('root');
ReactDOM
 .unstable_createRoot(root)
 .render(<App />);

13.1.1 Avoiding receded states with useTransition

Figure 13.2 shows an improved UI experience when selecting a new user on the Users
page. While viewing the details for Mark, we’ve clicked Clarisse in the list of users, but
the user details panel on the right continues to show the old UI, Mark’s information,
rather than dropping back to a spinner.

The following listing shows how to use the useTransition hook to give React permis-
sion to display old UI if a change of state (switching the user, for example) causes a
child component to suspend.

Branch: 1301-use-transition, File: /src/index.js

Listing 13.1 Enabling Concurrent Mode

Use the element with
ID “root” as the root
of the app.

Render the App component
into the root element.

Figure 13.2 A new user (Clarisse) is selected, but instead of immediately showing a receded loading spinner, the
UI continues to show the old user (Mark).

330 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
import {
 useState,
 unstable_useTransition as useTransition,
 Suspense
} from "react";

// unchanged imports

export default function UsersPage () {
 const [loggedInUser] = useUser();
 const [selectedUser, setSelectedUser] = useState(null);
 const user = selectedUser || loggedInUser;
 const queryClient = useQueryClient();

 const [startTransition] = useTransition()

 function switchUser (nextUser) {
 startTransition(() => setSelectedUser(nextUser));

 queryClient.prefetchQuery(/* prefetch user details */);
 queryClient.prefetchQuery(/* prefetch user image */);
 }

 return user ? (
 <main className="users-page">
 <UsersList user={user} setUser={switchUser}/>

 <Suspense fallback={<PageSpinner/>}>
 <UserDetails userID={user.id}/>
 </Suspense>
 </main>
) : <PageSpinner/>;
}

To reinforce the fact that this is all experimental, the hook has an unstable prefix,
so we import unstable_useTransition from the react package. We rename it use-
Transition.

 The useTransition hook returns an array whose first element is a function we use
to wrap state changes that might cause components to suspend. We assign the func-
tion to the startTransition variable:

const [startTransition] = useTransition();

Our state change is in the switchUser function. Switching to a new user might cause
the UserDetails component to suspend if React Query has not yet loaded that user’s
data. Wrapping the state change in startTransition tells React to keep showing the
old UI rather than the Suspense fallback, until the data loads. If there isn’t any old

Branch: 1301-use-transition, File: /src/components/Users/UsersPage.js

Listing 13.2 Using a transition to improve UX on UsersPage

Import the
useTransition hook.

Get a transition function,
startTransition.

Wrap the user
state change in
the transition.

Show a spinner while
the first user loads.

331Making smoother transitions between states
UI—the component has not yet mounted—React will show the Suspense fallback
while waiting for data:

startTransition(() => setSelectedUser(nextUser));

Not falling back to a spinner on state changes is an improvement as long as the data
for the new state doesn’t take long to load. If it does, the user is left in limbo, staring at
the old UI. Has the app crashed? We need to give them some feedback to say the app
is busy loading data.

13.1.2 Giving users feedback with isPending

The useTransition hook lets React show old UI while the state is changing. But
inconsistent UIs might lead to confusion if they last too long. It would be good to give
our users some feedback that a change is happening even if the UI continues to show
some old values.

 Something like figure 13.3 is what we’re after; we’ve clicked a new user, Clarisse, in
the users list, but our transition has kept the details for the old user, Mark, on the
screen while Clarisse’s information loads. We reduce the opacity of the user details
panel to show that the details are stale.

Helpfully, useTransition also returns a Boolean value in its array to indicate a transi-
tion is ongoing. We can assign the Boolean to a local variable, isPending:

const [startTransition, isPending] = useTransition();

We can then use isPending to set a class name on the user details panel, for example,
as shown in listing 13.3 for UsersPage and listing 13.4 for UserDetails.

Figure 13.3 During a transition, the isPending value is used to set the class of the user details panel, allowing
its opacity to be reduced via CSS. We don’t have a receded spinner but do indicate a transition.

332 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
export default function UsersPage () {
 // set up state

 const [startTransition, isPending] = useTransition();

 function switchUser (nextUser) {
 startTransition(() => setSelectedUser(nextUser));

 // prefetch user details and image
 }

 return user ? (
 <main className="users-page">
 <UsersList user={user} setUser={switchUser}/>

 <Suspense fallback={<PageSpinner/>}>
 <UserDetails userID={user.id} isPending={isPending}/>
 </Suspense>
 </main>
) : <PageSpinner/>;
}

export default function UserDetails ({userID, isPending}) {
 const {data: user} = useQuery(/* fetch user details */);

 return (
 <div
 className={isPending ? "item user user-pending" : "item user"}
 >
 {/* unchanged UI */}
 </div>
);
}

The UserDetails component for the new userID value will suspend while it fetches
the user’s data. While the transition takes place, however, React will continue to use
the UI for the old user but will re-render it with isPending set to true. React manages
two versions of the same component concurrently.

13.1.3 Integrating transitions with common components

When Concurrent Mode and its APIs become stable, we would expect to use transi-
tions a lot to smooth switching states for potentially longer-running updates. But
rather than inserting calls to useTransition all over the codebase, the React docs

Branch: 1302-is-pending, File: /src/components/Users/UsersPage.js

Listing 13.3 Destructuring an isPending value to set a property during transitions

Branch: 1302-is-pending, File: /src/components/Users/UserDetails.js

Listing 13.4 Using isPending to set a class name in UserDetails

Assign pending
flag to a local
variable.

Start the
transition.

Pass the
pending flag to
UserDetails.

Get isPending
flag from props.

Use isPending flag
to conditionally

set the class.

333Making smoother transitions between states
suggest we integrate the calls into our design system. Our buttons, for example, could
wrap their event handlers in transitions.

 Let’s try using transition-ready buttons in our UsersList component; we can
remove the transition and isPending code from UsersPage and UserDetails. Fig-
ure 13.4 shows what will happen when we click a new user, Clarisse. The button starts
the transition to Clarisse and uses the isPending state to give feedback, showing spin-
ners for the loading user. While the transition is ongoing, the old user, Mark, is still
highlighted and his details are shown on the right.

The following listing shows our new UI component, ButtonPending. It renders a but-
ton but also encapsulates the transition code. Clicking the button starts a transition,
and spinners are shown by the button while the transition is in a pending state.

import {unstable_useTransition as useTransition} from 'react';
import Spinner from "./Spinner";

export default function ButtonPending ({children, onClick, ...props}) {
 const [startTransition, isPending] = useTransition();

 function handleClick () {
 startTransition(onClick);
 }

 return (
 <button onClick={handleClick} {...props}>
 {isPending && <Spinner/>}
 {children}
 {isPending && <Spinner/>}
 </button>
);
}

Branch: 1303-button-pending, File: /src/components/UI/ButtonPending.js

Listing 13.5 A ButtonPending component that uses transitions

Figure 13.4 The buttons in the users list show spinners when their transition is underway.

Pass in a handler
that needs a

transition.
Wrap the handler
in a transition.

Use the pending flag to indicate
a transition is in progress.

334 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
Replace the button in the UsersList component with ButtonPending (literally
swap the names). Using the special button enables transitions! The CSS is set to fade
in the spinners after a few hundred milliseconds; for quickly loaded data, you won’t
see the spinners.

