

Fullstack React with TypeScript

Learn Pro Patterns for Hooks, Testing, Redux, SSR, and GraphQL

Written by Maksim Ivanov and Alex Bespoyasov

Edited by Nate Murray

© 2020 Fullstack.io

All rights reserved. No portion of the book manuscript may be
reproduced, stored in a retrieval system, or transmitted in any form or by
any means beyond the number of purchased copies, except for a single
backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for
incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Published by \newline

Contents

Introduction . 1
How To Get The Most Out Of This Book . 1
What is TypeScript . 5
Why Use TypeScript With React . 8
A Necessary Word Of Caution . 10

Your First React and TypeScript Application: Building Trello with Drag
and Drop . 11
Introduction . 11
What Are We Building? . 12
Prerequisites . 12
Preview The Final Result . 13
How to Bootstrap React + TypeScript App Automatically 15
App Layout. React + TypeScript Basics . 28
Remove The Clutter . 28
Add Global Styles . 30
How To Style React Elements . 31
Using Separate CSS Files . 31
Passing CSS Rules Through Style Property 32
Using External Styling Libraries . 33
Prepare Styled Components . 34
Install styled-components. Working with @types packages 34
Break the UI into components . 35
Render Everything Together . 38
Create Column Components . 39
How to define props . 40
How to accept children prop . 41

CONTENTS

Create Card Components . 44
Render everything together . 44
Component For Adding New Items . 45
Styles For The Button . 46
Create AddNewItem Component. Using State 47
Adding New Lists . 49
Adding New Tasks . 50
NewItemForm component . 50
Styles For The Form . 50
Create NewItemForm component . 52
Automatically focus on input . 54
Create the useFocus hook . 54
Use the useFocus hook . 57
Submit on enter . 58
Add Global State And Business Logic. Using the useReducer 60
Using the useReducer . 60
Implement Global State . 67
Hardcode the data . 67
Define the Context . 69
Define the Context provider . 69
Define the business logic . 74
Create Actions . 74
Define the appStateReducer . 77
Adding Lists . 78
Adding Tasks . 79
Provide Dispatch Through The Context . 81
Dispatching Actions . 83
Moving Items . 84
Define the moveItem helper function . 84
Handling the MOVE_LIST action . 86
Add Drag and Drop (Install React DnD) . 87
Define The Type For Dragging . 88
Store The Dragged Item In The State . 89
Define The useItemDrag Hook . 92
Drag Column . 93
Hide The Dragged Item . 96

CONTENTS

Styles For DragPreviewContainer . 96
Implement The Custom Dragging Preview 99
Move The Dragged Item Preview . 104
Hide The Default Drag Preview . 106
Drag Cards . 108
Update CustomDragLayer . 114
Update The Reducer . 114
Drag the Card To an Empty Column . 116
Saving State On Backend. How To Make Network Requests 118
Loading The Data . 128

How to Test Your Applications: Testing a Digital Goods Store 137
Introduction . 137
Get familiar with the application . 137
Initial Setup . 142
Writing Tests . 149
Testing the App component . 150
Mocking Components . 154
Jest helper to test navigation . 156
Global Helper With TypeScript . 157
Testing navigation . 160
Shared Components . 162
Header . 162
CartWidget . 164
Loader Component . 168
Home Page . 169
ProductCard Component . 174
Cart page . 178
Cart component . 180
Checkout Page . 188
CheckoutList component . 188
Testing The Form . 190
Testing The FormField . 195
Order summary page . 197
Testing React Hooks . 201
Testing useProducts . 202

CONTENTS

Testing useCart . 206
Congratulations . 213

Patterns in React TypeScript Applications: Making Music with React . . . 214
Introduction . 214
What We’re Going to Build . 214
What We’re Going to Use . 216
First Steps and Basic Application Layout . 216
Logo component . 222
Combining Components . 223
A Bit of a Music Theory . 225
Third Party API and Browser API . 236
Patterns . 240
Adapter or Provider Pattern . 240
Creating a Keyboard . 243
Single Key on a Keyboard . 243
Styles for the Key . 244
Define the Key component . 248
Create the Keyboard component . 250
Update the Main component . 252
Adapter Hook . 253
Soundfont Adapter . 253
Connecting to a Keyboard . 259
Mapping Real Keys to Virtual . 265
Instruments List . 270
Instrument Selector . 272
Render Props . 278
What is a render prop . 278
Pros and Cons . 279
Creating Render Props With Functional Components 280
Creating Render Props With Classes . 285
Higher-Order Components . 293
Higher-Order Functions . 294
Define a HOC . 296
When to Use . 297
Pros and Cons . 297

CONTENTS

Caveats . 298
Instrument adapter as a Higher-Order Component 299
Using HOC with Keyboard . 305
Passing Refs Through . 307
Static Composition . 313
Using Hooks with HOCs . 318
Conclusion . 320

Using Redux and TypeScript . 321
Introduction . 321
Preview The Final Result . 321
What is Redux? . 326
Why Can’t We Use useReducer Instead of Redux? 329
Initial Setup . 330
Redux Logger . 333
Prepare The Styles . 335
Update the App layout . 335
Working With Canvas . 337
Handling Canvas Events . 341
Define The Store Types . 341
Add Actions . 342
Add The Reducer Logic . 344
Dispatch Actions . 347
Draw The Current Stroke . 349
Define the currentStrokeSelector . 351
Update the App component . 352
Implement Selecting Colors . 354
Implement Undo and Redo . 359
Update the RootState type . 359
Create actions . 360
Update the reducer . 361
Create the EditPanel component . 363
Splitting Root Reducer And Using combineReducers 367
Update the App component . 376
Join The Reducers Using combineReducers 376
Exporting An Image . 377

CONTENTS

Define the getCanvasImage . 379
Create the FilePanel . 380
Add the FilePanel to the App layout . 382
Using Redux Toolkit . 383
Configuring The Store . 384
Fix Type Errors . 385
Using createAction . 386
Update the App component . 391
Using createReducer . 392
Using Slices . 396
Remake The Imports . 401
Add Modal Windows . 403
Update the types . 405
Add The Modal Manager Component . 405
Define the modal windows . 406
Define the ModalLayercomponent . 407
Render the ModalLayer . 408
Add Save and Load buttons . 409
Prepare The Server . 411
Save The Project Using Thunks . 412
Define the API module . 412
Handle saving the project . 413
Define the getBase64Thumbnail function . 415
Update the ProjectSaveModal . 416
Load The Project . 419
Update the types . 419
Define the API module . 420
Create a projectsList slice . 420
Load the selected project . 423
Show the list of projects . 424
Update the App component . 427

Static Site Generation and Server-Side Rendering Using Next.js 429
Introduction . 429
What We’re Going to Build . 429
Pre-Rendering . 431

CONTENTS

Next.js . 433
Setting Up a Project . 433
Creating A First Page . 435
Basic Application Layout . 436
Footer Component . 440
Custom Document Component . 441
Application Theme . 446
Custom App Component . 448
Front Page . 450
Update the Front component . 458
Page 404 . 458
Post Page Template . 460
Backend API Server . 461
Frontend API Client . 465
Updating The Main Page . 466
Pre-Render Post Page . 471
Post API . 471
Category Page . 480
Category API . 480
Adding Breadcrumbs . 486
Comments and Server-Side Rendering . 488
Components to render comments . 491
API for Adding Comments . 496
Adding comments to a page . 498
Updating a statically generated page to use server-side rendering 500
Connecting Redux . 501
Optimizing Images . 512
Building Project . 518
Deploying Project . 519
Remaking API . 520
Creating Client Requests . 527
Updating Pages . 529
Deployment with Serverless Functions . 534
Summary . 546

GraphQL, React, and TypeScript . 547

CONTENTS

Introduction . 547
Is GraphQL better than REST? . 550
What are we building? . 552
Authenticate in GitHub and Preview The Final Result 556
Authenticating in GitHub . 556
Previewing the final result . 560
Setting up the project . 561
Running TypeScript in the console . 561
Add the .env file . 563
Running the application . 563
Get the auth code . 565
Define the HTML page . 565
Define the getCode . 566
Auth Flow Link . 569
Authentication context . 572
GraphQL queries. Getting user data . 574
Adding helper components . 577
Define the Button component . 578
Define the List component . 579
Define the Text component . 580
Define the TextBox component . 581
Define the Panel component . 582
Form helper components . 584
Informationbal message components . 587
Defining the WelcomeWindow layout . 590
Getting GitHub GraphQL schema . 592
Generating types . 593
Adding routing . 596
Define the resource screens . 596
Define the routing scheme . 597
Implement navigation . 598
Define the debounce function . 598
Define the Header . 599
Render the Header . 602
Repositories main component . 603
Getting the list of repositories . 605

CONTENTS

GraphQL mutations. Creating repositories 611
Getting the repository ID . 618
Working with GitHub issues . 619
Getting the list of issues . 622
Creating an issue . 626
Generate the types for the mutation . 627
Define the component . 628
Define the layout . 629
Create a new issue on form submit . 630
Render the success and error results . 632
Render the NewIssue component . 633
Working with GitHub pull requests . 634
Define the routing . 636
Getting the list of pull requests . 637
Update the root pull requests component . 640
Creating a new pull request . 642
Define the form . 647
Add the navigation instructions . 649
Use the component . 649
Summary . 650

Appendix . 652

Changelog . 653
Revision r12 (31-12-2021) . 653
Revision r11 (26-03-2021) . 653
Revision r10 (03-03-2021) . 653
Revision r9 (26-02-2021) . 653
Revision r8 (17-02-2021) . 653
Revision r7 (01-12-2020) . 654
Revision r6 (01-12-2020) . 654
Revision r5 (10-11-2020) . 654
Revision r4 (26-08-2020) . 654
Revision 3p (07-30-2020) . 654
Revision 2p (06-08-2020) . 654
Revision 1p (05-20-2020) . 655

Introduction
How To Get The Most Out Of This Book

Prerequisites

In this book we assume that you have at least the following skills:

• basic JavaScript knowledge (working with functions, objects, and arrays)
• basic React understanding (at least a general idea of component-based ap-
proach)

• some command line skills (you know how to run a command in the terminal)

We will mostly focus on the specifics of using TypeScript with React and some other
popular technologies.

The instructions we give in this book are very detailed, so if you lack some of the
listed skills, you can still follow along with the tutorials and be just fine.

Running Code Examples

Each section has an example app shipped with it. You can download code examples
from the same place where you purchased this book.

If you have any trouble finding or downloading the code examples, email us at
us@fullstack.io¹.

At the beginning of each section, youwill find instructions on how to run the example
app. In order to run the examples, you need a terminal app and NodeJS installed on
your machine.

Make sure you have NodeJS installed. Run node -v to output your current NodeJS
version:

¹mailto:us@fullstack.io

mailto:us@fullstack.io
mailto:us@fullstack.io

Introduction 2

1 $ node -v

2 v10.19.0

Here are the instructions for installing NodeJS on different systems:

Windows

To work with the examples in this book we recommend installing Cmder² as a
terminal application.

We recommend installing node using nvm-windows³. Follow the installation instruc-
tions on the Github page.

Then run nvm to get the latest LTS version of NodeJS:

1 nvm install --lts

It will install the latest available LTS version.

Mac

Mac OS has a terminal app installed by default. To launch it toggle Spotlight, search
for terminal and press Enter.

Run the following command to install nvm⁴:

1 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/inst\

2 all.sh | bash

Then run nvm to get the latest LTS version of NodeJS:

1 nvm install --lts

This command will also set the latest LTS version as default, so you should be all set.

If you face any issues follow the troubleshooting guide for Mac OS⁵.

²https://cmder.net/
³https://github.com/coreybutler/nvm-windows
⁴https://github.com/nvm-sh/nvm
⁵https://github.com/nvm-sh/nvm#troubleshooting-on-macos

https://cmder.net/
https://github.com/coreybutler/nvm-windows
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-macos
https://cmder.net/
https://github.com/coreybutler/nvm-windows
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-macos

Introduction 3

Linux

Most Linux distributions come with some terminal app provided by default. If you
use Linux you probably know how to launch the terminal app.

Run the following command to install nvm⁶:

1 curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.11/inst\

2 all.sh | bash

Then run nvm to get the latest LTS version of NodeJS:

1 nvm install --lts

In case of problems with installation follow the troubleshooting guide for Linux⁷.

Code Blocks And Context

Code Block Numbering

In this book, we build example applications in steps. Sections have associated code
examples:

1 01-first-app/

2 ├── 01.02-how-to-bootstrap-react-typescript-app-automatically

3 ├── 01.03-app-layout-react-typesctipt-basics

4 ├── 01.05-prepare-styled-components

5 ... // other steps

Their names match the names of the sections in the book.

If at some point in the chapter we achieve a state that we can run, you can run the
version of the app from the particular step.

Some files in these folders can have numbered suffixes with *.example:

⁶https://github.com/nvm-sh/nvm
⁷https://github.com/nvm-sh/nvm#troubleshooting-on-linux

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-linux
https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm#troubleshooting-on-linux

Introduction 4

1 src/AddNewItem0.tsx.example

If you see this, it means that we are building up to something bigger. You can jump
to the file with the same name but without a suffix to see a completed version of it.

Here the completed file would be src/AddNewItem.tsx.

Reporting Issues

We have done our best to make sure that our instructions are correct and code
samples don’t contain errors. There is still a chance that you will encounter problems.

If you find a place where a concept isn’t clear or you find an inaccuracy in our
explanations or a bug in our code, email us⁸! We want to make sure that our book is
precise and clear.

Getting Help

If you have any problems working through the code examples in this book, email
us⁹.

To make it easier for us to help you, include the following information:

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.13.2, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?
• What have you tried already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

Ideally, please also provide a link to a git repository where we can reproduce the
issue you are having.

⁸mailto:fullstack-react-typescript@newline.co
⁹mailto:fullstack-react-typescript@newline.co

mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co
mailto:fullstack-react-typescript@newline.co

Introduction 5

What is TypeScript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript
- typescriptlang.org¹⁰.

TypeScript allows you to specify types for values in your code, so you can develop
applications with more confidence.

Using Types In Your Code

Consider this JavaScript example. Here we have a function that verifies that a
password has at least eight characters:

1 function validatePasswordLength(password) {

2 return password.length >= 8;

3 }

When you pass it a string that has at least eight characters it will return true.

1 validatePasswordLength("123456789") // Returns true

Someone might accidentally pass a numeric value to this function:

1 validatePasswordLength(123456789) // Returns false

In this case, the function will return false. Even though the function was designed to
only work with strings you won’t get an error saying that you misused the function.

It can cause nasty run-time bugs that might be hard to catch.

With Typescript we can restrict the values that we pass to our function to only be
strings:

¹⁰https://typescriptlang.org

https://typescriptlang.org/
https://typescriptlang.org/

Introduction 6

1 function validatePasswordLength(password: string) {

2 return password.length >= 8;

3 }

4

5 validatePasswordLength(123456789) // Argument of type '123456789' is no\

6 t assignable to parameter of type 'string'.

If we call our function with the wrong type, TypeScript will give us an error.

TypeScript can tell if we have an error in our code just by analyzing the syntax.
That means that you don’t have to run your program. Most code editors support
TypeScript so the error will be immediately highlighted.

Strings and numbers are examples of built-in types in TypeScript. TypeScript
supports all the types available in JavaScript and adds somemore.Wewill get familiar
with a lot of them during the next chapters. But the coolest thing is that you can
define your own types.

Defining Custom Types

Let’s say we have a greet function that works with user objects. It generates a
greeting message using provided first and last names.

1 function greet(user){

2 return `Hello ${user.firstName} ${user.lastName}`;

3 }

How can we make sure that this function receives an input of the correct type?

We can define our own User type and specify it as a type of our function’s user

argument:

Introduction 7

1 type User = {

2 firstName: string;

3 lastName: string;

4 }

5

6 function greet(user: User){

7 return `Hello ${user.firstName} ${user.lastName}`;

8 }

Our function will only accept objects that match the defined User type.

1 greet({firstName: "Maksim", lastName: "Ivanov"}) // Returns "Hello Maks\

2 im Ivanov!"

If we try to pass something else, we’ll get an error.

1 greet({}) // Argument of type '{}' is not assignable to parameter of ty\

2 pe 'User'.

3 // Type '{}' is missing the following properties from type 'U\

4 ser': firstName, lastName

Benefits Of Using TypeScript

Preventing errors. As you can see with TypeScript we can define the interfaces for
parts of our program, so we can be sure that they interact correctly. It means they
will have clear contracts of communication with each other which will significantly
reduce the amount of bugs.

Introduction 8

TypeScript contracts by which parts of your program communicate.

If on top of that we cover our code with unit tests - BOOM, our application becomes
rock-solid. Now we can add new features with confidence, without fear of breaking
it.

There is a research paper¹¹ showing that just by using typed language you
will get 15% fewer bugs in your code. There is also an interesting paper
about unit tests¹² stating that products, where test-driven development
was applied had between 40% and 90% reductions in pre-release bug
density.

Better Developer Experience. When you use TypeScript you also get better code
suggestions in your editor, which makes it easier to work with large and unfamiliar
codebases.

Why Use TypeScript With React

The revolutionary thing about React is that it allows you to describe your application
as a tree of components.

A component can represent an element, like a button or an input. It can be a group
of elements representing a login form. Or it can be a complete page that consists of
multiple simple components.

¹¹http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
¹²http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf

http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf
http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.4502&rep=rep1&type=pdf

Introduction 9

Components can pass the information down the tree, from parent to child. You
can also pass down functions as callbacks, so if something happens in the child
component it can notify its parent by calling the passed callback function.

This is where TypeScript becomes very handy. You can use it to define the interfaces
of your components, so that you can be sure that your component only gets props
with the correct types.

If you have worked with React before you probably know that you can specify a
component’s interface using prop-types.

1 import PropTypes from 'prop-types';

2

3 const Greeting = ({name}) => {

4 return (

5 <h1>Hello, {name}</h1>

6);

7 }

8

9 Greeting.propTypes = {

10 name: PropTypes.string

11 };

If you can do this with prop-types, why would you need TypeScript?

There are several reasons:

• You don’t need to run your application to know if you have type errors.
TypeScript can be run by your code editor so you can see the errors as soon
as you make them.

• You can only use prop-types with components. In your application you will
probably have functions and classes that are not using React. It is important to
be able to provide types for them as well.

• TypeScript is just more powerful. It gives you more options to define the types
and then it allows you to use this type information in many different ways. We
will demonstrate examples of this in the next chapters.

Introduction 10

A Necessary Word Of Caution

TypeScript does not catch run-time type errors. It means that you can write code that
will pass the type check, but you will get an error upon execution.

1 function messUpTheArray(arr: Array<string | number>): void {

2 arr.push(3);

3 }

4

5 const strings: Array<string> = ['foo', 'bar'];

6 messUpTheArray(strings);

7

8 const s: string = strings[2];

9 console.log(s.toLowerCase()) // Uncaught TypeError: s.toLowerCase is no\

10 t a function

Try to launch this code example in TypeScript sandbox¹³. You will get an Uncaught

TypeError: s.toLowerCase is not a function error.

Here we said that our messUpTheArray accepts an array containing elements of type
string or number. Then we passed it our strings array that is defined as an array of
string elements. TypeScript allows this because it thinks that types Array<string |

number> and Array<string> match.

Usually, this is convenient because an array that is defined as having number or
string elements can have only string items.

1 const stringsAndNumbers: Array<string | number> = ['foo', 'bar'];

In our case it allowed a bug to slip through the type checking.

It also means that you have to be extra careful with data obtained through network
requests or loaded from the file system.

In this book, we will demonstrate the techniques that allow us to minimize the risk
of such issues.

¹³https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/
GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+
fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA

https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA
https://www.typescriptlang.org/play/index.html?ssl=9&ssc=29&pln=1&pc=1#code/GYVwdgxgLglg9mABAWwKYGd0FUAOAVAC1QEEAnUgQwE8AKC8gLkTMqoB50pSYwBzRAD6IwIZACNUpAHwBKJgDc4MACaIA3gFgAUIl2J6pAHQ4Q6AjQDMMgNzaAvtu0QEnRJ2590TFtQ5cevFKIALyIANoA5MBwcBEANIgRYvQRALq2WmiYuIQk5NQ07gHoNo5azmCuXm7+fCE1HrzoYQBM6U4ucAA2qIZdcLyFhlBwADJwAO6SAMIU6Kg0MjLaQA

Your First React and TypeScript
Application: Building Trello with
Drag and Drop
Introduction

In this part of the book, we will create our first React + TypeScript application.

We will bootstrap the file structure using the create-react-app CLI. If you’ve
worked with React before, you might be familiar with it. If you haven’t heard about
it yet - no worries, I will talk about it in more detail further in this chapter.

I will show you the file structure it generates and then I’ll explain the purpose of
each file there.

Then we’ll create our components. You’ll see how to use TypeScript to specify the
props. We’ll briefly discuss the difference between types and interfaces.

We will mostly work with functional components, because this is the most popular
approach right now.

We’ll talk about using JavaScript libraries in your TypeScript project. Some of them
are compatible by default, and some require you to install special @types packages.

Our application will also store the state on the backend. So we will discuss how to
use fetch with TypeScript.

So in this chapter we’ll cover:

• creating components
• defining props
• using state
• handling events

Your First React and TypeScript Application: Building Trello with Drag and Drop 12

• working with refs
• styling components
• using external libraries
• making network requests

What Are We Building?

We will create a simplified version of a kanban board. A popular example of such an
application is Trello.

Trello board

In Trello, you can create tasks and organize them into lists. You can drag both cards
and lists to reorder them. You can also add comments and attach files to your tasks.

In our application we will recreate only the core functionality: creating tasks, making
lists and dragging them around.

Prerequisites

There are a bunch of requirements before you start working with this chapter.

Your First React and TypeScript Application: Building Trello with Drag and Drop 13

First of all, you need to know how to use the command line. On Mac, you can
use Terminal.app, available by default. All Linux distributions also have some
preinstalled terminal applications. On Windows I recommend using Cygwin¹⁴ or
Cmder¹⁵. If you are more experienced you can use Windows Subsystem for Linux¹⁶.

You will need a code editor with TypeScript support. I recommend using VSCode,
which supports TypeScript out of the box.

Make sure you have Node 10.16.0 or later. You can use nvm¹⁷ on Mac or Linux to
switch Node versions. For Windows there is nvm-windows¹⁸.

You also need to know how to use node packagemanagers. In this chapter’s examples,
I will use Yarn¹⁹. You can use npm²⁰ if you want.

All the examples for this chapter contain yarn.lock files. Remove them if
you want to use npm to install dependencies.

You need to have some React understanding. Specifically, you have to know how
to use functional components and React hooks. In this example, we won’t use class-
based components. If you don’t feel confident it might be worth visiting the React
Documentation²¹ to refresh your knowledge.

Preview The Final Result

We will build our app together from scratch, and I will explain every step as we go,
but to get a sense of where we’re going, it’s helpful if you check out the result first.

This book has an attached zip archive with examples for each step. You can find the
completed example in code/01-first-app/completed.

Unzip the archive and cd to the app folder.

¹⁴https://www.cygwin.com/
¹⁵https://cmder.net/
¹⁶https://docs.microsoft.com/en-us/windows/wsl/install-win10
¹⁷https://github.com/nvm-sh/nvm#installing-and-updating
¹⁸https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
¹⁹https://yarnpkg.com/
²⁰https://www.npmjs.com/
²¹https://reactjs.org/docs/getting-started.html

https://www.cygwin.com/
https://cmder.net/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/nvm-sh/nvm#installing-and-updating
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
https://yarnpkg.com/
https://www.npmjs.com/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.cygwin.com/
https://cmder.net/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/nvm-sh/nvm#installing-and-updating
https://github.com/coreybutler/nvm-windows#node-version-manager-nvm-for-windows
https://yarnpkg.com/
https://www.npmjs.com/
https://reactjs.org/docs/getting-started.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 14

1 cd code/01-first-app/completed

When you are there, install the dependencies and launch the app:

1 yarn && yarn dev

This should open the app in the browser. If this doesn’t happen, navigate to
http://localhost:3000 and open it manually.

Final result

Our app will have a bunch of columns that you can drag around. Each column
represents a list of tasks.

Each task is rendered as a draggable card. You can drag each card inside a column
and between columns.

You can create new columns by clicking the button that says “+ Add another list”.
Each column also has a button at the bottom that allows the creation of new cards.

Create a few more cards and columns and drag them around.

The state of the application is preserved on the backend. You can reload the page and
all the lists and tasks will stay where you left them.

Your First React and TypeScript Application: Building Trello with Drag and Drop 15

How to Bootstrap React + TypeScript App
Automatically

In this chapter, we will use an automatic CLI tool to bootstrap our project’s initial
structure.

Why Use Automatic App Generators?

Usually, when you create a React application, you need to create a bunch of
boilerplate files.

First, you will need to set up a transpiler. React uses jsx syntax to describe the layout,
and also you’ll probably want to use the modern JavaScript features. To do this we’ll
have to install and set up Babel²². It will transform our code to normal JavaScript
that current and older browsers can support.

You will need a bundler. You will have plenty of different files: your components
code, styles, maybe images and fonts. To bundle them together into small packages
you’ll have to set up Webpack²³ or Parcel²⁴.

Then there are a lot of smaller things. Setting up a test runner, adding vendor prefixes
to your CSS rules, setting up linter and enabling hot-reload, so you don’t have to
refresh the page manually every time you change the code. It can be a lot of work.

To simplify the process we will use create-react-app. It is a tool that will generate
the file structure and automatically create all the settings files for our project. This
way we will be able to focus on using React tools in the TypeScript environment.

How to Use create-react-app With TypeScript

Navigate to the folderwhere you keep your programming projects and run create-react-app.

²²https://babeljs.io/
²³https://webpack.js.org/
²⁴https://parceljs.org/

https://babeljs.io/
https://webpack.js.org/
https://parceljs.org/
https://babeljs.io/
https://webpack.js.org/
https://parceljs.org/

Your First React and TypeScript Application: Building Trello with Drag and Drop 16

1 npx create-react-app --template typescript trello-clone

Here we’ve used npx to run create-react-app without installing it. This is the
recommended way to use create-react-app. Read more in their getting started
guide²⁵.

We specified an option --template typescript, so our app will have all the
settings needed to work with TypeScript. The last argument is the name of our app.
create-react-app will automatically generate the trello-clone folder with all the
necessary files.

cd to trello-clone folder and open it with your favorite code editor.

Project Structure Generated By create-react-app

Let’s look at the application structure.

If you’ve used create-react-app before, it will look familiar.

1 ├── public

2 │ ├── favicon.ico

3 │ ├── index.html

4 │ ├── logo192.png

5 │ ├── logo512.png

6 │ ├── manifest.json

7 │ └── robots.txt

8 ├── src

9 │ ├── App.css

10 │ ├── App.test.tsx

11 │ ├── App.tsx

12 │ ├── index.css

13 │ ├── index.tsx

14 │ ├── logo.svg

15 │ ├── react-app-env.d.ts

16 │ ├── reportWebVitals.ts

17 │ └── setupTests.ts

²⁵https://create-react-app.dev/docs/getting-started/

https://create-react-app.dev/docs/getting-started/
https://create-react-app.dev/docs/getting-started/
https://create-react-app.dev/docs/getting-started/

Your First React and TypeScript Application: Building Trello with Drag and Drop 17

18 ├── node_modules

19 │ └── ...

20 ├── .gitignore

21 ├── README.md

22 ├── package.json

23 ├── tsconfig.json

24 └── yarn.lock

Let’s go through the files and see why we need them. We’ll do a short overview, and
then go back to some of the files and talk about them a bit more.

Files In The Root

First, let’s look at the root of our project.

README.md. This is a markdown file that contains a description of your application.
For example, Github will use this file to generate an html summary that you can see
at the bottom of projects.

package.json. This file contains metadata relevant to the project. For example,
it contains the name, version and description of our app. It also contains the
dependencies list with external libraries that our app depends on.

You can find the full list of possible package.json fields and their descrip-
tions on the npm website.²⁶

Open the package.json file and checkwhat packages are installedwith create-react-app:

²⁶https://docs.npmjs.com/files/package.json

https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json

Your First React and TypeScript Application: Building Trello with Drag and Drop 18

1 "dependencies": {

2 "@testing-library/jest-dom": "^5.11.4",

3 "@testing-library/react": "^11.1.0",

4 "@testing-library/user-event": "^12.1.10",

5 "@types/jest": "^26.0.15",

6 "@types/node": "^12.0.0",

7 "@types/react": "^17.0.0",

8 "@types/react-dom": "^17.0.0",

9 "react": "^17.0.2",

10 "react-dom": "^17.0.2",

11 "react-scripts": "4.0.3",

12 "typescript": "^4.1.2",

13 "web-vitals": "^1.0.1"

14 },

Some packages that we use have a corresponding @types/* package.

I’m showing only the dependencies block because this is where type
definitions are installed when using create-react-app. Some people
prefer to put types-packages in devDependencies.

Those @types/* packages contain type definitions for libraries originally written in
JavaScript. Why do we need them if TypeScript can parse the JavaScript code as well?

The problem with JavaScript is that often it’s impossible to tell what types the code
will work with. Let’s say we have a JavaScript code with a function that accepts the
data argument:

1 export function saveData(data) {

2 // data saving logic

3 }

TypeScript can parse this code, but it has no way of knowing what type the data

attribute is restricted to. So for TypeScript, the data attribute will implicitly have
type any. This type matches with absolutely anything, which defeats the purpose of
type-checking.

Your First React and TypeScript Application: Building Trello with Drag and Drop 19

If we know that the function is meant to be more specific, for instance, it only accepts
the values of type string, we can create a *.d.ts file and describe it there manually.

This *.d.ts file name should match the module name we provide types for. For
example, if this saveData function comes from the save-datamodule - we will create
a save-data.d.ts file. We’ll need to put this file where the TypeScript compiler will
see it, usually in its src folder.

This file will then contain the declaration for our saveData function.

1 declare function saveData(data: string): void

Here we specified that datamust have type string. We’ve also specified return type
void for our function because it should not return any value.

We could create a package with this file and publish it to NPM. This is what all those
@types/* packages are: they contain *.d.ts files with type definitions for libraries.

It is a convention that all the types-packages are published under the @types

namespace. Those packages are provided by the DefinitelyTyped²⁷ repository.

When you install javascript dependencies that don’t contain type definitions, you
can usually install them separately by installing a package with the same name and
@types prefix.

Versions for @types/* and their corresponding packages don’t have to match exactly.
Here you can see that react-dom has version ^17.0.1 and @types/react-dom is
^17.0.2.

yarn.lock. This file is generated when you install the dependencies by running yarn
in your project root. The file contains resolved dependencies versions alongwith their
sub-dependencies. It is needed for consistent installations on different machines. If
you use npm to manage dependencies, you will have a package-lock.json instead.

tsconfig.json. This contains the TypeScript configuration. We don’t need to edit this
file because the default settings work fine for us.

.gitignore. This file contains the list of files and folders that shouldn’t end up in your
git repository.

²⁷http://definitelytyped.org/

http://definitelytyped.org/
http://definitelytyped.org/

Your First React and TypeScript Application: Building Trello with Drag and Drop 20

These are all the files that we find in the root of our project. Now let’s take a look at
the folders.

public Folder

The public folder contains the static files for our app. They are not included in the
compilation process and remain untouched during the build.

Read more about the public folder in the Create React App documenta-
tion²⁸.

index.html. This file contains a special <div id="root"> that will be a mounting
point for our React application.

manifest.json. This provides application metadata for Progressive Web Apps²⁹. For
example, the file allows installation of your application on a mobile phone’s home
screen, similar to native apps. It contains the app name, icons, theme colors, and other
data needed to make your app installable.

You can read more about manifest.json on MDN.³⁰

favicon.ico, logo192.png, logo512.png. These are icons for your application. There
is favicon.ico, a small icon that is shown on browser tabs. Also, there are two bigger
icons: logo192.png and logo512.png. They are referenced in manifest.json and will
be used on mobile devices if your app will be added to the home screen.

robots.txt. This tells crawlers what resources they shouldn’t access. By default it
allows everything.

Read more about robots.txt on the robotstxt website.³¹
²⁸https://create-react-app.dev/docs/using-the-public-folder/
²⁹https://web.dev/progressive-web-apps/
³⁰https://developer.mozilla.org/en-US/docs/Web/Manifest
³¹https://www.robotstxt.org/robotstxt.html

https://create-react-app.dev/docs/using-the-public-folder/
https://create-react-app.dev/docs/using-the-public-folder/
https://web.dev/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.robotstxt.org/robotstxt.html
https://create-react-app.dev/docs/using-the-public-folder/
https://web.dev/progressive-web-apps/
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.robotstxt.org/robotstxt.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 21

src Folder

Take a look at the src folder. Files in this folder are processed by webpack and will
be added to your app’s bundle.

This folder contains a bunch of files with .tsx extension: index.tsx, App.tsx,
App.test.tsx. It means that those files contain JSX code.

JSX is an html-like syntax used in React applications to describe the layout.
Read more about it in the React Docs.³²

In a JavaScript React application, we could use either .jsx or .js extensions for such
files. It would make no difference.

With TypeScript, you should use .tsx extensions on files that have JSX code, and
.ts on files that don’t.

This is important because otherwise there can be a syntactic clash. Both TypeScript
and JSX use angle brackets, but for different purposes.

TypeScript has a type assertion operator that uses angle brackets:

1 const text = <string>"Hello TypeScript"

2 // text: string

You can use this operator to manually provide a type for your target variable. In this
case, we specify that text should have type string.

Otherwise, it would have type Hello TypeScript. When you assign a const a string
value, TypeScript will use this value as a type:

1 const text = "Hello TypeScript"

2 // text: "Hello TypeScript"

This operator can create ambiguity with JSX elements that also use angle brackets:

³²https://reactjs.org/docs/introducing-jsx.html

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 22

1 <div></div>

You can read about it in the TypeScript Documentation³³.

index.tsx

The most important file in the /src folder is index.tsx. It is an entry point for our
application. It means that webpack will start to build our application from this file,
and then will recursively include other files referenced by import statements.

Let’s look at this file’s contents:

1 import React from "react"

2 import ReactDOM from "react-dom"

3 import "./index.css"

4 import App from "./App"

5 import reportWebVitals from "./reportWebVitals"

6

7 ReactDOM.render(

8 <React.StrictMode>

9 <App />

10 </React.StrictMode>,

11 document.getElementById("root")

12)

13

14 // If you want to start measuring performance in your app, pass a funct\

15 ion

16 // to log results (for example: reportWebVitals(console.log))

17 // or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vit\

18 als

19 reportWebVitals()

First, we import React, because we have a JSX statement here.

³³https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator

https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator
https://www.typescriptlang.org/docs/handbook/jsx.html#the-as-operator

Your First React and TypeScript Application: Building Trello with Drag and Drop 23

1 ReactDOM.render(

2 <React.StrictMode>

3 <App />

4 </React.StrictMode>,

5 document.getElementById("root")

6)

Babel transpiles <App /> to React.createElement(App, null). It means that
implicitly we reference React in this file, this is why we import it.

Then we import ReactDOM. We use it to render our application to the index.html page.
We find an element with an id root and render our App component to it.

We have the index.css import. This file contains styles relevant to the whole
application, so we import it here.

We import the App component because we want to render it into the HTML.

After that we import reportWebVitals. This module can be useful if you want to
measure your app performance. It is explained in more detail here³⁴.

As it is not specific to TypeScript, we are not going to focus on it.

Then we render the App using the ReactDOM.rendermethod. Note that by default the
App component is wrapped into the React.StrictMode component. This component
mostly checks that no deprecated methods are being used. All those checks are
performed only in development mode, and it is good practice to wrap your app into
React.StrictMode.

Check the documentation³⁵ for the updated list of the StrictMode func-
tionality.

App.tsx

Let’s open src/App.tsx. If you use modern create-react-app, this file won’t be very
different to the regular JavaScript version.

³⁴https://create-react-app.dev/docs/measuring-performance/
³⁵https://reactjs.org/docs/strict-mode.html

https://create-react-app.dev/docs/measuring-performance/
https://reactjs.org/docs/strict-mode.html
https://create-react-app.dev/docs/measuring-performance/
https://reactjs.org/docs/strict-mode.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 24

Currently, in JavaScript apps generated with create-react-app, you don’t
need to import React at all. Read more here³⁶.

In older versions, React was imported differently.

Instead of:

1 import React from "react"

You would see:

1 import * as React from "react"

To explain this I will have to tell you a bit more about the default imports.

When you write import name from 'module' it is the same as writing import

{default as name} from 'module'. To be able to do this the module should have the
default export, which would look like this: export default 'something'.

React doesn’t have the default export. Instead, it just exports all its functions in one
object.

You can see it in React source code³⁷. React exports an object full of different classes
and functions:

1 export {

2 Children,

3 createRef // ... other exports

4 } from "./src/React"

So, strictly speaking import * as React from 'react' is the correct way of importing
React.

But if you’ve used React with JavaScript before, you’ll have noticed that React is
always imported there as if it has the default export.

³⁶https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
³⁷https://github.com/facebook/react/blob/master/packages/react/index.js

https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://github.com/facebook/react/blob/master/packages/react/index.js
https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://github.com/facebook/react/blob/master/packages/react/index.js

Your First React and TypeScript Application: Building Trello with Drag and Drop 25

1 import React from "react"

This is possible for two reasons. First - JavaScript doesn’t type check the imports. It
will allow you to import whatever, and then if something goes wrong, it will only
throw an error during runtime. Second - youmost likely use React with some bundler
likeWebpack, and it’s smart enough to check if no default property is set in the export,
and where this is the case to just use the entire export as the default value.

When you use TypeScript, it’s a different story. TypeScript checks that what you
are trying to import has the matching export. If the default export doesn’t exist, the
default behavior of TypeScript will be to throw an error, something like this:

TypeScript error in trello-clone/src/App.tsx(1,8): Module ‘“trello-clone/n-
ode_modules/@types/react/index”’ can only be default-imported using
the ‘allowSyntheticDefaultImports’ flag TS1259

Thankfully, since version 2.7, TypeScript has the allowSyntheticDefaultImports

option. When this option is enabled TypeScript will pretend that the imported
module has the default export. So we’ll be able to import React normally.

Modern versions of create-react-app enable this option by default. Read more
about it in the TypeScript 2.7 release notes³⁸.

react-app-env.d.ts

Another file with an interesting extension is react-app-env.d.ts. Let’s take a look.

Files with *.d.ts extensions contain TypeScript types definitions. Usually, these are
needed for libraries that were originally written in JavaScript.

This file contains the following code:

1 /// <reference types="react-scripts" />

Here we have a special reference tag that includes types from the react-scripts

package.

³⁸https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-
cjs-from-commonjs-modules-with---esmoduleinterop

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#support-for-import-d-from-cjs-from-commonjs-modules-with---esmoduleinterop

Your First React and TypeScript Application: Building Trello with Drag and Drop 26

Read more about “triple slash directives” in the TypeScript documenta-
tion³⁹.

By default, this would reference the file ./node_modules/react-scripts/index.d.ts,
but react-scripts package contains a field "types": "./lib/react-app.d.ts" in
its package.json. So we end up referencing types from:

1 ./node_modules/react-scripts/lib/react-app.d.ts

Instead of looking up the file in the node_modules folder you can check
the react-scripts GitHub repo⁴⁰.