13.1.4 Holding on to old values with useDeferredValue

There’s one more tool we’ll cover in our introduction to concurrent user interfaces:
the useDeferredValue hook. We maintain old and new versions of a value and use
both in our UI. Figure 13.5 shows what happens when we switch the user from Mark to
Clarisse. The list of users immediately highlights the new user and shows a spinner,
while the details panel continues to show details for the old user.

If switching to a new user, Clarisse, causes a delay in rendering the details panel, it will
continue to use the old value, Mark, until the UI can be rendered for the new value.
The new value has been deferred. The following listing updates UsersPage again, this
time to pass a deferred value for the user to UserDetails.

import {
 useState,
 unstable_useDeferredValue as useDeferredValue,
 Suspense
} from "react";

// other imports

export default function UsersPage () {
 const [loggedInUser] = useUser();
 const [selectedUser, setSelectedUser] = useState(null);
 const user = selectedUser || loggedInUser;
 const queryClient = useQueryClient();

Branch: 1304-deferred-value, File: /src/components/Users/UsersPage.js

Listing 13.6 Passing a deferred value to UserDetails

Figure 13.5 The UsersList shows the latest selection (Clarisse) with inline spinners, but the user details
panel still shows the old user (Mark), the deferred value.

335Making smoother transitions between states

t

 const deferredUser = useDeferredValue(user) || user;

 const isPending = deferredUser !== user;

 function switchUser(nextUser) {
 setSelectedUser(nextUser);

 queryClient.prefetchQuery(/* prefetch user details */);
 queryClient.prefetchQuery(/* prefetch user image */);
 }

 return user ? (
 <main className="users-page">
 <UsersList
 user={user}
 setUser={switchUser}
 isPending={isPending}
 />

 <Suspense fallback={<PageSpinner/>}>
 <UserDetails
 userID={deferredUser.id}
 isPending={isPending}
 />
 </Suspense>
 </main>
) : <PageSpinner/>;
}

UsersPage gets the useDeferredValue hook to manage old and new user values. We
call useDeferredValue with a value to track, like this:

const deferredValue = useDeferredValue(value);

The hook tracks a value. If the value changes from an old value to a new one, the hook
can return either of the values. If React can successfully render a new UI with the new
value, and no children suspend or delay rendering, the hook returns the new value,
and React updates the UI. If the new value causes React to wait for a process to com-
plete before finishing rendering, the hook returns the old value, and React displays
the UI with the old value (while working in memory on the UI with the new value).
deferredValue starts as undefined, so we add the || user at the end to make sure we
use the initial user value as soon as it is set:

const deferredUser = useDeferredValue(user) || user;

In listing 13.6, we pass UsersList the newly selected user value while passing User-
Details the potentially stale deferredUser value:

<UsersList
 user={user}
 setUser={switchUser}

Track the user value:
return the old if the
new delays rendering.

Create a pending flag that’s true
if the deferred value is stale.Update

he user
value.

Let the list know
the new user.

Let the list know its user is
inconsistent with UserDetails.

Show the old user details
while waiting for the new.

Let UserDetails know
its user is stale.

336 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
 isPending={isPending}
/>

<Suspense fallback={<PageSpinner/>}>
 <UserDetails
 userID={deferredUser.id}
 isPending={isPending}
 />
</Suspense>

The UserDetails component continues to show the previous user while the new user
loads. While the two user values are inconsistent, we set the isPending flag to true;
UsersList will show spinners, and UserDetails will reduce its opacity, giving extra
visual feedback to draw attention to the inconsistent UI state.

13.2 Using SuspenseList to manage multiple fallbacks
When we have multiple Suspense components in our UI, it can be useful to have a lit-
tle more control over if and when to show their fallbacks; we don’t want a full circus of
spinners and acrobatic components jumping around the screen. We need a ringmas-
ter to whip them into shape, introducing the pieces in a well-ordered manner. That
ringmaster is the SuspenseList component.

 Say the Users page now includes the bookings for the selected user and any to-dos
they’ve been assigned. The UI might be something like figure 13.6 with the user info,
bookings, and to-dos displayed as part of the user details panel.

 In this section, we first update UserDetails to show the new information within
separate Suspense components. Then we wrap the Suspense components inside a
SuspenseList to better control the order in which we display their fallbacks.

Figure 13.6 The user details now include bookings and to-dos.

337Using SuspenseList to manage multiple fallbacks
13.2.1 Showing data from multiple sources

We want the UserDetails component to display user bookings and to-dos. While the
data loads, we might see something like figure 13.7 with fallback messages, “Loading
user bookings . . . ” and “Loading user todos . . .” displayed by Suspense components.

Listing 13.7 adds UserBookings and UserTodos components to the UserDetails UI.
Each loads its own data, so we wrap them in Suspense components with the appropri-
ate fallback messages. Check the repo for the implementation of the new compo-
nents; it’s not important for the current discussion.

import {Suspense} from "react";
// other imports
import UserBookings from "./UserBookings";
import UserTodos from "./UserTodos";

export default function UserDetails ({userID, isPending}) {
 const {data: user} = useQuery(/* load user info */);

 return (
 <div className={isPending ? "item user user-pending" : "item user"}>
 <div className="item-header">
 <h2>{user.name}</h2>
 </div>

 <Avatar
 src={`http://localhost:3001/img/${user.img}`}
 fallbackSrc="http://localhost:3001/img/avatar.gif"
 alt={user.name}
 />

 <div className="user-details">
 <h3>{user.title}</h3>

Branch: 1305-multi-suspense, File: /src/components/Users/UserDetails.js

Listing 13.7 Including bookings and to-dos in UserDetails

Figure 13.7 Showing fallbacks for loading bookings and to-dos

338 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList

 <p>{user.notes}</p>
 </div>

 <Suspense fallback={<p>Loading user bookings...</p>}>
 <UserBookings id={userID}/>
 </Suspense>

 <Suspense fallback={<p>Loading user todos...</p>}>
 <UserTodos id={userID}/>
 </Suspense>
 </div>
);
}

A UI circus problem might arise because we can’t predict how long each new compo-
nent will take to load its data. Figure 13.8 shows what happens if the to-dos load first:
the to-do list is rendered, but the fallback for the bookings is still showing above the
list. When the bookings finally load, the to-dos, which we might be trying to read, will
be shunted down the page by the incoming bookings.

If we can either show both components at the same time or ensure that the bookings
are displayed first, we’ll improve the user experience. Let’s see how SuspenseList
helps us send the circus packing.

13.2.2 Controlling multiple fallbacks with SuspenseList

To avoid shifting components down when components above them render more slowly,
we could specify that the components appear in order, top-down, even if the data for the
later components loads first. For the Users page, we want to display the user’s bookings
first, as shown in figure 13.9, even if the to-dos data could load more quickly.

Include a Suspense
fallback for the
bookings.

Show the
bookings.

Include a
Suspense fallback
for the to-dos.

Show the to-dos.

Figure 13.8 The to-dos are showing, but the bookings are still loading. Once the bookings load, they’ll push the
to-dos down.

339Using SuspenseList to manage multiple fallbacks

Spec
reveal
We’ll use a SuspenseList component to manage our fallbacks. It’s currently imported
as unstable_SuspenseList:

import {Suspense, unstable_SuspenseList as SuspenseList} from "react";

The following listing shows the UserBookings and UserTodos components and their
fallbacks wrapped in a SuspenseList with revealOrder set to forwards.

<SuspenseList
 revealOrder="forwards"
>
 <Suspense fallback={<p>Loading user bookings...</p>}>
 <UserBookings id={userID}/>
 </Suspense>

 <Suspense fallback={<p>Loading user todos...</p>}>
 <UserTodos id={userID}/>
 </Suspense>
</SuspenseList>

We could also set revealOrder to backwards to show the to-dos first, or together to
show bookings and to-dos at the same time.

 We might not want multiple fallbacks to show, and SuspenseList also has a tail
prop that if set to collapsed shows only one fallback at a time:

<SuspenseList revealOrder="forwards" tail="collapsed">
 {/* UI with Suspense components */}
</SuspenseList>

Branch: 1306-suspense-list, File: /src/components/Users/UserDetails.js

Listing 13.8 Wrap the two Suspense components in a SuspenseList

Figure 13.9 With SuspenseList, we can set the reveal order to force the bookings to appear first.

Wrap the Suspense components
in a SuspenseList.ify the

Order.

340 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
Figure 13.10 shows the user details panel when we set the tail prop on the Suspense-
List. The user details panel shows just the “Loading user bookings . . . ” fallback. The
“Loading user todos . . . ” fallback, as in figure 13.9, appears only after the bookings
have rendered.

SuspenseList is still experimental, and the ways in which it will help us orchestrate
loading states will evolve in the coming months. Our Users page example could be
improved with some judicious prefetching of data and a more careful combination of
all of the techniques used in this chapter. But the examples should have given you a
good feel for what’s arriving in React soon.

13.3 Concurrent Mode and the future
With Concurrent Mode, React can work on rendering multiple versions of the UI in
memory at the same time and update the DOM with only the most appropriate ver-
sion for the current state, which might be in the process of change, waiting for
updates that take time. This flexibility lets React interrupt rendering if higher-priority
updates, like user interaction with form fields, are required. This helps keep the app
responsive and improves the perceived performance of the app.

 Being able to prepare updates in memory also gives React the ability to switch to
an updated UI only when it has enough of it ready, whether that’s a new page, a fil-
tered list, or details for a user. The old UI can still be updated to display pending indi-
cators to let the user know that change is afoot. Avoiding receded states and jarring
spinners can make interacting with our apps feel smoother, helping users to stay
focused on their tasks rather than frustrated with the app.

 Concurrent Mode paves the way for more targeted, intentional loading of code,
data, and resources, integrating server-side rendering more smoothly with the hydra-
tion of client-side components, the timely injection of resources to make components
responsive just in time for user interaction.

Figure 13.10 Only one fallback is shown at a time: first the fallback for the bookings and then the fallback for
the to-dos.

341Summary
 Figure 13.11 shows many of the features that Concurrent Mode promises. It’s
taken from the React documentation at http://mng.bz/7VRe and includes a third
mode, Blocking Mode, an intermediate step in adopting Concurrent Mode, that you
can read about there, as well as the features we’ve covered in part 2 of this book.

Summary
 Remember, these APIs are experimental and are likely to change.
 Enable Concurrent Mode by updating how your app is initially rendered to the

browser. Use ReactDOM.unstable_createRoot and render, like this:

 const root = document.getElementById('root');
 ReactDOM.unstable_createRoot(root).render(<App />);

 Delay rendering of new UI that’s waiting for data by calling the useTransition
hook:

 const [startTransition, isPending] = useTransition();

 Wrap state changes that might cause components to suspend in the start-
Transition function. React can continue to show the old UI until the new UI
is ready.

 startTransition(() => setSelectedUser(nextUser));

Figure 13.11 A feature comparison of Concurrent Mode, Blocking Mode, and Legacy Mode from the
React docs page on adopting Concurrent Mode

https://shortener.manning.com/7VRe

342 CHAPTER 13 Experimenting with useTransition, useDeferredValue, and SuspenseList
 Use the isPending Boolean, the second element in the array that useTransition
returns, to update the old UI, letting the user know that the state is updating.

 Create design system components like custom buttons that automatically transi-
tion from one state to another by wrapping their event handlers with start-
Transition.

 When updating state, continue to use old values if the new value causes a delay,
by calling the useDeferredValue hook to track the value:

 const deferredValue = useDeferredValue(value);

 Components that can render immediately can use the new state, while those
that might suspend can use the deferred value:

 <QuickComponent value={value}/>

 <Suspense fallback={<PageSpinner/>}>
 <UserDetails value={deferredValue}/>
 </Suspense>

 Use the SuspenseList component to manage the order in which Suspense com-
ponents display their fallbacks. Specify the revealOrder as forwards, backwards,
or together, and, optionally, show only one fallback at a time by setting the
tail prop.

 <SuspenseList revealOrder="forwards" tail="collapsed">
 <Suspense fallback={<p>Loading 1...</p>}><Component1/></Suspense>
 <Suspense fallback={<p>Loading 2...</p>}><Component2/></Suspense>
 </SuspenseList>

 Remember, these APIs are experimental and are likely to change.

index
A

addDays function 179
addEventListener 288
Akiko 102
anagram app 165–169

algorithm for 166–169
avoiding redundant function calls 169

anagrams 169
App component 32–33, 35, 172, 192, 200–201,

206–207, 209–212, 296–297, 301, 310,
312–314

App.css file, editing 32–33
App.js file, editing 33–35
application state management 134–163

breaking components into smaller pieces
140–146

creating BookableDetails component
143–146

organizing multiple components within
page UI 142–143

seeing components as part of bigger
app 141–142

passing functions to useCallback to avoid
redefining them 159–162

depending on functions passed in as
props 159–160

maintaining function identity 161–162
passing shared state to child components

135–140
passing state from parent by setting props

on children 136
receiving state from parent as prop

136–138
receiving updater functions from parent as

props 138–140

sharing state and dispatch function from
useReducer 146–151

managing state in BookablesView
component 147–148

receiving state and dispatch in BookablesList
component 148–151

removing actions from reducer 148
sharing state value and updater function from

useState 151–158
managing selected bookables in Bookables-

View component 152–153
receiving bookables and updater function in

BookablesList 153–158
async functions 108–109, 117
Avatar component 321–323
await keyword 104, 108–109

B

b bookable object 158
backwards 342
bookable variable 149, 158
bookable?.group 154
BookableDetails component 143–146, 252, 268,

276
BookableEdit component 249–250, 273–275, 278
BookableForm component 275, 302
bookable.id 158
bookableId parameter 256–258, 263
bookableId value 240, 257, 264
bookableIndex 39, 41, 45, 48, 50, 54, 58, 67–69,

73, 75, 79, 153, 157
BookableNew component 249, 276–277
bookables 36, 40, 73, 79, 112, 238, 269, 271, 273,

278
Bookables components 75
343

INDEX344
Bookables page, adding nested routes to 249–250
BookablesEdit component 297
bookable.sessions array 180
bookablesInGroup variable 40, 58, 155
BookablesList component

building reducer for 73–76
fetching data for 109–116

creating helper function to load data
113–114

data-loading process 110–111
loading bookables 114–116
updating reducer to manage loading and

error states 111–113
receiving bookables and updater function

in 153–158
handler functions 156–157
side effects 155–156
UI 157–158
variables 154–155

receiving state and dispatch in 148–151
handler functions 150
side effects 149–150
UI 150–151
variables 148–149

BookablesNew component 297
BookablesPage component 35, 37, 40, 142,

248–250, 278–279, 297
BookablesView component

managing selected bookables in 152–153
managing state in 147–148

bookerId 200
Booking component 196, 198, 278
booking variable 189
BookingDetails component 172–174, 192,