This file contains types for the Node environment and also types for static resources:
images and stylesheets.

Why do we need type declarations for stylesheets and images?

TypeScript doesn’t even see the static resources files. It is only interested in files with
.tsx, .ts, and d.ts extensions. With some tweaking, it will also see .js and .jsx

files.

Let’s say you are trying to import an image:

1 import logo from "./logo.svg"

TypeScript has no idea about files with .svg extension so it will throw something
like this: Cannot find module './logo.svg'. TS2307.

To fix it we can create a special module type. Or in our case it is already created.

One of the declarations in react-app.d.ts allows import of *.svg files:

³⁹https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-
⁴⁰https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/package.json#L29

https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/package.json#L29
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html#-reference-types-
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/package.json#L29

Your First React and TypeScript Application: Building Trello with Drag and Drop 27

1 declare module '*.svg' {

2 import * as React from 'react';

3

4 export const ReactComponent: React.FunctionComponent<React.SVGProps<

5 SVGSVGElement

6 > & { title?: string }>;

7

8 const src: string;

9 export default src;

10 }

This declaration is a bit complex but bear with me.

First thing that happens here is the module declaration. We declare a wildcard
module so that any import that would end with svg would use our type declaration.

Then inside this module we import React namespace because we’ll need types from
it.

Then we define a named export for ReactComponent. This is a “React component”
representation of the SVG image that will be imported.

This code might be hard to understand before we discuss TypeScript generics and
intersection types.

1 React.FunctionComponent<React.SVGProps<

2 SVGSVGElement

3 > & { title?: string }>;

I suggest you go back here and check if you can understand this code after we discuss
those topics.

For now I’ll say that here we define ReactComponent as a functional component that
receives the props of the SVG element, plus an optional title prop of type string.

It is done so that TypeScript knows that SVG images can be imported as React
components. Read more about it in Create React App documentation⁴¹.

Here I’ll show you how it would look in your application:

⁴¹https://create-react-app.dev/docs/adding-images-fonts-and-files/#adding-svgs

https://create-react-app.dev/docs/adding-images-fonts-and-files/#adding-svgs
https://create-react-app.dev/docs/adding-images-fonts-and-files/#adding-svgs

Your First React and TypeScript Application: Building Trello with Drag and Drop 28

1 import { ReactComponent } from './logo.svg';

2

3 function App() {

4 return (

5 <div>

6 <ReactComponent />

7 </div>

8);

9 }

In this case if you open the browser you’ll see that the logo is rendered as inline SVG.

Check it yourself - open src/App.tsx and change the default import to named one:

1 import { ReactComponent as Logo } from './logo.svg';

For example like this. And then use it in the application layout instead of the img tag.

Back to our module declaration. There is another export after ReactComponent. This
time it is default export of the src constant of type string.

In your app you would import it like this:

1 import image from "./foo.svg"

2 // image has type `string` here

In this case it would be treated as a path to some static file, that would look somewhat
like this: /static/media/foo.6ce24c58.svg.

And Webpack dev server that Create React App is using is already set up to resolve
static files to their paths in the /static folder.

App Layout. React + TypeScript Basics

Remove The Clutter

Before we start writing the new code, let’s remove the files we aren’t going to use.

Go to src folder and remove the following files:

Your First React and TypeScript Application: Building Trello with Drag and Drop 29

• logo.svg

• App.css

• App.test.tsx

You should end up with the following files in your src folder:

1 src

2 ├── App.tsx

3 ├── index.css

4 ├── index.tsx

5 ├── react-app-env.d.ts

6 ├── reportWebVitals.ts

7 └── setupTests.ts

Also open the src/App.tsx, remove the imports of the files that no longer exist and
remove the layout:

1 export const App = () => {

2 return null

3 }

For now the App component will just return null.

If you use VSCode - configure it to use the Workspace TypeScript version.
Otherwise if your global TypeScript version is older than 4.1 you will get
an error: 'React' refers to a UMD global, but the current file

is a module. Consider adding an import instead.ts(2686). Here is a
relevant StackOverflow answer⁴²

Then open the src/index.tsx and remove the reportWebVitals, we aren’t going to
use them anyway:

⁴²https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided

https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided
https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided

Your First React and TypeScript Application: Building Trello with Drag and Drop 30

1 import React from "react"

2 import ReactDOM from "react-dom"

3 import "./index.css"

4 import { App } from "./App"

5

6 ReactDOM.render(

7 <React.StrictMode>

8 <App />

9 </React.StrictMode>,

10 document.getElementById("root")

11)

We also changed the default App export to named, so update the import in the
index.tsx file to use the curly brackets.

I prefer named exports over default exports mainly because they work
better with refactoring tools in VSCode. if you default export a component
and then rename that component, it will only rename the component in
that file and not any of the other references in other files. With named
exports it will rename the component and all the references to that
component in all the other files.

Add Global Styles

Let’s define the styles to apply to the whole application. Edit src/index.css and add
some global CSS rules:

Your First React and TypeScript Application: Building Trello with Drag and Drop 31

1 html {

2 box-sizing: border-box;

3 }

4

5 *,

6 *:before,

7 *:after {

8 box-sizing: inherit;

9 }

10

11 html,

12 body,

13 #root {

14 height: 100%;

15 }

Here we add box-sizing: border-box to all elements. This directive tells the browser
to include padding and border elements in its width and height calculations.

We also make the html and body elements take up the whole screen vertically.

How To Style React Elements

There are several ways to style React elements:

• Regular CSS files, including CSS-modules.
• Manually specifying an element’s style property.
• Using external styling libraries.

Let’s briefly talk about each of the options.

Using Separate CSS Files

You can have styles defined in CSS files. To use them you’ll need a properly
configured bundler, like Webpack. Create React App includes a pre-configured
Webpack that supports loading CSS files.

Your First React and TypeScript Application: Building Trello with Drag and Drop 32

In our project, we have the index.css file. It contains styles that will be applied
globally. We import this index.css file in the index.tsx.

React elements accept the className prop that sets the class attribute of the rendered
DOM node.

1 <div className="styled">React element</div>

Passing CSS Rules Through Style Property

Another option is to pass an object with styling rules through the style property.
You can declare the object inline, then you won’t need to specify a type for it:

1 <div style={{ backgroundColor: "red" }}>Styled element</div>

A better practice is to define styles in a separate constant:

1 import React from "react"

2

3 const buttonStyles: React.CSSProperties = {

4 backgroundColor: "#5aac44",

5 borderRadius: "3px",

6 border: "none",

7 boxShadow: "none"

8 }

Here we set buttonStyles type to React.CSSProperties. As a bonus, we get
autocompletion hints for CSS property names.

Your First React and TypeScript Application: Building Trello with Drag and Drop 33

TypeScript provides nice CSS autocompletion

We aren’t using real CSS attribute names. In React the style properties are
in camel case form. For example background-color is backgroundColor

and so on.

Using External Styling Libraries

There are a lot of libraries that simplify working with CSS in React. I like to use
Styled Components⁴³.

Styled Components allows you to define reusable components with attached styles
like this:

⁴³https://github.com/styled-components/styled-components

https://github.com/styled-components/styled-components
https://github.com/styled-components/styled-components

Your First React and TypeScript Application: Building Trello with Drag and Drop 34

1 import styled from "styled-components"

2

3 const Button = styled.button`

4 background-color: #5aac44;

5 border-radius: 3px;

6 border: none;

7 box-shadow: none;

8 `

Then you can use them as regular React components:

1 <Button>Click me</Button>

At the time of writing, Styled Components has 28.4k stars on Github. It also has
TypeScript support.

Prepare Styled Components

Install styled-components. Working with @types

packages

We’ll begin by creating a bunch of styled components so that our application looks
good from step one.

Install the styled-components library:

1 yarn add styled-components@^5.2.1

After it is installedwe can define our first styled component. Create the src/styles.ts
file and import styled from styled-components:

1 import styled from "styled-components"

Your First React and TypeScript Application: Building Trello with Drag and Drop 35

You’ll get a TypeScript error.

Missing @types for styled-components

TypeScript errors can be quite wordy, but usually, the most valuable information is
located closer to the end of the message.

Here TypeScript tells us that we are missing type declarations for styled-components
package. It also suggests that we install missing types from @types/styled-components.

Install the missing types:

1 yarn add @types/styled-components@^5.1.9

Now we are ready to define our styled components.

Break the UI into components

Let’s look at the app to decide what styled components will we define:

Your First React and TypeScript Application: Building Trello with Drag and Drop 36

Application Components

• AppContainer - it will help us to arrange the columns horizontally. It is going
to wrap the whole application.

• ColumnContainer - it is a visual representation of a column. It will have grey
background and rounded corners.

• ColumnTitle - it will make the column title bold and add paddings to it.
• CardContainer - it will visually represent the card.

Styles For AppContainer

We want our app layout to contain a list of columns arranged horizontally. We will
use flexbox to achieve this.

Create an AppContainer component in styles.ts and export it.

Your First React and TypeScript Application: Building Trello with Drag and Drop 37

1 export const AppContainer = styled.div`

2 align-items: flex-start;

3 background-color: #3179ba;

4 display: flex;

5 flex-direction: row;

6 height: 100%;

7 padding: 20px;

8 width: 100%;

9 `

Style component functions accept strings with CSS rules. When we use template
strings, we can omit the brackets and just append the string to the function name.

Herewe specify display: flex tomake it use the flexbox layout.We set flex-direction
property to row, to arrange our items horizontally. And we add a 20px padding inside
it.

Styles For Columns

Let’s make our Column component look good. Create a ColumnContainer component
in src/styles.ts.

1 export const ColumnContainer = styled.div`

2 background-color: #ebecf0;

3 width: 300px;

4 min-height: 40px;

5 margin-right: 20px;

6 border-radius: 3px;

7 padding: 8px 8px;

8 flex-grow: 0;

9 `

Here we specify a grey background, margins, and paddings, and also specify
flex-grow: 0 so the component doesn’t try to take up all the horizontal space.

Still in src/styles.ts, create styles for ColumnTitle:

Your First React and TypeScript Application: Building Trello with Drag and Drop 38

1 export const ColumnTitle = styled.div`

2 padding: 6px 16px 12px;

3 font-weight: bold;

4 `

We’ll use it to wrap our column’s title.

Styles For Cards

We’ll need styles for the Card component. Open src/styles.ts and create a new
styled component called CardContainer. Don’t forget to export it.

1 export const CardContainer = styled.div`

2 background-color: #fff;

3 cursor: pointer;

4 margin-bottom: 0.5rem;

5 padding: 0.5rem 1rem;

6 max-width: 300px;

7 border-radius: 3px;

8 box-shadow: #091e4240 0px 1px 0px 0px;

9 `

Here we want to let the user know that cards are interactive so we specify cursor:

pointer. We also want our cards to look nice so we add a box-shadow.

Render Everything Together

Go back to src/App.tsx and render the styled components:

Your First React and TypeScript Application: Building Trello with Drag and Drop 39

1 import {

2 AppContainer,

3 ColumnContainer,

4 ColumnTitle,

5 CardContainer

6 } from "./styles"

7

8 export const App = () => {

9 return (

10 <AppContainer>

11 <ColumnContainer>

12 <ColumnTitle>Todo:</ColumnTitle>

13 <CardContainer>FirstItem</CardContainer>

14 <CardContainer>SecondItem</CardContainer>

15 <CardContainer>ThirdItem</CardContainer>

16 </ColumnContainer>

17 </AppContainer>

18)

19 }

Create Column Components

In this section, I won’t explain how React components work. If you need to pick this
knowledge up, refer to the React documentation⁴⁴. Make sure you know what props
and state are, and how lifecycle events work.

We’ll start with the Column component. Create a new file src/Column.tsx:

⁴⁴https://reactjs.org/docs/components-and-props.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 40

1 import { ColumnContainer, ColumnTitle, CardContainer } from "./styles"

2

3 type ColumnProps = {

4 text: string

5 }

6

7 export const Column = ({ text }: ColumnProps) => {

8 return (

9 <ColumnContainer>

10 <ColumnTitle>{text}</ColumnTitle>

11 <CardContainer>Generate app scaffold</CardContainer>

12 <CardContainer>Learn TypeScript</CardContainer>

13 <CardContainer>Begin to use static typing</CardContainer>

14 </ColumnContainer>

15)

16 }

This component will receive the text prop and render it as a column title.

Update the src/App.tsx to render the Column component:

1 import { AppContainer } from "./styles"

2 import { Column } from "./Column"

3

4 export const App = () => {

5 return (

6 <AppContainer>

7 <Column text="Todo:" />

8 </AppContainer>

9)

10 }

How to define props

You can use a type or an interface to define the form of your props object. Most
of the time, types and interfaces can be used interchangeably. We’ll get to some

Your First React and TypeScript Application: Building Trello with Drag and Drop 41

differences later in this chapter.

In our Column component we definened the props as a type:

1 type ColumnProps = {

2 text: string

3 }

Or in other words we’ve defined a type with field text of type string and assigned
an alias ColumnProps to it. Now if we say that some variable has type ColumnProps -
it will mean that this variable is an object that has a field text of type string.

To use this type for our component props we specified it as the type of our functional
component first argument:

1 const Column = ({ text }: ColumnProps) => {

2 //...

3 }

Here we also immediately destructure the props object to get the text field from it.

By default all the fields you define on your types are required. It means that if the
field will be missing you will get a type error. To make the field optional you can add
a question mark before the colon:

1 type ExampleProps = {

2 someField?: string

3 }

In this case, TypeScript will conclude that text can be undefined:

1 (property) ExampleProps.someField?: string | undefined

How to accept children prop

There are several ways to define the children prop on your props type.

Your First React and TypeScript Application: Building Trello with Drag and Drop 42

Use the FC type for the component

The first option is to use the React.FunctionalComponent or its alias React.FC as
your component type:

1 type ParentProps = {

2 someProp: any

3 }

4

5 const Parent: React.FC<ParentProps> = ({children, ...props}) => {

6 return <>{children}</>

7 }

The FunctionalComponent or FC is a generic type, so you can pass other props to it
to combine them with the children prop.

Use PropsWithChildren

Alternativelywe could use the React.PropsWithChildren type that can enhance your
props type, and add a definition for children.

Here is how React.PropsWithChildren type is defined:

1 type React.PropsWithChildren<P> = P & {

2 children?: React.ReactNode;

3 }

The letter P is a type argument. It works similar to function arguments. We can pass
an actual type which will be used instead of this letter. For example:

Your First React and TypeScript Application: Building Trello with Drag and Drop 43

1 type ColumnProps = React.PropsWithChildren<{

2 text: string

3 }>

4 // will result in the following type

5 //

6 // type ColumnProps = {

7 // text: string;

8 // } & {

9 // children?: React.ReactNode;

10 // }

11 //

The ampersand combines the two types into one. In TypeScript this is called a type
intersection.

1 type ColumnProps = {

2 text: string;

3 } & {

4 children?: React.ReactNode;

5 }

6

7 // is the same as:

8

9 type ColumnProps = {

10 text: string;

11 children?: React.ReactNode;

12 }

Define the children prop manually

We could also manually add the children field to the props type:

Your First React and TypeScript Application: Building Trello with Drag and Drop 44

1 type ColumnProps = {

2 text: string

3 children?: React.ReactNode;

4 }

Here we’ve added an optional field children of type ReactNode.

Create Card Components

Moving on to the Card component. Create a new file src/Card.tsx:

1 import { CardContainer } from "./styles"

2

3 type CardProps = {

4 text: string

5 }

6

7 export const Card = ({ text }: CardProps) => {

8 return <CardContainer>{text}</CardContainer>

9 }

It will also accept only the text prop. Define the CardProps type for the props with
the field text of type string.

Render everything together

Now render the Card component inside the Column component. Update the src/Column.tsx
to look like this:

Your First React and TypeScript Application: Building Trello with Drag and Drop 45

1 import { ColumnContainer, ColumnTitle } from "./styles"

2 import { Card } from "./Card"

3

4 type ColumnProps = {

5 text: string

6 }

7

8 export const Column = ({ text }: ColumnProps) => {

9 return (

10 <ColumnContainer>

11 <ColumnTitle>{text}</ColumnTitle>

12 <Card text="Generate app scaffold" />

13 <Card text="Learn TypeScript" />

14 <Card text="Begin to use static typing" />

15 </ColumnContainer>

16)

17 }

Component For Adding New Items

In this lesson, we’re going to create a component that will allow us to create new
lists and new cards.

AddItemButton

This component will have two states. Initially, it will be a button that says “+ Add
another card” or “+ Add another list”. When you click this button the component

Your First React and TypeScript Application: Building Trello with Drag and Drop 46

renders an input field and another button saying “Create”. When you click the
“Create” button it will trigger the callback function that we’ll pass as a prop.

Styles For The Button

Open src/styles.ts and define a type for AddItemButtonProps.

1 type AddItemButtonProps = {

2 dark?: boolean

3 }

We’ll use the AddItemButton component for both lists and tasks. When we use it for
lists, it will be rendered on a dark background, so we’ll need white color for text.
When we use it for tasks, we will render it inside the Column component, which
already has a light grey background, so we will want the text color to be black.

Button on light and dark background

Now define the AddNewItemButton styled-component:

Your First React and TypeScript Application: Building Trello with Drag and Drop 47

1 export const AddItemButton = styled.button<AddItemButtonProps>`

2 background-color: #ffffff3d;

3 border-radius: 3px;

4 border: none;

5 color: ${(props) => (props.dark ? "#000" : "#fff")};

6 cursor: pointer;

7 max-width: 300px;

8 padding: 10px 12px;

9 text-align: left;

10 transition: background 85ms ease-in;

11 width: 100%;

12 &:hover {

13 background-color: #ffffff52;

14 }

15 `

Make sure to define it as styled.button<AddItemButtonProps>. If you forget to
provide the props type you will have an error on color parameter, where we use
the value of the prop dark.

Create AddNewItem Component. Using State

Create src/AddNewItem.tsx, and import the useState hook and the AddItemButton
styles:

1 import { useState } from "react"

2 import { AddItemButton } from "./styles"

This component will accept an item type and some text props for its buttons. Define
a type for its props:

Your First React and TypeScript Application: Building Trello with Drag and Drop 48

1 type AddNewItemProps = {

2 onAdd(text: string): void

3 toggleButtonText: string

4 dark?: boolean

5 }

• onAdd is a callback function that will be called when we click the Create button.
• toggleButtonText is the text we’ll render when this component is a button.
• dark is a flag that we’ll pass to the styled component.

Define the AddNewItem component:

1 export const AddNewItem = (props: AddNewItemProps) => {

2 const [showForm, setShowForm] = useState(false)

3 const { onAdd, toggleButtonText, dark } = props

4

5 if (showForm) {

6 // We show item creation form here

7 }

8

9 return (

10 <AddItemButton dark={dark} onClick={() => setShowForm(true)}>

11 {toggleButtonText}

12 </AddItemButton>

13)

14 }

It holds a showForm boolean state. When this state is true, we show an input with the
Create button. When it’s false, we render the button with toggleButtonText on it.

When you call the useState hook you can provide the default value to it. The type
of this default value will be used to infer the type of the stored state.

In our case we passed the boolean value false, so TypeScript was able to infer that
the type of the showForm state is boolean.

We could also pass the type for the state manually, because useState is a generic
function and it has a type property S:

Your First React and TypeScript Application: Building Trello with Drag and Drop 49

1 function useState<S>(initialState: S | (() => S)): [S, Dispatch<SetStat\

2 eAction<S>>]

Here you can see that the initial state can have two forms. You can pass the value
itself or a function that will return the initial value.

In both cases the value will have the type that comes from the type variable S.

If we would need to be more specific about the type of our state - we could provide
the type for it manually:

1 const [showForm, setShowForm] = useState<boolean>(false);

In this case it is just unnecessary.

Let’s add our AddNewItem component to the application layout.

Adding New Lists

First let’s add the AddNewItem to the App component. Go to src/App.tsx and import
the component:

1 import { AddNewItem } from "./AddNewItem"

Now add the AddNewItem component to the App layout:

1 export const App = () => {

2 return (

3 <AppContainer>

4 <Column text="Todo:" />

5 <AddNewItem

6 toggleButtonText="+ Add another list"

7 onAdd={console.log}

8 />

9 </AppContainer>

10)

11 }

For now, we’ll pass console.log to our onAdd prop.

Your First React and TypeScript Application: Building Trello with Drag and Drop 50

Adding New Tasks

Open src/Column.tsx and import the AddNewItem component:

1 import { AddNewItem } from "./AddNewItem"

And update the Column layout:

1 export const Column = ({ text }: ColumnProps) => {

2 return (

3 <ColumnContainer>

4 <ColumnTitle>{text}</ColumnTitle>

5 <Card text="Generate app scaffold" />

6 <Card text="Learn TypeScript" />

7 <Card text="Begin to use static typing" />

8 <AddNewItem

9 toggleButtonText="+ Add another card"

10 onAdd={console.log}

11 dark

12 />

13 </ColumnContainer>

14)

15 }

NewItemForm component

Styles For The Form

We are aiming to have a form styled like this:

Your First React and TypeScript Application: Building Trello with Drag and Drop 51

Styled NewItemForm

Define a NewItemFormContainer in src/styles.ts file.

1 export const NewItemFormContainer = styled.div`

2 max-width: 300px;

3 display: flex;

4 flex-direction: column;

5 width: 100%;

6 align-items: flex-start;

7 `

Create a NewItemButton component with the following styles:

1 export const NewItemButton = styled.button`

2 background-color: #5aac44;

3 border-radius: 3px;

4 border: none;

5 box-shadow: none;

6 color: #fff;

7 padding: 6px 12px;

8 text-align: center;

9 `

We want our button to be green and have nice rounded corners.

Define styles for the input as well:

Your First React and TypeScript Application: Building Trello with Drag and Drop 52

1 export const NewItemInput = styled.input`

2 border-radius: 3px;

3 border: none;

4 box-shadow: #091e4240 0px 1px 0px 0px;

5 margin-bottom: 0.5rem;

6 padding: 0.5rem 1rem;

7 width: 100%;

8 `

Create NewItemForm component

Create a new file src/NewItemForm.tsx. Import the useState hook and the styled
components:

1 import { useState } from "react"

2 import {

3 NewItemFormContainer,

4 NewItemButton,

5 NewItemInput

6 } from "./styles"

Define the NewItemFormProps type:

1 type NewItemFormProps = {

2 onAdd(text: string): void

3 }

• onAdd is a callback passed through AddNewItemProps.

Now define the NewItemForm component:

Your First React and TypeScript Application: Building Trello with Drag and Drop 53

1 export const NewItemForm = ({ onAdd }: NewItemFormProps) => {

2 const [text, setText] = useState("")

3

4 return (

5 <NewItemFormContainer>

6 <NewItemInput

7 value={text}

8 onChange={(e) => setText(e.target.value)}

9 />

10 <NewItemButton onClick={() => onAdd(text)}>

11 Create

12 </NewItemButton>

13 </NewItemFormContainer>

14)

15 }

The component uses a controlled input. We’ll store the value for it in the text state.
Whenever you type in the text inside this input, the text state is updated.

Here we didn’t have to provide any type for the event argument of our onChange
callback. TypeScript gets the type from React type definitions.

Update AddNewItem Component

Import NewItemForm:

1 import { NewItemForm } from "./NewItemForm"

Add NewItemForm to the AddNewItem component.

Your First React and TypeScript Application: Building Trello with Drag and Drop 54

1 export const AddNewItem = (props: AddNewItemProps) => {

2 const [showForm, setShowForm] = useState(false)

3 const { onAdd, toggleButtonText, dark } = props

4

5 if (showForm) {

6 return (

7 <NewItemForm

8 onAdd={(text) => {

9 onAdd(text)

10 setShowForm(false)

11 }}

12 />

13)

14 }

15

16 return (

17 <AddItemButton dark={dark} onClick={() => setShowForm(true)}>

18 {toggleButtonText}

19 </AddItemButton>

20)

21 }

Automatically focus on input

To focus on the input we’ll use a React feature called refs.

Refs provide a way to reference the actual DOM nodes of rendered React elements.

There are several ways you can define refs in React, we are going to use the hook
version.

Create the useFocus hook

Create a new file src/utils/useFocus.ts:

Your First React and TypeScript Application: Building Trello with Drag and Drop 55

1 import { useRef, useEffect } from "react"

2

3 export const useFocus = () => {

4 const ref = useRef<HTMLInputElement>(null)

5

6 useEffect(() => {

7 ref.current?.focus()

8 }, [])

9

10 return ref

11 }

Here we use the useRef hook to get access to the rendered input element. TypeScript
can’t automatically know what the element type will be, so we provide the actual
type to it. In our case, we’re working with an input so it’s HTMLInputElement.

When I need to know what the name is of some element type, I usually
check the @types/react/global.d.ts⁴⁵ file. It contains type definitions for
types that have to be exposed globally (not in React namespace).

We use the useEffect hook to trigger the focus on the input element. As we’ve passed
an empty dependency array to the useEffect callback - it will be triggered only when
the component using our hook will be mounted.

If you peek the type of the ref object you will see that it is a generic interface that
looks like this:

1 interface RefObject<T> {

2 readonly current: T | null;

3 }

It has a type variable T in our case we specified it to be HTMLInputElement. This type
is used to describe the field current that can have type T or null.

Note that it is marked as readonly, so you can’t reassign the current field manually.
You will get this error if you try to do it:

⁴⁵https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/types/react/global.d.ts

Your First React and TypeScript Application: Building Trello with Drag and Drop 56

Cannot assign to ‘current’ because it is a read-only property.ts(2540)

This happened because we specified the default value null for our ref. It seems to
be an intentional design decision⁴⁶. It is assumed that if you pass null as the default
value - youwant React tomanage this ref object, and you don’t want the field current
to be overriden.

You can have a mutable ref as well. Don’t pass null as a default value, or specify null
as a possible ref type:

1 const mutableRef = useRef<HTMLInputElement | null>(null)

2 // Specify null as a possible value type

3

4 const mutableRef = useRef<HTMLInputElement>()

5 // Or don't pass null as a default value

In both casses the type of your ref will be React.MutableRefObject:

1 interface MutableRefObject<T> {

2 current: T;

3 }

So you will be able to mutate the field current of your ref. It is useful when you
want to store some data related to your component that should not cause re-renders
when you update it.

In our case we want the ref to be immutable, because we pass it to the input
component and have no intent of reassigning it manually.

The field current can still be null. So inside the useEffect callback we are using the
optional chaining operator (?.) to access it.

In our case the field current will never be null, because the useEffect

callback is called after the component is rendered, so the ref will already
contain the reference to our input element.

⁴⁶https://github.com/DefinitelyTyped/DefinitelyTyped/issues/31065#issuecomment-446425911

https://github.com/DefinitelyTyped/DefinitelyTyped/issues/31065#issuecomment-446425911
https://github.com/DefinitelyTyped/DefinitelyTyped/issues/31065#issuecomment-446425911

Your First React and TypeScript Application: Building Trello with Drag and Drop 57

Optional chaining operator allows you to access nested fields of an object without
explicitly validating that the references to them are valid. So in our case if the current
will be null or undefined it just won’t call the focus method.

Alternatively we could check the value of the current field manually:

1 if(inputRef.current){

2 inputRef.current.focus()

3 }

So the optional chaining operator is just a nicer way to do it.

Use the useFocus hook

Go back to src/NewItemForm.tsx and import the hook:

1 import { useFocus } from "./utils/useFocus"

Add it to the component code:

1 type NewItemFormProps = {

2 onAdd(text: string): void

3 }

4

5 export const NewItemForm = ({ onAdd }: NewItemFormProps) => {

6 const [text, setText] = useState("")

7 const inputRef = useFocus()

8

9 return (

10 <NewItemFormContainer>

11 <NewItemInput

12 ref={inputRef}

13 value={text}

14 onChange={(e) => setText(e.target.value)}

15 />

Your First React and TypeScript Application: Building Trello with Drag and Drop 58

16 <NewItemButton onClick={() => onAdd(text)}>

17 Create

18 </NewItemButton>

19 </NewItemFormContainer>

20)

21 }

We passed the reference that we get from the useFocus hook to our input element.

If you launch the app and click the new item button, you should see that the form
input is focused automatically.

Complete application layout

Submit on enter

Let’s make the NewItemForm component to submit the input on an Enter key press as
well, so that the items could be created by pressing the Enter key instead of clicking
the Create button.

To do this we are going to add an onKeyPress handler to the text input in the
NewItemForm component.

Your First React and TypeScript Application: Building Trello with Drag and Drop 59

Open NewItemForm component and add a new function right after the inputRef

definition:

1 const handleAddText = (

2 event: React.KeyboardEvent<HTMLInputElement>

3) => {

4 if (event.key === "Enter") {

5 onAdd(text)

6 }

7 }

Then add the onKeyPress event handler to the NewItemInput element:

1 <NewItemInput

2 ref={inputRef}

3 value={text}

4 onChange={(e) => setText(e.target.value)}

5 onKeyPress={handleAddText}

6 />

Here we used the KeyboardEvent type from React. You can find the available events
in the React documentation⁴⁷ and the types for them in the React type definitions⁴⁸.

Right now in our App.tsx we already pass console.log as the onAdd prop to the
NewItemForm element.

Launch the app and try pressing Enter after you enter some text into the list-adding
input.

You can find theworking example for this part in the code/01-first-app/01.11-submit-on-enter.
⁴⁷https://reactjs.org/docs/events.html
⁴⁸https://github.com/DefinitelyTyped/DefinitelyTyped/blob/14d95eb0fe90f5e0579c49df136cccdfe89b2855/types/

react/index.d.ts#L1211

https://reactjs.org/docs/events.html
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/14d95eb0fe90f5e0579c49df136cccdfe89b2855/types/react/index.d.ts#L1211
https://reactjs.org/docs/events.html
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/14d95eb0fe90f5e0579c49df136cccdfe89b2855/types/react/index.d.ts#L1211
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/14d95eb0fe90f5e0579c49df136cccdfe89b2855/types/react/index.d.ts#L1211

Your First React and TypeScript Application: Building Trello with Drag and Drop 60

Add Global State And Business Logic. Using
the useReducer

In this chapter we will add interactivity to our application.

We’ll implement drag-and-drop using the React DnD library, and we will add state
management. We won’t use any external framework like Redux or Mobx. Instead,
we’ll throw together a poor man’s version of Redux using useReducer hook and React
context API.

Before we jump into the action I will give a little primer on using useReducer.

Using the useReducer

Disclaimer: The following code is separate from the Trello-clone app and
is located in the examples inside the code/01-first-app/use-reducer

folder.

useReducer is a React hook that allows us to manage complex state-like objects with
multiple fields.

The main idea is that instead of mutating the original object we always create a new
instance with desired values.

Your First React and TypeScript Application: Building Trello with Drag and Drop 61

Instead of mutating the object we create a new instance

The state is updated using a special function called reducer.

What Is a Reducer?

A reducer is a function that calculates a new state by combining an old state with an
action object.

Reducer

Your First React and TypeScript Application: Building Trello with Drag and Drop 62

Reducer must be a pure function. It means it shouldn’t produce any side effects (I/O
operations or modifying global state) and for any given input it should return the
same output.

Usually a reducer looks like this:

1 function exampleReducer(state, action) {

2 switch(action.type){

3 case "SOME_ACTION": {

4 return { ...state, updatedField: action.payload }

5 }

6 default:

7 return state

8 }

9 }

Depending on the passed action type field we return a new state value. The key point
here is that we always generate a new object that represents the state.

If the passed action type did not match with any of the cases we return the state
unchanged.

How to Call useReducer

You can call useReducer inside your functional components. On every state change,
your component will be re-rendered.

Here’s the basic syntax:

1 const [state, dispatch] = useReducer(reducer, initialState)

useReducer accepts a reducer and initial state. It returns the current state paired
with a dispatch method.

dispatch method is used to send actions to the reducer.

state contains the current state value from the reducer.

Your First React and TypeScript Application: Building Trello with Drag and Drop 63

What Are Actions?

Actions are special objects that are passed to the reducer function to calculate the
new state.

Actions must contain a type field and some field for payload. The type field is
mandatory. Payload often has some arbitrary name.

Here is an action that could be used to update the name field:

1 { type: "SET_NAME", name: "George" }

We pass them to the dispatch method provided by the useReducer hook:

1 const [state, dispatch] = useReducer(reducer, initialState)

2

3 dispatch({ type: "SET_NAME", name: "George" })

Usually, instead of creating the actions directly, we generate them using special
functions called action creators:

1 const setName = (name) => ({ type: "SET_NAME", name })

The name of the action creator usually matches the type field of the action it creates.

After you have the action creator you can use it to dispatch actions like this:

1 const [state, dispatch] = useReducer(reducer, initialState)

2

3 dispatch(setName("George"))

Counter Example

The code for the counter example is in code/01-first-app/use-reducer.

Let’s look at the reducer first. Open src/App.tsx:

Your First React and TypeScript Application: Building Trello with Drag and Drop 64

1 const counterReducer = (state: State, action: Action) => {

2 switch (action.type) {

3 case "increment":

4 return { count: state.count + 1 }

5 case "decrement":

6 return { count: state.count - 1 }

7 default:

8 throw new Error()

9 }

10 }

This reducer can process increment and decrement actions.

This is TypeScript so we must provide types for state and action attributes.

We’ll define the State type with a count: number field:

1 interface State {

2 count: number

3 }

The action argument has a mandatory type field that we use to decide how should
we update our state.

Let’s define the Action type:

1 type Action =

2 | {

3 type: "increment"

4 }

5 | {

6 type: "decrement"

7 }

We’ve defined it as a type having one of the two forms: { type: "increment" } or
{ type: "decrement" }. In TypeScript this is called a union type.

The syntax might look strange because of the leading "|" and also because it’s spread
between multiple lines, but that is how Prettier formats it. Alternatively you could
write it like this:

Your First React and TypeScript Application: Building Trello with Drag and Drop 65

1 type Action = { type: "increment" } | { type: "decrement" }

This way it would be more clear. So the leading "|" just allows us to define the union
type in multiple lines.

You might wonder why didn’t we define it as an interface with a field type: string

like this:

1 interface Action {

2 type: string

3 }

But defining our Action as a type instead of an interface gives us a bunch of
important advantages. Bear with me —we’ll get back to this topic later in the chapter.

For now let’s see how can you use this in your components. Here is a counter
component that will use the reducer we’ve defined previously:

1 const App = () => {

2 const [state, dispatch] = useReducer(counterReducer, { count: 0 })

3 return (

4 <>

5 <p>Count: {state.count}</p>

6 <button onClick={() => dispatch({ type: "decrement" })}>

7 -

8 </button>

9 <button onClick={() => dispatch({ type: "increment" })}>

10 +

11 </button>

12 </>

13)

14 }

Here we call the dispatch method inside the onClick handlers. With each dispatch

call we send an Action object and then we calculate the new state in our counter
reducer.

Define the action creators:

Your First React and TypeScript Application: Building Trello with Drag and Drop 66

1 const increment = (): Action => ({ type: "increment" })

2 const decrement = (): Action => ({ type: "decrement" })

We define them outside of the component. Specify the return type of them to be our
Action type.

Try to create an action creator that would have the type field with the
value that is not defined on the Action type.

Now let’s use the action creators instead of creating the action objects manually:

1 const App = () => {

2 const [state, dispatch] = useReducer(counterReducer, { count: 0 })

3 return (

4 <>

5 <p>Count: {state.count}</p>

6 <button onClick={() => dispatch(decrement())}>-</button>

7 <button onClick={() => dispatch(increment())}>+</button>

8 </>

9)

10 }

If you launch the app from the examples in the code/01-first-app/use-reducer

folder you should see a counter with two buttons:

Counter app

Your First React and TypeScript Application: Building Trello with Drag and Drop 67

Click the buttons to make the number on the counter go up or down.

Now let’s get back to our Trello-clone project.

Implement Global State

First let’s define a data structure for our application and make it available to all the
components through React’s Context API.

Create a new file called src/state/AppStateContext.tsx. Let’s start with the
imports:

1 import { createContext, useContext, FC } from "react"

We’ll use the createContext to define the AppStateContext, useContext to define
a helper hook to access the context data easier, and the FC type to define the
AppStateProvider so that it accepts children.

Hardcode the data

Define the types for the application state:

1 type Task = {

2 id: string

3 text: string

4 }

5

6 type List = {

7 id: string

8 text: string

9 tasks: Task[]

10 }

11

12 export type AppState = {

13 lists: List[]

14 }

Your First React and TypeScript Application: Building Trello with Drag and Drop 68

The root type is AppState it depends on List and Task types.

We use arrays to store the lists and the tasks. They will allow us to move the items
around because arrays preserve the elements’ order.

Both lists and tasks have unique IDs that will allow us to identify them. Also they
need to have the text field that we’ll render inside the components.

I decided to use the terms Task/List for the data types and Column/Card for UI
components. This way there should be less ambiguity. So if there is a mention of
a Task - we are talking about the data, and if we are mentioning a Card then it is
definitely a component. I don’t know if that’s a good idea, the time will show.

Define the application data — for now let’s hardcode it:

1 const appData: AppState = {

2 lists: [

3 {

4 id: "0",

5 text: "To Do",

6 tasks: [{ id: "c0", text: "Generate app scaffold" }]

7 },

8 {

9 id: "1",

10 text: "In Progress",

11 tasks: [{ id: "c2", text: "Learn Typescript" }]

12 },

13 {

14 id: "2",

15 text: "Done",

16 tasks: [{ id: "c3", text: "Begin to use static typing" }]

17 }

18]

19 }

We set the type of this object to AppState.

Your First React and TypeScript Application: Building Trello with Drag and Drop 69

Define the Context

Define the type for the context value and the context itself:

1 type AppStateContextProps = {

2 lists: List[]

3 getTasksByListId(id: string): Task[]

4 }

5

6 const AppStateContext = createContext<AppStateContextProps>(

7 {} as AppStateContextProps

8)

The AppStateContextProps contains two fields: lists and getTasksByListId. We’ll
use the lists field in the App component to render the columns, and the getTasksByListId
in the Column component to render the cards.

React wants us to provide the default value for our context. This value will only
be used if we don’t wrap our application into our AppStateProvider, so we can
omit it. To do this, pass an empty object that we’ll cast to AppStateContextProps

to createContext function. Here we use an as operator to make TypeScript think
that our empty object actually has AppStateContextProps type:

1 const AppStateContext = createContext<AppStateContextProps>(

2 {} as AppStateContextProps

3)

Define the Context provider

Now define the AppStateProvider:

Your First React and TypeScript Application: Building Trello with Drag and Drop 70

1 export const AppStateProvider: FC = ({ children }) => {

2 const { lists } = appData

3

4 const getTasksByListId = (id: string) => {

5 return lists.find((list) => list.id === id)?.tasks || []

6 }

7

8 return (

9 <AppStateContext.Provider value={{ lists, getTasksByListId }}>

10 {children}

11 </AppStateContext.Provider>

12)

13 }

Inside of this component we defined the lists const and the getTasksByListId func-
tion. We will pass them through the value prop of the AppStateContext.Provider

to make them available to all the context consumers.