195–196, 199–200, 203–205, 207, 215,
234–235, 278

BookingForm component 278
Bookings component 171, 173, 183–184, 200,

261–262
bookings lookup object 188–189, 192
bookings manager app 28–38

adding database file 36–37
creating page components and UserPicker.js

file 37–38
editing key files 31–35

App.css 32–33
App.js 33–35
index.html 32
index.js 35

generating app skeleton with create-react-app
30–31

Bookings page
managing selected bookables 173
managing selected week and booking 173–175
organizing components on 171–175

BookingsGrid component 176–192, 261, 269,
271–272

coping with racing responses when fetching data
in useEffect 186–192

side effects 186–188
UI 189–192
UI helper function 188–189

creating BookingsGrid component and calling
useMemo 182–186

variables 183–186
generating grid of sessions and dates 177–180
generating lookup for bookings 180–181
getBookings function 182
useBookings hook 242–243

BookingsPage component 34–35, 37, 171–173,
200, 319

updating to use WeekPicker 85–86
using query parameters in 259–260

BookingsView 156
bundles 284
button element 5, 334
ButtonPending component 333–334

C

Calendar component 290, 292–293
CalendarWrapper component 289–291, 293
call-to-action messages, displaying when page

loads 196–197
canError Boolean 311
Cascading Style Sheets (CSS) 32
catch method 114, 116, 156, 159
cell helper function 188
cellData variable 189
changeBookable function 41, 79, 129, 157–158
changeGroup function 69–70, 79, 157,

255–256
Chat component 18, 221
check boxes, using to set state 56–59
checkStatus function 308–309
children prop 209–212, 215, 217
className attribute 45
client object 269
code splitting 283–304

error boundaries 298–303
creating 300–302
example in React docs 299–300
recovering from errors 303

importing code dynamically 284–288
calling import function to load

JavaScript 287–288
setting up web page to load JavaScript when

button is clicked 284–285
using default and named exports 285–286
using static imports to load JavaScript 286

INDEX 345
code splitting (continued)
importing components dynamically 288–298

code splitting app on its routes 296–298
converting component to lazy

component 289–292
how lazy and Suspense work together

295–296
specifying fallback content 292–295

color prop 136–140
ColorChoiceText component 136–137
ColorPicker component 136, 138–140
Colors component 135–136, 139–140
colors prop 136, 139–140
ColorSample component 136–138
component composition 213
component state management

with useReducer hook 65–91
concepts 86–87
generating initial state with function 79–86
managing more complicated state with 70–79
updating multiple state values in response to

single event 66–70
with useRef hook 118–133

keeping references to DOM elements
125–132

storing timer IDs with ref 122–125
updating state without causing re-

render 119–122
with useState hook 27–64

calling multiple times to work with multiple
values 53–59

reviewing some function component
concepts 60

setting up app 28–38
values 38–53

componentDidCatch method 299, 301, 304
componentDidMount method 15
componentWillUnmount method 15
componentWillUpdate method 15
Concurrent Mode 22–23, 327–342

future and 340–341
smoother transitions between states 328–336

avoiding receded states 329–331
giving users feedback 331–332
holding on to old values 334–336
integrating transitions with common

components 332–334
const syntax addition 25
Context API 194–217

custom providers 206–213
avoiding unnecessary re-renders 211–212
creating 209–210
moving state to 207–213
setting objects as context provider

values 206–207

using 212–213
using children prop to render wrapped

components 210
multiple contexts 213–216

specifying default value for context 216
splitting context values across multiple

providers 213–214
using custom provider for 214–215
using separate contexts for state value and

updater function 215–216
needing state from higher up in component

tree 195–205
displaying booking information when visitor

selects booking 198–199
displaying call-to-action message when page

loads 196–197
displaying edit button 199–205

controlled components 131, 133
count variable 71–73, 121
Counter component 119
create function 170
createBookable mutation function 276–277
createItem function 277
create-react-app 30–32, 104, 229, 244
CSS (Cascading Style Sheets) 32
current property 118, 121–122, 125, 132
custom hooks 218–244

consuming context value with 233–235
extracting functionality into 220–227, 229–233

accessing window dimensions 229–231
calling custom hooks from custom

hooks 225–227
defining custom hooks outside

components 224–225
getting and setting values 231–233
recognizing shareable functionality 223–224

fetching data 235–243
useBookings hook 238–243
useFetch hook 236–238

rules for 227–229
call hooks only at top level 228
call hooks only from React functions 228
using ESLint plugin for 229

custom providers 206–213
avoiding unnecessary re-renders 211–212
creating 209–210
moving state to 207–213
setting objects as context provider values

206–207
splitting context values across multiple 213–214
using 212–213
using children prop to render wrapped

components 210
using for multiple contexts 214–215

cycle diagrams 7–9

INDEX346
D

data property 236, 238, 241, 277
database file, adding to app 36–37
Date object 82, 262
date parameter 256–258, 263–264
dateText 131–132
db.json file, creating 104
default keyword 285
default property 287, 295
deferredUser value 335
deferredValue 335
delay flag 107
deleteItem method 278
dependencies 283
dispatch function 146–151

managing state in BookablesView
component 147–148

receiving state and dispatch in BookablesList
component 148–151

handler functions 150
side effects 149–150
UI 150–151
variables 148–149

removing actions from reducer 148
dispatch prop 148, 151, 155, 174
div element 32, 35
document property 93
DOM (Document Object Model) 6
DOM elements, keeping references to 125–132

managing text boxes via ref 129–132
setting focus on elements in response to

events 126–129
doUpdate variable 187, 193
drop-down lists, using to set state 53–56
dynamic imports

importing code 284–288
calling import function to load 287–288
setting up web page to load when button is

clicked 284–285
using default and named exports 285–286
using static imports to load 286

importing components 288–298
code splitting app on its routes 296–298
converting component to lazy

component 289–292
how lazy and Suspense work together 295–

296
specifying fallback content 292–295

E

edit buttons, displaying 199–205
editItem method 278
element prop 250, 279

endDate 182, 240
error boundaries 192, 298–303

creating 300–302
example in React docs 299–300
React Query 317–319
recovering from errors 303

error property 111, 236, 277
ErrorBoundary component 301, 307–308, 311,

313–315, 318
ErrorFallback component 314–315
ESLint plugin 229
eslint-plugin-react-hooks plugin 229, 244
ET_DATE action 130
expensiveFn function 170
Experimental channel 24
export keyword 285

F

fallback prop 293, 301
FallbackComponent prop 311, 314
fetch function 113–114
fetch on render 108
fetch state 113
FETCH_BOOKABLES_ERROR action type 113
FETCH_BOOKABLES_REQUEST action type 112
FETCH_BOOKABLES_SUCCESS action type 112
fetching data 104–109, 235–243

async functions and await keyword 108–109
coping with racing responses in useEffect

186–192
side effects 186–188
UI 189–192
UI helper function 188–189

creating db.json file 104
fetching data within useEffect hook 106–108
for BookablesList component 109–116

creating helper function to load data
113–114

data-loading process 110–111
loading bookables 114–116
updating reducer to manage loading and

error states 111–113
setting up JSON server 105–106
streamlining with React Query 266–278

accessing data in query cache 273–276
giving components access to client 269–270
overview 267–269
updating server state 276–278
useQuery 270–273

useBookings hook 238–243
useFetch hook

creating 236–237
using data, status, and error values returned

by 237–238

INDEX 347
fetching data (continued)
with Suspense 306–317

as early as possible 310–311
new data 311–314
React docs 315–317
recovering from errors 314–315
upgrading promises to include status

308–309
using promise status to integrate with

Suspense 309–310
fetchMessage function 310–311
fetchNextMessage function 312
filter method 25, 40
flavor parameter 250
focus method 126, 128
- -force flag 329
forEach 180
forwards 339, 342
Fragment components 151
function calls

avoiding redundant 169
memoizing 170–171

function component 14

G

get method 259
getAnagrams 167, 169
getBookings function 182, 186–187
getData function 113–114, 116, 155, 182, 236
getDay method 82
getDerivedStateFromError method 299–300,

304
getDistinct 167, 169
getElementById 126, 288
getFirstMessage function 312
getGrid function 178, 180, 184, 186, 241
getMessage prop 313, 316
getMessageOrThrow function 307–311, 316
getNextMessage function 313
getPromise function 290–291
getQueryData method 273, 280
getStatusChecker function 308–309, 315–316
getUniqueValues utility function 56
getUrl function 254, 256, 260
getUrl prop 256
getWeek function 82–85
goToDate function 132, 264
goToDate handler function 130
greetings variable 95
grid lookup object 188–189
grid variable 189
group property 36, 47–48, 157
group state 73, 153
group variable 54–55, 69, 79

H

h2 element 5
handleClick function 287
handleDelete function 278
handler functions

receiving bookables and updater function in
BookablesList component 156–157

receiving state and dispatch in BookablesList
component 150

handleResize function 97–98
handleSave function 278
handleSubmit function 276
hangeBookable function 128
hasDetails flag 149
hasDetails state 59, 73, 145–146, 148
hasDetails variable 79
hasError property 300
head element 323
header element 299
height property 231
helloModule variable 286
helper functions

creating to load data 113–114
checking responses for errors 114
converting responses to JavaScript

objects 114
sending requests 113

UI helper function 188–189
hooks 13–21, 28, 87

custom 17–18, 218–244
consuming context value with 233–235
extracting functionality into 220–227,

229–233
fetching data 235–243
rules for 227–229

stateful function components 14–17
third-party 18–21, 245–280

React Query 256–278
React Redux 21
React Router 20, 246–256
React Spring 21

HTMLImageElement Image constructor 320

I

id property 36, 157, 252
image loading 319–325

pre-fetching images and data with React
Query 323–325

using React Query and Suspense to provide an
image-loading fallback 320–323

Image object 321
Img component 321, 323
img element 319, 323

INDEX348
import function 284–288
calling to dynamically load JavaScript 287–288
setting up web page to load JavaScript when but-

ton is clicked 284–285
using default and named exports 285–286
using static imports to load JavaScript 286

import statements 283
ind array method 273
index variables 95
index.html, editing 32
index.js, editing 35
init object 113
initialData config property 274–275
initialization functions, passing to useReducer

hook 84–85
initialState 77
innerHeight property 95
innerHTML property 288
innerWidth property 95
isAnswerShown variable 9
isBooker 204
isError hook 236
isLoading hook 236, 275
isLoading property 111–114, 116, 277
isPending variable, giving users feedback

with 331–332

J

JavaScript
calling import function to load 287–288
converting responses to JavaScript objects 114
setting up web page to load when button is

clicked 284–285
using static imports to load 286

JSON (JavaScript Object Notation) 36
json method 114
JSON server, setting up 105–106
json-server package 104–105, 182, 240, 268, 271,

328

K

key1 parameter 256
key2 parameter 256
Kit value 55

L

Latest channel 24
lazy function 288–298, 306–307

code splitting app on its routes 296–298
converting component to lazy component

with 289–292
how lazy and Suspense work together 295–296

lazy initial state 49, 63
LazyCalendar component 290–291, 293, 306
let syntax addition 25
li element 45
Link components 34, 246, 254
link element 323
loggedInUser variable 207, 235

M

makeThrower function 309–310, 315–316
map method 25
memo function 161
memoizing 170
Message component 306–307, 310–313,

315–316
messageResource 317
Milkshake component 250, 252
module object 287
module.default 287
mutate function 277
MyComponent component 210

N

navigate function 255
navigate variable 252
Next channel 24
next function 313, 315
NEXT_BOOKABLE action 75
nextBookable updater function 52–53, 79, 157,

255
nextButtonRef variable 127–128
nextButtonRef.current property 127–128
nextHasFocus state 126
notes property 36
npx command 30–31
null state 66, 125, 162, 189, 192

O

onClick event handler 41, 44–45, 140, 158
onReset prop 315
onSuccess property 278
option element 203
optional chaining operator 154

P

p element 5
page components, creating 37–38
PageSpinner component 297
parseInt 252
path attribute 248, 250, 256
pdateBookable function 160

INDEX 349
performance management 164–193
anagram app 165–169
building BookingsGrid 176–192
memoizing expensive function calls 170–171
organizing components on Bookings page

171–175
POST request 104
prefetchQuery component 324
promises

upgrading to include status 308–309
using status to integrate with Suspense

309–310
props

depending on functions passed in as 159–160
passing state from parent by setting on

children 136
receiving state from parent as 136–138
receiving updater functions from parent

as 138–140
using children prop to render wrapped

components 210
Provider components 194–195, 201, 206–207
publication channels 24
PUT request 104

Q

query string search parameters 256–266
getting 258–262

creating useBookingsParams hook
258–259

using date query parameter in Bookings
component 261–262

using query parameters in BookingsPage
component 259–260

setting 262–266
queryCache.prefetch method 326
queryClient object 280
QuestionCard components 5, 9
Quiz app, state in 9–10
Quiz component 5–6, 14, 17–18, 218, 220

R

React 3–26
defined 3–4
hooks 13–21

calling only from React functions 228
custom 17–18
stateful function components 14–17
third-party 18–21

key features of
building UIs from components 4–6
component types 10–12
synchronizing state and UI 6–10

new features in 12–13
publication channels 24
target audience for book 25
UX improvements 21–24

Concurrent Mode 22–23
Suspense 23–24

React docs
error boundaries 299–300
fetching data with Suspense 315–317

React Hooks 13
React Query 266–278

accessing data in query cache 273–276
error boundaries 317–319
fetching data 270–273

using array as query key 272–273
using string as query key 270–271

giving components access to client 269–270
image-loading fallback 320–323
overview 267–269
pre-fetching images and data with 323–325
updating server state 276–278

React Redux 21
React Router 20, 246–256

accessing URL parameters 250–252
adding nested routes to Bookables page

249–250
navigating with useNavigate hook 252–256
setting up routes to enable nesting

248–249
React Spring 21
react-cache package 307
React.Component 12–13
ReactDOM.unstable_createRoot 341
react-error-boundary package 303, 311, 314–315,

326
react-hooks-in-action project 30
React.lazy 283
React.PureComponent base class 12
read method 316–317, 326
reateContext method 201
receded states 328
reduce array 180
reduce method 25, 181
reducers 59, 70, 77
ref attribute 127–128, 132
ref.current 119
render method 12, 300
render-as-you-fetch 313
resetErrorBoundary function 314–315
resp.json method 107
revealOrder 339, 342
Route component 246, 250, 256, 279
Route tags 250, 279
Router component 201, 212, 246
Routes component 246, 279, 296, 301