Our component will accept children as a prop, because we want to be able to wrap
components into the AppStateProvider. So we specify its type as FC.

Go to src/index.tsx and wrap the App component into the AppStateProvider.

1 import React from "react"

2 import ReactDOM from "react-dom"

3 import "./index.css"

4 import { App } from "./App"

5 import { AppStateProvider } from "./state/AppStateContext"

6

7 ReactDOM.render(

8 <React.StrictMode>

9 <AppStateProvider>

10 <App />

11 </AppStateProvider>

12 </React.StrictMode>,

13 document.getElementById("root")

14)

Your First React and TypeScript Application: Building Trello with Drag and Drop 71

Now we’ll be able to get the lists and getTasksByListId from any component.

Let’s create a custom hook to make it easier to access them.

Using Data From Global Context. Implement Custom
Hook

Import the useContext hook if you didn’t do in on the previous step:

1 import { createContext, useContext, FC } from "react"

Then define a custom hook called useAppState:

1 export const useAppState = () => {

2 return useContext(AppStateContext)

3 }

Inside this hook, we’ll get the value from the AppStateContext using the useContext
hook and return the result.

We don’t need to specify the types, because TypeScript can derive them automatically
based on AppStateContext type. Verify this by hovering the useAppState hook
definition with your mouse and checking its return type.

Get The Data From AppStateContext

Let’s update the Card component first. As we now need to link the components with
the corresponding data we’ll need to pass the id to them.

Open src/Card.tsx and define the id field on the CardProps type:

Your First React and TypeScript Application: Building Trello with Drag and Drop 72

1 type CardProps = {

2 text: string

3 id: string

4 }

Open src/Column.tsx and update the Column props as well:

1 type ColumnProps = {

2 text: string

3 id: string

4 }

We’ll use the id prop to find the corresponding tasks.

Import the useAppState hook:

1 import { useAppState } from "./state/AppStateContext"

Then change the Column layout. We’ll call useAppState to get the getTasksByListId
function. Then we use this function to get the tasks to show in this column:

1 export const Column = ({ text, id }: ColumnProps) => {

2 const { getTasksByListId } = useAppState()

3

4 const tasks = getTasksByListId(id)

5

6 return (

7 <ColumnContainer>

8 <ColumnTitle>{text}</ColumnTitle>

9 {tasks.map((task) => (

10 <Card text={task.text} key={task.id} id={task.id} />

11))}

12 <AddNewItem

13 toggleButtonText="+ Add another card"

14 onAdd={console.log}

15 dark

Your First React and TypeScript Application: Building Trello with Drag and Drop 73

16 />

17 </ColumnContainer>

18)

19 }

Open the src/App.tsx file. Use our useAppState hook to retrieve the lists.

Import the hook:

1 import { useAppState } from "./state/AppStateContext"

Update the layout:

1 export const App = () => {

2 const { lists } = useAppState()

3

4 return (

5 <AppContainer>

6 {lists.map((list) => (

7 <Column text={list.text} key={list.id} id={list.id} />

8))}

9 <AddNewItem

10 toggleButtonText="+ Add another list"

11 onAdd={console.log}

12 />

13 </AppContainer>

14)

15 }

Make sure to pass the id to the Column component. We’ll need it to find the
corresponding tasks in the context.

We don’t have to specify the type of the loop variable list. TypeScript derives it
automatically. If we make a typo and instead of list.text we write list.test,
TypeScript will correct us and show a list of available fields.

Now all our components can get the app data from the context. In the next section
we’ll add some actions and reducers to be able to update the data.

Your First React and TypeScript Application: Building Trello with Drag and Drop 74

You can find theworking example for this part in the code/01-first-app/01.13-implement-global-state.

Define the business logic

In this chapter, we’ll define the actions and reducers necessary to create new
cards and components. We will provide the reducer’s dispatch method through the
React.Context and will use it in our AddNewItem component.

We will use Immer to simplify updating the state. Immer will allow us to mutate the
state instead of creating a new instance.

Install use-immer:

1 yarn add use-immer@0.5.1

This library is written in TypeScript so we don’t need to install an additional @types
package.

Create Actions

We’ll begin by adding two actions: ADD_TASK and ADD_LIST. To do this we’ll have to
define the Action type alias.

Create src/state/actions.ts and define a new type:

1 export type Action =

2 | {

3 type: "ADD_LIST"

4 payload: string

5 }

6 | {

7 type: "ADD_TASK"

8 payload: { text: string; listId: string }

9 }

Your First React and TypeScript Application: Building Trello with Drag and Drop 75

We’ve defined the type alias Action and then we’ve passed two types separated by a
vertical line to it. This means that the Action type now can resolve to one of the forms
that we’ve passed. So it works like logical inclusive disjunction⁴⁹, in other words it is
a logical “or”.

Each action has an associated payload field:

• ADD_LIST - contains the list title.
• ADD_TASK - text is the task text, and listId is the reference to the list it belongs
to.

We could also define the types in the union using the interface syntax:

1 interface AddListAction {

2 type: "ADD_LIST"

3 payload: string

4 }

5

6 interface AddTaskAction {

7 type: "ADD_TASK"

8 payload: { text: string; listId: string }

9 }

10

11 type Action = AddListAction | AddTaskAction

It would work same way, I just prefer using types.

The technique we are using here is called discriminated union⁵⁰.

Each action has a type property. This property will be our discriminant. It means
that TypeScript can look at this property and tell what the other fields of the type
will be.

For example, here is an if statement:

⁴⁹https://en.wikipedia.org/wiki/Logical_disjunction
⁵⁰https://en.wikipedia.org/wiki/Tagged_union

https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Tagged_union

Your First React and TypeScript Application: Building Trello with Drag and Drop 76

1 if (action.type === "ADD_LIST") {

2 return typeof action.payload

3 // Will return "string"

4 }

5

6 if (action.type === "ADD_TASK") {

7 return typeof action.payload

8 // Will return { text: string; listId: string }

9 }

Here TypeScript already knows that if the action.type is ADD_LIST then action.payload
is a string, and if the action.type is ADD_TASK then the payload is going to be an
object.

This is one of the things that only types can do.

It will be useful when we’ll define our reducers.

Ok, we have the Action type, now let’s define the action creators. Still inside the
src/state/actions.ts define and export two functions:

1 export const addTask = (text: string, listId: string): Action => ({

2 type: "ADD_TASK",

3 payload: {

4 text,

5 listId

6 }

7 })

8

9 export const addList = (text: string): Action => ({

10 type: "ADD_LIST",

11 payload: text

12 })

Your First React and TypeScript Application: Building Trello with Drag and Drop 77

Define the appStateReducer

Create a new file src/state/appStateReducer.ts it will contain our reducer func-
tion.

Import the Action type from the ./actions module:

1 import { Action } from "./actions"

Move the AppState type definition from the AppStateContext to this new appStateReducer

file:

1 export type Task = {

2 id: string

3 text: string

4 }

5

6 export type List = {

7 id: string

8 text: string

9 tasks: Task[]

10 }

11

12 export type AppState = {

13 lists: List[]

14 }

Export the List and the Task types as well.

Define and export the appStateReducer:

Your First React and TypeScript Application: Building Trello with Drag and Drop 78

1 export const appStateReducer = (

2 draft: AppState,

3 action: Action

4): AppState | void => {

5 switch (action.type) {

6 // ...

7 }

8 }

Here we call the state a draft, because we are using Immer and we’ll mutate this
object directly. This way we remind ourselves that it is not a regular reducer state
and we don’t have to worry about the immutability.

Adding Lists

Each newly created list will have a unique id, that we’ll use to find it in the state.
We’ll use nanoid⁵¹ to generate them.

Install this library:

1 yarn add nanoid@3.1.22

Then import nanoid in src/state/appStateReducer.ts:

1 import { nanoid } from "nanoid"

Add the ADD_LIST block to the reducer:

⁵¹https://github.com/ai/nanoid

https://github.com/ai/nanoid
https://github.com/ai/nanoid

Your First React and TypeScript Application: Building Trello with Drag and Drop 79

1 switch (action.type) {

2 case "ADD_LIST": {

3 draft.lists.push({

4 id: nanoid(),

5 text: action.payload,

6 tasks: []

7 })

8 break

9 }

10 // ...

11 }

Each list has the id, text and tasks fields. The id is the list identifier generated by
nanoid, the text field contains the list’s title from the action.payload, and the tasks
is initially an empty array.

Because we are using Immer - we can just push the new list to the draft.lists array.

Adding Tasks

Adding tasks is a bit more complex because they need to be added to the specific
list’s tasks array.

We’ll need a helper function to find the items by their indices.

Create a new file src/utils/arrayUtils.ts. We are going to define a function that
will accept any object that has a field id: string. So we’ll define it as a generic
function.

Define a new type Item.

1 type Item = {

2 id: string

3 }

We will use a type variable TItem that extends Item. This means that we constrained
our generic to have the fields that are defined on the Item type, in this case the id

field.

Your First React and TypeScript Application: Building Trello with Drag and Drop 80

Define the function:

1 export const findItemIndexById = <TItem extends Item>(

2 items: TItem[],

3 id: string

4) => {

5 return items.findIndex((item: TItem) => item.id === id)

6 }

Now try to pass in an array of objects that don’t have the id field:

1 const itemsWithoutId = [{text: "test"}]

2 findItemIndexById(itemsWithoutId, "testId")

You will get a type error:

1 Argument of type '{ text: string; }[]' is not assignable to parameter o\

2 f type 'Item[]'.

3 Property 'id' is missing in type '{ text: string; }' but required in \

4 type 'Item'.ts(2345)

If you remove the constraint and just write <TItem> then TypeScript will allow you
to pass the itemsWithoutId array but will complain that the id field is not defined
on type TItem.

So type constraints guarantee that the items that we pass to the function have the
fields defined on the extended type.

If you followed the instructions on testing out the type constraints — don’t
forget to remove that code.

Return to src/state/appStateReducer.ts and import the findItemByIndex func-
tion:

Your First React and TypeScript Application: Building Trello with Drag and Drop 81

1 import { findItemIndexById } from "../utils/arrayUtils"

Define the ADD_TASK handler:

1 case "ADD_TASK": {

2 const { text, listId } = action.payload

3 const targetListIndex = findItemIndexById(draft.lists, listId)

4

5 draft.lists[targetListIndex].tasks.push({

6 id: nanoid(),

7 text

8 })

9 break

10 }

Here we get the text and listId values by destructuring the action.payload. Then
we find the array index of the target list using the findItemIndexById. After we have
the index — we just push the new task object to the target list.

Ok, now our reducer allows us to add lists and tasks, let’s implement this in the UI.

Provide Dispatch Through The Context

Open the src/state/AppStateContext.tsx and add the imports.

1 import { createContext, useContext, Dispatch, FC } from "react"

2 import {

3 appStateReducer,

4 AppState,

5 List,

6 Task

7 } from "./appStateReducer"

8 import { Action } from "./actions"

9 import { useImmerReducer } from "use-immer"

Then add the dispatch method to the AppStateContextProps definition:

Your First React and TypeScript Application: Building Trello with Drag and Drop 82

1 type AppStateContextProps = {

2 lists: List[]

3 getTasksByListId(id: string): Task[]

4 dispatch: Dispatch<Action>

5 }

Here we’ve manually specified the type of the dispatch method. Try hovering the
variable dispatch that we get from the useImmerReducer:

1 type React.Dispatch<A> = (value: A) => void

This type is generic, so we were able to set our Action type as the type for the
dispatched actions.

Update the AppStateProvider:

1 export const AppStateProvider: FC = ({ children }) => {

2 const [state, dispatch] = useImmerReducer(appStateReducer, appData)

3

4 const { lists } = state

5 const getTasksByListId = (id: string) => {

6 return lists.find((list) => list.id === id)?.tasks || []

7 }

8

9 return (

10 <AppStateContext.Provider

11 value={{ lists, getTasksByListId, dispatch }}

12 >

13 {children}

14 </AppStateContext.Provider>

15)

16 }

Now we get the state value from the reducer and also we provide the dispatch

method through the context.

Your First React and TypeScript Application: Building Trello with Drag and Drop 83

Dispatching Actions

Go to src/App.tsx and import the addList action creator from src/state/actions.ts:

1 import { addList } from "./state/actions"

Update the App component definition:

1 export const App = () => {

2 const { lists, dispatch } = useAppState()

3

4 return (

5 <AppContainer>

6 {lists.map((list) => (

7 <Column text={list.text} key={list.id} id={list.id} />

8))}

9 <AddNewItem

10 toggleButtonText="+ Add another list"

11 onAdd={(text) => dispatch(addList(text))}

12 />

13 </AppContainer>

14)

15 }

We get the dispatchmethod from the useAppState hook and then call it in the onAdd
callback.

Open src/Column.tsx and update it as well. Import the addTask action creator:

1 import { addTask } from "./state/actions"

Then update the component:

Your First React and TypeScript Application: Building Trello with Drag and Drop 84

1 export const Column = ({ text, id }: ColumnProps) => {

2 const { getTasksByListId, dispatch } = useAppState()

3 const tasks = getTasksByListId(id)

4

5 return (

6 <ColumnContainer>

7 <ColumnTitle>{text}</ColumnTitle>

8 {tasks.map((task) => (

9 <Card text={task.text} key={task.id} id={task.id} />

10))}

11 <AddNewItem

12 toggleButtonText="+ Add another card"

13 onAdd={(text) => dispatch(addTask(text, id))}

14 dark

15 />

16 </ColumnContainer>

17)

18 }

Now when the user adds the new task we call the dispatch method. We pass the id
with the text because we need to know which list will contain the new task.

Let’s launch the app and check that we can create new tasks and lists.

You can find theworking example for this part in the code/01-first-app/01.14-define-the-business-logic.

Moving Items

Now that we can add new items, it’s time to move them around. We’ll start with the
columns.

Define the moveItem helper function

First we’ll define a utility function that will help us to move the items inside the
array.

Your First React and TypeScript Application: Building Trello with Drag and Drop 85

Moving the item means that we remove it from the old position and then add to the
new position. Let’s define the helper functions for it. Open src/utils/arrayUtils.ts
and define the removeItemAtIndex function:

1 export function removeItemAtIndex<TItem>(

2 array: TItem[],

3 index: number

4) {

5 return [...array.slice(0, index), ...array.slice(index + 1)]

6 }

We want to be able to work with arrays with any kind of items in them, so we use a
type variable TItem.

We use the spread operator to generate a new array with the portion before the index
that we get using the slice method, and the portion after the index using the slice
method with index + 1.

Define the insertItemAtIndex:

1 export function insertItemAtIndex<TItem>(

2 array: TItem[],

3 item: TItem,

4 index: number

5) {

6 return [...array.slice(0, index), item, ...array.slice(index)]

7 }

This function is very similar to removeItemAtIndex, we also generate a new array
from two slices of the original array. The difference is that we put the item between
the array slices.

Now we can define the moveItem function:

Your First React and TypeScript Application: Building Trello with Drag and Drop 86

1 export const moveItem = <TItem>(

2 array: TItem[],

3 from: number,

4 to: number

5) => {

6 const item = array[from]

7 return insertItemAtIndex(removeItemAtIndex(array, from), item, to)

8 }

First we store the item in the item constant. Then we use the removeItemAtIndex

function to remove the item from its original position and then we insert it back to
the new position using the insertItemAtIndex function.

Handling the MOVE_LIST action

Open src/state/appStateReducer.ts and import the moveItem function:

1 import { findItemIndexById, moveItem } from "../utils/arrayUtils"

Add a new action type to the Action union type:

1 | {

2 type: "MOVE_LIST"

3 payload: {

4 draggedId: string

5 hoverId: string

6 }

7 }

Do not override the whole Action type. Append this code to the end of the
Action definition.

Now define the action creator for it:

Your First React and TypeScript Application: Building Trello with Drag and Drop 87

1 export const moveList = (

2 draggedId: string,

3 hoverId: string

4): Action => ({

5 type: "MOVE_LIST",

6 payload: {

7 draggedId,

8 hoverId

9 }

10 })

We’ve added the MOVE_LIST action. This action has draggedId and hoverId in its
payload. When we start dragging the column, we remember its id and pass it as
draggedId. When we hover over other columns we take their ids and use them as a
hoverId.

Add a new case block to the appStateReducer:

1 case "MOVE_LIST": {

2 const { draggedId, hoverId } = action.payload

3 const dragIndex = findItemIndexById(draft.lists, draggedId)

4 const hoverIndex = findItemIndexById(draft.lists, hoverId)

5 draft.lists = moveItem(draft.lists, dragIndex, hoverIndex)

6 break

7 }

Here we take the draggedId and the hoverId from the action payload. Then we
calculate the indices of the dragged and the hovered columns. And then we override
the draft.lists value with the result of the moveItem function, which takes the
source array, and two indices that it swaps.

Add Drag and Drop (Install React DnD)

To implement drag and drop we will use the react-dnd library. This library has
several adapters called backends to support different APIs. For example to use
react-dnd with HTML5 we will use react-dnd-html5-backend.

Your First React and TypeScript Application: Building Trello with Drag and Drop 88

Install the library:

1 yarn add react-dnd@14.0.1 react-dnd-html5-backend@14.0.0

react-dnd has built-in type definitions, so we don’t have to install them separately.

Open src/index.tsx and add DndProvider to the layout.

1 import React from "react"

2 import ReactDOM from "react-dom"

3 import "./index.css"

4 import { App } from "./App"

5 import { DndProvider } from "react-dnd"

6 import { HTML5Backend as Backend } from "react-dnd-html5-backend"

7 import { AppStateProvider } from "./state/AppStateContext"

8

9 ReactDOM.render(

10 <React.StrictMode>

11 <DndProvider backend={Backend}>

12 <AppStateProvider>

13 <App />

14 </AppStateProvider>

15 </DndProvider>

16 </React.StrictMode>,

17 document.getElementById("root")

18)

This provider will add a dragging context to our app. It will allow us to use useDrag
and useDrop hooks inside our components.

Define The Type For Dragging

Whenwe begin to drag an itemwe’ll provide information about it to react-dnd. We’ll
pass an object that will describe the item we are currently dragging. This object will

Your First React and TypeScript Application: Building Trello with Drag and Drop 89

have a type field that for now will be COLUMN. We’ll also pass the column’s id and
text that we’ll get from the Column component.

Create a new file src/DragItem.ts. Define a ColumnDragItem and assign it to the
DragItem type:

1 export type ColumnDragItem = {

2 id: string

3 text: string

4 type: "COLUMN"

5 }

6

7 export type DragItem = ColumnDragItem

Later the DragItem will be a union type, and we will add the CardDragItem type to
it.

Store The Dragged Item In The State

Let’s store the dragged item in our app state. Go to src/state/appStateReducer.ts

and import the DragItem type:

1 import { DragItem } from "../DragItem"

Update the AppState type:

1 export type AppState = {

2 lists: List[]

3 draggedItem: DragItem | null

4 }

Go to src/state/AppStateContext.tsx and update the appData constant, add the
draggedItem field with value null to it:

Your First React and TypeScript Application: Building Trello with Drag and Drop 90

1 const appData: AppState = {

2 draggedItem: null,

3 // ...

4 }

Add the draggedItem field to the AppStateContextProps:

1 import { DragItem } from "../DragItem"

2 // ...

3 type AppStateContextProps = {

4 draggedItem: DragItem | null

5 lists: List[]

6 getTasksByListId(id: string): Task[]

7 dispatch: Dispatch<Action>

8 }

Don’t forget to import the DragItem type.

Then update the AppStateProvider so it provides the draggedItem through the
context:

1 export const AppStateProvider: FC = ({ children }) => {

2 const [state, dispatch] = useImmerReducer(appStateReducer, appData)

3

4 const { draggedItem, lists } = state

5 const getTasksByListId = (id: string) => {

6 return lists.find((list) => list.id === id)?.tasks || []

7 }

8

9 return (

10 <AppStateContext.Provider

11 value={{ draggedItem, lists, getTasksByListId, dispatch }}

12 >

13 {children}

14 </AppStateContext.Provider>

15)

16 }

Your First React and TypeScript Application: Building Trello with Drag and Drop 91

In the src/state/actions.ts add a new action type SET_DRAGGED_ITEM to the Action
union type, don’t forget to import the DragItem type here as well:

1 import { DragItem } from "../DragItem"

2 // ...

3 | {

4 type: "SET_DRAGGED_ITEM"

5 payload: DragItem | null

6 }

It will hold the DragItem that we defined earlier. We want to be able to set it to null if
we are not dragging anything. We are not using the undefined here because it would
mean that the field could be omitted. In our case it’s not true, it can just be empty
sometimes.

Define the action creator:

1 export const setDraggedItem = (

2 draggedItem: DragItem | null

3): Action => ({

4 type: "SET_DRAGGED_ITEM",

5 payload: draggedItem

6 })

Add a new case block to appStateReducer:

1 case "SET_DRAGGED_ITEM": {

2 draft.draggedItem = action.payload

3 break

4 }

In this block, we set the draggedItem field of our draft state to whatever we get from
the action.payload.

Your First React and TypeScript Application: Building Trello with Drag and Drop 92

Define The useItemDrag Hook

The dragging logic will be similar for both cards and columns. I suggest we move it
to a custom hook.

This hook will return a drag method that accepts the ref of a draggable element.
Whenever we start dragging the item, the hook will dispatch a SET_DRAG_ITEM action
to save the item in the app state. When we stop dragging, it will dispatch this action
again with null as the payload.

Create a new file src/utils/useItemDrag.ts. Inside of it write the following:

1 import { useDrag } from "react-dnd"

2 import { useAppState } from "../state/AppStateContext"

3 import { DragItem } from "../DragItem"

4 import { setDraggedItem } from "../state/actions"

5

6 export const useItemDrag = (item: DragItem) => {

7 const { dispatch } = useAppState()

8 const [, drag] = useDrag({

9 type: item.type,

10 item: () => {

11 dispatch(setDraggedItem(item))

12 return item

13 },

14 end: () => dispatch(setDraggedItem(null))

15 })

16 return { drag }

17 }

Internally this hook uses useDrag from react-dnd. We pass an options object to it.

• type - it will be CARD or COLUMN
• item - returns dragged item object and dispatches the SET_DRAGGED_ITEM action
• end - is called when we release the item

Your First React and TypeScript Application: Building Trello with Drag and Drop 93

As you can see inside this hook we dispatch the new SET_DRAGGED_ITEM action. When
we start dragging, we store the item in our app state, and when we stop, we reset it
to null.

The useDrag hook returns three values inside the array:

• [0] - Collected Props: An object containing collected properties from the collect
function. If no collect function is defined, an empty object is returned.

• [1] - DragSource Ref: A connector function for the drag source. This must be
attached to the draggable portion of the DOM.

• [2] - DragPreview Ref: A connector function for the drag preview. This may be
attached to the preview portion of the DOM.

It is a common pattern with hooks, because it allows us to destructure this array and
assign its values to variables that have the names we want.

An example of this is the useState hook that returns two values inside the
array:

• [0] - getter, allows us to get the state value.
• [1] - setter function, allows us to update the state value.

It allows us to call the getter and the setter however we want. For example
const [fruit, setFruit] = useState("apple").

In our hook we don’t need the Collected Props object, so we skip it which leaves us
with this a hanging comma in the beginning. The syntax might look a bit awkward,
but really we are just skipping the value that we aren’t going to use.

Drag Column

Let’s implement dragging for the Column component.

Import the useRef and the useItemDrag hook that we’ve just defined:

Your First React and TypeScript Application: Building Trello with Drag and Drop 94

1 import { useRef } from "react"

2 import { useItemDrag } from "./utils/useItemDrag"

Define the ref constant that will hold the reference to the dragged div element.

1 const ref = useRef<HTMLDivElement>(null)

We need a ref to specify the drag target. Here we know that it will be a div element.
We manually provide the HTMLDivElement type to useRef call.

Pass the ref to the ColumnContainer element:

1 <ColumnContainer ref={ref}>

We will use the useItemDrag hook to find out when did the user begin dragging the
column.

1 const { drag } = useItemDrag({ type: "COLUMN", id, text })

We pass an object that represents the dragged item. We say that it’s a COLUMN and
then we pass the id and text properties. This hook returns the drag function. We’ll
pass the column ref to it later.

To find a place to drop the column we’ll use other columns as drop targets. So when
we hover over another column we dispatch a MOVE_LIST action to swap the dragged
and target column positions.

First of all we’ll need to know what are we dragging, so let’s get the draggedItem

from the state:

1 const { draggedItem, getTasksByListId, dispatch } = useAppState()

The hover event might be triggered too frequently, so we’ll use the throttle function
from the throttle-debounce-ts package.

Install the package:

Your First React and TypeScript Application: Building Trello with Drag and Drop 95

1 yarn add throttle-debounce-ts

Add the imports, youwill need useDrop from react-dnd, throttle from throttle-debounce-ts,
and moveList from src/state/actions.ts:

1 import { useDrop } from "react-dnd"

2 import { moveList, addTask } from "./state/actions"

3 import { throttle } from "throttle-debounce-ts"

Now add the call to useDrop at the beginning of the Column component right after
the useRef call:

1 const ref = useRef<HTMLDivElement>(null)

2 const [, drop] = useDrop({

3 accept: "COLUMN",

4 hover: throttle(200, () => {

5 if (!draggedItem) {

6 return

7 }

8 if (draggedItem.type === "COLUMN") {

9 if (draggedItem.id === id) {

10 return

11 }

12

13 dispatch(moveList(draggedItem.id, id))

14 }

15 })

16 })

Here we pass the accepted item type and then define the throttled hover callback.
Inside of it we first check that the draggedItem exists, then we check that we are
dragging a column and that the dragged item and hovered item IDs are different. If
everything is fine we dispatch a MOVE_LIST action.

Now we can combine the drag and the drop functions. Add this code right before
the component return statement:

Your First React and TypeScript Application: Building Trello with Drag and Drop 96

1 drag(drop(ref))

Launch the app, you should be able to drag the columns.

You can find theworking example for this part in the code/01-first-app/01.19-drag-column.

Hide The Dragged Item

Styles For DragPreviewContainer

If you try to drag the column around, you will see that the original dragged column
is still visible.

Let’s go to src/styles.ts and add an option to hide it.

We’ll need to reuse this logic, so we’ll move it out to DragPreviewContainer.

1 interface DragPreviewContainerProps {

2 isHidden?: boolean

3 }

4

5 export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

6 s>`

7 opacity: ${(props) => (props.isHidden ? 0.3 : 1)};

8 `

For now, we won’t hide the column completely - we’ll just make it semitransparent.
Set the opacity in the hidden state to 0.3. This way we’ll see the hidden element.
Later we’ll change this value to 0 to hide the element completely.

Now update the ColumnContainer to extend the DragPreviewContainer:

Your First React and TypeScript Application: Building Trello with Drag and Drop 97

1 export const ColumnContainer = styled(DragPreviewContainer)`

2 background-color: #ebecf0;

3 width: 300px;

4 min-height: 40px;

5 margin-right: 20px;

6 border-radius: 3px;

7 padding: 8px 8px;

8 flex-grow: 0;

9 `

As you can see the styled namespace that we used to define the styles for the div

elements before can also be used as a function. This way we can extend the styled
components that we defined earlier.

Read more about the styled factory in the Styled Components documen-
tation⁵²

While we are still in the src/styles.ts, let’s update the CardContainer as well, make
it extend the DragPreviewContainer:

1 export const CardContainer = styled(DragPreviewContainer)`

2 background-color: #fff;

3 cursor: pointer;

4 margin-bottom: 0.5rem;

5 padding: 0.5rem 1rem;

6 max-width: 300px;

7 border-radius: 3px;

8 box-shadow: #091e4240 0px 1px 0px 0px;

9 `

Calculate The isHidden Flag

Let’s add a helper method to calculate if we need to hide the column.

Create a new file src/utils/isHidden.ts with the following code:

⁵²https://styled-components.com/docs/api

https://styled-components.com/docs/api
https://styled-components.com/docs/api
https://styled-components.com/docs/api

Your First React and TypeScript Application: Building Trello with Drag and Drop 98

1 import { DragItem } from "../DragItem"

2

3 export const isHidden = (

4 draggedItem: DragItem | null,

5 itemType: string,

6 id: string

7): boolean => {

8 return Boolean(

9 draggedItem &&

10 draggedItem.type === itemType &&

11 draggedItem.id === id

12)

13 }

This function compares the type and id of the currently dragged item with the type
and id we pass to it as arguments.

Go to src/Column.tsx and import the isHidden function:

1 import { isHidden } from "./utils/isHidden"

Update the layout. We now pass the result of isHidden function to the isHidden prop
of our ColumnContainer:

1 <ColumnContainer

2 ref={ref}

3 isHidden={isHidden(draggedItem, "COLUMN", id)}

4 >

Now you can launch the app and verify that we are actually hiding the items that
we are dragging.

You can find theworking example for this part in the code/01-first-app/01.20-hide-drag-item.

Your First React and TypeScript Application: Building Trello with Drag and Drop 99

Implement The Custom Dragging Preview

React DnD allows you to have a custom element that will represent the dragged
item preview. To implement this feature we’ll have to use the customDragLayer from
react-dnd

We want a container component to render the preview. It needs to have position:

fixed and should take up the whole screen size.

It is going to be a separate layer that will be rendered on top of all the other elements.
We will render our dragging preview inside of it. Having position: fixedwill allow
us to specify the dragging preview position relative to this container.

Define a new styled component in src/styles.ts:

1 export const CustomDragLayerContainer = styled.div`

2 height: 100%;

3 left: 0;

4 pointer-events: none;

5 position: fixed;

6 top: 0;

7 width: 100%;

8 z-index: 100;

9 `

We want this container to be rendered on top of any other element on the page, so
we provide z-index: 100. Also, we specify pointer-events: none so it will ignore
all mouse events.

Now create a new file src/CustomDragLayer.tsx and add the imports:

1 import { useDragLayer } from "react-dnd"

2 import { Column } from "./Column"

3 import { CustomDragLayerContainer } from "./styles"

4 import { useAppState } from "./state/AppStateContext"

• useDragLayer - will provide us the information about the dragged item.

Your First React and TypeScript Application: Building Trello with Drag and Drop 100

• Column - it is going to be our dragged element
• CustomDragLayerContainer - is our dragging layer, we’ll render the dragging
preview inside of it.

• useAppState - we will get the draggedItem from it

Define the CustomDragLayer component:

1 export const CustomDragLayer = () => {

2 const { draggedItem } = useAppState()

3 const { currentOffset } = useDragLayer((monitor) => ({

4 currentOffset: monitor.getSourceClientOffset()

5 }))

6

7 return draggedItem && currentOffset ? (

8 <CustomDragLayerContainer>

9 <Column

10 id={draggedItem.id}

11 text={draggedItem.text}

12 // ...

13 />

14 </CustomDragLayerContainer>

15) : null

16 }

Here we get the draggedItem from the application state using the useAppState hook
and currentOffset value from the useDragLayer hook.

The useDragLayer hook allows us to get the information from the React-DnD internal
state. To do this we pass a collector function to it, that has access to the monitor object.
We don’t need to specify the type of the monitor argument, because TypeScript will
infer it from the useDragLayer type definition:

Your First React and TypeScript Application: Building Trello with Drag and Drop 101

1 declare function useDragLayer<CollectedProps>(

2 collect: (monitor: DragLayerMonitor) => CollectedProps

3): CollectedProps;

We can see that the useDragLayer is a generic function that has a type placeholder
called CollectedProps. The actual type of this placeholder will be inferred from the
return value of the collector function that we’ll pass to the useDragLayer. So to get
the correct types for the useDragLayer returned values we need to type the returned
values of our collector function properly.

We want to collect the curren position of the dragged item from the monitor. To do
this we use the currentOffset it is an object that contains the x and y coordinates of
the dragged item.

We don’t have to worry about the currentOffset type, because it is correctly defined
as the return value of the monitor.getSourceClientOffset method.

We’ll use the currentOffset value to provide the position to the dragged item. But
first we need to fix another problem.

Prevent The Column Preview From Hiding

Right now if you launch the app - you will see that the column preview is also getting
hidden. This happens because inside the Column component we compare the type and
the id of the column with the type and the id field of the dragged item. If they match
- the isHidden function returns true and we hide the element.

In case of the preview component those fields will always match, because we get
them from the dragged item object. To fix this let’s mark the preview components
with a special flag.

First let’s modify the ColumnContainer. Open src/styles.ts and add the isPreview
prop to the DragPreviewContainerProps:

Your First React and TypeScript Application: Building Trello with Drag and Drop 102

1 type DragPreviewContainerProps = {

2 isHidden?: boolean

3 isPreview?: boolean

4 }

5

6 export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

7 s>`

8 transform: ${(props) =>

9 props.isPreview ? "rotate(5deg)" : undefined};

10 opacity: ${(props) => (props.isHidden ? 0.3 : 1)};

11 `

Here we also use this new prop to tilt the preview container a bit, just like it happens
in the real Trello application. We do it by adding the transform property that will be
rotate(5deg) if the isPreview prop is true.

At this point we don’t need to make the dragged columns semitransparent so we set
the hidden state opacity to 0.

Then let’s add the isPreview flag to the isHidden function. Open src/utils/isHidden.ts
and add a new boolean argument isPreview:

1 export const isHidden = (

2 draggedItem: DragItem | null,

3 itemType: string,

4 id: string,

5 isPreview?: boolean

6): boolean => {

7 return Boolean(

8 !isPreview &&

9 draggedItem &&

10 draggedItem.type === itemType &&

11 draggedItem.id === id

12)

13 }

Open the src/Column.tsx and add a new prop isPreview:

Your First React and TypeScript Application: Building Trello with Drag and Drop 103

1 type ColumnProps = {

2 text: string

3 id: string

4 isPreview?: boolean

5 }

We make this prop optional so we don’t have to pass the isPreview to the regular
columns.

Now get the isPreview inside the component and pass it to the ColumnContainer and
to the isHidden function:

1 export const Column = ({ text, id, isPreview }: ColumnProps) => {

2 // ...

3 return (

4 <ColumnContainer

5 isPreview={isPreview}

6 ref={ref}

7 isHidden={isHidden(draggedItem, "COLUMN", id, isPreview)}

8 >

9 // ...

10 </ColumnContainer>

11)

12 }

Do not remove the omitted parts of the code. I’ve skipped them only be-
cause we don’t change them here. To see how your file should look at this
point check the code/01-first-app/01.21-implement-the-custom-dragging-preview/src/Column.tsx.

Now we can pass the isPreview flag to the column preview in the CustomDragLayer
component:

Your First React and TypeScript Application: Building Trello with Drag and Drop 104

1 <Column

2 id={draggedItem.id}

3 text={draggedItem.text}

4 isPreview

5 />

After it’s done add the CustomDragLayer component to the App component layout.
Open src/App.tsx, import CustomDragLayer and add it to the App layout above the
columns:

1 import { CustomDragLayer } from "./CustomDragLayer"

2 // ...

3 export const App = () => {

4 const { lists, dispatch } = useAppState()

5

6 return (

7 <AppContainer>

8 <CustomDragLayer />

9 {lists.map((list) => (

10 <Column text={list.text} key={list.id} id={list.id} />

11))}

12 <AddNewItem

13 toggleButtonText="+ Add another list"

14 onAdd={(text) => dispatch(addList(text))}

15 />

16 </AppContainer>

17)

18 }

Move The Dragged Item Preview

Right now we are only rendering the preview component. We need to write some
extra code to make it follow the cursor.

Your First React and TypeScript Application: Building Trello with Drag and Drop 105

We will create a styled component that will get the dragged item coordinates from
react-dnd and generate the styles with the transform attribute to move the preview
around.

Open src/styles.ts and define the props for this styled component:

1 type DragPreviewWrapperProps = {

2 position: {

3 x: number

4 y: number

5 }

6 }

It will receive a prop position with the x and y coordinates.

Now define the styled component:

1 export const DragPreviewWrapper = styled.div.attrs<DragPreviewWrapperPr\

2 ops>(

3 ({ position: { x, y } }) => ({

4 style: {

5 transform: `translate(${x}px, ${y}px)`

6 }

7 })

8)<DragPreviewWrapperProps>``

By default for every property passed to the styled component it will automatically
generate a CSS class. It has a big performance overhead. To avoid this we use the
attrs⁵³ method. This way it will assign the styles attribute to our component instead
of generating a new class every time the position of the preview changes.

Note that we are passing the type of the props twice. The first time we do it to provide
the type for the attributes that we are passing, and the second time we do it to define
the props of the resulting component.

Go back to src/CustomDragLayer.tsx and import the DragPreviewWrapper from the
styles:

⁵³https://styled-components.com/docs/api#attrs

https://styled-components.com/docs/api#attrs
https://styled-components.com/docs/api#attrs

Your First React and TypeScript Application: Building Trello with Drag and Drop 106

1 import {

2 CustomDragLayerContainer,

3 DragPreviewWrapper

4 } from "./styles"

Thenwrap the Column component into the DragPreviewWrapper. Pass the currentOffset
to the DragPreviewWrapper.

1 <DragPreviewWrapper position={currentOffset}>

2 <Column

3 id={draggedItem.id}

4 text={draggedItem.text}

5 isPreview

6 />

7 </DragPreviewWrapper>

Now the preview item should actually follow the cursor.

Hide The Default Drag Preview

To hide the default drag preview we’ll have to modify the useItemDrag hook.

Open src/utils/useItemDrag.ts. We’ll use the getEmptyImage function to create the
preview that won’t be rendered. Import the function from react-dnd-html5-backend:

1 import { getEmptyImage } from "react-dnd-html5-backend"

Also import the useEffect hook from react:

1 import { useEffect } from "react"

Now add a new useEffect call in the end of our hook:

Your First React and TypeScript Application: Building Trello with Drag and Drop 107

1 export const useItemDrag = (item: DragItem) => {

2 const { dispatch } = useAppState()

3 const [, drag, preview] = useDrag({

4 type: item.type,

5 item: () => {

6 dispatch(setDraggedItem(item))

7 return item

8 },

9 end: () => dispatch(setDraggedItem(null))

10 })

11 useEffect(() => {

12 preview(getEmptyImage(), { captureDraggingState: true })

13 }, [preview])

14 return { drag }

15 }

Get the preview function from useDrag. The preview function accepts an element or
node to use as a drag preview. This is where we use getEmptyImage.

Now we can also go to styled and change the opacity of the dragged item from 0.3
to 0.

1 export const DragPreviewContainer = styled.div<DragPreviewContainerProp\

2 s>`

3 transform: ${(props) =>

4 props.isPreview ? "rotate(5deg)" : undefined};

5 opacity: ${(props) => (props.isHidden ? 0 : 1)};

6 `

Launch the app. Now you can drag columns around and they will have a nice little
tilt to them!

Your First React and TypeScript Application: Building Trello with Drag and Drop 108

Tilted column drag preview

You can find theworking example for this part in the code/01-first-app/01.23-hide-the-default-drag-preview.

Drag Cards

It’s time to drag the cards around. First we need to add a new Action type. Open
src/state/actions.ts and add a MOVE_TASK action:

Your First React and TypeScript Application: Building Trello with Drag and Drop 109

1 | {

2 type: "MOVE_TASK"

3 payload: {

4 draggedItemId: string

5 hoveredItemId: string | null

6 sourceColumnId: string

7 targetColumnId: string

8 }

9 }

This action accepts draggedItemId and hoveredItemId just like MOVE_LIST, but it also
needs to know between which columns we are dragging the card. So - it also contains
the sourceColumnId and the targetColumnId attributes that hold source and target
column ids.