INDEX350
S

Sanjiv 102–103
SayHello component 94, 223–225
sayHi 286–287
search parameters 256
searchParams object 258–259
select element 203
selected variable 44
selectedRoom variable 43
sessions array 104
sessions value 241
setBookable function 156–157, 159, 173, 255
setBookable prop 154–156, 159–160
setBookableIndex function 44–45, 52, 54, 70
setBookables prop 155
setBookings variable 188–189
setBookingsDate function 263–264
setColor function 140
setColor prop 139–140
setColor updater function 136, 139–140
setCount updater function 121
setDateText 131
setError prop 155
setGetMessage function 313
SET_GROUP action 75
setGroup updater function 54–55, 70
setIndex 95
setInterval timer 92, 116, 118, 124, 132
setIsLoading prop 155
Sets 55
setSearchParams variable 263–264, 280
setSelectedRoom variable 43
setSize 97
setState updater function 46–48
setTimeout timer 92, 116, 118, 132
setUser function 102, 202–203, 205–207, 210–211,

234
setUser property 207, 215
ShinyComponent function 49
shortISO function 179
showMessage variable 286, 288
side effects 92–117

coping with racing responses when fetching
data 186–188

fetching data 104–109
async functions and await keyword 108–109
creating db.json file 104
fetching data within useEffect hook

106–108
setting up JSON server 105–106

fetching data for BookablesList
component 109–116

creating helper function to load data
113–114

data-loading process 110–111
loading bookables 114–116
updating reducer to manage loading and

error states 111–113
receiving bookables and updater function

in BookablesList component
155–156

receiving state and dispatch in BookablesList
component 149–150

useEffect hook 93–104
calling 103
cleaning up effects by returning function

97–99
controlling when effects run by specifying

dependencies 99–103
running effects after every render

93–95
running effects before browser repaints

103–104
running effects only when component

mounts 95–97
size parameter 250
sourceText 169
Spinner components 106–107
startDate value 240
startTransition function 341–342
state management

application state management 134–163
breaking components into smaller

pieces 140–146
passing functions to useCallback to avoid

redefining them 159–162
passing shared state to child

components 135–140
sharing state and dispatch function from

useReducer 146–151
sharing state value and updater function

from useState 151–158
component state management

with useReducer hook 65–91
with useRef hook 118–133
with useState hook 27–64

with Context API 194–217
custom providers 206–213
multiple contexts 213–216
needing state from higher up in component

tree 195–205
state prop 148
. . . state spread operator 49
state variable 77, 79
static imports 283
status property 277
status value 236–238, 241, 243, 317
stopPresentation function 124–125
super() function 15

INDEX 351
Suspense 23–24, 305–326
code splitting with 283–304

error boundaries 298–303
importing code dynamically with import

function 284–288
importing components dynamically with lazy

and Suspense 288–298
error boundaries with React Query 317–319
fetching data 306–317

as early as possible 310–311
checking React docs 315–317
new data 311–314
recovering from errors 314–315
upgrading promises to include status 308–309
using promise status to integrate with

Suspense 309–310
loading images 319–325

pre-fetching images and data with React
Query 323–325

using React Query and Suspense to provide
an image-loading fallback 320–323

SuspenseList component 306, 336–340, 342
controlling multiple fallbacks with

SuspenseList 338–340
showing data from multiple sources 337–338

switch statement 90
switchUser function 324, 330

T

tail prop 340, 342
text boxes, managing via ref 129–132

controlled components 131–132
uncontrolled components 131

textboxRef.current.value 131
TextToggle components 5
then method 108, 116, 193, 287
third-party hooks 18–21, 245–280

React Query 256–278
accessing data in query cache 273–276
fetching data with useQuery 270–273
getting query string search parameters

258–262
giving components access to React Query

client 269–270
setting query string search parameters 262–266
updating server state 276–278

React Redux 21
React Router 20, 246–256

accessing URL parameters 250–252
adding nested routes to Bookables page

249–250
navigating 252–256
setting up routes to enable nesting 248–249

React Spring 21

this 15
this.setState function 46
timer IDs, storing with ref 122–125
timerRef.current 125
title property 36
toggleDetails function 79
toggleDetails handler function 150
transformBookings function 181, 186, 188, 239
tree-shaking 284
true state 9, 66, 187, 204

U

uncontrolled components 131, 133
unstable prefix 330
unstable_SuspenseList 339
untangle function 49
updateBookable function 160
updateGreeting function 95
updater functions

calling replaces previous state value 46–49
class component approach 46–47
function component approach 47–49

calling useState hook returns 42–46
receiving from parent as prop 138–140
sharing state value and 151–158

managing selected bookables in Bookables-
View component 152–153

receiving bookables and updater function in
BookablesList 153–158

using separate contexts for state value and
215–216

useAuth custom hook 18
useBookings hook 235, 238–243, 272
useBookingsParams hook, creating 258–259
useCallback hook, passing functions to 159–162

depending on functions passed in as props
159–160

maintaining function identity 161–162
useChain hook 21
useContext hook 12–13, 171–172, 192, 194–195,

201, 204–206, 208–209, 213, 216–217, 233,
235

useCreateBooking hook 278
useDeferredValue hook 325, 334–336
useDeleteBooking hook 278
useDispatch hook 21
useDocumentTitle hook 220, 223–225, 227, 229,

243
useEffect hook 12–13, 93–104, 134, 158, 160–161,

218, 220, 223, 227, 229–232, 235–236
calling to run effects before browser

repaints 103–104
calling useLayoutEffect to run effects before

browser repaints 103–104

INDEX352
useEffect hook (continued)
cleaning up effects by returning function 97–99
controlling when effects run by specifying

dependencies 99–103
visitor first loads page 101–102
visitor refreshes page 102–103

coping with racing responses when fetching
data 186–192

effects 186–188
UI 189–192
UI helper function 188–189

fetching data within 106–108
running effects after every render 93–95
running effects only when component

mounts 95–97
useEventListener custom hook 18
useFetch hook 18, 220, 225, 235–236, 238, 241,

243, 246, 251, 266–267, 270–273
useFormState hook 275
useGrid hook 241
useLayoutEffect, calling to run effects before

browser repaints 103–104
useLocalStorage hook, getting and setting values

with 231–233
useMemo hook 164–193, 241

anagram app 165–169
algorithm for 166–169
avoiding redundant function calls 169

BookingsGrid component 176–192
coping with racing responses when fetching

data 186–192
creating and calling useMemo 182–186
generating grid of sessions and dates 177–180
generating lookup for bookings 180–181
providing getBookings function 182

memoizing expensive function calls 170–171
organizing components on Bookings page

171–175
managing selected bookables 173
managing selected week and booking
173–175

useMutation hook, updating server state
with 276–278

useNavigate hook 252–256
useParams hook 250–252
useQuery hook 270–273, 317–318

using array as query key 272–273
using string as query key 270–271

useQueryClient hook 273
user property 207, 215
user state 206–207, 209, 211
user value 206, 210
user variable 207, 232, 234
useRandomTitle hook 220, 223, 225–227, 229
UserBookings components 337, 339

UserContext components 201, 209
UserContext context object 204–205
UserContext object 200
UserContext.Provider component 207, 209–210,

212
UserDetails component 158, 319, 322–323,

330–337
useReducer hook 12–13, 21, 65, 70–91, 131, 133,

218
concept review 86–87
generating initial state 79–86

building reducer to manage dates for
component 83–84

creating utility functions to work with dates
and weeks 82–83

passing initialization function 84–85
updating BookingsPage to use

WeekPicker 85–86
WeekPicker component 81–82

managing more complicated state with 70–79
accessing component state and dispatching

actions 76–79
building reducer for BookablesList

component 73–76
updating state using reducer with predefined

set of actions 71–73
managing selected week and booking with

173–175
sharing state and dispatch function from

146–151
managing state in BookablesView

component 147–148
receiving state and dispatch in BookablesList

component 148–151
removing actions from reducer 148

updating multiple state values in response to sin-
gle event 66–70

predictable state changes 68–70
unpredictable state changes 66–68

useRef function 121–122
useRef hook 116, 118–134

keeping references to DOM elements 125–132
managing text boxes via ref 129–132
setting focus on elements in response to

events 126–129
storing timer IDs with ref 122–125
updating state without causing re-render

119–122
calling useRef 121–122
useState vs. useRef 119–121

userID value 332
useRouter custom hook 18
UserPicker component 35, 37, 46, 105–107, 110,

113, 200, 202–203, 206–207, 212, 215–216,
231–232, 234, 238, 269, 273

INDEX 353
UserPicker.js file, creating 37–38
UserProvider component 209–212, 215
users array 108
users variable 107–108
UserSetContext context object 216
UsersList component 46, 59, 105, 108, 116, 158,

238, 273, 319, 333–336
UsersPage component 35, 37, 46, 108, 158,

200, 207, 215, 234–235, 297, 319, 324, 331,
333–335

UserTodos component 337, 339
useSearchParams hook 245–247, 256–259, 263,

279
useSelector hook 21
useSpring hook 21
useState hook 12–13, 27, 42–64, 66, 70, 76, 79,

87, 102, 107–108, 201, 206, 209, 212, 218,
225–227, 231–232, 236, 238, 251, 253, 258,
312–313

calling multiple times to work with multiple
values 53–59

using check box to set state 56–59
using drop-down list to set state 53–56

concept review 60
managing selected bookables with 173
managing selected week and booking with

173–175
setting up app 28–38

adding database file 36–37
creating page components and UserPicker.js

file 37–38
editing key files 31–35
generating app skeleton with create-react-

app 30–31
sharing state value and updater function

from 151–158
managing selected bookables in Bookables-

View component 152–153
receiving bookables and updater function in

BookablesList 153–158
useRef vs. 119–121
values 38–53

assigning new values to variables doesn't
update UI 39–42

calling updater function replaces previous
state value 46–49

calling useState returns value and updater
function 42–46

passing function to useState as initial
value 49–50

using previous state when setting new
state 50–53

useStore hook 21
useTrail hook 21
useTransition hook 12–13, 21, 23, 325, 327–332,

341–342
useUpdateBooking hook 278
useUser hook 233–235
useUsers hook 18, 220–221, 225, 243
useWindowSize hook 229–231
utility functions, creating to work with dates and

weeks 82–83

V

value prop 206–207, 215, 233
values 38–53

assigning new values to variables doesn't update
UI 39–42

calling returns value and updater function
42–46

calling updater function replaces previous state
value 46–49

passing function as initial value 49–50
using previous state when setting new state

50–53

W

week object 261
week variable 85
WeekPicker component 119, 125, 129–131,

173–174, 262, 264
overview 81–82
updating BookingsPage to use 85–86

weekStart 262
week.start 262
width property 231
window object 95
WindowSizer component 229–230
Wrapper component 210
wrapPromise function 316

For ordering information go to www.manning.com

RELATED MANNING TITLES

Joy of JavaScript
by Luis Atencio

ISBN 9781617295867
360 pages, $39.99
February 2021

Secrets of the JavaScript Ninja
by John Resig, Bear Bibeault, and Josip Maras

ISBN 9781617292859
464 pages, $44.99
August 2016

React Quickly
by Azat Mardan
Foreword by John Sonmez

ISBN 9781617293344
528 pages, $49.99
August 2017

John Larsen

ISBN: 978-1-61729-763-2

G
et started with React Hooks and you’ll soon have code
that’s better organized and easier to maintain. React
Hooks are targeted JavaScript functions that let you

reuse and share functionality across components. Use them
to split components into smaller functions, manage state and
side effects, and access React features without classes—all
without having to rearrange your component hierarchy.

React Hooks in Action teaches you to write fast and reusable
React components using Hooks. You’ll start by learning to
create component code with Hooks. Next, you’ll implement
a resource booking application that demonstrates managing
local state, application state, and side effects like fetching data.
Code samples and illustrations make learning Hooks easy.

What’s Inside
● Build function components that access React features
● Manage local, shared, and application state
● Explore built-in, custom, and third-party hooks
● Load, update, and cache data with React Query
● Improve page and data loading with code-splitting
 and React Suspense

For beginning to intermediate React developers.

John Larsen has been a teacher and web developer for over 20
years, creating apps for education and helping students learn
to code. He is the author of Get Programming with JavaScript.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

React Hooks IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Discover React Hooks,
and the future of

developing apps with React.
 A great book.”—Arnaud Castelltort

University of Montpellier

“This book covers
everything that you need

to know. A fantastic addition
 to your React arsenal.”—Clive Harber

Distorted Thinking Ltd

“Level up your React
knowledge and take

advantage of the newer
 features and best practices.”—Ryan Burrows, Remitly

“An excellent introduction.
Filled with knowledge nuggets

and real-world use cases.”—Edin Kapić, isolutions

See first page

	React Hooks in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1
	1 React is evolving
	1.1 What is React?
	1.1.1 Building a UI from components
	1.1.2 Synchronizing state and UI
	1.1.3 Understanding component types

	1.2 What’s new in React?
	1.3 React Hooks can add state to function components
	1.3.1 Stateful function components: Less code, better organization
	1.3.2 Custom hooks: Easier code reuse
	1.3.3 Third-party hooks provide ready-made, well-tested functionality

	1.4 Better UX with Concurrent Mode and Suspense
	1.4.1 Concurrent Mode
	1.4.2 Suspense

	1.5 React’s new publication channels
	1.6 Whom is this book for?
	1.7 Getting started
	Summary

	2 Managing component state with the useState hook
	2.1 Setting up the bookings manager app
	2.1.1 Generating the app skeleton with create-react-app
	2.1.2 Editing the four key files
	2.1.3 Adding a database file for the application
	2.1.4 Creating page components and a UserPicker.js file

	2.2 Storing, using, and setting values with useState
	2.2.1 Assigning new values to variables doesn’t update the UI
	2.2.2 Calling useState returns a value and an updater function
	2.2.3 Calling the updater function replaces the previous state value
	2.2.4 Passing a function to useState as the initial value
	2.2.5 Using the previous state when setting the new state

	2.3 Calling useState multiple times to work with multiple values
	2.3.1 Using a drop-down list to set state
	2.3.2 Using a check box to set state

	2.4 Reviewing some function component concepts
	Summary

	3 Managing component state with the useReducer hook
	3.1 Updating multiple state values in response to a single event
	3.1.1 Taking users out of the movie with unpredictable state changes
	3.1.2 Keeping users in the movie with predictable state changes

	3.2 Managing more complicated state with useReducer
	3.2.1 Updating state using a reducer with a predefined set of actions
	3.2.2 Building a reducer for the BookablesList component
	3.2.3 Accessing component state and dispatching actions with useReducer