Define the action creator as well:

1 export const moveTask = (

2 draggedItemId: string,

3 hoveredItemId: string | null,

4 sourceColumnId: string,

5 targetColumnId: string

6): Action => ({

7 type: "MOVE_TASK",

8 payload: {

9 draggedItemId,

10 hoveredItemId,

11 sourceColumnId,

12 targetColumnId

13 }

14 })

Open src/DragItem.ts and add the CardDragItem type.

Your First React and TypeScript Application: Building Trello with Drag and Drop 110

1 export type CardDragItem = {

2 id: string

3 columnId: string

4 text: string

5 type: "CARD"

6 }

7

8 export type ColumnDragItem = {

9 id: string

10 text: string

11 type: "COLUMN"

12 }

13

14 export type DragItem = CardDragItem | ColumnDragItem

Update the DragItem type to be either a CardDragItem or a ColumnDragItem.

Our CardDragItem also has the columnId property. We need this value to know
in which column should the card be located. Let’s add this property to the Card

component.

Open src/Card.tsx and add columnId to the props:

1 type CardProps = {

2 text: string

3 id: string

4 columnId: string

5 isPreview?: boolean

6 }

Here we also get the isPreview prop, to avoid hiding the card that we render in the
CustomDragLayer component.

Get these props from the destructured props object:

Your First React and TypeScript Application: Building Trello with Drag and Drop 111

1 export const Card = ({

2 text,

3 id,

4 columnId,

5 isPreview

6 }: CardProps) => {

7 // ...

8 }

Now we can pass the columnId to our Card components. Open the src/Column.tsx

and pass the id as the columnId to the cards:

1 <Card

2 columnId={id}

3 text={task.text}

4 key={task.id}

5 id={task.id}

6 />

After it’s done switch back to the src/Card.tsx and add the imports:

1 import { useRef } from "react"

2 import { CardContainer } from "./styles"

3 import { useItemDrag } from "./utils/useItemDrag"

4 import { useDrop } from "react-dnd"

5 import { useAppState } from "./state/AppStateContext"

6 import { isHidden } from "./utils/isHidden"

7 import { moveTask, setDraggedItem } from "./state/actions"

8 import { throttle } from "throttle-debounce-ts"

Get the draggedItem and dispatch from the useAppState, get the CardContainer ref
and update the card layout:

Your First React and TypeScript Application: Building Trello with Drag and Drop 112

1 const { draggedItem, dispatch } = useAppState()

2 const ref = useRef<HTMLDivElement>(null)

3 // ...

4 return (

5 <CardContainer

6 isHidden={isHidden(draggedItem, "CARD", id, isPreview)}

7 isPreview={isPreview}

8 ref={ref}

9 >

10 {text}

11 </CardContainer>

12)

Pass the ref, isHidden and isPreview props to the CardContainer.

Call the useItemDrag hook to get the drag function. Add the following code right
after the useRef call:

1 const { drag } = useItemDrag({

2 type: "CARD",

3 id,

4 text,

5 columnId

6 })

This code is very similar to what we had in the Column component. The main
difference is that the type field is CARD now.

Next we need to enable our cards to be drop targets. Add this useDrop block right
after the useItemDrag call:

Your First React and TypeScript Application: Building Trello with Drag and Drop 113

1 const [, drop] = useDrop({

2 accept: "CARD",

3 hover: throttle(200, () => {

4 if (!draggedItem) {

5 return

6 }

7 if (draggedItem.type !== "CARD") {

8 return

9 }

10 if (draggedItem.id === id) {

11 return

12 }

13

14 dispatch(

15 moveTask(draggedItem.id, id, draggedItem.columnId, columnId)

16)

17 dispatch(setDraggedItem({ ...draggedItem, columnId }))

18 })

19 })

Inside the hover callback we check that we aren’t hovering the item we currently
drag. If the ids are equal, we just return.

Then we take the draggedItem.id and draggedItem.columnId from the dragged item,
and id and columnId from the hovered card.

We dispatch those values inside the MOVE_TASK action payload.

We also dispatch the SET_DRAGGED_ITEM action, because we might have dragged our
item into another column, so the columnId might have changed.

After it’s done, wrap the ref into the drag and the drop function calls, just like we
did in our Column component:

1 drag(drop(ref))

Your First React and TypeScript Application: Building Trello with Drag and Drop 114

Update CustomDragLayer

Open src/CustomDragLayer.tsx and import the Card component:

1 import { Card } from "./Card"

Then add a ternary operator to the layout to check what we are dragging:

1 {draggedItem.type === "COLUMN" ? (

2 <Column

3 id={draggedItem.id}

4 text={draggedItem.text}

5 isPreview

6 />

7) : (

8 <Card

9 columnId={draggedItem.columnId}

10 isPreview

11 id={draggedItem.id}

12 text={draggedItem.text}

13 />

14)}

Update The Reducer

We also need to add a new MOVE_TASK case block to our reducer:

1 case "MOVE_TASK": {

2 // ...

3 }

Then inside this block we destructure the action.payload like this:

Your First React and TypeScript Application: Building Trello with Drag and Drop 115

1 const {

2 draggedItemId,

3 hoveredItemId,

4 sourceColumnId,

5 targetColumnId

6 } = action.payload

Then we get the source and target list indices:

1 const sourceListIndex = findItemIndexById(

2 draft.lists,

3 sourceColumnId

4)

5 const targetListIndex = findItemIndexById(

6 draft.lists,

7 targetColumnId

8)

Then we find the indices of the dragged and hovered items:

1 const dragIndex = findItemIndexById(

2 draft.lists[sourceListIndex].tasks,

3 draggedItemId

4)

5 // ...

6 const hoverIndex = hoveredItemId

7 ? findItemIndexById(

8 draft.lists[targetListIndex].tasks,

9 hoveredItemId

10)

11 : 0

Here we return 0 if the index for the hoverId could not be found. It is possible because
when we’ll drag the card to an empty column we’ll pass null as hoverId for the card.

After we have them store the moved item in a variable:

Your First React and TypeScript Application: Building Trello with Drag and Drop 116

1 const item = draft.lists[sourceListIndex].tasks[dragIndex]

And now we can remove the item from the source list and add it to the target list:

1 // Remove the task from the source list

2 draft.lists[sourceListIndex].tasks.splice(dragIndex, 1)

3

4 // Add the task to the target list

5 draft.lists[targetListIndex].tasks.splice(hoverIndex, 0, item)

6 break

Now - launch the app and enjoy dragging the cards around. Soon you’ll see that after
you’ve moved all the cards from a column, you can’t move them back. Let’s fix that.

You can find theworking example for this part in the code/01-first-app/01.26-update-the-reducer.

Drag the Card To an Empty Column

Let’s make it possible to move the cards to an empty column.

To implement this functionality, we’ll use columns as a drop target for our cards as
well.

This way if the column is empty, and we drag and drop a card over it, the card will
be moved to this empty column.

To do this we’ll edit our Column.tsx drop hover code and add CARD to supported item
types.

1 accept: ["COLUMN", "CARD"],

Now inside of our hover callback, we’ll need to check what the actual type of
our dragged item is. The draggedItem has a DragItem type which is a union of
ColumnDragItem and CardDragItem. Both ColumnDragItem and CardDragItem have
a common field type that we can use to discriminate the DragItem.

Add an if block. If our draggedItem.type is COLUMN, then we do what we did before.
Just leave the previous logic there.

Import the moveTask action creator:

Your First React and TypeScript Application: Building Trello with Drag and Drop 117

1 import {

2 addTask,

3 moveTask,

4 moveList,

5 setDraggedItem

6 } from "./state/actions"

Then add the following code to the useDrop hook:

1 if (draggedItem.type === "COLUMN") {

2 // ...

3 } else {

4 if (draggedItem.columnId === id) {

5 return

6 }

7 if (tasks.length) {

8 return

9 }

10

11 dispatch(

12 moveTask(draggedItem.id, null, draggedItem.columnId, id)

13)

14 dispatch(setDraggedItem({ ...draggedItem, columnId: id }))

15 }

Don’t remove the code in the draggedItem.type === "COLUMN" block. It
should still contain the column dragging logic.

Here we have almost the same code as in the Card component.

There are a few differences though. We pass null as the hovered item id there,
because we are literally hovering an empty space inside the column. And also we
dispatch the setDraggedItem action to update the columnId of the dragged item.

Now launch the app and check that everything works.

You can find theworking example for this part in the code/01-first-app/01.27-drag-the-card-to-an-empty-column.

Your First React and TypeScript Application: Building Trello with Drag and Drop 118

Saving State On Backend. How To Make
Network Requests

In this chapter, we’ll learn to work with network requests.

Network requests are tricky. They are resolved only during run-time, so you have to
account for that when you write your TypeScript code.

In previous sections, we wrote a kanban board application where you can create
tasks, organize them into lists and drag them around.

Let’s upgrade our app and let the user save the application state on the backend.

Sample Backend

I’ve prepared a simple backend application for this chapter.

This backend will allow us to store and retrieve the application state. We’ll use a
naive approach and will send the whole state every time it changes.

You will need to keep it running for this chapter’s examples to work.

To launch it go to code/01-first-app/trello-backend, install dependencies using
yarn and run yarn start:

1 yarn && yarn start

You should see this message:

1 Kanban backend running on http://localhost:4000!

You can verify that the backend works correctly by manually sending cURL requests.
There are two endpoints available, one for storing data and one for retrieving.

Here is the command to store the data:

Your First React and TypeScript Application: Building Trello with Drag and Drop 119

1 curl --header "Content-Type: application/json" \

2 --request POST \

3 --data '{"lists":[]}' \

4 http://localhost:4000/save

And here is the one to retrieve:

1 curl http://localhost:4000/load

Every time you POST a JSON object to the /save endpoint, the backend stores it in
memory. Next time you call the /load endpoint, the backend sends the saved value
back.

The Final Result

Before we start working on our application, let’s see what are we aiming to get in
the end.

Launch the sample backend in a separate terminal tab:

1 cd code/01-first-app/trello-backend

2 yarn && yarn start

The completed example for this chapter is located in code/01-first-app/01.28-saving-state-on-backend.
cd to this folder and launch the app:

1 cd code/01-first-app/01.28-saving-state-on-backend

2 yarn && yarn start

Initially, you should see an empty field with the “+ Add another list” button.

Your First React and TypeScript Application: Building Trello with Drag and Drop 120

Empty field

Create a few lists and tasks and then reload the page. You should see that all the items
are preserved.

Your First React and TypeScript Application: Building Trello with Drag and Drop 121

Items preserved after page reload

The Starting Point

If you’ve completed the instructions from the first two chapters, then you can
continue from where you left off.

If you didn’t follow the previous chapters then you can use code/01-first-app/01.28-saving-state-on-backend
as your starting point. Copy the folder somewhere into your working projects
directory.

Using Fetch With TypeScript

Browser JavaScript has a built-in fetch method that allows network requests to be
made. Here is a TypeScript type declaration for this function:

Your First React and TypeScript Application: Building Trello with Drag and Drop 122

1 function fetch(

2 input: RequestInfo,

3 init?: RequestInit

4): Promise<Response>;

It says here that fetch accepts two arguments:

• input of type RequestInfo. RequestInfo is a union type defined like string |

Request. It means it can be a string or an object having Request type.
• init - optional argument of type RequestInit. This argument contains options
that can control a bunch of different settings. Using this parameter you can
specify request method, custom headers, request body, etc.

Performing requests. Here is a typical POST request performed with fetch:

1 fetch('https://example.com/profile', {

2 method: 'POST',

3 headers: {

4 'Content-Type': 'application/json',

5 },

6 body: JSON.stringify({username: 'example'}),

7 })

Working with responses. fetch returns a promise that resolves to Response type.
We will usually work with JSON type responses, so to us the most interesting field is
.json() method. This method returns a promise that resolves to response body text
as JSON. Unfortunately, this method is not defined as generic so we will have to do
some trickery to specify the type for the returned value.

Let’s say I make a request to https://api.github.com. I know that this API returns
an object with available endpoints, and amongst other fields there will be current_-
user_url:

Your First React and TypeScript Application: Building Trello with Drag and Drop 123

1 const { current_user_url } = await fetch('https://api.github.com')

2 .then((response) => {

3 return response.json<{ current_user_url: string }>();

4 })

5 }

6 console.log(typeof current_user_url) // string

You can run this code in the TypeScript Playground⁵⁴.

Here I specified the return value of json() function call to be of type { current_-

user_url: string }.

Create API Module

When I work with network requests I prefer to create a separate module with
asynchronous functions that abstract the actual network calls.

Let’s say we want to get some data from Github API:

1 export const githubAPI = <T>() => {

2 return fetch('https://api.github.com').then((response) => {

3 if (response.ok) {

4 return response.json() as Promise<T>;

5 } else {

6 throw new Error("Something went wrong.");

7 }

8 })

9 }

Here I defined a generic function githubAPI that accepts a type argument T. I use it
then to specify the type of the return value of response.json() function. I had to
do this because by default the response.json() would have the type any. I’m also

⁵⁴https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+
rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+
YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA

https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA
https://www.typescriptlang.org/play/?ssl=8&ssc=13&pln=1&pc=1#code/MYewdgzgLgBAZgUysAFgEQIZQzAvDDCATzGBgAoBKPAPhgG8BYAKBjZlElno4FcAnfgjBQA+rwgJ+4-gBsYAXzwEA7hgCWsRMhTkA5CihQADhABcAegsZj6gHQBzTSl4AjO6AC2eyi3b+YOygUYXJyIQhjcElqXDomVgCkoSgBMBgIqMgEOwArCHAqAggYAAV+EE91SQAeHmABIRFxSWkBWTMYaH51MAdFGgBuPyTFX0TOAtkc2RAHcigiYwQQOD5BYTEJKRlZajYWBRZtVExsKkGgA

Your First React and TypeScript Application: Building Trello with Drag and Drop 124

checking the response status and throw an error if there was a problem with my
request.

It allows me to use this function like this:

1 try {

2 const { user_search_url } = await githubAPI<{

3 user_search_url: string

4 }>();

5 } catch (error) {

6 // handle error

7 }

Now in my components, I won’t have to think in terms of requests and responses. I
will have an asynchronous function that returns data or throws an error.

This approach has a bunch of benefits:

• We are not bound to a specific fetch implementation. If you want to switch
to axios⁵⁵, you will have only one place in your application where you’ll have
to make the changes.

• Testing is easier. I don’t have to mock the request and response object. What
I have to do is to mock an asynchronous function that returns some data.

• Easy to add types. If you have anAPImodule where youwrap all your network
requests into asynchronous functions, you can provide nice types for them.

To use our API we’ll need to define our backend url somewhere. Create a .env file
in the root of you project with the following contents:

1 REACT_APP_BACKEND_ENDPOINT=http://localhost:4000

You might want to restart your react dev server at this point so that it would read
the values from the .env file.

Now create a new file src/api.ts, there we’ll need to import the AppState type:

⁵⁵https://github.com/axios/axios

https://github.com/axios/axios
https://github.com/axios/axios

Your First React and TypeScript Application: Building Trello with Drag and Drop 125

1 import { AppState } from "./state/appStateReducer"

Then define the save function:

1 export const save = (payload: AppState) => {

2 return fetch(`${process.env.REACT_APP_BACKEND_ENDPOINT}/save`, {

3 method: "POST",

4 headers: {

5 Accept: "application/json",

6 "Content-Type": "application/json"

7 },

8 body: JSON.stringify(payload)

9 }).then((response) => {

10 if (response.ok) {

11 return response.json()

12 } else {

13 throw new Error("Error while saving the state.")

14 }

15 })

16 }

This function will accept the current state and send it to the backend as JSON. In case
of an unsuccessful save we’ll throw an error.

Define the load function:

1 export const load = () => {

2 return fetch(`${process.env.REACT_APP_BACKEND_ENDPOINT}/load`).then(

3 (response) => {

4 if (response.ok) {

5 return response.json() as Promise<AppState>

6 } else {

7 throw new Error("Error while loading the state.")

8 }

9 }

10)

11 }

Your First React and TypeScript Application: Building Trello with Drag and Drop 126

This function will load the previously saved data from the backend.We cast the JSON
parsing result to the AppState type. Just like in the save function we’ll throw an error
if the backend will return a non-ok status.

Ok, now you have an API with two functions:

• save function that makes a POST request and sends a JSON representation of
our application state to the backend.

• load function that makes a GET request to retrieve the previously saved state.

Saving The State

We want to save our application state every time it changes. This means that every
time we move the items around or create new ones, we want to make a request to
our backend.

In our application, we have a redux-like architecture. It means that we have a
centralized store that holds our application state.

We don’t use Redux, but we use React’s built-in hook useReducer which is fairly
similar.

In order to save the state on the backend we’ll use a useEffect hook.

Go to src/state/AppStateContext.tsx and import the useEffect hook from React
and the save function from the api module:

1 import {

2 createContext,

3 useContext,

4 useEffect,

5 Dispatch,

6 FC

7 } from "react"

8 import { save } from "../api"

Add the following code right before the AppStateProvider return statement:

Your First React and TypeScript Application: Building Trello with Drag and Drop 127

1 useEffect(() => {

2 save(state)

3 }, [state])

The useEffect⁵⁶ hook allows us to run side effect callbacks on some value change.

It accepts a callback function and a dependency array. Then it triggers the callback
function every time the variables in the dependency array get updated.

So in our case, we call our save method with the value of the state every time the
state is updated.

Let’s verify that everything works correctly. Every time you send the data to the
backend it logs it to the console.

Try to drag the items around and then check the backend console output. It should
look like this:

Backend console output

⁵⁶https://reactjs.org/docs/hooks-effect.html

https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 128

Loading The Data

In our application, the only time we want to load the data is when we first render it.

We have a provider component that is mounted once whenwe render our application.
The problem is that we can’t load the data directly inside it because then our
application will first initialize with the default data. We would then get the data
from the backend but our reducer would already be initialized.

The solution is to have a wrapper component that will load the data for us and then
pass the data to our context provider as a prop so it initializes with correct data.

We could create another component that will render our AppStateProvider inside it.
But I propose to create a more generic solution using the HOC pattern.

What is HOC?

HOC (Higher Order Component) is a React pattern in which you create a factory
function that accepts a wrapped component as an argument, wraps it into another
component that implements the desired behavior and then returns this construction.

We will talk about HOCs and other React patterns in the next chapters. For now, let’s
practice creating one.

Creating your first HOC

OurHOCwill accept AppStateProvider and inject the initialState prop containing
loaded data into it. This kind of HOCs is called an injector HOC

Create a new file src/withInitialState.tsx and make necessary imports:

1 import { useState, useEffect } from "react"

2 import { AppState } from "./state/appStateReducer"

3 import { load } from "./api"

Then define and export our withInitialState HOC:

Your First React and TypeScript Application: Building Trello with Drag and Drop 129

1 type InjectedProps = {

2 initialState: AppState

3 }

4

5 type PropsWithoutInjected<TBaseProps> = Omit<

6 TBaseProps,

7 keyof InjectedProps

8 >

9

10 export function withInitialState<TProps>(

11 WrappedComponent: React.ComponentType<

12 PropsWithoutInjected<TProps> & InjectedProps

13 >

14) {

15 return (props: PropsWithoutInjected<TProps>) => {

16 const [initialState, setInitialState] = useState<AppState>({

17 lists: [],

18 draggedItem: null

19 })

20 // ...

21 return <WrappedComponent {...props} initialState={initialState} />

22 }

23 }

Let’s go line-by-line. First we define a type that represents the props that we are
injecting. In this case it is the initialState: AppState prop:

1 type InjectedProps = {

2 initialState: AppState

3 }

Then we define a helper type PropsWithoutInjected:

Your First React and TypeScript Application: Building Trello with Drag and Drop 130

1 type PropsWithoutInjected<TBaseProps> = Omit<

2 TBaseProps,

3 keyof InjectedProps

4 >

This is a generic type that accepts the TBaseProps type variable that will represent
the original props type of the wrapped component. We use Omit to remove the fields
of the InjectedProps type from it.

The utility type Omit constructs a new type removing the keys that you provide to it:

1 type Book = {

2 title: string;

3 length: number;

4 author: string;

5 description: string;

6 }

7

8 type BookWithoutDescription = Omit<Book, "description">;

9 // type BookWithoutDescription = {

10 // title: string

11 // length: number

12 // author: string

13 // }

For a complete list of utility types refer to TypeScript handbook⁵⁷.

The query keyOf returns a union type that contains the keys of the type that you pass
to it, for example:

⁵⁷https://www.typescriptlang.org/docs/handbook/utility-types.html

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

Your First React and TypeScript Application: Building Trello with Drag and Drop 131

1 type Book = {

2 title: string;

3 length: number;

4 author: string;

5 }

6 type BookKeys = keyof Book; // "title" | "length" | "author"

Read more about the keyof indexed type query in the TypeScript Docu-
mentation⁵⁸.

Then, we define a withInitialState generic function that accepts a WrappedComponent
argument and a TProps type variable.

1 export function withInitialState<TProps>(

2 WrappedComponent: React.ComponentType<

3 PropsWithoutInjected<TProps> & InjectedProps

4 >

5) {

6 // ...

7 }

The WrappedComponent argument has a complex props type declaration, we define its
props as an intersection type between the PropsWithoutInjected<TProps> and the
InjectedProps:

1 WrappedComponent: React.ComponentType<

2 PropsWithoutInjected<TProps> & InjectedProps

3 >

We end up with a type that is very similar to the TProps. We removed the injected
props, and then added them back. This might look tautological, but it is necessary
to let TypeScript know that the wrapped component will accept the InjectedProps.
TypeScript is very cautious with generic types and if we wouldn’t perform this trick
it wouldn’t let us pass the fields defined in the InjectedProps type to our component.

⁵⁸https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html#keyof-and-lookup-types

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html#keyof-and-lookup-types
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html#keyof-and-lookup-types
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-1.html#keyof-and-lookup-types

Your First React and TypeScript Application: Building Trello with Drag and Drop 132

Let’s continue. Inside of the withInitialState function, we return the wrapper
component:

1 return (props: PropsWithoutInjected<TProps>) => {

2 // ...

3 }

Here we remove the props that our HOC injects from the wrapper component props.

Inside of this wrapper component we render the WrappedComponent(in our app it will
be AppStateProvider) passing the initialState and the rest of the props to it.

1 return <WrappedComponent {...props} initialState={initialState} />

So as you can see we have a function that creates a wrapper component for some
component that we pass to this function as an argument.

If you don’t understand how HOCs work yet, don’t worry, we have a
dedicated chapter about advanced React patterns, where we talk in more
detail about them.

Load The Data Inside The HOC

Inside our wrapper component add two more states and a useEffect hook:

1 const [isLoading, setIsLoading] = useState(true)

2 const [error, setError] = useState<Error | undefined>()

3

4 useEffect(() => {

5 const fetchInitialState = async () => {

6 try {

7 const data = await load()

8 setInitialState(data)

9 } catch (e) {

10 if (e instanceof Error) {

Your First React and TypeScript Application: Building Trello with Drag and Drop 133

11 setError(e)

12 }

13 }

14 setIsLoading(false)

15 }

16 fetchInitialState()

17 }, [])

Our useEffect call will be triggered once we mount our component and then we
might have one of the three different states:

• Pending.We have this state when we’ve started loading data but not finished
yet. isLoading is true. We render some kind of loader.

• Success. The data is loaded successfully and is stored inside the initialState,
isLoading is false, error is null. We can render our app.

• Failure. We got an error and stored it in the error state, isLoading is false.
We render the error message.

Inside our useEffect callback, we defined the fetchInitialState asynchronous
function. We did it so that we could use the async/await syntax.

Inside the fetchInitialState function we have a try/catch block. When we load
the data we store it in the state and if something goes wrong we save the error.

In Javascript you can throw any value as an error. You can throw a string,
a number or even an object. This means that in TypeScript the caught
error will have type any or the unknown by default. If you want to catch a
specific error type - then you’ll have to use the instanceof check like we
did in our example.

Update the wrapper component layout.

Your First React and TypeScript Application: Building Trello with Drag and Drop 134

1 if (isLoading) {

2 return <div>Loading</div>

3 }

4

5 if (error) {

6 return <div>{error.message}</div>

7 }

8

9 return <WrappedComponent {...props} initialState={initialState} />

10 }

11 }

If the isLoading state is true we show the loader. If there is an error - we show
an error message. And if data was loaded successfully we return the wrapped
component.

Use The HOC

Now the HOC is ready, import it into the src/state/AppStateContext.tsx:

1 import { withInitialState } from "../withInitialState"

Define the AppStateProviderProps:

1 type AppStateProviderProps = {

2 children: React.ReactNode

3 initialState: AppState

4 }

Here we define the children prop as a required field to make it clear that the
AppStateProvider is supposed to wrap other components.

Wrap the AppStateProvider into withInitialState HOC:

Your First React and TypeScript Application: Building Trello with Drag and Drop 135

1 export const AppStateProvider =

2 withInitialState<AppStateProviderProps>(

3 ({ children, initialState }) => {

4 const [state, dispatch] = useImmerReducer(

5 appStateReducer,

6 initialState

7)

8

9 useEffect(() => {

10 save(state)

11 }, [state])

12

13 const { draggedItem, lists } = state

14 const getTasksByListId = (id: string) => {

15 return lists.find((list) => list.id === id)?.tasks || []

16 }

17

18 return (

19 <AppStateContext.Provider

20 value={{ draggedItem, lists, getTasksByListId, dispatch }}

21 >

22 {children}

23 </AppStateContext.Provider>

24)

25 }

26)

We don’t need the FC type anymore, so remove the import:

Your First React and TypeScript Application: Building Trello with Drag and Drop 136

1 import {

2 createContext,

3 useContext,

4 useEffect,

5 Dispatch

6 } from "react"

You can also remove the appData const, we don’t need it anymore.

Launch The App

Now the app should preserve the state on our backend.

Launch the app and try to move the columns and cards around. Reload the page to
verify that the state was preserved.

You can find theworking example for this part in the code/01-first-app/01.29-loading-the-data.

How to Test Your Applications:
Testing a Digital Goods Store
Introduction

In this part, we will learn how to test our React + TypeScript applications. Unlike
other sections where we start from scratch and then build an application, in this one
we’ll begin with an existing app and will cover it with tests.

We will use the React testing library⁵⁹ because it has a simple API, is easy to set up,
and is recommended by the React team. Oh, and of course it supports TypeScript.

It isn’t always obvious how to test a front-end application, but the React testing
library makes it easy.

Below, we’re going to walk through how to test components in React with Jest, how
to mock dependencies, test routing, and even test React hooks.

Get familiar with the application

Before we begin, let’s get familiar with the example application that we’ll be covering
with tests.

This book has an attached zip archive with examples for each step. The completed
example is in code/02-testing/completed.

Unzip the archive and cd to the app folder.

1 cd code/02-testing/completed

When you are there, install the dependencies and launch the app:

⁵⁹https://testing-library.com/docs/react-testing-library/intro

https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro

How to Test Your Applications: Testing a Digital Goods Store 138

1 yarn --ignore-engines && yarn dev

The yarn dev command runs both a server and a client. We use concur-
rently⁶⁰ to launch two scripts at the same time. You can check src/package.json
to see how we do it.

In this app we’ll have to use the --ignore-engines flag when we install
dependenciens because of the nes.css package that specifies an old
version of NodeJS as a dependency.

It should also open the app in the browser. If that doesn’t happen, navigate to
http://localhost:3000 and open it manually.

Main screen

You should see a list of hero equipment: weapons, armor, potions. Click the Add to
cart buttons to add items to the cart.

⁶⁰https://www.npmjs.com/package/concurrently

https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/concurrently

How to Test Your Applications: Testing a Digital Goods Store 139

Selected items

You should also see that the cart widget in the top right corner shows the number of
items you are going to buy. Click that widget.

How to Test Your Applications: Testing a Digital Goods Store 140

Cart summary

You will end up on the Cart Summary page. Here you can review the cart and remove
any items if you don’t want to buy them anymore. Click theGo to checkout button.

How to Test Your Applications: Testing a Digital Goods Store 141

Selected items

Now you are on the Checkout page. Here you can see a list of products you are going
to buy with the total amount of Zorkmids you have to pay.

Below the list, you will see the checkout form. Fill in the fields. If you try to skip
the fields or input incorrect values, you’ll see error messages. Also, note that we are
normalizing the Card number field to have the xxxx xxxx xxxx xxxx format.

After you are done filling in the form, press the Checkout button.

Selected items

Now the cart will be purged, and you will be redirected to the Order Summary page.

How to Test Your Applications: Testing a Digital Goods Store 142

On this page, you should see the list of products you’ve bought and the Back to the
store button. Click the button to get back to the main page.

That’s it - here we have a tiny fantasy store where you can put products into the cart,
review the cart, maybe remove some products from it, and then fill in the checkout
form and perform the purchase.

We will go through the code of each page, discuss its functionality, and then cover it
with tests.

Initial Setup

To begin working on this project copy the code/02-testing/02.02-initial-setup

to your workspace folder. It will be our starting point.

Just like in the previous lesson it is important to use theWorkspace version
of TypeScript. You can see the instructions on how to specify it here⁶¹

In this tutorial, I assume that you will be using VSCode. Open the project in the
editor.

1 .

2 ├── .vscode

3 │ └── launch.json // Settings for debugging in VSCode

4 ├── node_modules

5 ├── public

6 ├── src

7 ├── .gitignore

8 ├── .nvmrc // This file contains Node version

9 ├── package.json

10 ├── README.md

11 ├── tsconfig.json

12 ├── yarn-error.log

13 └── yarn.lock

⁶¹https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided

https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided
https://stackoverflow.com/questions/50432556/cannot-use-jsx-unless-the-jsx-flag-is-provided

How to Test Your Applications: Testing a Digital Goods Store 143

You should see the following file structure.

Our application is written using Create React App, so Jest is already pre-configured
there.

In the first chapter of this book I go through the whole application
structure generated by CRA and explain the purpose of each file.

Jest supports TypeScript out of the box. We don’t need any additional setup to run
the tests.

To verify that everything works, install the dependencies using yarn and run the
tests:

1 yarn --ignore-engines && yarn test

This will launch the Jest runner in watch mode. If you change the code or test files,
it will re-run the tests. You can quit the runner by pressing q.

We use the --ignore-engines option here because the nes.css package
that is only compatible with node 10.x and you likely have a newer
version.

Install VSCode plugin

If you are using VSCode, you can install a useful Jest plugin⁶² that automatically runs
the tests and displays the test results right in the text editor.

⁶²https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest

https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest
https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest

How to Test Your Applications: Testing a Digital Goods Store 144

Jest VSCode plugin

To verify that it works, open src/App.spec.tsx. You should see the green checkmark
near the first test case:

How to Test Your Applications: Testing a Digital Goods Store 145

Jest VSCode plugin

This way you can get visual feedback from running your tests way quicker.

If it doesn’t show up automatically, launch the Command Palette and select Jest:
Start Runner.

Jest VSCode plugin

Troubleshooting

How to Test Your Applications: Testing a Digital Goods Store 146

If your VSCode Jest plugin doesn’t seem to work, check the “Output”
console at the bottom of your window. It should contain some messages
that will help you diagnose the issue.

vscode-jest also contains a troubleshooting section in their documenta-
tion.⁶³

Enable Debugging Tests

Before we begin there is one more thing that is good to know. How can you
debug your tests? To enable debugging in VSCode you need to add a launch.json

configuration into the .vscode folder in the root of your project.

In this project, I already did this for you. You can open .vscode/launch.json to see
what it contains:

1 {

2 "version": "0.2.0",

3 "configurations": [

4 {

5 "name": "Debug CRA Tests",

6 "type": "node",

7 "request": "launch",

8 "runtimeExecutable": "${workspaceRoot}/node_modules/.bin/react-sc\

9 ripts",

10 "args": [

11 "test",

12 "--runInBand",

13 "--no-cache",

14 "--watchAll=false"

15],

16 "cwd": "${workspaceRoot}",

17 "protocol": "inspector",

18 "console": "integratedTerminal",

19 "internalConsoleOptions": "neverOpen",

⁶³https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting

https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting
https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting
https://github.com/jest-community/vscode-jest/blob/master/README.md#troubleshooting

How to Test Your Applications: Testing a Digital Goods Store 147

20 "env": { "CI": "true" },

21 "disableOptimisticBPs": true

22 }

23]

24 }

Here we specify a launch configuration called Debug CRA Tests. It uses React scripts
with parameters from the args field. It’s the equivalent of running the following in
your terminal:

1 yarn test --runInBand --no-cache --watchAll=false

• --runInBand makes the tests run serially in one process. We use it because it’s
hard to debug many processes that are running at the same time.

• --no-cache disables the cache, to avoid cache-related problems during debug-
ging.

• --watchAll=false disables re-running the tests when any related files change.
We want to perform a single run, so we set this flag to false.

This configuration will work with any Create React App generated application.

Set a Breakpoint

Let’s verify our debugging configuration. Open src/App.spec.tsx and place a
breakpoint:

How to Test Your Applications: Testing a Digital Goods Store 148

Jest VSCode plugin

Now open the Command Palette (View -> Command Palette) and select Debug: Select

and Start Debugging and the Debug CRA Tests.

Jest VSCode plugin

You should see the debug pane with the runtime variables, call stack, and breakpoints
sections on the left and the control buttons at the top of the screen.

You can use this interface to go through your test’s execution step-by-step and
observe the values of all the variables in your code. We will use this functionality
later in this chapter, but for now, stop the execution by pressing the red square button
(or press Shift + F5).

How to Test Your Applications: Testing a Digital Goods Store 149

Remove the breakpoint by clicking on it.

Writing Tests

Our application entry point is src/index.tsx. This is where we render our compo-
nent tree into the HTML.

1 import { StrictMode } from "react"

2 import ReactDOM from "react-dom"

3 import { BrowserRouter } from "react-router-dom"

4 import { App } from "./App"

5 import { CartProvider } from "./CartContext"

6 import "./index.css"

7

8 ReactDOM.render(

9 <StrictMode>

10 <CartProvider>

11 <BrowserRouter>

12 <App />

13 </BrowserRouter>

14 </CartProvider>

15 </StrictMode>,

16 document.getElementById("root")

17)

Here we render our App component. Note that it is wrapped into two providers here:

• <CartProvider>manages the cart state. It persists the information in localStorage.
• <BrowserRouter> this provider allows using routing across our app.

Note that some of the components we are going to test will depend on those providers.
We will have to acknowledge this when writing tests.

This file only contains the application initialization code and doesn’t have any logic
we can test. We will skip it and go to the App component.

How to Test Your Applications: Testing a Digital Goods Store 150

Testing the App component

Open src/App.tsx. This file contains App component definition.

1 export const App = () => {

2 return (

3 <>

4 <Header/>

5 <div className="container">

6 <Switch>

7 <Route exact path="/">

8 <Home />

9 </Route>

10 <Route path="/checkout">

11 <Checkout />

12 </Route>

13 <Route path="/cart">

14 <Cart />

15 </Route>

16 <Route path="/order">

17 <OrderSummary />

18 </Route>

19 <Route>Page not found</Route>

20 </Switch>

21 </div>

22 </>

23)

24 }

App is a functional component. It doesn’t accept any props, nor does it contain any
business logic. The only thing it does is render the layout.

Most of your components will output some layout and this is the first thing you can
test.

Let’s write a test that verifies that App component at least renders successfully. Create
src/App.spec.tsx and add the following code:

How to Test Your Applications: Testing a Digital Goods Store 151

1 import { App } from "./App"

2 import { createMemoryHistory } from "history"

3 import { render } from "@testing-library/react"

4 import { Router } from "react-router-dom"

5

6 describe("App", () => {

7 it("renders successfully", () => {

8 const history = createMemoryHistory()

9 const { container } = render(

10 <Router history={history}>

11 <App />

12 </Router>

13)

14 expect(container.innerHTML).toMatch("Goblin Store")

15 })})

Here we wrap the whole testing code into a describe('App') block. This way we
specify that all the it blocks containing specific test cases are related to testing the App
component. You can greatly improve the readability of your tests by using describe
blocks wisely. We will talk about it more in this chapter.

Inside the describewe have an it block. it blocks contain individual tests. Optimally
each it block should test one aspect of the tested entity. Here we test that our App
component renders successfully.

Every it block has a name - in our case it’s renders successfully - and a callback.

A good practice is to use the present simple tense for names and keep them short and
unambiguous. Treat the it word as a part of the sentence:

• � Bad: it("component was rendered successfully")

• � Good: it("renders successfully")

The callback contains the actual testing code.

How to Test Your Applications: Testing a Digital Goods Store 152

1 describe("App", () => {

2 it("renders successfully", () => {

Now if you run the test it will fail with the following error:

1 Invariant failed: You should not use <Switch> outside a <Router>

Where is this coming from?

Our App component uses Switch - which comes from React Router - to render
different pages depending on the URL we are on. But the Switch component has
a constraint: it can only be used inside a BrowserRouter context (BrowserRouter also
comes from React Router).

Look the src/index.tsx again. When you open src/index.tsx, you’ll see that, when
we run our application outside of our tests, we wrap our App component there into
the BrowserRouter:

1 import { StrictMode } from "react"

2 import ReactDOM from "react-dom"

3 import { BrowserRouter } from "react-router-dom"

4 import { App } from "./App"

5 import { CartProvider } from "./CartContext"

6 import "./index.css"

7

8 ReactDOM.render(

9 <StrictMode>

10 <CartProvider>

11 <BrowserRouter>

12 <App />

13 </BrowserRouter>

14 </CartProvider>

15 </StrictMode>,

16 document.getElementById("root")

17)

How to Test Your Applications: Testing a Digital Goods Store 153

However, in our test we were trying to run the App component directly – without
the BrowserRouter context.

To fix this, we wrap our App component into a BrowserRouter in our tests as well.

Tests Run in Node

It is important to note that our tests run in the Node environment - not an actual
browser! - and we use a simulated DOM API provided by jsdom⁶⁴. It means that
some functionality can be missing or work differently compared to the browser
environment.

One of the missing things is the History API⁶⁵, so to use routing we’ll have to install
an additional package that will provide us the History API functionality.

Alternativelywe could use the MemoryRouter provided by react-router-dom,
but in our case it will be more convenient to have direct access to the
history object. This way it will be easier to control the navigation inside
our tests.

Install history as a dev dependency:

1 yarn add --ignore-engines --dev history@5.0.0

Now let’s fix our test by using our synthetic History API:

⁶⁴https://www.npmjs.com/package/jsdom
⁶⁵https://developer.mozilla.org/en-US/docs/Web/API/History_API

https://www.npmjs.com/package/jsdom
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://www.npmjs.com/package/jsdom
https://developer.mozilla.org/en-US/docs/Web/API/History_API

How to Test Your Applications: Testing a Digital Goods Store 154

1 import { App } from "./App"

2 import { createMemoryHistory } from "history"

3 import { render } from "@testing-library/react"

4 import { Router } from "react-router-dom"

5

6 describe("App", () => {

7 it("renders successfully", () => {

8 const history = createMemoryHistory()

9 const { container } = render(

10 <Router history={history}>

11 <App />

12 </Router>

13)

14 expect(container.innerHTML).toMatch("Goblin Store")

15 })})

There are three things going on here:

Initial setup.We create the history object and pass it to the Router component.

Rendering. We call the render method from @testing-library/react⁶⁶ and get the
container instance. The container represents the containing DOM node of the
rendered React component.

Expectation. We call the expect method provided by Jest⁶⁷. We pass the HTML
contents of our container to it and check if it contains the string "Goblin Store"

in it. Our App layout always renders the Header component that contains this text, so
it can be a good indication that our component rendered successfully.

Mocking Components

Our App component also defines the routing system and renders the Home page at the
root route.

We can test it as well, but our Home page component depends on data from the
ProductsProvider to render the products list. It might also render other components

⁶⁶https://testing-library.com/docs/react-testing-library
⁶⁷https://jestjs.io/docs/en/expect

https://testing-library.com/docs/react-testing-library
https://jestjs.io/docs/en/expect
https://testing-library.com/docs/react-testing-library
https://jestjs.io/docs/en/expect

How to Test Your Applications: Testing a Digital Goods Store 155

with more dependencies, so in the end, the test can become quite cumbersome to set
up.

A common approach in such situations is to mock the dependency, so we can test
our component in isolation.

Let’s write the test that will verify that App will render the Home component at the
root route. We will mock the App component so that we won’t have to work with
extra dependencies.

In src/App.spec.tsx call jest.mock to mock the module containing the Home

component:

1 jest.mock("./Home", () => ({ Home: () => <div>Home</div> }));

Add this line right after the imports.

jest.mock allows you tomockwhole modules. Mockingmeans that we substitute the
real object with a fake double that mimics its behavior. You can also spy on mocked
objects and functions to track how your code is using them. But we’ll get back to this
later.

Here we defined our mock component that will be used instead of the real Home
component. It will render "Home component" text, that we can refer to in our test to
verify that the component was rendered.

Now add a new it block right after the first one:

1 it("renders Home component on root route", () => {

2 const history = createMemoryHistory()

3 history.push("/")

4 const { container } = render(

5 <Router history={history}>

6 <App />

7 </Router>

8)

9 expect(container.innerHTML).toMatch("Home")

10 })

How to Test Your Applications: Testing a Digital Goods Store 156

Here we push the root url to our history object before rendering the App component.
Then we check that the content of the containermatches with the "Home" string that
we render in our mocked Home component.

If you are using the Jest VSCode plugin you should see the green checkbox near this
test. If you decided not to use the plugin, run the tests in the terminal from the project
root:

1 yarn test

The tests should pass.

It is always a good idea to check if your tests could fail. If your test is always passing
- it is likely not testing anything.

Try to push some other url instead of the root one, for example /test, make sure that
the test is failing and then revert this change.

Jest helper to test navigation

If you open src/App.tsx file, you’ll see that our App component renders four different
routes using Switch.

1 <Switch>

2 <Route exact path="/">

3 <Home />

4 </Route>

5 <Route path="/checkout">

6 <Checkout />

7 </Route>

8 <Route path="/cart">

9 <Cart />

10 </Route>

11 <Route path="/order">

12 <OrderSummary />

13 </Route>

How to Test Your Applications: Testing a Digital Goods Store 157

14 <Route>Page not found</Route>

15 </Switch>

Aside from the root route where it renders the Home component it also renders
/checkout, /cart, and /order routes.

We can test those routes as well. But we will end up with a lot of duplicated code.
All those route’s tests will look like the root route test. The only things that will be
different will be the url and the expected strings to render.

Let’s create a helper method to render components with the router.

Global Helper With TypeScript

First of all create a new file ./testHelpers.tsx that will hold our helper function.

Add the imports:

1 import { ReactNode } from "react"

2 import { createMemoryHistory, MemoryHistory} from "history"

3 import {

4 render,

5 RenderResult

6 } from "@testing-library/react"

7 import { Router } from "react-router-dom"

Then define the renderWithRouter function:

How to Test Your Applications: Testing a Digital Goods Store 158

1 global.renderWithRouter = (renderComponent, route) => {

2 const history = createMemoryHistory()

3 if (route) {

4 history.push(route)

5 }

6 return {

7 ...render(

8 <Router history={history}>{renderComponent()}</Router>

9),

10 history

11 }

12 }

This function creates a history object and pushes the route to it if we got it through
the arguments. Then we call the render method from the testing-library/react

and return all the fields that we got from it plus the history object.

We’ve defined the renderWithRouter function on the global object. The global

object is a global namespace object in node⁶⁸.

Everything that we define on this object we’ll be able to address directly in our tests.
For example, we’ll be able to call the renderWithRouter function without importing
it.

Now TypeScript will complain that the Property 'renderWithRouter' does not

exist on type 'Global' and also the type of the arguments is any. Let’s fix that.

First, define the type for our function:

1 type RenderWithRouter = (

2 renderComponent: () => ReactNode,

3 route?: string

4) => RenderResult & { history: MemoryHistory }

Here we defined a function that accepts renderComponent and optionally a route. As
a result, it should return a RenderResult from @testing-library/react, which is a
return type of its render function with an additional field history.

⁶⁸https://nodejs.org/api/globals.html#globals_global

https://nodejs.org/api/globals.html#globals_global
https://nodejs.org/api/globals.html#globals_global

How to Test Your Applications: Testing a Digital Goods Store 159

By default, the global object has type Global. We can add a new field to it.

1 declare global {

2 namespace NodeJS {

3 interface Global {

4 renderWithRouter: RenderWithRouter

5 }

6 }

The type Global is a part of NodeJS namespace which is globally available. It means
that we can address NodeJS namespace from any module directly without the need
to import it first.

We can augment global namespaces by using the declare global {} syntax. Read
more about it in the TypeScript documentation⁶⁹.

Here we augment the Global type by adding a renderWithRouter field to it with type
RenderWithRouter.

Great. Now we’ll be able to call our function by referencing it on the global object
like this:

1 global.renderWithRouter(() => <ExampleComponent />, "/")

If you call it without the global at the beginning, TypeScript will give you an error:
can't find name 'renderWithRouter'.

To call it without referencing the global object we’ll need to augment the glob-
alThis⁷⁰ type as well. It is a variable that refers to the global scope.

⁶⁹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-
scope-from-modules

⁷⁰https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-1-8.html#augmenting-globalmodule-scope-from-modules
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-4.html#type-checking-for-globalthis

How to Test Your Applications: Testing a Digital Goods Store 160

1 declare global {

2 namespace NodeJS {

3 interface Global {

4 renderWithRouter: RenderWithRouter

5 }

6 }

7

8 namespace globalThis {

9 const renderWithRouter: RenderWithRouter

10 }

11 }

Now you should be able to call renderWithRouter directly:

1 renderWithRouter(() => <ExampleComponent />, "/")

Let’s make it available in our test files. Go to src/setupTests.ts and import the
src/testHelpers.tsx:

1 import "./testHelpers"

Testing navigation

Let’s write the routing tests.

Go to src/App.spec.tsx and mock the page’s components. Add the following code
right after you mock the Home component:

How to Test Your Applications: Testing a Digital Goods Store 161

1 jest.mock("./OrderSummary", () => ({

2 OrderSummary: () => <div>Order summary</div>,

3 }));

4 jest.mock("./Checkout", () => ({

5 Checkout: () => <div>Checkout</div>,

6 }));

Create a new describe block with the name routing and move our root route test
there. Make it use the renderWithRouter helper function:

1 describe("routing", () => {

2 it("renders home page on '/'", () => {

3 const { container } = renderWithRouter(() => <App />, "/");

4 expect(container.innerHTML).toMatch("Home");

5 });

6 });

Make sure that your tests pass and then add a new it block for the /checkout route:

1 it("renders checkout page on '/checkout'", () => {

2 const { container } = renderWithRouter(

3 () => <App />,

4 "/checkout"

5)

6 expect(container.innerHTML).toMatch("Checkout")

7 })

Repeat it for the /cart and /order routes.

After you are done with all the existing routes, it’s time to check if the nonexistent
routes also render correctly:

How to Test Your Applications: Testing a Digital Goods Store 162

1 it("renders 'page not found' message on nonexistent route", () => {

2 const { container } = renderWithRouter(

3 () => <App />,

4 "/this-route-does-not-exist"

5)

6 expect(container.innerHTML).toMatch("Page not found")

7 })

Here we check that for an arbitrary route that is not defined, we’ll render the Page
not found message.

Shared Components

Before we move on and start testing our pages, let’s test the shared components. All
of them are defined inside the src/shared folder. They have less dependencies so it
will be a good warm up.

Header

The Header component renders the title of the store and also the cart widget. The
cart widget is defined in a separate component, so we’ll mock it and test the Header
in isolation.

We will test that the header renders correctly, and that if you click on the store logo
it will redirect you to the main page.

Create a new file called src/shared/Header.spec.tsx with the following contents:

1 describe("Header", () => {

2 it.todo("renders correctly");

3

4 it.todo("navigates to / on header title click");

5 });

How to Test Your Applications: Testing a Digital Goods Store 163

Here we’ve planned out the tests we are going to write using it.todo syntax. This
syntax allows you to write only the test case name and omit the callback. It is useful
when you want to list the aspects that you want to test, but you don’t want to write
the actual tests yet.

Add the imports:

1 import { Header } from "./Header";

2 import { fireEvent } from "@testing-library/react";

The Header component has a dependency to CartWidget component. It will be easier
if we mock the CartWidget component. Add this code above the top level describe
block:

1 jest.mock("./CartWidget", () => ({

2 CartWidget: () => <div>Cart widget</div>,

3 }));

Next let’s test that the Header component will render correctly:

1 describe("Header", () => {

2 it("renders correctly", () => {

3 const { container } = renderWithRouter(() => <Header />);

4 expect(container.innerHTML).toMatch("Goblin Store");

5 expect(container.innerHTML).toMatch("Cart widget");

6 });

7 // ...

8 });

The header contains a link to the main page. This link is using the Link component
from the react-router-dom so we’ll have to use renderWithRouter to be able to test
it.

We’ve mocked the CartWidget component to render the "Cart widget" string. Now
in our test, we can make sure that it was rendered by checking if the "Cart widget"

string ends up in rendered layout.

How to Test Your Applications: Testing a Digital Goods Store 164

Now let’s verify that if we click the “Goblin Store” sign, we’ll get redirected to the
root url.

Import the fireEvent method from the @testing-library/react:

1 import { fireEvent } from "@testing-library/react";

Now let’s implement the second test case:

1 it("navigates to / on header title click", () => {

2 const { getByText, history } = renderWithRouter(() => <Header />);

3 fireEvent.click(getByText("Goblin Store"));

4 expect(history.location.pathname).toEqual("/");

5 });

Remember, how inside of our renderWithRouter helper function we we returned the
history object along with the rendering results? Here it comes in handy, it allows us
to check the current location.

We click the element that has the text “Goblin Store” on it, and then we expect that
we end up on the root url.

CartWidget

Let’s move on to the CartWidget component. This component displays the number
of products in the cart. Also, the whole component acts as a link, so if you click on
it, you get redirected to the cart summary page.

This component also uses an icon cart.svg, so it has a dedicated folder called
CartWidget.

Let’s create a test file. Create a new file src/shared/CartWidget.spec.tsx:

How to Test Your Applications: Testing a Digital Goods Store 165

1 describe("CartWidget", () => {

2 it.todo("shows the amount of products in the cart")

3

4 it.todo("navigates to cart summary page on click")

5 })

Add the imports:

1 import { CartWidget } from "./CartWidget";

2 import { fireEvent } from "@testing-library/react";

3 import { useCartContext } from "../../CartContext";

Ok, we already know how to test the navigation by click. Let’s write the test that will
check that we get redirected to the cart summary page when we click the widget.

Remove the todo from the navigates to cart summary page on click test and add
the following code there:

1 it("navigates to cart summary page on click", () => {

2 useCartContextMock.mockReturnValue({

3 products: [],

4 });

5 const { getByRole, history } = renderWithRouter(() => <CartWidget /\

6 >);

7

8 fireEvent.click(getByRole("link"));

9

10 expect(history.location.pathname).toEqual("/cart");

11 });

Here we use the getByRole⁷¹ selector from @testing-library/react. This selector
uses the aria-role attribute to find the element. Some elements have the default
aria-role value, for example <a> elements, have the link role. You can find the
complete list of default aria-role values on the WHATWG site⁷².

⁷¹https://testing-library.com/docs/dom-testing-library/api-queries#byrole
⁷²https://html.spec.whatwg.org/multipage/index.html#contents

https://testing-library.com/docs/dom-testing-library/api-queries#byrole
https://html.spec.whatwg.org/multipage/index.html#contents
https://testing-library.com/docs/dom-testing-library/api-queries#byrole
https://html.spec.whatwg.org/multipage/index.html#contents

How to Test Your Applications: Testing a Digital Goods Store 166

So in our test, we click the link element and then check if we end up on the /cart

route.

Now let’s test that CartWidget renders the number of products in the cart correctly.

The CartWidget component does not have any logic to track the number of products
in the cart. It just takes the value provided by the CartContext through the
useCartContext hook.

Open the CartWidget component code. It’s located in src/shared/CartWidget/CartWidget.tsx:

1 import { Link } from "react-router-dom"

2 import cart from "./cart.svg"

3 import { useCartContext } from "../../CartContext"

4

5 export const CartWidget = () => {

6 const { products } = useCartContext()

7

8 return (

9 <Link to="/cart" className="nes-badge is-icon">

10 {products?.length || 0}

11

12 </Link>

13)

14 }

Look what happens here. We get the products array from the useCartContext hook.

Go back to the test code. Let’s test that we render the amount of products in the cart
correctly:

How to Test Your Applications: Testing a Digital Goods Store 167

1 jest.mock("../../CartContext", () => ({

2 useCartContext: jest.fn(),

3 }));

4

5 const useCartContextMock = useCartContext as unknown as jest.Mock<

6 Partial<ReturnType<typeof useCartContext>>

7 >;

8

9 describe("CartWidget", () => {

10 it("shows the amount of products in the cart", () => {

11 useCartContextMock.mockReturnValue({

12 products: [

13 {

14 name: "Product foo",

15 price: 0,

16 image: "image.png",

17 },

18],

19 });

20

21 const { container } = renderWithRouter(() => <CartWidget />);

22

23 expect(container.innerHTML).toMatch("1");

24 });

25 // ...

26 });

Here we define a mock version of the useCartContext. The mock version returns
only the products field with a hardcoded product.

But there is a problem.Wewant to tell TypeScript that this useCartContextMock hook
is actually a mock that returns the same value as the original useCartContext hook.

By defaut Jest will reset all the mocks on each spec run. So in order to mock the
returned values of this hook we’ll need to mock it for every test.

To do this we define a constant useCartContextMock and specified its type to be
jest.Mock.

How to Test Your Applications: Testing a Digital Goods Store 168

As the types of the useCartContext and jest.Mock are very different we had to cast
the type of the useCartContext to unknown first and only then to jest.Mock.

Then we specified the actual type of the generic jest.Mock function. We want to be
able to skip some fields of the mocked returned value, so we specify the type as a
Partial.

1 jest.mock("../../CartContext", () => ({

2 useCartContext: jest.fn(),

3 }));

4

5 const useCartContextMock = useCartContext as unknown as jest.Mock<

6 Partial<ReturnType<typeof useCartContext>>

7 >;

We used two utility types provided by TypeScript:

• ReturnType - constructs type from function return type. For example if we have
a function type () => string, we can use ReturnType<() => string> to get
string.

• Partial - allows us to create a type that accepts a subset of fields of the original
object.

Now our CartWidget test should be passing.

Loader Component

Our Loader component does not contain any logic. In our test we’ll only make sure
that it renders correctly:

How to Test Your Applications: Testing a Digital Goods Store 169

1 import { Loader } from "./Loader";

2 import { render } from "@testing-library/react";

3

4 describe("Loader", () => {

5 it("renders correctly", () => {

6 const { container } = render(<Loader />);

7 expect(container.innerHTML).toMatch("Loading");

8 });

9 });

Home Page

Our home page renders the list of products that we get from the backend.

Home page

Open the src/Home folder. I’ll walk you through the files there:

How to Test Your Applications: Testing a Digital Goods Store 170

1 index.tsx

2 Home.tsx

3 Product.tsx

First of all, we have an index.ts file. It’s used to control the visibility of the module
contents.

1 export * from './Home'

As you can see, we export only the Home component. The Product component won’t
be visible outside this module. The benefit of it is that the Product component won’t
be accidentally used on other pages. If we decide to reuse it – we’ll have to move it
to the shared folder

Now let’s move on to the tests. Create a test file called src/Home/Home.spec.tsx.

The Home component gets the data from the useProducts hook and then does one of
three things:

• while products are being loaded
– renders the <Loader />

• if it gets an error from useProducts

– render the error message
• when products are loaded successfully

– render the products list

Let’s reflect it in our tests. Define a describe block for each case listed above:

How to Test Your Applications: Testing a Digital Goods Store 171

1 describe("Home", () => {

2 describe("while loading", () => {

3 it.todo("renders loader")

4 })

5

6 describe("with data", () => {

7 it.todo("renders categories with products")

8 })

9

10 describe("with error", () => {

11 it.todo("renders error message")

12 })

13 })

Add the imports to the test file:

1 import { Home } from "./Home"

2 import { Category } from "../shared/types"

3 import { render } from "@testing-library/react"

4 import { ProductCardProps } from "./ProductCard"

5 import { useProducts } from "./useProducts"

Now let’s write the individual test cases.

First mock the useProducts hook:

1 jest.mock("./useProducts", () => ({

2 useProducts: jest.fn()

3 }))

4

5 const useProductsMock = useProducts as unknown as jest.Mock<

6 Partial<ReturnType<typeof useProducts>>

7 >

Now we’ll be able to mock the return value of this hook for each test.

Let’s test that the loading state is processed correctly:

How to Test Your Applications: Testing a Digital Goods Store 172

1 describe("Home", () => {

2 describe("while loading", () => {

3 it("renders loader", () => {

4 useProductsMock.mockReturnValue({

5 categories: [],

6 isLoading: true,

7 error: false

8 })

9

10 const { container } = render(<Home />)

11

12 expect(container.innerHTML).toMatch("Loading")

13 })

14 })

15 // ...

16 })

Here we defined the useProducts return value so that it contains isLoading: true

and then we verified that in this case, we’ll find the word "Loading" in rendered
layout.

Then let’s check that our error state will also be processed correctly:

1 describe("with error", () => {

2 it("renders error message", () => {

3 useProductsMock.mockReturnValue({

4 categories: [],

5 isLoading: false,

6 error: true

7 })

8

9 const { container } = render(

10 <Home />

11)

12

13 expect(container.innerHTML).toMatch("Error")

How to Test Your Applications: Testing a Digital Goods Store 173

14 })

15 })

This test is very similar to the loading state test, the only difference is that now error

is true and isLoading is false.

Let’s verify that when we get the products, we render them correctly.

Home component uses the ProductCard component to render products. I don’t want
to introduce it as a dependency to this test. Let’s mock the ProductCard component,
to do this we first need to import the ProductCardProps type:

1 import { ProductCardProps } from "./ProductCard"

Then we can define the mock:

1 jest.mock("./ProductCard", () => ({

2 ProductCard: ({ datum }: ProductCardProps) => {

3 const { name, price, image } = datum

4 return (

5 <div>

6 {name} {price} {image}

7 </div>

8)

9 }

10 }))

Our mock renders the product data that it gets through the props. This way we’ll be
able to verify that we pass this data to the real component as well.

Let’s verify that if we render the home page with this data, we’ll see the category
titled Category foo, and it will contain the rendered product:

How to Test Your Applications: Testing a Digital Goods Store 174

1 describe("with data", () => {

2 it("renders categories with products", () => {

3 const category: Category = {

4 name: "Category Foo",

5 items: [

6 {

7 name: "Product foo",

8 price: 55,

9 image: "/test.jpg"

10 }

11]

12 }

13

14 useProductsMock.mockReturnValue({

15 categories: [category],

16 isLoading: false,

17 error: false

18 })

19

20 const { container } = render(

21 <Home />

22)

23

24 expect(container.innerHTML).toMatch("Category Foo")

25 expect(container.innerHTML).toMatch("Product foo 55 /test.jpg")

26 })

27 })

Here we don’t need to test that if we click on the product’s Add to cart button we’ll
add the product to the cart. We’ll do that in the ProductCart component tests.

ProductCard Component

Moving on to the ProductCard component. Let’s see what do we have here.

How to Test Your Applications: Testing a Digital Goods Store 175

First of all, we render the product data: the image should have the correct alt and
src tags, and the component should the price and the product name.

Then we render the Add to cart button. This button can have one of two states.
If the product was added to the cart, the button should be disabled and the text on
it should say Added to cart. Otherwise, it should be Add to cart and the button
should trigger the addToCart function from the useCart hook when clicked.

Let’s write the test. Create the src/Home/ProductCard.spec.tsx file with the follow-
ing contents:

1 describe("ProductCard", () => {

2 it.todo("renders correctly")

3

4 describe("when the product is in the cart", () => {

5 it.todo("the 'Add to cart' button is disabled")

6 })

7

8 describe("when the product is not in the cart", () => {

9 describe("on 'Add to cart' click", () => {

10 it("calls the 'addToCart' function")

11 })

12 })

13 })

The first thing we can test is that our ProductCard renders correctly. There are two
states in which it should be rendered:

• product is in the cart
– render with disabled button saying Added to cart

• product is not in the cart
– render with primary button saying Add to cart

– on Add to cart click
* add the product to the cart

Also in both cases, it renders the name, the price, and the image of the product.

Add the necessary imports:

How to Test Your Applications: Testing a Digital Goods Store 176

1 import { render, fireEvent } from "@testing-library/react"

2 import { ProductCard } from "./ProductCard"

3 import { Product } from "../shared/types"

4 import { useCartContext } from "../CartContext"

First let’s check that our product renders the data correctly. Define the useCartContext
mock:

1 jest.mock("../CartContext", () => ({

2 useCartContext: jest.fn()

3 }))

4

5 const useCartContextMock = useCartContext as unknown as jest.Mock<

6 Partial<ReturnType<typeof useCartContext>>

7 >

We’ll need the products for several tests, so let’s define them as a constant outside of
the top level describe block:

1 const product: Product = {

2 name: "Product foo",

3 price: 55,

4 image: "/test.jpg"

5 }

Now let’s write the “renders correctly” test:

How to Test Your Applications: Testing a Digital Goods Store 177

1 describe("ProductCard", () => {

2 it("renders correctly", () => {

3 useCartContextMock.mockReturnValue({

4 addToCart: () => {},

5 products: [product]

6 })

7 const { container, getByRole } = render(

8 <ProductCard datum={product} />

9)

10

11 expect(container.innerHTML).toMatch("Product foo")

12 expect(container.innerHTML).toMatch("55 Zm")

13 expect(getByRole("img")).toHaveAttribute("src", "/test.jpg")

14 })

15 // ...

16 })

Here we make sure that we can find the product name and price and that the image
has correct attributes.

Test that if the product is in the cart already, the Add to cart button will be disabled:

1 describe("when the product is in the cart", () => {

2 it("the 'Add to cart' button is disabled", () => {

3 useCartContextMock.mockReturnValue({

4 addToCart: () => {},

5 products: [product]

6 })

7

8 const { getByRole } = render(<ProductCard datum={product} />)

9 expect(getByRole("button")).toBeDisabled()

10 })

11 })

Now let’s test how our component works when its product is not in the cart. Add
this code to the “when product is not in the cart” describe block:

How to Test Your Applications: Testing a Digital Goods Store 178

1 describe("when the product is not in the cart", () => {

2 describe("on 'Add to cart' click", () => {

3 it("calls the 'addToCart' function", () => {

4 const addToCart = jest.fn()

5 useCartContextMock.mockReturnValue({

6 addToCart,

7 products: []

8 })

9

10 const { getByText } = render(<ProductCard datum={product} />)

11

12 fireEvent.click(getByText("Add to cart"))

13 expect(addToCart).toHaveBeenCalledWith(product)

14 })

15 })

16 })

Here we set the cart products list to be an empty array. We use jest.fn() to mock
our addToCart function:

We fire the click event on our button and then we check that the addToCart function
was called with the product data.

We are done testing the Home page components. We’ll test the useProducts hook later,
but for now, let’s move on to the Cart page.

Cart page

This page renders the list of items that you’ve added to the cart.

How to Test Your Applications: Testing a Digital Goods Store 179

Cart summary page

Here you can review the products and remove them from the cart if you’ve changed
your mind and don’t want to buy them any more.

If there are no products, this page renders a message saying that the cart is empty,
and provides a button to go back to the main page.

Open the src/Cart folder. Here you should see the following files:

1 index.ts

2 Cart.tsx

3 CartItem.tsx

The index.ts file controls the module visibility. It exports only the Cart page
component.

CartItem represents the product that was added to the cart. It also renders theRemove
button, that you can click to remove the item from the cart.

How to Test Your Applications: Testing a Digital Goods Store 180

Cart component

Open the src/Cart/Cart.tsx. Here we use the useCart hook to get the cart data.

The Cart component has a condition in its layout code:

• when the products array is empty
– renders the “empty cart” message with the link to the products page
– on products page link redirects to /

• with products in the cart
– renders the list of products
– renders the total price
– renders the “Go to checkout” button
– on “Go to checkout” click

* redirects to /checkout

Create the test file src/Cart/Cart.spec.tsx with the following contents:

1 describe("Cart", () => {

2 describe("without products", () => {

3 it.todo("renders empty cart message")

4

5 describe("on 'Back to main page' click", () => {

6 it.todo("redirects to '/'")

7 })

8 })

9

10 describe("with products", () => {

11 it.todo("renders cart products list with total price")

12

13 describe("on 'go to checkout' click", () => {

14 it.todo("redirects to '/checkout'")

15 })

16 })

17 })

How to Test Your Applications: Testing a Digital Goods Store 181

First, let’s check that our Cart component will render the “empty cart” message with
the link if the cart is empty.

Import the Cart component and the useCartContext hook:

1 import { Cart } from "./Cart"

2 // ...

3 import { useCartContext } from "../CartContext"

Mock the useCartContext hook, so that we can change the returned value for the
tests:

1 jest.mock("../CartContext", () => ({

2 useCartContext: jest.fn()

3 }))

4

5 const useCartContextMock = useCartContext as unknown as jest.Mock<

6 Partial<ReturnType<typeof useCartContext>>

7 >

Now inside the products block, mock the useCartContext return value to contain an
empty products array:

1 describe("Cart", () => {

2 describe("without products", () => {

3 beforeEach(() => {

4 useCartContextMock.mockReturnValue({

5 products: []

6 })

7 })

8 // ...

9 })

10 // ...

11 })

Nowwe can test that with the empty products list we render the empty cart message:

How to Test Your Applications: Testing a Digital Goods Store 182

1 it("renders empty cart message", () => {

2 const { container } = renderWithRouter(() => <Cart />)

3 expect(container.innerHTML).toMatch("Your cart is empty.")

4 })

Now it’s time to check that if we click the Back to main page buttonwe get redirected
to the main page.

Here we’ll need to simulate click, so import fireEvent:

1 import { fireEvent } from "@testing-library/react"

Add the following code inside the on 'Back to main page' click block:

1 describe("on 'Back to main page' click", () => {

2 it("redirects to '/'", () => {

3 const { getByText, history } = renderWithRouter(() => (

4 <Cart />

5))

6

7 fireEvent.click(getByText("Back to main page."))

8

9 expect(history.location.pathname).toBe("/")

10 })

11 })

Here we use the renderWithRouter helper that we defined at the beginning of this
chapter. We find an element that has the Back to main page text on it, click it and
then verify that we ended up on the root route.

Now let’s verify that the cart with products in it also renders correctly. Inside the with
products block, define a beforeEach block where you’ll mock the array of products:

How to Test Your Applications: Testing a Digital Goods Store 183

1 describe("with products", () => {

2 beforeEach(() => {

3 const products = [

4 {

5 name: "Product foo",

6 price: 100,

7 image: "/image/foo_source.png"

8 },

9 {

10 name: "Product bar",

11 price: 100,

12 image: "/image/bar_source.png"

13 }

14]

15

16 useCartContextMock.mockReturnValue({

17 products,

18 totalPrice: () => 55

19 })

20 })

21 // ...

22 })

Now let’s check if the component will render correctly. It means that the products
are rendered and also that we display the total price.

Beforewewrite the test let’smock the CartItem component. Import the CartItemProps
type:

1 import { CartItemProps } from "./CartItem"

Then add this code at the beginning of our test file:

How to Test Your Applications: Testing a Digital Goods Store 184

1 jest.mock("./CartItem", () => ({

2 CartItem: ({ product }: CartItemProps) => {

3 const { name, price, image } = product

4 return (

5 <div>

6 {name} {price} {image}

7 </div>

8)

9 }

10 }))

Now we can implement the renders cart products list with total price test
case:

1 it("renders cart products list with total price", () => {

2 const { container } = renderWithRouter(() => <Cart />)

3

4 expect(container.innerHTML).toMatch(

5 "Product foo 100 /image/foo_source.png"

6)

7 expect(container.innerHTML).toMatch(

8 "Product bar 100 /image/bar_source.png"

9)

10 expect(container.innerHTML).toMatch("Total: 55 Zm")

11 })

Here we check that we can find product names, prices, and image URLs in the
rendered layout.

Let’s verify that if we click the Go to checkout button it will redirect us to the
checkout page:

How to Test Your Applications: Testing a Digital Goods Store 185

1 describe("on 'go to checkout' click", () => {

2 it("redirects to '/checkout'", () => {

3 const { getByText, history } = renderWithRouter(() => (

4 <Cart />

5))

6

7 fireEvent.click(getByText("Go to checkout"))

8

9 expect(history.location.pathname).toBe("/checkout")

10 })

11 })

This test is very similar to the one that checks that the empty state button redirects
you to the main page.

CartItem component

Time to test our CartItem component. This component renders the product informa-
tion and also renders a Remove button that allows removal of the product from the
cart. If we summarize its functionality it will look like this:

• renders correctly
• on Remove button click

– removes the item from the cart

Create a new file called src/Cart/CartItem.spec.tsx and plan out the tests.

How to Test Your Applications: Testing a Digital Goods Store 186

1 describe("CartItem", () => {

2 it.todo("renders correctly")

3

4 describe("on 'Remove' click", () => {

5 it.todo("calls passed in function")

6 })

7 })

Let’s test that it renders correctly first. Hardcode some product data inside the top-
level describe block:

1 const product: Product = {

2 name: "Product Foo",

3 price: 100,

4 image: "/image/source.png"

5 }

Import the Product type and the CartItem component:

1 import { CartItem } from "./CartItem"

2 import { Product } from "../shared/types"

Now inside the renders correctly block add the following code:

1 it("renders correctly", () => {

2 const {

3 container,

4 getByAltText

5 } = renderWithRouter(() => (

6 <CartItem

7 product={product}

8 removeFromCart={() => {}}

9 />

10))

11

How to Test Your Applications: Testing a Digital Goods Store 187

12 expect(container.innerHTML).toMatch("Product Foo")

13 expect(container.innerHTML).toMatch("100 Zm")

14 expect(getByAltText("Product Foo")).toHaveAttribute(

15 "src",

16 "/image/source.png"

17)

18 })

Here we verify that all the data related to the product is rendered, we can find the
image by its alt attribute and it has the correct src.

Let’s move on and test that when a user clicks the Remove button, we call the function
passed through the removeFromCart prop.

We’ll need import the fireEvent for this test:

1 import { fireEvent } from "@testing-library/react"

Add this code inside the on 'Remove' click block:

1 it("calls passed in function", () => {

2 const removeFromCartMock = jest.fn()

3

4 const { getByText } = renderWithRouter(() => (

5 <CartItem

6 product={product}

7 removeFromCart={removeFromCartMock}

8 />

9))

10

11 fireEvent.click(getByText("Remove"))

12

13 expect(removeFromCartMock).toBeCalledWith(product)

14 })

Here we defined a mock function using jest.fn. The cool thing about those is that
we can check if they have been called. We can even verify that such a function was

How to Test Your Applications: Testing a Digital Goods Store 188

called with specific arguments. Here we check that when we click the Remove button,
our removeFromCartMock gets called with the product rendered by this component.

Checkout Page

This is the page where the user can input their payment credentials and confirm the
order.

Checkout page

We also render the list of products that the user is going to buy here.

CheckoutList component

The list of products is rendered by the CheckoutList component.

How to Test Your Applications: Testing a Digital Goods Store 189

Checkout list

This component also uses CartContext through the useCart hook.

It has one task, so it better do it well! Let’s test the CheckoutList. Create a new file
src/Checkout/CheckoutList.spec.tsx:

1 import { CheckoutList } from "./CheckoutList"

2 import { Product } from "../shared/types"

3 import { render } from "@testing-library/react"

4

5 describe("CheckoutList", () => {

6 it.todo("renders list of products")

7 })

As you can see we are only going to test that CheckoutList correctly renders the list
of products provided to it:

1 it("renders list of products", () => {

2 const products: Product[] = [

3 {

4 name: "Product foo",

5 price: 10,

6 image: "/image.png"

7 },

8 {

9 name: "Product bar",

10 price: 10,

11 image: "/image.png"

12 }

13]

14

How to Test Your Applications: Testing a Digital Goods Store 190

15 const { container } = render(

16 <CheckoutList products={products} />

17)

18 expect(container.innerHTML).toMatch("Product foo")

19 expect(container.innerHTML).toMatch("Product bar")

20 })

We verify that we can find the titles of the provided products in the rendered layout.

Testing The Form

The next component that we are going to test is CheckoutForm.

Checkout form

Here we want to verify the following things:

• When the input values are invalid
– The form renders an error message

• When the input values are valid
– When you click the Order button

* The submit function is called

Create the test file src/Checkout/CheckoutForm.spec.tsx with the following con-
tents:

How to Test Your Applications: Testing a Digital Goods Store 191

1 describe("CheckoutForm", () => {

2 it.todo("renders correctly")

3

4 describe("with invalid inputs", () => {

5 it.todo("shows errors")

6 })

7

8 describe("with valid inputs", () => {

9 describe("on place order button click", () => {

10 it("calls submit function with form data")

11 })

12 })

13 })

When we render the form we expect to see the following fields:

• Card holder’s name
• Card number
• Card expiration date
• CVV number

This will be our first test.

Add the imports:

1 import { render, fireEvent, waitFor } from "@testing-library/react"

2 import { CheckoutForm } from "./CheckoutForm"

3 import { act } from "react-dom/test-utils"

Remove the todo part from the renders correctly test and add the following code:

How to Test Your Applications: Testing a Digital Goods Store 192

1 describe("CheckoutForm", () => {

2 it("renders correctly", () => {

3 const { container } = render(<CheckoutForm />)

4

5 expect(container.innerHTML).toMatch("Cardholders Name")

6 expect(container.innerHTML).toMatch("Card Number")

7 expect(container.innerHTML).toMatch("Expiration Date")

8 expect(container.innerHTML).toMatch("CVV")

9 })

10

11 // ...

12 })

Here we verify that all the form fields are present.

At this moment you might get an error regarding missing mutation observer, to fix
it we’ll need to install a shim and include it into the setupTests.ts file.

Let’s install the shim first:

1 yarn add mutationobserver-shim --ignore-engines

Then go to the src/setupTests.ts and add the import there:

1 import "mutationobserver-shim"

Now the test should be passing.

Next we check that the formwill show the errors if we click Place Orderwith invalid
values. Go back to the src/Checkout/CheckoutForm.spec.tsx and add the following
test:

How to Test Your Applications: Testing a Digital Goods Store 193

1 describe("with invalid inputs", () => {

2 it("shows errors ", async () => {

3 const { container, getByText } = render(<CheckoutForm />)

4

5 await act(async () => {

6 fireEvent.click(getByText("Place order"))

7 })

8

9 expect(container.innerHTML).toMatch("Error:")

10 })

11 })

Here we expect that if we click the Place Order button while the form is not filled
in, it will render an error message.

Let’s check that if we provide valid values to our form inputs and then click the Place
Order button, the form component will call the onSubmit function.

Inside the calls submit function with form data block define the mockSubmit

function:

1 describe("with valid inputs", () => {

2 describe("on place order button click", () => {

3 it("calls submit function with form data", async () => {

4 const mockSubmit = jest.fn()

5 // ...

6 })

7 })

8 })

Make sure to make the it block async.

And then use it to render our form component:

How to Test Your Applications: Testing a Digital Goods Store 194

1 const { getByLabelText, getByText } = render(

2 <CheckoutForm submit={mockSubmit} />

3)

Now we will fill in the form inputs. But the trick is that it will trigger state updates
in our form. Our form uses React hook form⁷³ to manage the inputs. It means that
the inputs are controlled⁷⁴ and filling them in triggers state updates.

When you have the code in your test that triggers state updates in your components,
you need to wrap it into act⁷⁵.

Let’s fill in the inputs:

1 fireEvent.change(getByLabelText("Cardholders Name:"), {

2 target: { value: "Bibo Bobbins" }

3 })

4 fireEvent.change(getByLabelText("Card Number:"), {

5 target: { value: "0000 0000 0000 0000" }

6 })

7 fireEvent.change(getByLabelText("Expiration Date:"), {

8 target: { value: "3020-05" }

9 })

10 fireEvent.change(getByLabelText("CVV:"), {

11 target: { value: "123" }

12 })

Then click the Place order button. Technically we could put it into the same act

block, but I decided that it is clearer if first we create specific conditions and then we
perform an action:

1 fireEvent.click(getByText("Place order"))

Finally we can check that our mock function was called:

⁷³https://react-hook-form.com/
⁷⁴https://reactjs.org/docs/forms.html#controlled-components
⁷⁵https://reactjs.org/docs/test-utils.html#act

https://react-hook-form.com/
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/test-utils.html#act
https://react-hook-form.com/
https://reactjs.org/docs/forms.html#controlled-components
https://reactjs.org/docs/test-utils.html#act

How to Test Your Applications: Testing a Digital Goods Store 195

1 await waitFor(() => expect(mockSubmit).toHaveBeenCalled())

The form submission happens asynchronously so we use the waitFor function from
the React Testing Library.

Testing The FormField

The checkout form uses the FormField component to render the inputs. This
component renders label, input, and if we pass an error object to it, it also renders a
paragraph with an error message.

It also supports normalization. For example, we can pass a normalize function to
it that will limit the length of the input value. It is needed for the CVV field, which
accepts only three digits. This normalize function could also format the input in
some specific way. For example, our card number field needs to be formatted into
four blocks of four digits each.

Create a new file called src/Checkout/FormField.spec.tsx:

1 import { render, fireEvent } from "@testing-library/react"

2 import { FormField } from "./FormField"

3

4 describe("FormField", () => {

5 it.todo("renders correctly")

6

7 describe("with error", () => {

8 it.todo("renders error message")

9 })

10

11 describe("on change", () => {

12 it.todo("normalizes the input")

13 })

14 })

First let’s check that our FormField component renders correctly:

How to Test Your Applications: Testing a Digital Goods Store 196

1 it("renders correctly", () => {

2 const { getByLabelText } = render(

3 <FormField label="Foo label" name="foo" />

4)

5 const input = getByLabelText("Foo label:")

6 expect(input).toBeInTheDocument()

7 expect(input).not.toHaveClass("is-error")

8 expect(input).toHaveAttribute("name", "foo")

9 })

Here we verify that we render the input element with the correct name value and
without the is-error class by default. Also, note that we find it by the label value,
so we additionally verify that the label was rendered as well.

Let’s verify that if we pass an error object to our FormField, it will render the error
message:

1 describe("with error", () => {

2 it("renders error message", () => {

3 const { getByText } = render(

4 <FormField

5 label="Foo label"

6 name="foo"

7 errors={{ message: "Example error" }}

8 />

9)

10 expect(getByText("Error: Example error")).toBeInTheDocument()

11 })

12 })

Here we try to find the error message in the rendered layout.

Next let’s verify that the normalize function will work. Add this test inside the on

change describe block:

How to Test Your Applications: Testing a Digital Goods Store 197

1 it("normalizes the input", () => {

2 const { getByLabelText } = render(

3 <FormField

4 label="Foo label"

5 name="foo"

6 errors={{ message: "Example error" }}

7 normalize={(value:string) => value.toUpperCase()}

8 />

9)

10

11 const input = getByLabelText(

12 "Foo label:"

13) as HTMLInputElement

14 fireEvent.change(input, { target: { value: "test" } })

15

16 expect(input.value).toEqual("TEST")

17 })

Here we define the normalize function to call the toUppercase method on input
values. Then we expect that the input value will be capitalized.

Order summary page

This page fetches the order information from the backend by orderId and displays
the products included in the order.

Order summary

How to Test Your Applications: Testing a Digital Goods Store 198

It gets the orderId from the current location query parameters and makes a request
to the backend using the api module.

Create a new file src/OrderSummary/OrderSummary.spec.tsx with the following
code:

1 describe("OrderSummary", () => {

2 afterEach(jest.clearAllMocks)

3

4 describe("while order data being loaded", () => {

5 it.todo("renders loader")

6 })

7

8 describe("when order is loaded", () => {

9 it.todo("renders order info")

10

11 it.todo("navigates to main page on button click")

12 })

13

14 describe("without order", () => {

15 it.todo("renders error message")

16 })

17 })

First, let’s test that in the loading state we’ll render the Loader component. Add the
imports:

1 import { OrderSummary } from "./OrderSummary"

2 import { render, fireEvent } from "@testing-library/react"

3 import { useOrder } from "./useOrder"

Mock the useOrder hook:

How to Test Your Applications: Testing a Digital Goods Store 199

1 jest.mock("./useOrder", () => ({

2 useOrder: jest.fn()

3 }))

4

5 const useOrderMock = useOrder as unknown as jest.Mock<

6 Partial<ReturnType<typeof useOrder>>

7 >

Now define the test for the loading state:

1 describe("OrderSummary", () => {

2 afterEach(jest.clearAllMocks)

3

4 describe("while order data being loaded", () => {

5 it("renders loader", () => {

6 useOrderMock.mockReturnValue({

7 isLoading: true,

8 order: undefined

9 })

10

11 const { container }= render(<OrderSummary />)

12 expect(container.innerHTML).toMatch("Loading")

13 })

14 })

15 // ...

16 })

Let’s test that when an order is loaded successfully, we render the products list from
it:

How to Test Your Applications: Testing a Digital Goods Store 200

1 describe("when order is loaded", () => {

2 beforeEach(() => {

3 useOrderMock.mockReturnValue({

4 isLoading: false,

5 order: {

6 products: [

7 {

8 name: "Product foo",

9 price: 10,

10 image: "image.png"

11 }

12]

13 }

14 })

15 })

16

17 it("renders order info", () => {

18 const { container } = renderWithRouter(() => <OrderSummary />)

19

20 expect(container.innerHTML).toMatch("Product foo")

21 })

22 // ...

23 })

When order information is loaded successfully, we also render a link to the main
page. Let’s write a test for that as well:

How to Test Your Applications: Testing a Digital Goods Store 201

1 it("navigates to main page on button click", () => {

2 const { getByText, history } = renderWithRouter(() => (

3 <OrderSummary />

4))

5

6 fireEvent.click(getByText("Back to the store"))

7

8 expect(history.location.pathname).toEqual("/")

9 })

Let’s test that when the order data cannot be loaded, we render a failure message:

1 describe("without order", () => {

2 it("renders error message", () => {

3 useOrderMock.mockReturnValue({

4 isLoading: false,

5 order: undefined

6 })

7

8 const { container } = render(<OrderSummary />)

9

10 expect(container.innerHTML).toMatch("Couldn't load order info.")

11 })

12 })

At this point, we’ve tested all the components that our app has. It’s time to test the
hooks.

Testing React Hooks

At this point we’ve tested all the regular components that we had. The only things
left for testing are the hooks and the context provider. In this part we’ll test the hooks.
We can skip testing the CartContext, because all the logic is inside the useCart hook.

Let’s go back to our Home page and test how we fetch the products list.

How to Test Your Applications: Testing a Digital Goods Store 202

Our Home page uses the useProducts hook to fetch the products from the backend.

To test the hooks we’ll have to install the @testing-library/react-hooks. From the
root of the project run the following command:

1 yarn add --dev @testing-library/react-hooks@5.1.2 --ignore-engines

Testing useProducts

Our useProducts hook does a bunch of things:

• fetches products on mount
• while the data is loading

– returns isLoading = true
• if loading fails

– returns error = true
• when data is loaded

– returns the loaded data

Create a new file src/Home/useProducts.spec.ts:

1 describe("useProducts", () => {

2 it.todo("fetches products on mount")

3

4 describe("while waiting API response", () => {

5 it.todo("returns correct loading state data")

6 })

7

8 describe("with error response", () => {

9 it.todo("returns error state data")

10 })

11

12 describe("with successful response", () => {

13 it.todo("returns successful state data")

14 })

15 })

First let’s add the imports:

How to Test Your Applications: Testing a Digital Goods Store 203

1 import { renderHook, act } from "@testing-library/react-hooks"

2 import { useProducts } from "./useProducts"

3 import { getProducts } from "../utils/api"

Mock the getProducts api function:

1 jest.mock("../utils/api", () => ({

2 getProducts: jest.fn()

3 }))

4

5 const getProductsMock = getProducts as unknown as jest.Mock<

6 Partial<ReturnType<typeof getProducts>>

7 >

Now let’s test that the useProducts hook will start fetching data when it is mounted:

1 describe("useProducts", () => {

2 it("fetches products on mount", async () => {

3 await act(async () => {

4 renderHook(() => useProducts())

5 })

6

7 expect(getProducts).toHaveBeenCalled()

8 })

9 // ...

10 })

We render the hook using the renderHookmethod from @testing-libary/react-hooks

and then we check if the mocked getProducts function was called.

Let’s test the waiting state when the data is being loaded.

How to Test Your Applications: Testing a Digital Goods Store 204

1 describe("while waiting API response", () => {

2 it("returns correct loading state data", () => {

3 getProductsMock.mockReturnValue(new Promise(() => {}))

4

5 const { result } = renderHook(() => useProducts())

6 expect(result.current.isLoading).toEqual(true)

7 expect(result.current.error).toEqual(false)

8 expect(result.current.categories).toEqual([])

9 })

10 })

Note how we define the getProducts return value:

1 getProductsMock.mockReturnValue(new Promise(() => {}))

We make it return a Promise that will never resolve (or reject).

This way we can make sure that our useProducts hook will return a correct set of
values while we are fetching the data.

Let’s test that we correctly handle loading failure:

1 describe("with error response", () => {

2 it("returns error state data", async () => {

3 getProductsMock.mockReturnValue(

4 new Promise((resolve, reject) => {

5 reject("Error")

6 })

7)

8

9 const { result, waitForNextUpdate } = renderHook(() =>

10 useProducts()

11)

12

13 await act(() => waitForNextUpdate())

14

15 expect(result.current.isLoading).toEqual(false)

How to Test Your Applications: Testing a Digital Goods Store 205

16 expect(result.current.error).toEqual("Error")

17 expect(result.current.categories).toEqual([])

18 })

19 })

Here we mock the API method so that it instantly rejects with an error.

1 getProductsMock.mockReturnValue(

2 new Promise((resolve, reject) => {

3 reject("Error")

4 })

5)

The data fetching happens inside of the async function in our hook, and as a result
it will update its state. To handle it correctly we use act to wait for the next update
before we can test our expectations:

1 await act(() => waitForNextUpdate())

Let’s test the happy path, where we successfully get the data and return it from
our hook. We are going to add the returns successful state data test. Begin by
mocking the API function so that it resolves with products data:

1 describe("with successful response", () => {

2 it("returns successful state data", async () => {

3 getProductsMock.mockReturnValue(

4 new Promise((resolve, reject) => {

5 resolve({

6 categories: [{ name: "Category", items: [] }]

7 })

8 })

9)

10 // ...

11 })

12 })

Then render the hook and wait for next update, so that the internal state of our hook
has the correct value:

How to Test Your Applications: Testing a Digital Goods Store 206

1 const { result, waitForNextUpdate } = renderHook(() =>

2 useProducts()

3)

4

5 await act(() => waitForNextUpdate())

Check the expectations:

1 expect(result.current.isLoading).toEqual(false)

2 expect(result.current.error).toEqual(false)

3 expect(result.current.categories).toEqual([

4 {

5 name: "Category",

6 items: []

7 }

8])

I like to be verbose when I check the data inside my tests, it makes it easier for me
to see if the returned data is wrong.

Testing useCart

Another hook that we have in our application is useCart. This hook allows us to get
the list of products in the cart, add new products, or clear the cart.

This hook provides a bunch of functions and we’ll check each of them in our tests.
Create a new file src/CartContext/useCart.spec.ts with the following code:

How to Test Your Applications: Testing a Digital Goods Store 207

1 describe("useCart", () => {

2 describe("on mount", () => {

3 it.todo("it loads data from localStorage")

4 })

5

6 describe("#addToCart", () => {

7 it.todo("adds item to the cart")

8 })

9

10 describe("#removeFromCart", () => {

11 it.todo("removes item from the cart")

12 })

13

14 describe("#totalPrice", () => {

15 it.todo("returns total products price")

16 })

17

18 describe("#clearCart", () => {

19 it.todo("removes all the products from the cart")

20 })

21 })

Here I’m using a naming convention from RSpec⁷⁶ where function tests are called
with a pound sign prefix: #functionName.

Make the necessary imports:

1 import { useCart } from "./useCart"

2 import { renderHook, act } from "@testing-library/react-hooks"

3 import { Product } from "../shared/types"

Let’s go through the planned tests. First, let’s check that when the useCart hook
mounts, it loads the data from localStorage. Let’s start bymocking the localStorage.

Define the localStorage constant right after the imports:

⁷⁶https://rspec.rubystyle.guide/

https://rspec.rubystyle.guide/
https://rspec.rubystyle.guide/

How to Test Your Applications: Testing a Digital Goods Store 208

1 const localStorageMock = (() => {

2 let store: { [key: string]: string } = {}

3 return {

4 clear: () => {

5 store = {}

6 },

7 getItem: (key: string) => {

8 return store[key] || null

9 },

10 removeItem: (key: string) => {

11 delete store[key]

12 },

13 setItem: (key: string, value: string) => {

14 store[key] = value ? value.toString() : ""

15 }

16 }

17 })()

Then assign it on the window object using Object.assign method:

1 Object.defineProperty(window, "localStorage", {

2 value: localStorageMock

3 })

localStorage is a read-only property, you cannot assign a value to it directly. You’ll
get an error:

1 window.localStorage = localStorageMock;

2 // Cannot assign to 'localStorage' because it is a read-only property.

One last thing before we move on to the test. Add this clean-up code inside the top-
level describe:

How to Test Your Applications: Testing a Digital Goods Store 209

1 describe("useCart", () => {

2 afterEach(() => {

3 localStorageMock.clear()

4 jest.restoreAllMocks()

5 })

6 // ...

7 })

This way we won’t have to manually clean up the mocked localStorage after each
test.

Now we are ready to test that our hook will load its initial state from localStorage:

1 describe("on mount", () => {

2 it("loads data from the localStorage", () => {

3 const products: Product[] = [

4 {

5 name: "Product foo",

6 price: 0,

7 image: "image.jpg"

8 }

9]

10 localStorageMock.setItem(

11 "products",

12 JSON.stringify(products)

13)

14

15 const { result } = renderHook(useCart)

16

17 expect(result.current.products).toEqual(products)

18 })

19 })

Here we set the products in localStorage to be a string representation of our
hardcoded products array. Then we render our hook and check if the products value
that it returns matches the original hardcoded array.

Next make sure that we can add items to the cart:

How to Test Your Applications: Testing a Digital Goods Store 210

1 describe("#addToCart", () => {

2 it("adds item to the cart", () => {

3 const product: Product = {

4 name: "Product foo",

5 price: 0,

6 image: "image.jpg"

7 }

8 const { result } = renderHook(useCart)

9

10 const setItemSpy = jest.spyOn(localStorageMock, "setItem")

11

12 act(() => {

13 result.current.addToCart(product)

14 })

15

16 expect(result.current.products).toEqual([product])

17 expect(setItemSpy).toHaveBeenCalledWith(

18 "products",

19 JSON.stringify([product])

20)

21 setItemSpy.mockRestore()

22 })

23 })

Here we hardcode a product, render our hook, and call the addToCart method. We
wrap the addToCart method into act because it updates the state inside our hook.
Then we verify that the products array from our hook matches an array with our
hardcoded product. Finally, we check that the data stored in localStorage is also
correct.

Moving on to #removeFromCart - this method should remove an existing product
from the cart and update the data in localStorage.

Let’s write the callback for the removes item from the cart block.

First define a product and save it into localStorage as a JSON string:

How to Test Your Applications: Testing a Digital Goods Store 211

1 describe("#removeFromCart", () => {

2 it("removes item from the cart", () => {

3 const product: Product = {

4 name: "Product foo",

5 price: 0,

6 image: "image.jpg"

7 }

8 localStorageMock.setItem("products", JSON.stringify([product]))

9 // ...

10 })

11 })

Next render our hook:

1 const { result } = renderHook(useCart)

Set a spy to track the setItemmethod on localStorage and call the removeFromCart
method. Remember to wrap this call into act because it alters the state of the hook:

1 const setItemSpy = jest.spyOn(localStorageMock, "setItem")

2

3 act(() => {

4 result.current.removeFromCart(product)

5 })

Check the expectations and reset the spy. The products array should be empty and
localStorage should be updated with an empty array:

How to Test Your Applications: Testing a Digital Goods Store 212

1 expect(result.current.products).toEqual([])

2 expect(localStorageMock.setItem).toHaveBeenCalledWith(

3 "products",

4 "[]"

5)

6 setItemSpy.mockRestore()

Let’s test the totalPrice method. This method should return the sum of the prices
of all the products located in the cart.

1 describe("#totalPrice", () => {

2 it("returns total products price", () => {

3 const product: Product = {

4 name: "Product foo",

5 price: 21,

6 image: "image.jpg"

7 }

8 localStorageMock.setItem(

9 "products",

10 JSON.stringify([product, product])

11)

12 const { result } = renderHook(useCart)

13

14 expect(result.current.totalPrice()).toEqual(42)

15 })

16 })

Here we hardcode a product that costs twenty-one zorkmid. Then we store an array
of two similar products in localStorage.

After we render the hookwe check that the returned value of the totalPrice function
is forty-two.

The last method we’ll test is clearCart.

How to Test Your Applications: Testing a Digital Goods Store 213

1 describe("#clearCart", () => {

2 it("removes all the products from the cart", () => {

3 const product: Product = {

4 name: "Product foo",

5 price: 21,

6 image: "image.jpg"

7 }

8 localStorageMock.setItem(

9 "products",

10 JSON.stringify([product, product])

11)

12 const { result } = renderHook(useCart)

13 const setItemSpy = jest.spyOn(localStorageMock, "setItem")

14

15 act(() => {

16 result.current.clearCart()

17 })

18

19 expect(result.current.products).toEqual([])

20 expect(localStorageMock.setItem).toHaveBeenCalledWith(

21 "products",

22 "[]"

23)

24 setItemSpy.mockRestore()

25 })

26 })

Here we also save two instances of product in the localStorage. Then we render
the hook, call the clearCart method and check that the cart is empty.

Congratulations

If you’ve got to this point, you’ve tested the whole application. Well done!

Patterns in React TypeScript
Applications: Making Music
with React
Introduction

In this chapter, we’re going to talk about some common, useful patterns for React
applications and how to use them with proper TypeScript types.

We will talk about:

• what these patterns are
• why these patterns are useful
• which pattern should be used in which situation
• tradeoffs, constraints, and limitations of some of the patterns

Particularly, we will talk about React-specific patterns such as Render-Props and
Higher-Order Component and how they are connected to more general concepts.

This chapter is going to help you think-in-React by seeing common patterns behind
specific code.

What We’re Going to Build

The application we’re going to build is a virtual piano keyboard with a list of
instruments playable with it.

We will use a third-party API to generate musical notes and the browser built-in
AudioContext API to access a user’s sound hardware. The real computer keyboard

Patterns in React TypeScript Applications: Making Music with React 215

will be connected to a virtual one so that when users press the button on their
keyboard they will hear a musical note. And, of course, we will create a list of
instruments to select different sounds for our keyboard.

The completed application will look like this:

The completed react piano application

Its code is located in code/03-react-piano/completed.

Unzip the archive and cd to the app folder.

1 cd code/03-react-piano/completed

When you are there, install the dependencies and launch the app:

Patterns in React TypeScript Applications: Making Music with React 216

1 yarn && yarn start

It should open the app in the browser. If it doesn’t, navigate to http://localhost:3000
and open it manually.

In the browser, at the center of the screen, you will see a keyboard with letter labels
on each key and a select underneath with a default instrument.

Go ahead and try it out! You will hear the musical notes played on an acoustic grand
piano.

What We’re Going to Use

Besides React, we will use AudioContext API for generating notes sound. The
AudioContext API itself is a bit verbose. To generate a sound, we would need to
create an oscillator, set a note frequency and its duration, handle the instrument
timbre. To make it more convenient, we’re going to use a third-party library called
Soundfont⁷⁷ that will provide us with a more flexible API.

Also, to see differences in the app components structure we will need a Chrome
browser extension called React Dev Tools⁷⁸. It will allow us to inspect not only the
real DOM of our app but the component tree as well.

For consistency, we use Chrome in the examples. Although, there are
similar plugins for browsers other than Chrome.

So, let’s try and build the keyboard!

First Steps and Basic Application Layout

First, let’s inspect our future application and see what components it will be have.

⁷⁷https://www.npmjs.com/package/soundfont-player
⁷⁸https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

http://localhost:3000
https://www.npmjs.com/package/soundfont-player
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://www.npmjs.com/package/soundfont-player
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

Patterns in React TypeScript Applications: Making Music with React 217

Application components scheme

The biggest component is the root App component. This is the entry point of our
application.

There are 2 simple components: Footer and Logo. Those are components sometimes
called “dumb”. They aren’t connected to anything like third-party libraries or store
management. Their main goal is to render the logo and the copyright on the screen.

Also, there are more complex components like Keyboard, InstrumentSelector, and
Key. We will wrap those components in adapters to either browser API or Soundfont.
We will see why do adapters have such a name.

The structure looks good, so let’s start building the app! Create another template
application using create-react-app, like we did in previous chapters. Open your
terminal and run:

Patterns in React TypeScript Applications: Making Music with React 218

1 npx create-react-app --template typescript react-piano

Now, cd to the react-piano folder and open the project in a text editor or IDE.

After that, we will have to clean our project directory and remove all the files and
code that we will not need. Also, we will create a basic application layout and apply
some global styles.

In App.tsx, we can safely remove the importing of logo.svg along with the
corresponding file as wewon’t need it anymore. Instead, we create and import Footer
and Logo components:

1 import { Footer } from "./components/Footer"

2 import { Logo } from "./components/Logo"

3 import styles from "./App.module.css"

4

5 export const App = () => {

6 return (

7 <div className={styles.app}>

8 <Logo />

9 <main className={styles.content} />

10 <Footer />

11 </div>

12)

13 }

We changed the default component export to the named one, so you’ll need to update
the index.tsx as well:

1 import { App } from './App';

Right now the code won’t work because we haven’t created Footer and Logo. Let’s
fix it!

Patterns in React TypeScript Applications: Making Music with React 219

Footer component

Let’s start with creating the components directory. We will keep all the components
inside it.

Each component will have a directory named with the component name. For exam-
ple, the Footer component will be placed in the Footer directory. Each component
will have the main .tsx file with its sources and the index.ts file for re-exports.
Some components will also contain styles in the same directory.

So basic structure for a component will look like this:

1 components/

2 Footer/ — component directory;

3 Footer.tsx — main source file;

4 Footer.module.css — component styles;

5 index.ts — re-export file.

Let’s try creating the Footer component. It will contain a signature and a current year.
Create a directory inside components and call it Footer. Then, create a file Footer.tsx
and add the following code:

1 import styles from "./Footer.module.css"

2

3 export const Footer = () => {

4 const currentYear = new Date().getFullYear()

5

6 return (

7 <footer className={styles.footer}>

8 Newline.co

9

10 {currentYear}

11 </footer>

12)

13 }

This component imports a stylesheet, let’s create a file Footer.module.css to hold
them.

Patterns in React TypeScript Applications: Making Music with React 220

Using CSS Modules and CSS Variables

Wait for a second! Is that a CSS-file we’re going to import here? Yup, this is regular
old CSS. We can import stylesheets into our components, and the Create React App
builder will automatically resolve them and include them in our bundle. More of that,
if we use .module.css notation, we import those files as CSS modules.

Why use CSS modules? They give us all the perks of CSS but also isolation and close
location to components that use them.

The main advantage of CSS is that it doesn’t require JS-engine to render the element
styles. Styled components, for example, require a browser to parse the JS code, then
“translate” styles from JS into CSS, and only then apply those styles to the actual
HTML element. It takes much more time than just apply styles from CSS-file.

CSS modules also generate unique class names for components. This makes it
impossible for class names from 2 different components to collide and produce the
wrong styles! Check the name for the footer element—there is no way it will collide
with any other class on the page:

CSS modules create completely unique names that are assigned only to component elements and
nothing else

Pretty cool! Now let’s return to styling the footer.

Patterns in React TypeScript Applications: Making Music with React 221

1 .footer {

2 height: var(--footer-height);

3 padding: 5px;

4

5 text-align: center;

6 line-height: 1.4;

7 }

Here we declare that Footer should have text alignment by a center and some 5px
paddings at each side. Please, pay attention to the second line of the stylesheet:
there, we declare that the component’s height should be equal to a value of a custom
property⁷⁹ (a.k.a CSS variable).

In CSS, the var() function searches for a custom property with a given name, in our
case --footer-height, and if found, uses its value. So where does this value come
from? We will declare it in index.css:

1 :root {

2 --footer-height: 60px;

3 --logo-height: 8rem;

4 }

The visibility scope of our variable is :root. This scoping means that our variable is
visible across all elements on a page. We could also define it in some selector so that
it would be hidden from other elements. However, in our case, :root is fine.

Create src/components/Footer/index.ts and re-export the Footer component:

1 export * from "./Footer"

We will use re-exports for each component we will create. It will allow us to avoid
duplications in the import paths:

⁷⁹https://developer.mozilla.org/en-US/docs/Web/CSS/--*

https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://developer.mozilla.org/en-US/docs/Web/CSS/--*

Patterns in React TypeScript Applications: Making Music with React 222

1 // So we won't need to write:

2 import {Footer} from '../components/Footer/Footer.tsx'

3

4 // ...but instead:

5 import {Footer} from '../components/Footer'

Logo component

Now, let’s create a Logo component. We will use emojis for our logo. A component’s
source code will look like this:

1 import styles from "./Logo.module.css"

2

3 export const Logo = () => {

4 return (

5 <h1 className={styles.logo}>

6

7 *Metal Hand Emoji*

8

9

10 *Musical Keyboard Emoji*

11

12

13 *Musical Notes Emoji*

14

15 </h1>

16)

17 }

(Unfortunately, we cannot use emojis in the example above. That’s why we replaced
them with text. In the sources, you will find the original code with emojis.)

We wrap every emoji in a span with a role="image" attribute. It will help screen
readers to correctly parse the content of our app. Afterwards, we create a stylesheet
for our Logo component:

Patterns in React TypeScript Applications: Making Music with React 223

1 .logo {

2 font-size: 5rem;

3 text-align: center;

4 line-height: var(--logo-height);

5 height: var(--logo-height);

6 margin: 0;

7 padding-top: 30px;

8 }

It will use --logo-height, which is declared in index.css.

Also, it uses rem for defining font-size⁸⁰. This is a relative unit that refers to the
value of the font-size property on an html element.

It is handy in adaptive styles to rely on that value: we won’t need to update each
element’s font-size separately, but we will have to change a single font-size value
on html elements instead.

Finally, re-export the component from index.ts:

1 export * from "./Logo"

Combining Components

After we have created Footer and Logo along with their styles, we’re going to import
and render them in App.tsx, so that it will look like this:

⁸⁰https://developer.mozilla.org/en-US/docs/Web/CSS/font-size

https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size

Patterns in React TypeScript Applications: Making Music with React 224

1 import { Footer } from "./components/Footer"

2 import { Logo } from "./components/Logo"

3 import styles from "./App.module.css"

4

5 export const App = () => {

6 return (

7 <div className={styles.app}>

8 <Logo />

9 <main className={styles.content} />

10 <Footer />

11 </div>

12)

13 }

The last thing to do is transform App.css into a CSS module. To do this, rename it to
App.module.css.

Global Styles

Now, let’s finish with global styles applied to the whole project:

1 *,

2 *::after,

3 *::before {

4 box-sizing: border-box;

5 }

Here we define box-sizing: border-box to every element on the page. It will help
us calculate elements’ geometry more easily.

Then, in App.module.css we declare that the app container should have a height of
at least 100% of the screen height. Since our keyboard will be at the center of the
screen, it will be convenient to do that.

Patterns in React TypeScript Applications: Making Music with React 225

1 .app {

2 min-height: 100vh;

3 }

Finally, let’s ensure that the Footer component will be placed at the bottom of the
page and the Logo component at the top.

1 .content {

2 --offset: calc(var(--footer-height) + var(--logo-height));

3 min-height: calc(100vh - var(--offset));

4

5 display: flex;

6 justify-content: center;

7 align-items: center;

8 }

Here we want all the contents of the App component appear in the center and the App
itself to have a minimum height of the page excluding Footer and Logo components’
heights. It ensures that the content area is at least the size of the screen.

A Bit of a Music Theory

Before we continue, let’s dive into music theory.

First of all, how will we represent the musical notes in our application. Nowadays, it
is considered standard to use MIDI Notes Numbers⁸¹ for that.

A MIDI Note Number is a number that represents a note in the range from minus 1st
to 9th octave. An octave is a set of 12 semitones that are different from each other
by half of a tone (hence semitone).

Notes in an octave start from C and go up to B like this:

⁸¹http://www.flutopedia.com/octave_notation.htm

http://www.flutopedia.com/octave_notation.htm
http://www.flutopedia.com/octave_notation.htm

Patterns in React TypeScript Applications: Making Music with React 226

1 C C# D D# E F F# G G# A A# B

Sharp (#) which tells us that a given note is ”sharp“. A sharp note is a half step higher
than its natural note and a half step lower than the next note. So A# is a half tone
higher than A and a half tone lower than B. There are also “flat” notes, but we will
use only sharps for simplicity.

They would position like this on a musical keyboard: white keys are naturals, and
black ones are sharps.

Notes location on a musical keyboard

Coding Music Rules

Let’s try to express all that in TypeScript. Create src/domain/note.ts file and add
the following code:

1 export type NoteType = "natural" | "flat" | "sharp"

2 export type NotePitch = "A" | "B" | "C" | "D" | "E" | "F" | "G"

3 export type OctaveIndex = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Let’s talk about the domain in the file path for a second.

In software, the domain⁸² is a target subject of a program. This term has roots in
domain-driven design⁸³ — the concept of how to structure applications.

⁸²https://en.wikipedia.org/wiki/Domain_(software_engineering)
⁸³https://en.wikipedia.org/wiki/Domain-driven_design

https://en.wikipedia.org/wiki/Domain_(software_engineering)
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain_(software_engineering)
https://en.wikipedia.org/wiki/Domain-driven_design

Patterns in React TypeScript Applications: Making Music with React 227

In our case, the domain refers to sound, note generation, note notation, and real
keyboard layout.

For example, here we create a new union⁸⁴ type called NoteType. It will contain all
the note types that we will use. Union types are useful when we want to create a set
of entities to select from. In our case, NoteType is a set of possible notes types like
natural, sharp or flat. Even though we will only use sharps, it is a good idea it clear
what can be used in general.

NotePitch is a union type which contains all the possible note pitches from A to G.
Since the order of items in a union is not important, we can order our pitches in
alphabetic order to make it easier to work with later.

OctaveIndex is a union that contains all the octaves that can exist on a piano
keyboard.

We want to create some type aliases to make the signatures of our future functions
clearer.

1 export type MidiValue = number

2 export type PitchIndex = number

Here we define a MidiValue type which is basically a number from the Octave
Notation above, and a PitchIndex which is also a number representing the index
of a given pitch in an octave from 0 to 11. PitchIndex is useful when we want to
compare notes with each other to figure out which is higher, for example.

Why use these types? At first glance, it doesn’t look that useful, we could just use
number instead, and it would successfully compile. The point is in their domain
meaning. When we use these types to type function arguments, they remind us what
those arguments stand for.

Custom Note Type

We’re going to create a custom type for our Note entity. This type will describe the
structure of a note, what fields a note object should have, and values of what types

⁸⁴https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types

Patterns in React TypeScript Applications: Making Music with React 228

those fields should have. It is a great tool for designing a software system and creating
relationships between system parts or modules.

Why not use an interface here? As we discussed earlier, an interface⁸⁵ is an abstract
description of some entity’s behavior. It is a shared boundary across which two or
more separate components of a computer system exchange information.

Although in TypeScript, an interface can fill the role of naming custom types⁸⁶, an
interface still is more about defining behavior contracts within our code as well as
contracts with code outside of our project.

So if wewant to exchange informationwith other modules via someAPI, an interface
will be a good way to describe that behavior. It is a powerful tool to make code
components less dependent on each other and make our code reusable and less error-
prone.

Types, on the other hand, are a way to describe a data structure or an entity structure.
So, if we want to specify fields on an object, in reality, we describe the structure of
that object. In our app, we will use both interfaces and types. There will be a point
where we will use them both in the same component, where we take a closer look at
the difference between them.

For now, let’s go ahead and create our Note type:

1 export type Note = {

2 midi: MidiValue

3 type: NoteType

4

5 pitch: NotePitch

6 index: PitchIndex

7 octave: OctaveIndex

8 }

We describe the shape of a note object which we’ll use later in our code. A Note

contains five fields, which are:

• midi of type MidiValue - a number in Octave Notation

⁸⁵https://en.wikipedia.org/wiki/Interface_(computing)
⁸⁶https://www.typescriptlang.org/docs/handbook/interfaces.html

https://en.wikipedia.org/wiki/Interface_(computing)
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://en.wikipedia.org/wiki/Interface_(computing)
https://www.typescriptlang.org/docs/handbook/interfaces.html

Patterns in React TypeScript Applications: Making Music with React 229

• type of type NoteType - which note it is: natural or sharp
• pitch of type NotePitch - a literal representation of a note’s pitch
• index of type PitchIndex - an index of a note in an octave
• octave of type OctaveIndex - an octave index of a given note

Some fields accept union types. For instance, the field type allows values of the
NoteType. It means that we can only assign "natural", "sharp" or "flat" to that
field and nothing else. Otherwise, TypeScript will warn us:

Type ‘“not-natural”’ is not assignable to type ‘NoteType’. TS2322

1 71 | export const note: Note = {

2 72 | midi: 60,

3 73 | type: "not-natural",

4 | ^

5 74 | pitch: "C",

6 75 | index: 0,

7 76 | octave: 4,

This is very useful when we work with complex data structures and don’t want to
mix things up.

Application Constraints

Now, let’s outline in what range we want our keyboard to contain notes. First of all,
let’s consider the lowest note possible to play, which is C in the first octave. It has a
MidiValue of 24, which we will save in a C1_MIDI_NUMBER constant to use later.

Similarly, we create constraints for our keyboard range. The start note will be C4_-

MIDI_NUMBER, and the finish note will be B5_MIDI_NUMBER. Also, we’re going to need
to count the number of half-steps in an octave which we will save in the SEMITONES_-
IN_OCTAVE constant.

Patterns in React TypeScript Applications: Making Music with React 230

1 const C1_MIDI_NUMBER = 24

2 const C4_MIDI_NUMBER = 60

3 const B5_MIDI_NUMBER = 83

4

5 export const LOWER_NOTE = C4_MIDI_NUMBER

6 export const HIGHER_NOTE = B5_MIDI_NUMBER

7 export const SEMITONES_IN_OCTAVE = 12

Now, we can create some kind of map to connect literal and numerical representa-
tions of pitches of our notes.

1 export const NATURAL_PITCH_INDICES: PitchIndex[] = [

2 0,

3 2,

4 4,

5 5,

6 7,

7 9,

8 11

9]

NATURAL_PITCH_INDICES is an array which contains only indices of natural notes.

1 export const PITCHES_REGISTRY: Record<PitchIndex, NotePitch> = {

2 0: "C",

3 1: "C",

4 2: "D",

5 3: "D",

6 4: "E",

7 5: "F",

8 6: "F",

9 7: "G",

10 8: "G",

11 9: "A",

12 10: "A",

Patterns in React TypeScript Applications: Making Music with React 231

13 11: "B"

14 }

PITCHES_REGISTRY is an object with a PitchIndex as a key and NotePitch as a value.

Generics and Utility Types

Types with “arguments” like Record<PitchIndex, NotePitch> are called generics⁸⁷.
They allow us to create program components that can work with various types rather
than a single one.

We can treat generics as “type-functions”. They take type-arguments and produce a
type-result. Generics allow us to describe data structures more abstractly. Let’s say
we want to create a type-alias for array and call it List. We can define a generic type
for this:

1 // This is like a “type-function”:

2 // it takes an argument `TEntity`

3 // and returns an array of `TEntity`.

4 type List<TEntity> = TEntity[];

5

6 // Later we can use it like a regular type:

7 const numbers: List<number> = [1, 2, 3];

Same with other generics. Let’s take a closer look at Record. The Record<K, T> type
constructs⁸⁸ a type with a set of properties K of type T. In our case, it constructs a
type with a set of properties PitchIndex of type NotePitch.

When to use Record<>? There are 2 major cases:

The first case is when you want to map the properties of a type to another type. As
in our case of Record<PitchIndex, NotePitch>, we want to construct a type where
keys can be only of type PitchIndex and values can be only of type NotePitch.

Sure, in Record<K, T> type T can be any structure. It can be another custom type as
well, and it can be another Record<K, T>.

⁸⁷https://www.typescriptlang.org/docs/handbook/generics.html
⁸⁸https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkeystype

https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkeystype
https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/utility-types.html#recordkeystype

Patterns in React TypeScript Applications: Making Music with React 232

The second case where you want Record<K, T> is when you don’t know beforehand
all the properties and values of a structure but know for sure their types. For example,
if you want to add the values dynamically.

The Record<K, T> type is a so-called utility type. Typescript provides some other
utility types⁸⁹ as well. Let’s see what some of them do.

Partial<T> makes every field on the T type optional:

1 type MandatoryFields = {

2 a: string

3 b: string

4 }

5

6 type OptionalFields = Partial<MandatoryFields>

7

8 // It will become:

9 // type OptionalFields = {

10 // a?: string | undefined

11 // b?: string | undefined

12 // }

Required<T> acts opposite. It takes a type and makes every field of it mandatory:

1 type OptionalFields = {

2 a?: string

3 b?: string

4 }

5

6 type MandatoryFields = Required<OptionalFields>

7

8 // It will become:

9 // type MandatoryFields = {

10 // a: string

11 // b: string

12 // }

⁸⁹https://www.typescriptlang.org/docs/handbook/utility-types.html

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

Patterns in React TypeScript Applications: Making Music with React 233

Among other utility types⁹⁰ there are direct (intrinsic) string manipulations, such
as Uppercase<>, Lowercase<>, Capitalize<>, and Uncapitalize<>. They are useful
when you want to perform a string-like operation on a type:

1 type Currency = 'Usd'

2 type NormalizedCurrency = Uppercase<Currency>

3 // type NormalizedCurrency = "USD"

Later we will create our own generic utility type called Optional<>!

Generating Notes

We’re almost there! The only thing left to cover is a function producing a Note object
from a given MidiValue. So let’s create it!

1 export function fromMidi(midi: MidiValue): Note {

2 const pianoRange = midi - C1_MIDI_NUMBER

3 const octave = (Math.floor(pianoRange / SEMITONES_IN_OCTAVE) +

4 1) as OctaveIndex

5

6 const index = pianoRange % SEMITONES_IN_OCTAVE

7 const pitch = PITCHES_REGISTRY[index]

8

9 const isSharp = !NATURAL_PITCH_INDICES.includes(index)

10 const type = isSharp ? "sharp" : "natural"

11

12 return { octave, pitch, index, type, midi }

13 }

Here we take a MidiValue as an argument and determine in which octave this note
is. After that, we figure out what index this note has inside its octave and what pitch
this note is. Finally, we determine which type this note is and return a created note
object.

⁹⁰https://www.typescriptlang.org/docs/handbook/utility-types.html

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

Patterns in React TypeScript Applications: Making Music with React 234

Why explicitly define the return type? Indeed, the TS compiler can infer the type and
provide us with it later itself. Why bother?

The point is that adding type annotations (and especially return types) can save the
compiler much work andmake the compilation process of our programmuch faster⁹¹.
Another advantage is that wemake it impossible to unexpectedly return another type
when we define a return type on a function. (Everyone makes typos.)

1 type ExpectedReturnType = {

2 fieldName: string,

3 };

4

5 function exampleA() {

6 return { fieldNme: 'value' }

7 }

8

9 function exampleB(): ExpectedReturnType {

10 return { fieldNme: 'value' }

11 // Here, TypeScript will error because of the typo:

12 // Type '{ fieldNme: string; }'

13 // is not assignable to type 'ExpectedReturnType'.

14 }

Okay, return to fromMidi function. It will not only help us to convert numbers to
notes on our keyboard but also to create an initial set of notes.

Let’s make a little helper function to generate that set.

⁹¹https://github.com/microsoft/TypeScript/wiki/Performance#using-type-annotations

https://github.com/microsoft/TypeScript/wiki/Performance#using-type-annotations
https://github.com/microsoft/TypeScript/wiki/Performance#using-type-annotations
https://github.com/microsoft/TypeScript/wiki/Performance#using-type-annotations

Patterns in React TypeScript Applications: Making Music with React 235

1 type NotesGeneratorSettings = {

2 fromNote?: MidiValue

3 toNote?: MidiValue

4 }

5

6 export function generateNotes({

7 fromNote = LOWER_NOTE,

8 toNote = HIGHER_NOTE

9 }: NotesGeneratorSettings = {}): Note[] {

10 return Array(toNote - fromNote + 1)

11 .fill(0)

12 .map((_, index: number) => fromMidi(fromNote + index))

13 }

14

15 export const notes = generateNotes()

Here we create a generateNotes() function which takes a settings object of type
NotesGeneratorSettings. It describes which settings we can use in our function
to generate notes. A question mark (?) at the field’s name means that this field is
optional and can be omitted when creating an instance of an object.

It is better to use a settings object than optional function arguments since arguments
rely on their order, and object keys don’t. So, we destructure a given object with
settings to access the fromNote and toNote fields of that object. If none is present we
use an empty object as one with settings.

We should be aware of possibly failing destructuring in runtime though.
The TypeScript checker will throw an error if we try to pass not an object
as the argument but it won’t help after the compilation.

Inside, we use default values for those fields, and if they are not specified, we set
them to LOWER_NOTE and HIGHER_NOTE, respectively. Sowhenwe call generateNotes()
with no arguments, it will generate a set of notes in a range from LOWER_NOTE to
HIGHER_NOTE. And that is exactly what we want for our future keyboard!

Inside generateNotes(), we create an array and fill it with notes from fromNote to
toNote.

Patterns in React TypeScript Applications: Making Music with React 236

Third Party API and Browser API

We’re going to use Audio API and a third-party API to create a sound. So let’s talk a
bit about the integration of those APIs.

Web Audio API

For starters, let’s figure out what’s required to create a sound in a browser in the first
place. Modern web browsers support Audio API⁹².

It uses an AudioContext to handle audio operations such as playing musical tracks,
creating oscillators, etc. This AudioContext⁹³ has nothing to do with React.Context

that we saw earlier. They only have similar names, but AudioContext is an interface
that provides access to the browser’s audio API.

We can access AudioContext via window.AudioContext. The problem is that not every
browser has this property. The majority of modern browsers do, but we cannot rely
on the assumption that a user’s browser has it.

Let’s ensure that the browser supports AudioContext. Create a helper function that
will check if our browser supports AudioContext.

Create src/domain/audio.ts and add the following code:

1 import { Optional } from "./types"

2

3 export function accessContext(): Optional<AudioContextType> {

4 return window.AudioContext || window.webkitAudioContext || null

5 }

Here, we create a function accessContext(), which takes no arguments and returns
Optional<AudioContextType>. At this point, TypeScript will show two errors:

• It will say that the Optional import is impossible;
• And it will say that the AudioContextType type is unknown.

⁹²https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
⁹³https://developer.mozilla.org/en-US/docs/Web/API/AudioContext

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext

Patterns in React TypeScript Applications: Making Music with React 237

We will fix these one at a time. Let’s start with Optional. The Optional type is a
utility type. Create a file called types.ts beside and add the following code:

1 export type Optional<TEntity> = TEntity | null

We use a slightly more verbose name TEntity instead of just T for the type
argument, because it is more readable.

The Optional type is genetic, representing a union with a given type TEntity or
a null. Basically, we’re building an ”assumption“ type, and will use it when we’re
unsure if some entity is defined as TEntity type or is null.

This type is useful when youwant to ensure that you cover all the possible cases when
an entity possibly doesn’t exist. In our case, Optional tells us that accessContext()
returns either AudioContextType or null.

Next, let’s figure out what AudioContextType is. For that, open react-app-env.d.ts

and add the following code:

1 /// <reference types="react-scripts" />

2

3 type AudioContextType = typeof AudioContext

4

5 interface Window extends Window {

6 webkitAudioContext: AudioContextType

7 }

Here, we see a triple-slash directive⁹⁴ with a reference to react-scripts package’s
types. We discussed these directives in the previous chapters.

Also, in this file, we create a type called AudioContextType which is equal to
typeof AudioContext. This may seem a bit confusing, but technically it means
that our custom type AudioContextType is literally a type of window.AudioContext.
AudioContext is not a type per se, but a constructor function. To make Type-
Script understand what type we want to declare, we explicitly define it as typeof
AudioContext.

⁹⁴https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html

https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html
https://www.typescriptlang.org/docs/handbook/triple-slash-directives.html

Patterns in React TypeScript Applications: Making Music with React 238

When is typeof also useful?Well, it is a tricky question.Wemay use it in a function to
change its behavior based on a type of argument. It is considered bad practice because
it leads to tightly coupled code. However, there is a case when we can use the typeof
operator except for defining custom types. We can use it in function overloading.

Function overloading allows to define functions of the same name with different
implementations:

1 function concat(a: string, b: string): string;

2 function concat(a: string[], b: string[]): string;

3

4 function concat(a: any, b: any): string {

5 if (typeof a === 'string' && typeof b === 'string') {

6 return a + b;

7 }

8

9 return a.join(',') + b.join(',')

10 }

In the concat function, we declare 2 possible argument sets. Based on argument
types, we change the function implementation. We call this tricky because in other
languages, like C#, there is a way to create multiple implementations completely
separately. But since TypeScript is constrained by JavaScript runtime, we can’t do
that.

So, the typeof operator in overloading is sort of a workaround, but still, it is better
to avoid using it in the code that will go to runtime. Okay, let’s return to our
react-app-env.d.ts.

Below AudioContextType, we can see an extension for the Window interface, which
includes the field webkitAudioContext with a type of AudioContextType. This is
required for now because TypeScript by default doesn’t include⁹⁵ some vendor
properties and methods on window.

We extend the standard window interface to gain access to this field because in some
browsers AudioContext is available through the webkitAudioContext property.

⁹⁵https://github.com/microsoft/TypeScript/issues/31686

https://github.com/microsoft/TypeScript/issues/31686
https://github.com/microsoft/TypeScript/issues/31686

Patterns in React TypeScript Applications: Making Music with React 239

We check if the browser supports AudioContext or webkitAudioContext. If the
browser doesn’t support either of them, we return null. It means that we cannot
access Audio API.

Soundfont

Next, it is time to introduce the third-party API we’re going to use — Soundfont⁹⁶. It
is a framework-agnostic loader and player which has a pack of pre-rendered sounds
of many instruments. It also comes with typings for integration with TypeScript
projects!

We prefer Soundfont over MIDI.js⁹⁷ because Soundfont satisfies all of our require-
ments and weighs less.

Let’s start integrating Soundfont with our project. First, install it with npm:

1 yarn add soundfont-player

After the package is installed, create a file in the domain called sound.ts and add the
following code:

1 import { InstrumentName } from "soundfont-player"

2

3 export const DEFAULT_INSTRUMENT: InstrumentName =

4 "acoustic_grand_piano"

For now, we are good with exporting a DEFAULT_INSTRUMENT constant of type
InstrumentName, which comes with the soundfont-player package. One of the
coolest things about integrating third-party APIs which have TypeScript declarations
is that we can use our IDE’s autocomplete to scroll through possible options for union
types. Here we can select from multiple different instruments which are listed in the
InstrumentName union.

⁹⁶https://www.npmjs.com/package/soundfont-player
⁹⁷https://github.com/mudcube/MIDI.js

https://www.npmjs.com/package/soundfont-player
https://github.com/mudcube/MIDI.js
https://www.npmjs.com/package/soundfont-player
https://github.com/mudcube/MIDI.js

Patterns in React TypeScript Applications: Making Music with React 240

Patterns

So far, we have been working with our application code and third-party APIs
separately. Now we’ll connect them.

Sometimes connect software components can be cumbersome. The good news is that
it is a typical programming problem, and typical programming problems are solved
by programming patterns.

Adapter or Provider Pattern

An Adapter⁹⁸ pattern (sometimes called a Provider pattern) is a software design
pattern that allows the interface of an existing entity (class, service, etc) to be used
as another interface. It adapts⁹⁹ (or provides) a third-party API for us and makes it
usable in our application code.

It is easier to understand the adapter concept with a small example. Let’s say we
have thermometer app that uses Celcius as a unit. We have a third-party function
that returns tempreture in Fahrenheits:

1 type ThirdPartyData = {

2 temperature: DegreeFahrenheit

3 }

For this function to work we want a converter from Fahrenheit to Celsius:

1 function fahrenheitToCelsius(value: DegreeFahrenheit): DegreeCelsius {

2 return (value - 32) * 5 / 9

3 }

The fahrenheitToCelsius function is an adapter. It changes the external function
result in such a way that it becomes compatible with our code.

⁹⁸https://en.wikipedia.org/wiki/Adapter_pattern
⁹⁹https://github.com/kamranahmedse/design-patterns-for-humans#-adapter

https://en.wikipedia.org/wiki/Adapter_pattern
https://github.com/kamranahmedse/design-patterns-for-humans#-adapter
https://en.wikipedia.org/wiki/Adapter_pattern
https://github.com/kamranahmedse/design-patterns-for-humans#-adapter

Patterns in React TypeScript Applications: Making Music with React 241

React-Specific Patterns

In our case, we want to use Provider patterns to make Soundfont’s functionality
accessible to our application. Also, it will be useful to connect Audio API to our code.

Using React, we can implement Provider patterns using multiple techniques, such as
Render Props and Higher-Order Components. Those are also called patterns, so we
will call them React-patterns to distinguish these from the patterns above.

Later, we will cover all those React-patterns, but before we begin, let’s create a new
application screen with a Keyboard component to be able to play notes.

Main App Screen

In this section, we will create the main app screen with a Keyboard component in it.
Also, we will cover the case when a user’s browser doesn’t support Audio API and
create a component with a message about it.

Our main app screen will be in the Main component.

1 import { NoAudioMessage } from "../NoAudioMessage";

2 import { useAudioContext } from "../AudioContextProvider";

3

4 const Keyboard = () => <>Keyboard</>;

5

6 export const Main = () => {

7 const AudioContext = useAudioContext();

8 return !!AudioContext ? <Keyboard /> : <NoAudioMessage />;

9 };

Then, re-export the Main component from index.ts:

1 export * from "./Main"

When used, it checks whether the browser supports Audio API or not and decides
which component to render: Keyboard or NoAudioMessage. We will look at them a
little later. For now, let’s focus on a custom hook¹⁰⁰ useAudioContext().
¹⁰⁰https://reactjs.org/docs/hooks-intro.html

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

Patterns in React TypeScript Applications: Making Music with React 242

Custom Hook for Accessing Audio

Intentionally, hooks in React let us use state and other features withoutwriting a class.
Writing hooks has rules¹⁰¹ and limitations. For example, all hooks’ names should start
with a use* prefix. It allows the linter to check if a hook’s source code satisfies all
the limitations, which are:

• We can call hooks only at the top level of our components and never condition-
ally.

• We can call hooks only inside functional components.

In our case, we create a hook called useAudioContext(), which encapsulates access
to AudioContext.

1 import { useRef } from "react"

2 import { Optional } from "../../domain/types"

3 import { accessContext } from "../../domain/audio"

4

5 export function useAudioContext(): Optional<AudioContextType> {

6 const AudioCtx = useRef(accessContext())

7 return AudioCtx.current

8 }

Here, we use the useRef() hook¹⁰² to “remember” the value that our accessContext()
function is going to return. We can use the useRef hook with any sort of data, not
necessarily with elements. Also, we may not provide the type for useRef because
our accessContext has an explicitly defined return type, so it neither will affect
performance nor will make a place for any mistakes.

As a result from our custom hook we return Optional<AudioContextType>. Again,
we want to provide either an AudioContextType or null to be able to build our UI
depending on that later on.

So, when a Main component calls useAudioContext(), it gets an AudioContext if a
browser supports it and renders a Keyboard component, or it gets null and renders
a NoAudioMessage component otherwise. Now it’s time to look at both of them.

¹⁰¹https://reactjs.org/docs/hooks-rules.html
¹⁰²https://reactjs.org/docs/hooks-reference.html#useref

https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-reference.html#useref
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-reference.html#useref

Patterns in React TypeScript Applications: Making Music with React 243

Handling Missing Audio Context

Let’s look at the NoAudioMessage component first. It is basically a divwith some text
in it. It doesn’t do much, and it only renders a message for a user.

Create a directory called NoAudioMessage inside components, add the NoAudioMessage.tsx
file, and add the following code:

1 export const NoAudioMessage = () => {

2 return (

3 <div>

4 <p>Sorry, it's not gonna work :–(</p>

5 <p>

6 Seems like your browser doesn't support <code>Audio API</code>

7 .

8 </p>

9 </div>

10)

11 }

Re-export the component from index.ts:

1 export * from "./NoAudioMessage"

Creating a Keyboard

In this section we will implement the keyboard. We’ll start with the component that
will render the individual keys.

Single Key on a Keyboard

In this component, we will need to compose different class names on the element. To
make it easier, let’s install the clsx package¹⁰³.

¹⁰³https://www.npmjs.com/package/clsx

https://www.npmjs.com/package/clsx
https://www.npmjs.com/package/clsx

Patterns in React TypeScript Applications: Making Music with React 244

1 yarn add clsx

After it’s done create a folder src/components/Key. First we define the styles.

Styles for the Key

Our keys will be based on the regular button element. To make it look silimar in all
the browsers, we want to reset the default button styles. Open src/index.css and
add the following styles:

1 button {

2 border: none;

3 border-radius: 0;

4

5 margin: 0;

6 padding: 0;

7 width: auto;

8 background: none;

9 appearance: none;

10

11 color: inherit;

12 font: inherit;

13 line-height: normal;

14 cursor: pointer;

15 }

Here we made the button look like a text element. We added those styles to the
src/index.css, because we want them to affect the whole application.

Create src/components/Key/Key.module.css and define the .key class there:

Patterns in React TypeScript Applications: Making Music with React 245

1 .key {

2 position: relative;

3 font-size: var(--font-size);

4 border-radius: 0 0 var(--radius) var(--radius);

5 text-transform: uppercase;

6 user-select: none;

7 }

Define the variables for the .key class:

1 .key {

2 --radius: 2px;

3 --font-size: 0.6rem;

4 --white-key-width: 20px;

5 --white-key-height: calc(var(--white-key-width) * 4.57);

6 --white-key-padding: calc(var(--white-key-height) / 1.28);

7 --black-key-width: calc(var(--white-key-width) / 1.6);

8 --black-key-height: calc(var(--white-key-height) / 1.77);

9 --black-key-padding: calc(var(--black-key-height) / 1.5);

10 }

Our keys will have .natural, .sharp and .flat modifiers:

1 .natural {

2 width: var(--white-key-width);

3 height: var(--white-key-height);

4 padding-top: var(--white-key-padding);

5 border: 1px solid rgba(0, 0, 0, 0.1);

6 color: rgba(0, 0, 0, 0.4);

7 margin-right: -1px;

8 z-index: 1;

9 }

10

11 .sharp,

12 .flat {

Patterns in React TypeScript Applications: Making Music with React 246

13 width: var(--black-key-width);

14 height: var(--black-key-height);

15 padding-top: var(--black-key-padding);

16 background-color: #111;

17 color: white;

18 margin: 0 calc(-0.5 * calc(var(--black-key-width)));

19 z-index: 2;

20 }

Add the styles for the pressed keys:

1 .natural:active,

2 .natural.is-pressed {

3 background-color: rgba(0, 0, 0, 0.1);

4 }

5

6 .sharp:active,

7 .sharp.is-pressed,

8 .flat:active,

9 .flat.is-pressed {

10 background-color: #555;

11 }

And for the disabled keys:

1 .key:disabled {

2 background-color: none;

3 cursor: wait;

4 }

5

6 .natural:disabled {

7 color: rgba(0, 0, 0, 0.2);

8 background-color: white;

9 }

10

Patterns in React TypeScript Applications: Making Music with React 247

11 .sharp:disabled,

12 .flat:disabled {

13 color: rgba(255, 255, 255, 0.4);

14 background-color: #111;

15 }

Define the @media queries for differenc screen sizes. We’ll start with the smallest
screen, this is how it should look on mobile phones:

1 @media (min-width: 380px) {

2 .key {

3 --white-key-width: 25px;

4 --radius: 5px;

5 --font-size: 0.8rem;

6 }

7 }

Define the bigger version:

1 @media (min-width: 540px) {

2 .key {

3 --white-key-width: 35px;

4 --font-size: 1rem;

5 }

6 }

Some versions for tablets:

Patterns in React TypeScript Applications: Making Music with React 248

1 @media (min-width: 720px) {

2 .key {

3 --white-key-width: 45px;

4 --font-size: 1.2rem;

5 }

6 }

7

8 @media (min-width: 960px) {

9 .key {

10 --white-key-width: 65px;

11 --font-size: 1.5rem;

12 }

13 }

And the biggest version for the desktop:

1 @media (min-width: 1120px) {

2 .key {

3 --white-key-width: 75px;

4 --font-size: 1.8rem;

5 }

6 }

Define the Key component

Create src/components/Key/Key.tsx with the following imports:

1 import { FunctionComponent } from "react"

2 import clsx from "clsx"

3 import { NoteType } from "../../domain/note"

4 import styles from "./Key.module.css"

Define the Key component:

Patterns in React TypeScript Applications: Making Music with React 249

1 type KeyProps = {

2 type: NoteType

3 label: string

4 disabled?: boolean

5 }

6

7 export const Key: FunctionComponent<KeyProps> = (props) => {

8 const { type, label, ...rest } = props

9 return (

10 <button

11 className={clsx(styles.key, styles[type])}

12 type="button"

13 {...rest}

14 >

15 {label}

16 </button>

17)

18 }

Here we defined a component that accepts the props of type KeyProps:

• type, a NoteType — will be used to define the styles of a key
• label, a string — a letter that will be placed as a label of a key
• disabled, an optional boolean — if true it will disable the key from being
pressed

The rest operator (...rest) in TypeScript keeps all the information about the types
of all fields in the rest object. The disabled field is inferred from the KeyProps type
and the children field is inferred from the FunctionComponent type.

Patterns in React TypeScript Applications: Making Music with React 250

Types of fields on the rest object

If wewanted to explicitly and strictly specify that this component shouldn’t
accept children as a prop we wouldn’t use the FunctionComponent type.
This type implicitly adds the children prop to the props passed as a type
argument.

Finally, re-export the component from the index.ts file:

1 export * from "./Key"

Create the Keyboard component

Create src/components/Keyboard/Keyboard.module.css to hold the styles for the
keyboard:

1 .keyboard {

2 display: flex;

3 }

Define the Keyboard component, create a file src/components/Keyboard/Keyboard.tsx
with the following code:

Patterns in React TypeScript Applications: Making Music with React 251

1 import { selectKey } from "../../domain/keyboard"

2 import { notes } from "../../domain/note"

3 import { Key } from "../Key"

4 import styles from "./Keyboard.module.css"

5

6 export const Keyboard = () => {

7 return (

8 <div className={styles.keyboard}>

9 {notes.map(({ midi, type, index, octave }) => {

10 const label = selectKey(octave, index)

11 return <Key key={midi} type={type} label={label} />

12 })}

13 </div>

14)

15 }

Look how we map over the notes array. It contains the notes from C4 to B5. We
destructure each note into midi, type, index, and octave fields. For each note, we
render a Key component.

There is a function we haven’t seen yet, called selectKey(). It is a function that
selects a letter label for a given key. Let’s inspect its source code.

1 import { OctaveIndex, PitchIndex } from "./note"

2

3 export type Key = string

4 export type Keys = Key[]

5

6 export const TOP_ROW: Keys = Array.from("q2w3er5t6y7u")

7 export const BOTTOM_ROW: Keys = Array.from("zsxdcvgbhnjm")

8 export const CHANGE_ROW_AT: OctaveIndex = 5

9

10 export function selectKey(

11 octave: OctaveIndex,

12 index: PitchIndex

13): Key {

Patterns in React TypeScript Applications: Making Music with React 252

14 const keysRow = octave < CHANGE_ROW_AT ? TOP_ROW : BOTTOM_ROW

15 return keysRow[index]

16 }

In keyboard.ts, we create two custom types:

• Key, a type-alias for representing letter key labels
• Keys, an array of those labels

Then, we create two arrays of letters that will label our keys. If those letters are
pressed on a real keyboard, we will play the sound of a key with the corresponding
label. We use Array.from()¹⁰⁴ to create an array of characters from a string.

selectKey() is a function that takes an octave index that we choose a key by and a
pitch index to select from the chosen octave. Thus, we map a letter to our key label.

Create the src/components/Keyboard/index.ts and re-export everything from the
./Keyboard module:

1 export * from "./Keyboard"

Update the Main component

Go to src/components/Main/Main.tsx and add use the real Keyboard component
there:

¹⁰⁴https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from

Patterns in React TypeScript Applications: Making Music with React 253

1 import { Keyboard } from "../Keyboard"

2 import { NoAudioMessage } from "../NoAudioMessage"

3 import { useAudioContext } from "../AudioContextProvider"

4

5 export const Main = () => {

6 const AudioContext = useAudioContext()

7 return !!AudioContext ? <Keyboard /> : <NoAudioMessage />

8 }

Adapter Hook

In this section we’ll add the sounds to our app.

Add a custom SoundfontType type to react-app-env.d.ts:

1 type SoundfontType = typeof Soundfont

This type is going to be useful when we create an adapter for Soundfont.

Soundfont Adapter

The adapter should take what Soundfont provides through the public API, take what
window gives us, and adapt all of that for our usage.

How Soundfont adapter should work

Patterns in React TypeScript Applications: Making Music with React 254

We’ll implement the adapter multiple times. The first version of adapter will be a
hook. And then we will use React-Patterns, such as HOCs and Render-Props.

Create a src/adapters/Soundfont/useSoundfont.ts and define the imports:

1 import { useState, useRef } from "react"

2 import Soundfont, { InstrumentName, Player } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { Optional } from "../../domain/types"

5 import {

6 AudioNodesRegistry,

7 DEFAULT_INSTRUMENT

8 } from "../../domain/sound"

Specify what the input and output types of the adapter:

1 type Settings = {

2 AudioContext: AudioContextType

3 }

4

5 interface Adapted {

6 loading: boolean

7 current: Optional<InstrumentName>

8

9 load(instrument?: InstrumentName): Promise<void>

10 play(note: MidiValue): Promise<void>

11 stop(note: MidiValue): Promise<void>

12 }

Here, the Settings type describes what does the useSoundfont() adapter require as
arguments. The Adapted interface specifies what kind of object we’re going to return
from this adapter.

The Settings type describes a “shape” of the configuration object.

The Adapted is an interface that requires the loading flag, the current instrument,
and the load(), play() and stop() methods on any object that implements it.

Patterns in React TypeScript Applications: Making Music with React 255

The loading field is a boolean flag that is set to true while Soundfont loads the
instrument sound set. We will use it to disable Keyboard while loading is happening.
The current field contains the current instrument.

Functions load(), play() and stop() are functions that handle loading the instru-
ment sound set, starting playing a note, and finishing playing a note, respectively.
They are all asynchronous since the Audio API is asynchronous by itself.

Async functions in TypeScript return the Promise<TResult> generic type. This way
we know that this function returns a Promise of some value, but not the value type.

Define the adapter hook:

1 export function useSoundfont({ AudioContext }: Settings): Adapted {

2 let activeNodes: AudioNodesRegistry = {}

3 const [current, setCurrent] = useState<Optional<InstrumentName>>(

4 null

5)

6 const [loading, setLoading] = useState<boolean>(false)

7 const [player, setPlayer] = useState<Optional<Player>>(null)

8 const audio = useRef(new AudioContext())

9 // ...

10 }

Here, activeNodes is an object with AudioNode¹⁰⁵ items. Those are general interfaces
for handling sound operations. Soundfont uses them to store the state of played notes.
The type of this state is AudioNodesRegistry, it is defined in src/domain/sound.ts.

1 import { InstrumentName, Player } from "soundfont-player";

2 import { MidiValue } from "./note";

3 import { Optional } from "./types";

4

5 export type AudioNodesRegistry = Record<MidiValue, Optional<Player>>;

AudioNodesRegistry is a Recordwith key of type MidiValue and value of type Player.
The Player type is provided by Soundfont, it handles the musical operations for us.

¹⁰⁵https://developer.mozilla.org/ru/docs/Web/API/AudioNode

https://developer.mozilla.org/ru/docs/Web/API/AudioNode
https://developer.mozilla.org/ru/docs/Web/API/AudioNode

Patterns in React TypeScript Applications: Making Music with React 256

Unlike other local variables, activeNodes is not part of the local state. That is because
we don’t want our component to re-render every time audio nodes change their state.
We want to avoid extra repaints and avoid situations where the .stop() method is
being called on a non-existent node or a node with an invalid audio state. So, we
update this registry directly using a local variable, not using the state.

The field current has type Optional<InstrumentName> and holds the instrument
playing now. Initially we set it to null.

The loading field indicates whether an instrument is an instrument playing now or
not.

The player field holds a Soundfont Player instance. We use it to perform musical
operations.

The audio is an instance of AudioContext. We use useRef() hook¹⁰⁶ to keep a
reference to an instance of an AudioContext that we create when the component
mounts. To access this instance, we use the audio.current property.

Loading Sound Set

Implement the load() method, it will load the instrument sound set. Add the
following code in the useSoundfont hook:

1 async function load(

2 instrument: InstrumentName = DEFAULT_INSTRUMENT

3) {

4 setLoading(true)

5 const player = await Soundfont.instrument(

6 audio.current,

7 instrument

8)

9

10 setLoading(false)

11 setCurrent(instrument)

12 setPlayer(player)

13 }

¹⁰⁶https://reactjs.org/docs/hooks-reference.html#useref

https://reactjs.org/docs/hooks-reference.html#useref
https://reactjs.org/docs/hooks-reference.html#useref

Patterns in React TypeScript Applications: Making Music with React 257

We mark this function async, because of the async instrument() method from
Soundfont.

We set the loading state to true to indicate that the sound set is loading. Then, we call
the await Soundfont.instrument()method and keep the returned result to a player
local state. Also, we save a given instrument as current, and when everything is
done, mark loading as false.

Implement the resume() method:

1 async function resume() {

2 return audio.current.state === "suspended"

3 ? await audio.current.resume()

4 : Promise.resolve()

5 }

It checks what state audio is in right now. If it is suspended¹⁰⁷, this means that
AudioContext is halting audio hardware access and reducing CPU/battery usage in
the process. To continue we call the resume() method on it.

To handle the casewhen the state of audiowasn’t suspended, we use Promise.resolve()¹⁰⁸.
This method returns a Promise object that is resolved with a given value. We don’t
need any, so we don’t pass it as an argument.

Implement the play() and stop() methods:

1 async function play(note: MidiValue) {

2 await resume()

3 if (!player) return

4

5 const node = player.play(note.toString())

6 activeNodes = { ...activeNodes, [note]: node }

7 }

8

9 async function stop(note: MidiValue) {

10 await resume()

¹⁰⁷https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend
¹⁰⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/suspend
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve

Patterns in React TypeScript Applications: Making Music with React 258

11 if (!activeNodes[note]) return

12

13 activeNodes[note]!.stop()

14 activeNodes = { ...activeNodes, [note]: null }

15 }

The exclamation mark in the stop() function is a non-null assertion operator¹⁰⁹.
Using it we declare that we are totally sure that activeNodes[note] is not null. We
can do that because we checked it on a previous line.

In the play() function, we take a MidiValue as an argument to know what note to
play. Also, we check if there is no player yet, in which case we don’t do anything.
Otherwise, we create an active audioNode by calling player.play() method.

We convert the note to string type because the player’s play() method only accepts
strings. We can verify that by checking the Soundfont types. The play() method
references the start() method, which takes a string as the first argument:

1 export declare type Player = {

2 start: (

3 name: string,

4 when?: number,

5 options?: Partial<{ /* ... */ }>

6) => Player;

7

8 play: Player["start"];

9 // ...

10 };

We save the result node into our activeNodes registry. These activeNodes keep track
of playing notes and allow to stop() them.

We return loading state, current instrument, and 3 methods for controlling the
player load(), play(), stop():

¹⁰⁹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-0.html#non-null-assertion-operator

Patterns in React TypeScript Applications: Making Music with React 259

1 return {

2 loading,

3 current,

4 load,

5 play,

6 stop

7 }

Re-export the hook from adapters/Soundfont/index.ts:

1 export * from "./useSoundfont"

Congratulations, we created our first sound provider!

Connecting to a Keyboard

In the Key component, we will use onDown() and onUp()methods to handle keypress
events. Let’s open the Key.tsx and create a type alias PressCallback which is a
function called on press event. We will use this callback in the new onDown() and
onUp() methods in the KeyProps type:

1 type PressCallback = () => void

2 type KeyProps = {

3 type: NoteType

4 label: string

5 disabled?: boolean

6

7 onUp: PressCallback

8 onDown: PressCallback

9 }

These methods exist now in KeyProps, and we can use them in onMouseDown() and
onMouseUp() props for the button element.

Patterns in React TypeScript Applications: Making Music with React 260

1 export const Key: FunctionComponent<KeyProps> = ({

2 type,

3 label,

4 onDown,

5 onUp,

6 ...rest

7 }) => {

8 return (

9 <button

10 className={clsx(styles.key, styles[type])}

11 onMouseDown={onDown}

12 onMouseUp={onUp}

13 type="button"

14 {...rest}

15 >

16 {label}

17 </button>

18)

19 }

Open src/components/Keyboard/Keyboard.tsx and update the component code:

1 import { FunctionComponent } from "react"

2 // ...

3 import { notes, MidiValue } from "../../domain/note"

4 // ...

5 export type KeyboardProps = {

6 loading: boolean

7 play: (note: MidiValue) => Promise<void>

8 stop: (note: MidiValue) => Promise<void>

9 }

10

11 export const Keyboard: FunctionComponent<KeyboardProps> = ({

12 loading,

13 stop,

14 play

Patterns in React TypeScript Applications: Making Music with React 261

15 }) => (

16 <div className={styles.keyboard}>

17 {notes.map(({ midi, type, index, octave }) => {

18 const label = selectKey(octave, index)

19 return (

20 <Key

21 key={midi}

22 type={type}

23 label={label}

24 disabled={loading}

25 onDown={() => play(midi)}

26 onUp={() => stop(midi)}

27 />

28)

29 })}

30 </div>

31)

The Keyboard now has props that will consume loading, play(), and stop() provided
by the adapter. We use the loading flag to disable the keys to forbid the user from
pressing them while the keyboard is not ready.

The play() and stop()methods are typedwith (note: MidiValue) => Promise<void>

signature. What is Promise<void>? By using Promise<>, we can declare an async

function. Since every async function returns a promise object, TypeScript uses this
signature as well.

The void symbol means that this function doesn’t return any value. In some cases,
functions that don’t return anything are called procedures. For example:

Patterns in React TypeScript Applications: Making Music with React 262

1 // Returns a number, so its return-type is a number.

2 function add(a: number, b: number): number {

3 return a + b;

4 }

5

6 const sum = add(1, 2);

7 // It returns 3, so sum === 3.

8

9 function greet(name: string): void {

10 console.log(`Hello ${name}!`);

11 }

12

13 const result = greet('Alex');

14 // It doesn't return anything, so result === undefined

Now we only have to actually connect our Keyboard to the Soundfont provider, and
we’re there!

Create another file inside the Keyboard directory called WithInstrument.tsx and add
the following code:

1 import { useAudioContext } from "../AudioContextProvider"

2 import { useSoundfont } from "../../adapters/Soundfont"

3 import { useMount } from "../../utils/useMount"

4 import { Keyboard } from "../Keyboard"

5

6 export const KeyboardWithInstrument = () => {

7 const AudioContext = useAudioContext()!

8 const { loading, play, stop, load } = useSoundfont({ AudioContext })

9

10 useMount(() => load())

11

12 return <Keyboard loading={loading} play={play} stop={stop} />

13 }

Re-export it:

Patterns in React TypeScript Applications: Making Music with React 263

1 export * from "./WithInstrument"

In the KeyboardWithInstrument component, we use our custom hook to access
required methods and flags. Then, when mounted, we provide those props to our
Keyboard. We use an exclamation mark to tell the type checker that we are sure that
useAudioContext() doesn’t return null. We know that this component will appear
only if the browser supports Audio API because we tested it earlier.

We can also see there a hook called useMount(). It allows us to run some code right
after a component is mounted into the DOM. Let’s write it as well. Create a file
src/utils/useMount/useMount.ts and add the following code:

1 import { EffectCallback, useEffect } from "react"

2

3 const useEffectOnce = (effect: EffectCallback) => {

4 // eslint-disable-next-line react-hooks/exhaustive-deps

5 useEffect(effect, [])

6 }

7

8 type Effect = (...args: unknown[]) => void

9

10 export const useMount = (fn: Effect) => {

11 useEffectOnce(() => {

12 fn()

13 })

14 }

First, we create a useEffectOnce() hook to encapsulate the useEffect() call with an
empty dependency array. This array tells React what variables to observe. If either
of the variables in that array changes, React will re-run the effect. In our case, we
only need to run the effect once when the component appears in the DOM. That’s
why we set it to be empty.

Then, useMount() hook is a wrapper over useEffectOnce(). It takes an Effect

function and runs it through the useEffectOnce() hook.

Why not use the global Function type instead of creating a custom Effect type?
TypeScript by itself doesn’t forbid us to use the global Function type. However, there

Patterns in React TypeScript Applications: Making Music with React 264

is a catch. Function accepts any function-like value. So, for example, it accepts class
declarations that can throw an error if called incorrectly.

We can secure ourselves by using the ban-types rule in the ESLint configuration. It
will error if we use insecure types in declarations:

ESLint error when using global Function type

We don’t pass just fn inside useEffectOnce() to avoid mistakes with return values.
By default, the value returned from an effect in useEffect is interpreted as a clean-
up function. We don’t want this for fn so we wrap it in another function that doesn’t
return anything.

Re-export the hook from src/utils/useMount/index.ts:

1 export * from "./useMount"

Update the Main component to include the connected KeyboardWithInstrument.
Check if AudioContext exists by converting it to a boolean with the double negation
!! operator. If so, return the keyboard. Otherwise, return the fallback message.

Patterns in React TypeScript Applications: Making Music with React 265

1 import { KeyboardWithInstrument } from "../Keyboard"

2 import { NoAudioMessage } from "../NoAudioMessage"

3 import { useAudioContext } from "../AudioContextProvider"

4

5 export const Main = () => {

6 const AudioContext = useAudioContext()

7 return !!AudioContext ? (

8 <KeyboardWithInstrument />

9) : (

10 <NoAudioMessage />

11)

12 }

Mapping Real Keys to Virtual

Right now, our Keyboard can play sounds when pressed by a mouse click. However,
we want it to play notes when a user presses corresponding keys on their real
keyboard. To do that, we want to map real keys with virtual ones so that when a
user presses a key, our application would know what to do and which note to play.

We create a component that will implement another pattern calledObserver. Its main
idea is to allow us to subscribe to some events and handle them as we want to. In
our case, we want to subscribe to keyPress events.

Let’s start againwith designing anAPI. Create a new file src/components/PressObserver/usePressObserver.ts
and add the following code:

Patterns in React TypeScript Applications: Making Music with React 266

1 import { useEffect, useState } from "react"

2 import { Key as KeyLabel } from "../../domain/keyboard"

3

4 type IsPressed = boolean

5 type EventCode = string

6 type CallbackFunction = () => void

7

8 type Settings = {

9 watchKey: KeyLabel

10 onStartPress: CallbackFunction

11 onFinishPress: CallbackFunction

12 }

IsPressed is a type alias for boolean. It helps us determine if a user has pressed a
key or not. EventCode is a type alias for event.code - we will use it to figure out
which key is pressed. In Settings, we use KeyLabel to define which key is to be
observed. Functions onStartPress() and onFinishPress() are handlers for when a
user presses a key and lifts their finger up respectively.

Define the hook:

1 export function usePressObserver({

2 watchKey,

3 onStartPress,

4 onFinishPress

5 }: Settings): IsPressed {

6 const [pressed, setPressed] = useState<IsPressed>(false)

7 // ...

8 return pressed

9 }

Here we take Settings as an argument and return IsPressed as a result. We will
keep the state (pressed or not) in a local state of our component using useState()

hook.

Now, let’s implement the main logic using the useEffect hook:

Patterns in React TypeScript Applications: Making Music with React 267

1 useEffect(() => {

2 function handlePressStart({ code }: KeyboardEvent): void {

3 if (pressed || !equal(watchKey, code)) return

4 setPressed(true)

5 onStartPress()

6 }

7

8 function handlePressFinish({ code }: KeyboardEvent): void {

9 if (!pressed || !equal(watchKey, code)) return

10 setPressed(false)

11 onFinishPress()

12 }

13

14 document.addEventListener("keydown", handlePressStart)

15 document.addEventListener("keyup", handlePressFinish)

16

17 return () => {

18 document.removeEventListener("keydown", handlePressStart)

19 document.removeEventListener("keyup", handlePressFinish)

20 }

21 }, [watchKey, pressed, setPressed, onStartPress, onFinishPress])

TypeScript will show an error because the equal() function cannot be found. It’s
fine, we will create it in a minute.

Here, when a user presses a key, we call handlePressStart() to handle this event.
We check if this key hasn’t been pressed yet, and if not, we set the pressed variable
to true and call onStartPress() callback. When a user finishes pressing the key, we
call onFinishPress() inside handlePressFinish() handler.

We use document.addEventListener() to connect events and our named handler
functions, and document.removeEventListener() inside a cleanup function which is
returned from the useEffect()¹¹⁰ hook. It is important to remove event listeners from
a cleanup function to prevent memory leaks and unwanted event handlers calls.

Each Key component has its instance and thus creates a different keyPress event
listener. When we press the real key on a keyboard each component will react
¹¹⁰https://reactjs.org/docs/hooks-effect.html

https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html

Patterns in React TypeScript Applications: Making Music with React 268

to this action. However, despite all the components reacting on an event, the real
functionality gets executed only once — for the Key component that corresponds to
a real one, because of this check:

1 if (pressed || !equal(watchKey, code)) return

If a given Key is already pressed or is not the target key, we don’t do anything. This
way, we prevent extra work from being done.

This effect uses 2 custom functions called equal() and fromEventCode(). Let’s create
them and explain what they do:

1 function fromEventCode(code: EventCode): KeyLabel {

2 const prefixRegex = /Key|Digit/gi

3 return code.replace(prefixRegex, "")

4 }

5

6 function equal(watchedKey: KeyLabel, eventCode: EventCode): boolean {

7 return (

8 fromEventCode(eventCode).toUpperCase() ===

9 watchedKey.toUpperCase()

10)

11 }

The fromEventCode function takes an event code that can be presented like KeyZ, KeyS,
Digit9, or Digit4. It uses regex to filter out all the Key and Digit prefixes and keep
only a significant part of a code.

1 // `KeyZ` => `Z`

2 // `Digit9` => `9`

The equal() function compares the label of a key we observe and the pressed key. If
they are the same, it means the user pressed an observed key.

Why to uppercase all of them? It is called normalization. We do it to make sure that
either of s and S would work as a watchedKey as well as all the keys a user might
press.

Patterns in React TypeScript Applications: Making Music with React 269

Okay, that’s good. But why create a handler for each Key? We could still create a
single global event handler to ensure that there is only one handler for all the key
presses. However, it will violate the separation of concerns principle¹¹¹, according to
which Key components should handle their events themselves.

Re-export the usePressObserver in the src/components/PressObserver/index.ts

file:

1 export * from "./usePressObserver"

Let’s connect the usePressObserver() to our Key component. Don’t forget to import
usePressObserver into the component.

1 import { usePressObserver } from "../PressObserver"

2 // ...

3 const pressed = usePressObserver({

4 watchKey: label,

5 onStartPress: onDown,

6 onFinishPress: onUp

7 })

8

9 return (

10 <button

11 className={clsx(

12 styles.key,

13 styles[type],

14 pressed && styles["is-pressed"]

15)}

16 onMouseDown={onDown}

17 onMouseUp={onUp}

18 type="button"

19 {...rest}

20 >

21 {label}

22 </button>

23)

¹¹¹https://en.wikipedia.org/wiki/Separation_of_concerns

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns

Patterns in React TypeScript Applications: Making Music with React 270

We use onDown() and onUp() props as values for onStartPress and onFinishPress

for the observer respectively, and use the returned pressed value to assign an active
className to our button.

Instruments List

The last thing to do before we dive into Render Props and Higher-Order Components
is to create an instruments list to load them dynamically. This part requires a state
that will be accessible frommany components, so wewill use React.Context to share
that state.

Context

Let’s start with creating a new Context. We will call it InstrumentContext. Create a
file src/state/Instrument/Context.ts and add the following code:

1 import { createContext, useContext } from "react"

2 import { InstrumentName } from "soundfont-player"

3 import { DEFAULT_INSTRUMENT } from "../../domain/sound"

4

5 export type ContextValue = {

6 instrument: InstrumentName

7 setInstrument: (instrument: InstrumentName) => void

8 }

9

10 export const InstrumentContext = createContext<ContextValue>({

11 instrument: DEFAULT_INSTRUMENT,

12 setInstrument() {}

13 })

14

15 export const InstrumentContextConsumer = InstrumentContext.Consumer

16 export const useInstrument = () => useContext(InstrumentContext)

Here we use createContext() function and specify that our context value is going
to be of type ContextValue. It will keep a current instrument which we will

Patterns in React TypeScript Applications: Making Music with React 271

be able to update via setInstrument(). As a default value for an instrument,
we provide a DEFAULT_INSTRUMENT constant. From this file we want to export an
InstrumentContextConsumer and useInstrument() hook to access the context.

Re-export InstrumentContextConsumer and useInstrument from index.ts:

1 export { InstrumentContextConsumer, useInstrument } from "./Context"

The next step is to create an InstrumentContextProvider that will provide access
to the context. Create a file src/state/Instrument/Provider.tsx and add the
following code:

1 import { FunctionComponent, useState } from "react"

2 import { DEFAULT_INSTRUMENT } from "../../domain/sound"

3 import { InstrumentContext } from "./Context"

4

5 export const InstrumentContextProvider: FunctionComponent = ({

6 children

7 }) => {

8 const [instrument, setInstrument] = useState(DEFAULT_INSTRUMENT)

9

10 return (

11 <InstrumentContext.Provider value={{ instrument, setInstrument }}>

12 {children}

13 </InstrumentContext.Provider>

14)

15 }

The InstrumentContextProvider is a component that keeps the instrument value
in a local state and exposes the setInstrument() method to update it. We use
Context.Provider to set a value and render children inside. That will help us wrap
our entire application in this provider and gain access to the InstrumentContext from
anywhere.

Finally, re-export the provider from index.ts:

Patterns in React TypeScript Applications: Making Music with React 272

1 export { InstrumentContextConsumer, useInstrument } from "./Context"

2 export * from "./Provider"

Instrument Selector

Now, let’s try to update a current instrument. To select an instrument we will need
a list of instruments. This list will be rendered inside a select element, so we also
need a list of options for this select.

Let’s start with creating those options. Create a directory called InstrumentSelector
inside components, add the options.ts file, and add the following code:

1 import { InstrumentName } from "soundfont-player"

2 import instruments from "soundfont-player/names/musyngkite.json"

3

4 type Option = {

5 value: InstrumentName

6 label: string

7 }

8

9 type OptionsList = Option[]

10 type InstrumentList = InstrumentName[]

11

12 function normalizeList(list: InstrumentList): OptionsList {

13 return list.map((instrument) => ({

14 value: instrument,

15 label: instrument.replace(/_/gi, " ")

16 }))

17 }

18

19 export const options = normalizeList(instruments as InstrumentList)

Options are an array of Option objects. Each object contains a value of type
InstrumentName and a label of type string. Wewill use a value as a value for option

Patterns in React TypeScript Applications: Making Music with React 273

HTML-elements in select - also this is our current instrument in InstrumentContext.
Label is a string that we will put inside of option elements to render them and make
them visible for users.

The function normalizeList() converts instrument names provided by Soundfont
into readable ones. Soundfont gives us a list of instruments that are typed like
"acoustic_grand_piano", but we don’t want our users to see this underscore
between words. So we remove it and replace it with a space.

Then, create another file called InstrumentSelector.tsx inside InstrumentSelector
directory. Add the imports there:

1 import { ChangeEvent } from "react"

2 import { InstrumentName } from "soundfont-player"

3 import { useInstrument } from "../../state/Instrument"

4 import { options } from "./options"

5 import styles from "./InstrumentSelector.module.css"

And the component code:

1 export const InstrumentSelector = () => {

2 const { instrument, setInstrument } = useInstrument()

3 const updateValue = ({ target }: ChangeEvent<HTMLSelectElement>) =>

4 setInstrument(target.value as InstrumentName)

5

6 return (

7 <select

8 className={styles.instruments}

9 onChange={updateValue}

10 value={instrument}

11 >

12 {options.map(({ label, value }) => (

13 <option key={value} value={value}>

14 {label}

15 </option>

16))}

17 </select>

Patterns in React TypeScript Applications: Making Music with React 274

18)

19 }

Here we use our useInstrument() custom hook to get a current instrument value
and a method for updating it. Afterwards, we create an event handler called
updateValue()which takes a ChangeEvent<HTMLSelectElement> as an argument and
calls setInstrument() with a new InstrumentName.

ChangeEvent is a generic type that tells React that this function takes a change event of
an element. In our case this element is select, hence ChangeEvent<HTMLSelectElement>.

How to inspect declarations for those types? We can right-click on the
type and select “Go to definition”, which will navigate us to the type
declaration.

The way we set the onChange property to have a value of updateValue is how we
connect our Context to a component in the UI. That is where all the changes affect
our state.

Add component styles, create a file InstrumentSelector.module.css inside InstrumentSelector
directory and add the following code:

1 .instruments {

2 display: block;

3 text-transform: capitalize;

4 font-size: 1.2rem;

5 line-height: 1.5;

6

7 margin: 1.5rem auto 0;

8 padding: 0.4rem 1rem;

9

10 color: #495057;

11 background-color: #fff;

12 background-clip: padding-box;

13 border: 1px solid #ced4da;

14 border-radius: 0.25rem;

15 }

Patterns in React TypeScript Applications: Making Music with React 275

Finally, re-export the component from index.ts:

1 export * from "./InstrumentSelector"

Provide access to the InstrumentContext using the InstrumentContextProvider.
Create a src/components/Playground directory and there create a file called Playground.tsx
with the following code:

1 import { InstrumentContextProvider } from "../../state/Instrument"

2 import { InstrumentSelector } from "../InstrumentSelector"

3 import { KeyboardWithInstrument } from "../Keyboard"

4

5 export const Playground = () => {

6 return (

7 <InstrumentContextProvider>

8 <div className="playground">

9 <KeyboardWithInstrument />

10 <InstrumentSelector />

11 </div>

12 </InstrumentContextProvider>

13)

14 }

Herewewrap our Keyboard and InstrumentSelector in a component called Playground.
Inside of it we use InstrumentContextProvider.We couldwrap the entire application
in it. However, that is not necessary. In our case, there are only two components that
use InstrumentContext: Keyboard and InstrumentSelector, so wewrap only the two
of them into the context provider.

Re-export the Playground component:

1 export * from "./Playground"

The next thing to do is update our Main component — we want to include and use
Playground instead of a Keyboard that we used previously.

Patterns in React TypeScript Applications: Making Music with React 276

1 import { Playground } from "../Playground"

2 import { NoAudioMessage } from "../NoAudioMessage"

3 import { useAudioContext } from "../AudioContextProvider"

4

5 export const Main = () => {

6 const AudioContext = useAudioContext()

7 return !!AudioContext ? <Playground /> : <NoAudioMessage />

8 }

Use the Main component inside App:

1 import { Main } from "./components/Main";

2 // ...

3 export const App = () => {

4 return (

5 <div className={styles.app}>

6 <Logo />

7 <main className={styles.content}>

8 <Main />

9 </main>

10 <Footer />

11 </div>

12);

13 };

We’re almost there! The only thing to do now is to actually load a new sound
set when changing a current instrument. Let’s update our KeyboardWithInstrument
component to handle this case.

Dynamically Loading Instruments

Open src/components/Keyboard/WithInstrument.tsx and add the imports:

Patterns in React TypeScript Applications: Making Music with React 277

1 import { useEffect } from "react"

2 import { useInstrument } from "../../state/Instrument"

3 import { useSoundfont } from "../../adapters/Soundfont"

4 import { useAudioContext } from "../AudioContextProvider"

5 import { Keyboard } from "../Keyboard"

Update the component:

1 export const KeyboardWithInstrument = () => {

2 const AudioContext = useAudioContext()!

3 const { instrument } = useInstrument()

4 const { loading, current, play, stop, load } = useSoundfont({

5 AudioContext

6 })

7

8 useEffect(() => {

9 if (!loading && instrument !== current) load(instrument)

10 }, [load, loading, current, instrument])

11

12 return <Keyboard loading={loading} play={play} stop={stop} />

13 }

Here we use the useInstrument() hook to access the value of a current instrument.
Later, we call load() function providing instrument as an argument for it. It will tell
Soundfont to load the sound set for this particular instrument.

We replace useMount() hook with useEffect() hook because we want to change our
instrument’s sound set dynamically instead of loading it only on mount.

Also, we check if an instrument has changed and load the new one only if so. For that,
we use the current value provided by useSoundfont() hook earlier. We compare a
current instrument in the Soundfont provider and a wanted instrument from our
Context. If they are different, we call the load() function.

And that’s it! Now you can open the project in a browser and play with different
instruments sounds.

Patterns in React TypeScript Applications: Making Music with React 278

Render Props

So far, we have used only hooks to implement a Provider pattern. However, we can
use different techniques to achieve the same result. One of those techniques is a React
pattern called Render Props.

In this section we’ll learn what render props are and what are their pros and cons.

What is a render prop

A component with a render prop¹¹² receives a function that returns a React element
and calls this function instead of implementing its own render logic. This technique
makes it possible to share the internal logic between components.

Let’s try to imagine how a component with the render function would look. Its usage
would look like this:

1 <ExampleRenderPropsComponent

2 render={(name: string) => <div>Hello, {name}!</div>}

3 />

The render prop takes a function that returns another React component. However, it
does not just render a component but also its inner text containing a name. This name
is a value calculated inside of ExampleRenderPropsComponent.

So, this function for render in away connects internal values of ExampleRenderPropsComponent
with the outside world. We expose this internal value to the outer world. The coolest
thing is that we can decide what to share with the outer world and what not to. We
could have a hundred internal values inside of ExampleRenderPropsComponent, but
expose only one.

Thus, we can encapsulate the logic in one place — ExampleRenderPropsComponent —
but share some functionality with different components:

¹¹²https://reactjs.org/docs/render-props.html

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html

Patterns in React TypeScript Applications: Making Music with React 279

1 <ExampleRenderPropsComponent

2 render={(name: string) => <Greetings name={name} />}

3 />

4 <ExampleRenderPropsComponent

5 render={(name: string) => <Farewell name={name} />}

6 />

Here we expose the name value to Greetings and Farewell. We don’t recreate all
the operations required to get name by hands, but instead, we keep them inside of
ExampleRenderPropsComponent and use render to provide it to other components.

We don’t necessarily need to call this prop render. We can use the children prop as
well. In that case, the children prop would become a function, and we would use
our provider like this:

1 <SoundfontProvider AudioContext={AudioContext} instrument={instrument}>

2 {(props) => <Keyboard {...props} />}>

3 </SoundfontProvider>

Be careful when using Render Props with React.PureComponent¹¹³.

Using a Render Prop can negate the advantage that comes fromusing React.PureComponent
if we create the function inside a render method. The reason for this is that the
shallow prop comparison will always return false for new props, and each render
in this case will generate a new value for the render prop.

To get around this problem, we can sometimes define the prop as an instance
method. In cases where we cannot define the prop statically, we should extend
React.Component instead.

Pros and Cons

Each pattern has its limitations and usage cases. For Render Props, the pros would be
that a Render Props Provider:

¹¹³https://reactjs.org/docs/render-props.html

https://reactjs.org/docs/render-props.html
https://reactjs.org/docs/render-props.html

Patterns in React TypeScript Applications: Making Music with React 280

• Explicitly shows where all the methods come from;
• Declaratively loads an instrument via prop;
• Can be written as a class and as a function component.

The cons are that a Render Props Provider:

• Adds one to two nesting levels to a component that uses it;
• Needs a render to be called.

Creating Render Props With Functional
Components

Inside the src/adapters/Soundfont directory create a file called SoundfontProvider.ts.
Add the necessary imports:

1 import {

2 ReactElement,

3 FunctionComponent,

4 useState,

5 useEffect,

6 useRef,

7 useCallback

8 } from "react"

9 import Soundfont, { InstrumentName, Player } from "soundfont-player"

10 import { MidiValue } from "../../domain/note"

11 import { Optional } from "../../domain/types"

12 import {

13 AudioNodesRegistry,

14 DEFAULT_INSTRUMENT

15 } from "../../domain/sound"

Declare the component props:

Patterns in React TypeScript Applications: Making Music with React 281

1 type ProvidedProps = {

2 loading: boolean

3 play(note: MidiValue): Promise<void>

4 stop(note: MidiValue): Promise<void>

5 }

6

7 type ProviderProps = {

8 instrument?: InstrumentName

9 AudioContext: AudioContextType

10 render(props: ProvidedProps): ReactElement

11 }

We would require an optional instrument prop to specify which instrument we
want to load, and an AudioContext to utilize. Most importantly, we would need a
render prop that is a function that takes ProvidedProps as an argument and returns
a ReactElement. ProvidedProps is a type with values that we would provide to the
outside world.

The same values we provided earlier with the useSoundfont() hook but without
load() and current. We don’t need them because we encapsulate the loading of
sounds inside our provider. A current instrument now arrives from the outside via
the instrument prop.

Also, we don’t return them as a function result; but instead, we pass them as a render
function argument. Thus, the usage of our new provider would look like this:

1 function renderKeyboard({

2 play,

3 stop,

4 loading

5 }: ProvidedProps): ReactElement {

6 return <Keyboard play={play} stop={stop} loading={loading} />

7 }

8

9 /** ...And we would use it like:

10 * <SoundfontProvider

11 * AudioContext={AudioContext}

Patterns in React TypeScript Applications: Making Music with React 282

12 * instrument={instrument}

13 * render={renderKeyboard}

14 * />

15 */

When we are okay with the API of our new provider, we can start implementing it.
A type signature of this provider would be like this:

1 export const SoundfontProvider: FunctionComponent<ProviderProps> = ({

2 AudioContext,

3 instrument,

4 render

5 }) => {

6 // ...

7 }

We explicitly say that this is a FunctionComponent that accepts ProviderProps.

All theworkwith the internal statewould be the same as it was in the useSoundfont()
hook, except that we add loading and reloading sounds when the instrument prop
is being changed.

The local state will look like this:

1 let activeNodes: AudioNodesRegistry = {}

2

3 const [current, setCurrent] = useState<Optional<InstrumentName>>(

4 null

5)

6 const [loading, setLoading] = useState<boolean>(false)

7 const [player, setPlayer] = useState<Optional<Player>>(null)

8 const audio = useRef(new AudioContext())

9

10 const loadInstrument = useCallback(() => load(instrument), [

11 instrument

12])

The loading instrument effect will look like this:

Patterns in React TypeScript Applications: Making Music with React 283

1 useEffect(() => {

2 if (!loading && instrument !== current) loadInstrument()

3 }, [loadInstrument, loading, instrument, current])

Here, we use useEffect() to capture when an instrument prop changes and load a
new sound set for that instrument. However we don’t call load() function, instead
we call a memoized version¹¹⁴ of it — this is possible because of the useCallback()

hook.

The load() function is as follows:

1 async function load(

2 instrument: InstrumentName = DEFAULT_INSTRUMENT

3) {

4 setLoading(true)

5 const player = await Soundfont.instrument(

6 audio.current,

7 instrument

8)

9

10 setLoading(false)

11 setCurrent(instrument)

12 setPlayer(player)

13 }

The play(), stop(), and resume() functions are exactly the same as they were in the
useSoundfont hook:

1 async function resume() {

2 return audio.current.state === "suspended"

3 ? await audio.current.resume()

4 : Promise.resolve()

5 }

¹¹⁴https://reactjs.org/docs/hooks-reference.html#usecallback

https://reactjs.org/docs/hooks-reference.html#usecallback
https://reactjs.org/docs/hooks-reference.html#usecallback

Patterns in React TypeScript Applications: Making Music with React 284

1 async function play(note: MidiValue) {

2 await resume()

3 if (!player) return

4

5 const node = player.play(note.toString())

6 activeNodes = { ...activeNodes, [note]: node }

7 }

8

9 async function stop(note: MidiValue) {

10 await resume()

11 if (!activeNodes[note]) return

12

13 activeNodes[note]!.stop()

14 activeNodes = { ...activeNodes, [note]: null }

15 }

This is the logic we previously implemented in the KeyboardWithInstrument, but
now encapsulated in the provider.

Expose the internal values and functions to the outside world. For that, we use
render():

1 return render({

2 loading,

3 play,

4 stop

5 })

As you can see, we call render() and pass inside it an object with all the values and
functions that we promised to pass in ProvidedProps.

Now, re-export the provider from index.ts:

1 export * from "./SoundfontProvider"

Tweak the code of the KeyboardWithInstrument component a bit.

Patterns in React TypeScript Applications: Making Music with React 285

1 import { SoundfontProvider } from "../../adapters/Soundfont"

2 // ...

3 export const KeyboardWithInstrument = () => {

4 const AudioContext = useAudioContext()!

5 const { instrument } = useInstrument()

6

7 return (

8 <SoundfontProvider

9 AudioContext={AudioContext}

10 instrument={instrument}

11 render={(props) => <Keyboard {...props} />}

12 />

13)

14 }

Here we pass the AudioContext and an instrument as props to SoundfontProvider

and then pass to render a callback. It takes loading, play() and stop(), transfers
them to a Keyboard and returns it. We use object destructuring not to enumerate
each prop for Keyboard manually but to pass them right away instead.

Creating Render Props With Classes

We can use classes to create Render Props components as well. Let’s rebuild our
provider using the same technique but based on a class.

Classes are like a blueprint for creating similar entities. In TypeScript, classes can
implement interfaces and extend more general classes. For example, we have an
interface Printable that describes a behavior contract. It guarantees that the entity
implementing this interface has a method print().

1 interface Printable {

2 print(): void

3 }

A class can declare that it implements this interface. TypeScript will check if this
class has all the methods specified in the interface:

Patterns in React TypeScript Applications: Making Music with React 286

1 class Article implements Printable {

2 print(): void {

3 console.log('Printed!');

4 }

5 }

If some of the methods are missing, TypeScript will produce an error:

Class ‘Article’ incorrectly implements interface ‘Printable’. Property ‘print’
is missing in type ‘Article’ but required in type ‘Printable’.

We can extend a class and modify its behavior a bit. It is useful when we want to
enrich the classes’ basic functionality. For example, we can specify an additional
property:

1 class LongRead extends Article {

2 wordsCount = 1000;

3

4 print(): void {

5 console.log('Printed!');

6 }

7 }

To create a new entity of an Article class, we call it with new. Every entity is a
separate object and can be manipulated separately:

1 const aboutNature = new LongRead();

2 aboutNature.print();

3 aboutNature.wordsCount === 1000

So, a class is a blueprint, and every entity is a separate entity… Isn’t it similar
to components? It is, indeed. As we will see later, React provides us with a
Component class that we can extend and create our components based on its general
functionality.

Patterns in React TypeScript Applications: Making Music with React 287

Basically, Component deals with the inner details of a component lifecycle: it deter-
mines when to update and re-render, how to create a local state, and stuff. Our
extensions (components) only define modified functionality, like the component
markup. With all that in mind, let’s try and create a class component. Imports will
be the same, but we’re going to need to import Component from React as well.

Create a file called SoundfontProviderClass.ts inside src/adapters/Soundfont

directory and add the imports:

1 import { Component, ReactElement } from "react"

2 import Soundfont, { InstrumentName, Player } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { Optional } from "../../domain/types"

5 import {

6 AudioNodesRegistry,

7 DEFAULT_INSTRUMENT

8 } from "../../domain/sound"

ProvidedProps would still be the same, because we don’t change the public API.
ProviderProps, on the other hand, will change. This time the instrument field will
not be optional.

1 type ProvidedProps = {

2 loading: boolean

3 play(note: MidiValue): Promise<void>

4 stop(note: MidiValue): Promise<void>

5 }

6

7 type ProviderProps = {

8 instrument: InstrumentName

9 AudioContext: AudioContextType

10 render(props: ProvidedProps): ReactElement

11 }

That’s because we will use defaultProps¹¹⁵ when nothing is passed to a component.
We will see how to define them in a minute.
¹¹⁵https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-

jsx

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#support-for-defaultprops-in-jsx

Patterns in React TypeScript Applications: Making Music with React 288

Then, since we will use a class, we specify a state type because the useState() hook
is not available in the class components. We can use Hooks only inside functional
components. So, let’s introduce the ProviderState type.

1 type ProviderState = {

2 loading: boolean

3 current: Optional<InstrumentName>

4 }

Here we declare that our local state should contain a loading field, a boolean and
current, an Optional<InstrumentName>. Those are the parts that should cause re-
render when changed.

1 export class SoundfontProvider extends Component<

2 ProviderProps,

3 ProviderState

4 > {

5 public static defaultProps = {

6 instrument: DEFAULT_INSTRUMENT

7 }

8

9 private audio: AudioContext

10 private player: Optional<Player> = null

11 private activeNodes: AudioNodesRegistry = {}

12

13 public state: ProviderState = {

14 loading: false,

15 current: null

16 }

17 // ...

18 }

As you may notice, we now pass two types into the Component<> type. The first
one describes props, and the second one describes a state. Also, we created three
private fields for our class. Those are audio, player, and activeNodes. Wemake them

Patterns in React TypeScript Applications: Making Music with React 289

private because we don’t want outside entities to mess around with those fields.
It is considered good practice to mark everything that is not public as private or
protected.

The difference¹¹⁶ between private and protected is that private members
are accessible only from inside the class, and protected members are
accessible from inside the class and extending classes as well.

Notice, defaultProps there. We declare them as a static field on a class.

1 public static defaultProps = {

2 instrument: DEFAULT_INSTRUMENT

3 }

Then, we create a constructor() method. This is the method¹¹⁷ called right after a
class creation.

1 constructor(props: ProviderProps) {

2 super(props)

3

4 const { AudioContext } = this.props

5 this.audio = new AudioContext()

6 }

Here we call¹¹⁸ the super(props)method. The super()method calls parent construc-
tor. To avoid situations when this.props are not assigned to a component until the
constructor is finished, we set them via super(props). Otherwise we would not be
able to access AudioContext from this.props in a constructor later. Then, we get
AudioContext and assign this.audio to its instance.

So far, this seems pretty good. Now, let’s imagine our component’s lifecycle - what
should occur and when. When a component is created, we assign private fields.
When it’s mounted, we load an initial instrument. When the latter changes due to

¹¹⁶https://www.typescriptlang.org/docs/handbook/2/classes.html#member-visibility
¹¹⁷https://www.typescriptlang.org/docs/handbook/2/classes.html#methods
¹¹⁸https://overreacted.io/why-do-we-write-super-props/

https://www.typescriptlang.org/docs/handbook/2/classes.html#member-visibility
https://www.typescriptlang.org/docs/handbook/2/classes.html#methods
https://overreacted.io/why-do-we-write-super-props/
https://www.typescriptlang.org/docs/handbook/2/classes.html#member-visibility
https://www.typescriptlang.org/docs/handbook/2/classes.html#methods
https://overreacted.io/why-do-we-write-super-props/

Patterns in React TypeScript Applications: Making Music with React 290

the component’s update, we check if the new instrument differs from the current one
and reload it if so.

The whole lifecycle consists of 3 stages:

• mounting, when a component is being created and inserted into the DOM;
• updating, when changes to props or state happen, a component is being re-
rendered;

• unmounting, when a component leaves the DOM.

At every stage, there are available methods provided by the Component class. On a
diagram, component lifecycle and corresponding methods would appear like this:

Component lifecycle diagram

We used four lifecycle¹¹⁹ methods in our code:

• constructor() — which we discussed before
• componentDidMount()—which is called when a component is mounted into the
DOM

• shouldComponentUpdate() — which is called right before updating and deter-
mines if a component needs to be updated and re-rendered

• componentDidUpdate() — which is called when a component has been updated

¹¹⁹https://reactjs.org/docs/state-and-lifecycle.html

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html

Patterns in React TypeScript Applications: Making Music with React 291

1 public componentDidMount() {

2 const { instrument } = this.props

3 this.load(instrument)

4 }

5

6 public shouldComponentUpdate({ instrument }: ProviderProps) {

7 return this.state.current !== instrument

8 }

9

10 public componentDidUpdate({

11 instrument: prevInstrument

12 }: ProviderProps) {

13 const { instrument } = this.props

14 if (instrument && instrument !== prevInstrument)

15 this.load(instrument)

16 }

That is exactly what we do in those methods. When a component is mounted, we
access the instrument prop and load it using this.load(). Before the update, we
check if a current instrument (this.state.current) is different from the new one
from props, and if so we load it.

The shouldComponentUpdate() is not an optimization here. We use it to prevent
infinite reloading of instruments that could happen because of asynchronous loading.

There is no need to check if an instrument is defined or not in componentDidMount(),
thanks to defaultProps.

Now, let’s implement the this.load() method for loading sounds. We mark it
private to restrict it from used by any other class or object.

Patterns in React TypeScript Applications: Making Music with React 292

1 private load = async (instrument: InstrumentName) => {

2 this.setState({ loading: true })

3 this.player = await Soundfont.instrument(this.audio, instrument)

4

5 this.setState({ loading: false, current: instrument })

6 }

We use this.setState() to update loading flag which will be provided later to a
component in render(). This method is public, since we want to expose it to the
outer world. However, make sure to mark the load() method as private, since we
don’t want its exposure to the outer world in any way.

There are two other methods now that to implement and expose:

1 public play = async (note: MidiValue) => {

2 await this.resume()

3 if (!this.player) return

4

5 const node = this.player.play(note.toString())

6 this.activeNodes = { ...this.activeNodes, [note]: node }

7 }

8

9 public stop = async (note: MidiValue) => {

10 await this.resume()

11 if (!this.activeNodes[note]) return

12

13 this.activeNodes[note]!.stop()

14 this.activeNodes = { ...this.activeNodes, [note]: null }

15 }

It repeats the logic from our functional component provider. However, here we don’t
change local variables but private class fields instead. All the signatures, API, and
implementation are the same.

This is what makes abstractions, custom types, and interfaces so powerful.
We can describe an interface (sort of creating a contract), and as long as

Patterns in React TypeScript Applications: Making Music with React 293

we implement this interface, we can tweak and change the internals of the
implementation as we want.

Now we create resume()method, which is almost identical to our resume() function
from the previous adapter.

1 private resume = async () => {

2 return this.audio.state === "suspended"

3 ? await this.audio.resume()

4 : Promise.resolve()

5 }

We then expose the methods and values to the render() function. We access that
function from this.props and take it and pass to it as an argument the object with
all the values and methods we promised to provide in ProvidedProps.

1 public render() {

2 const { render } = this.props

3 const { loading } = this.state

4

5 return render({

6 loading,

7 play: this.play,

8 stop: this.stop

9 })

10 }

And that’s it! This is the Render Props component based on a class. We can use it the
same way we used our previous provider based on a functional component.

Higher-Order Components

The next React-Pattern we’re going to explore is called Higher-Order Components or
HOC. Let’s first break down this name to understand what it means.

Patterns in React TypeScript Applications: Making Music with React 294

Higher-Order Functions

To grasp what “order” means, let’s have a look at the functions first.

1 function increment(a: number): number {

2 return a + 1

3 }

Function increment() is a regular function that takes a number and returns the sum
of this number and 1. It is a first-order function.

1 function twice(fn: Function): Function {

2 return function (...args: unknown[]) {

3 return fn(fn(...args))

4 }

5 }

The twice() function is a function that takes another function as an argument and
returns a function as a result. This characteristic makes it a function with an order
higher than the first.

Basically, any given function that either takes a function as an argument or returns a
function as a result or does both, is a function with order higher than the first, hence
the name — higher-order function¹²⁰.

This kind of function is useful for composition. This term¹²¹ comes from functional
programming, and essentially it is a mechanism that makes it possible to take simple
functions and build more complicated ones based on them.

Let’s continue with our example here. We can create a function that will increment
a number twice. A naive way to do that would be:

¹²⁰https://en.wikipedia.org/wiki/Higher-order_function
¹²¹https://en.wikipedia.org/wiki/Function_composition_(computer_science)

https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Function_composition_(computer_science)

Patterns in React TypeScript Applications: Making Music with React 295

1 function incrementTwice(a: number): number {

2 return increment(increment(a))

3 }

This is not very good because we cannot be sure that there won’t be a requirement
to increase this number in the future. Also, hardcoded logic is not good in general.

The twice() function shares some similarities with our incrementTwice() function.
They both call a function two times in a row, but incrementTwice() calls a specific
function (increment()), and twice() calls an abstract function that comes from its
argument (fn()).

We can use the twice() function to achieve the same result as we did with
incrementTwice().

1 const anotherIncrementTwice = twice(increment)

Yup, that’s it! Let’s see how it works step by step.

When we call twice() and pass the increment as an argument, the variable fn starts
carrying the value of the increment function. So, after the first step, fn is increment.

Then, we create an anonymous function that takes an array of arguments function(...args:
unknown[]). To prevent this function from calling fn right away since we only want
to “prepare” and “remember” which function we plan to call two times in the future.

We return this anonymous function. Thus, whenwe assign const anotherIncrementTwice

to a result of twice(increment), we actually assign the anonymous function that al-
ready “remembers”which functionwewanted to call twice to the anotherIncrementTwice
constant. This functions knows that it should call increment() twice when called,
and it takes some arguments that will be passed to increment().

If we try to write it down, it will look almost exactly like it did earlier:

1 const anotherIncrementTwice = function (...args: unknown[]) {

2 return increment(increment(...args))

3 }

Surely, it returns the same result as the previous one:

Patterns in React TypeScript Applications: Making Music with React 296

1 const result1 = incrementTwice(5) // returns 7

2 const result2 = anotherIncrementTwice(5) // returns 7

3

4 result1 === result2 // true

The only difference here is that this function previously took only one argument, and
now it takes an array of arguments. It is a side effect of the fact that we can now use
the function twice() with any other function to repeat it!

1 function sayHello(): void {

2 console.log(`Hello world!`);

3 }

4

5 const sayHelloTwice = twice(sayHello);

6 sayHelloTwice()

7

8 // Hello world!

9 // Hello world!

Instead of implementing this logic from scratch we used a higher-order function
twice() to build a compound function sayHelloTwice() from a simple sayHello().

Higher-Order Components carry the same idea but in the realm of React components.

Define a HOC

A basic implementation of a HOC would look like this:

Patterns in React TypeScript Applications: Making Music with React 297

1 function withLogging<T>(Component: React.ComponentType<T>): React.Compo\

2 nentType<T> {

3 return class extends React.Component<T> {

4 render() {

5 console.log(`Rendering ${Component.name}`);

6 return <Component {...this.props} />;

7 }

8 };

9 }

Here we’ll log a message to the console before rendering the wrapped component.

The key parts here are:

• the factory function (withLogging) that takes a component as an argument and
returns a new component

• the wrapper component (class) that wraps the original component
• the wrapped component (Component) that is being enchanced

When to Use

We can use HOCs when we need to share functionality between many components.
Injectors can extend the functionality of a given component by passing new props to
it.

Sometimes HOCs are used to access network requests, provide local storage access,
subscribe to event streams, or connect components to an application store. The latter
was used in the Redux library to connect a component to the Redux store. These
HOCs are often called providers but they work basically the same way.

Pros and Cons

HOCs have limitations and caveats too. We can consider as pros these aspects:

Patterns in React TypeScript Applications: Making Music with React 298

• Static composition possibility - we can “remember” arguments for the future.
However, we can also do it in other patterns via Factory pattern or currying, so
this is debatable.

• HOCs are a literal implementation of a Decorator pattern.

And as cons:

• Extra encapsulation and “implicitness”. Sometimes HOCs hide too much logic
inside them, and it is not clear what will happen when we wrap some
component in a HOC.

• Unobvious typings strategy and presence of generics, type-casting “on the fly”,
and overall difficulty level. It is much harder to understand what is going on in
the code, compared to functional components.

• HOCs may become too verbose.

Caveats

We cannot¹²² wrap a component in HOC inside of render() (in runtime). React’s
diffing algorithm uses component identity to determine whether it should update
the existing subtree or throw it away and mount a new one. The problem here isn’t
just about performance. Remounting a component causes the state of that component
and all of its children to be lost. We must always apply HOCs outside the component
definition so that the resulting component is created only once.

All the static methods if defined must be copied¹²³ over.

There may be a situation when some props provided by a HOC have the same names
as props from other HOCs or wrappers. The name collision can lead us to accidentally
overridden props.

¹²²https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
¹²³https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over

https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over
https://reactjs.org/docs/higher-order-components.html#dont-use-hocs-inside-the-render-method
https://reactjs.org/docs/higher-order-components.html#static-methods-must-be-copied-over

Patterns in React TypeScript Applications: Making Music with React 299

Instrument adapter as a Higher-Order
Component

Higher-Order Components are like higher-order functions but in the realm of React
components.

How is it described in official docs¹²⁴? Conceptually, components are like JavaScript
functions. They accept arbitrary inputs (called “props”) and return React elements
describing what should appear on the screen.

So, we can say that a component is a function of some data passed via props.
Therefore, we can continue this analogy with functions and extend it. What would
a Higher-Order Component be?

Since a higher-order function either takes a function or returns a function or both, we
can assume that a higher-order component takes a component and returns another
one as a result. See what the official docs tell us¹²⁵.

While a component transforms props into UI, a higher-order component transforms
a component into another one, enhanced somehow. In our case, the enhancement
would be in connecting a component to a Soundfont functionality. With that said,
let’s try and build a Soundfont provider based on HOC.

First, imports. Create a file called withInstrument.tsx inside src/adapters/Soundfont
and add the following code:

1 import { Component, ComponentType } from "react"

2 import Soundfont, { InstrumentName, Player } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { Optional } from "../../domain/types"

5 import {

6 AudioNodesRegistry,

7 DEFAULT_INSTRUMENT

8 } from "../../domain/sound"

¹²⁴https://reactjs.org/docs/components-and-props.html
¹²⁵https://reactjs.org/docs/higher-order-components.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/higher-order-components.html

Patterns in React TypeScript Applications: Making Music with React 300

The public API would stay the same as it was before. However, ProvidedPropswould
be called InjectedProps now since we would inject them into a component that we
will enhance. ProviderProps and ProviderState are the same as before.

1 type InjectedProps = {

2 loading: boolean

3 play(note: MidiValue): Promise<void>

4 stop(note: MidiValue): Promise<void>

5 }

6

7 type ProviderProps = {

8 AudioContext: AudioContextType

9 instrument: InstrumentName

10 }

11

12 type ProviderState = {

13 loading: boolean

14 current: Optional<InstrumentName>

15 }

Then, we create a function withInstrument() that takes a component needing
enhancement. We make this function generic to tell the type checker which props
we’re going to inject. We will cover the injection itself a bit later.

1 export function withInstrument<

2 TProps extends InjectedProps = InjectedProps

3 >(WrappedComponent: ComponentType<TProps>) {

4 // ...

5 }

Pay attention to the extends keyword in the type arguments declaration. This is
a generic constraint¹²⁶. We use it to define that TProps must include properties
described in the InjectedProps type. Otherwise, TypeScript should give us an error.

¹²⁶https://www.typescriptlang.org/docs/handbook/2/generics.html#generic-constraints

https://www.typescriptlang.org/docs/handbook/2/generics.html#generic-constraints
https://www.typescriptlang.org/docs/handbook/2/generics.html#generic-constraints

Patterns in React TypeScript Applications: Making Music with React 301

Why use constraints and not just InjectedProps right away? We don’t always
know what props will accept the component that we should enhance. So if we use
InjectedProps, but the component accepts another prop, soundLevel, it won’t be
possible to enhance it.

For example, if we tried to pass the Keyboard component without extending props
we would get an error:

Component cannot be used because of inextensible props

When we use extends, we tell TypeScript that it is okay to use any component that
accepts InjectedProps even if there are more props than that.

By default, we define TProps to be the InjectedProps type using the = sign. This is
the default type for this generic. It works exactly like default values for arguments
in functions.

Inside, we create a const called displayName which is useful¹²⁷ for debugging. A
container component that we’re going to create will show up in developer tools like
any other component. So, we’d better give it a name to make it recognizable in an
inspector.

¹²⁷https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging

https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging
https://reactjs.org/docs/higher-order-components.html#convention-wrap-the-display-name-for-easy-debugging

Patterns in React TypeScript Applications: Making Music with React 302

1 const displayName =

2 WrappedComponent.displayName ||

3 WrappedComponent.name ||

4 "Component"

Then, we create a class WithInstrument that we’re going to return. That is the
container component that will enhance our WrappedComponent.

1 return class WithInstrument extends Component<

2 ProviderProps,

3 ProviderState

4 > {

Define the properties, they are same as in the SoundfontProviderClass from the
render props example:

1 public static defaultProps = {

2 instrument: DEFAULT_INSTRUMENT

3 }

4

5 private audio: AudioContext

6 private player: Optional<Player> = null

7 private activeNodes: AudioNodesRegistry = {}

8

9 public static displayName = `withInstrument(${displayName})`

10 public state: ProviderState = {

11 loading: false,

12 current: null

13 }

The only new field here is displayName. We make this field of a static¹²⁸ class to be
able to access it like WithInstrument.displayName without creating an instance.

Define the constructor:

¹²⁸https://www.typescriptlang.org/docs/handbook/2/classes.html#static-members

https://www.typescriptlang.org/docs/handbook/2/classes.html#static-members
https://www.typescriptlang.org/docs/handbook/2/classes.html#static-members

Patterns in React TypeScript Applications: Making Music with React 303

1 constructor(props: ProviderProps) {

2 super(props)

3

4 const { AudioContext } = this.props

5 this.audio = new AudioContext()

6 }

Define the life cycle methods:

1 public componentDidMount() {

2 const { instrument } = this.props

3 this.load(instrument)

4 }

Add the resume() method:

1 private resume = async () => {

2 return this.audio.state === "suspended"

3 