	3.3 Generating the initial state with a function
	3.3.1 Introducing the WeekPicker component
	3.3.2 Creating utility functions to work with dates and weeks
	3.3.3 Building the reducer to manage dates for the component
	3.3.4 Passing an initialization function to the useReducer hook
	3.3.5 Updating BookingsPage to use WeekPicker

	3.4 Reviewing some useReducer concepts
	Summary

	4 Working with side effects
	4.1 Exploring the useEffect API with simple examples
	4.1.1 Running side effects after every render
	4.1.2 Running an effect only when a component mounts
	4.1.3 Cleaning up side effects by returning a function
	4.1.4 Controlling when an effect runs by specifying dependencies
	4.1.5 Summarizing the ways to call the useEffect hook
	4.1.6 Calling useLayoutEffect to run an effect before the browser repaints

	4.2 Fetching data
	4.2.1 Creating the new db.json file
	4.2.2 Setting up a JSON server
	4.2.3 Fetching data within a useEffect hook
	4.2.4 Working with async and await

	4.3 Fetching data for the BookablesList component
	4.3.1 Examining the data-loading process
	4.3.2 Updating the reducer to manage loading and error states
	4.3.3 Creating a helper function to load data
	4.3.4 Loading the bookables

	Summary

	5 Managing component state with the useRef hook
	5.1 Updating state without causing a re-render
	5.1.1 Comparing useState and useRef when updating state values
	5.1.2 Calling useRef

	5.2 Storing timer IDs with a ref
	5.3 Keeping references to DOM elements
	5.3.1 Setting focus on an element in response to an event
	5.3.2 Managing a text box via a ref

	Summary

	6 Managing application state
	6.1 Passing shared state to child components
	6.1.1 Passing state from a parent by setting props on the children
	6.1.2 Receiving state from a parent as a prop
	6.1.3 Receiving an updater function from a parent as a prop

	6.2 Breaking components into smaller pieces
	6.2.1 Seeing components as part of a bigger app
	6.2.2 Organizing multiple components within a page’s UI
	6.2.3 Creating a BookableDetails component

	6.3 Sharing the state and dispatch function from useReducer
	6.3.1 Managing state in the BookablesView component
	6.3.2 Removing an action from the reducer
	6.3.3 Receiving state and dispatch in the BookablesList component

	6.4 Sharing the state value and updater function from useState
	6.4.1 Managing the selected bookable in the BookablesView component
	6.4.2 Receiving the bookable and updater function in BookablesList

	6.5 Passing functions to useCallback to avoid redefining them
	6.5.1 Depending on functions we pass in as props
	6.5.2 Maintaining function identity with the useCallback hook

	Summary

	7 Managing performance with useMemo
	7.1 Breaking the cook’s heart by calling, “O, shortcake!”
	7.1.1 Generating anagrams with an expensive algorithm
	7.1.2 Avoiding redundant function calls

	7.2 Memoizing expensive function calls with useMemo
	7.3 Organizing the components on the Bookings page
	7.3.1 Managing the selected bookable with useState
	7.3.2 Managing the selected week and booking with useReducer and useState

	7.4 Efficiently building the bookings grid with useMemo
	7.4.1 Generating a grid of sessions and dates
	7.4.2 Generating a lookup for bookings
	7.4.3 Providing a getBookings data-loading function
	7.4.4 Creating the BookingsGrid component and calling useMemo
	7.4.5 Coping with racing responses when fetching data in useEffect

	Summary

	8 Managing state with the Context API
	8.1 Needing state from higher up the component tree
	8.1.1 Displaying a call-to-action message when the page first loads
	8.1.2 Displaying booking information when a visitor selects a booking
	8.1.3 Displaying an edit button for a user’s bookings: The problem
	8.1.4 Displaying an edit button for a user’s bookings: The solution

	8.2 Working with custom providers and multiple contexts
	8.2.1 Setting an object as the context provider’s value
	8.2.2 Moving the state to a custom provider
	8.2.3 Working with multiple contexts
	8.2.4 Specifying a default value for a context

	Summary

	9 Creating your own hooks
	9.1 Extracting functionality into custom hooks
	9.1.1 Recognizing functionality that could be shared
	9.1.2 Defining custom hooks outside your components
	9.1.3 Calling custom hooks from custom hooks

	9.2 Following the Rules of Hooks
	9.2.1 Call hooks only at the top level
	9.2.2 Call hooks only from React functions
	9.2.3 Using an ESLint plugin for the rules of hooks

	9.3 Extracting further examples of custom hooks
	9.3.1 Accessing window dimensions with a useWindowSize hook
	9.3.2 Getting and setting values with a useLocalStorage hook

	9.4 Consuming a context value with a custom hook
	9.5 Encapsulating data fetching with a custom hook
	9.5.1 Creating the useFetch hook
	9.5.2 Using the data, status, and error values the useFetch hook returns
	9.5.3 Creating a more specialized data-fetching hook: useBookings

	Summary

	10 Using third-party hooks
	10.1 Accessing state in the URL with React Router
	10.1.1 Setting up routes to enable nesting
	10.1.2 Adding nested routes to the Bookables page
	10.1.3 Accessing URL parameters with the useParams hook
	10.1.4 Navigating with the useNavigate hook

	10.2 Getting and setting query string search parameters
	10.2.1 Getting search parameters from the query string
	10.2.2 Setting the query string

	10.3 Streamlining data-fetching with React Query
	10.3.1 Introducing React Query
	10.3.2 Giving components access to a React Query client
	10.3.3 Fetching data with useQuery
	10.3.4 Accessing data in the query cache
	10.3.5 Updating server state with useMutation

	Summary

	Part 2
	11 Code splitting with Suspense
	11.1 Importing code dynamically with the import function
	11.1.1 Setting up a web page to load JavaScript when a button is clicked
	11.1.2 Using default and named exports
	11.1.3 Using static imports to load JavaScript
	11.1.4 Calling the import function to dynamically load JavaScript

	11.2 Importing components dynamically with lazy and Suspense
	11.2.1 Converting a component to a lazy component with the lazy function
	11.2.2 Specifying fallback content with the Suspense component
	11.2.3 Understanding how lazy and Suspense work together
	11.2.4 Code splitting an app on its routes

	11.3 Catching errors with error boundaries
	11.3.1 Checking out the error boundary example in the React docs
	11.3.2 Creating our own error boundary
	11.3.3 Recovering from errors

	Summary

	12 Integrating data fetching with Suspense
	12.1 Data fetching with Suspense
	12.1.1 Upgrading promises to include their status
	12.1.2 Using the promise status to integrate with Suspense
	12.1.3 Fetching data as early as possible
	12.1.4 Fetching new data
	12.1.5 Recovering from errors
	12.1.6 Checking the React docs

	12.2 Using Suspense and error boundaries with React Query
	12.3 Loading images with Suspense
	12.3.1 Using React Query and Suspense to provide an image-loading fallback
	12.3.2 Prefetching images and data with React Query

	Summary

	13 Experimenting with useTransition, useDeferredValue, and SuspenseList
	13.1 Making smoother transitions between states
	13.1.1 Avoiding receded states with useTransition
	13.1.2 Giving users feedback with isPending
	13.1.3 Integrating transitions with common components
	13.1.4 Holding on to old values with useDeferredValue

	13.2 Using SuspenseList to manage multiple fallbacks
	13.2.1 Showing data from multiple sources
	13.2.2 Controlling multiple fallbacks with SuspenseList

	13.3 Concurrent Mode and the future
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

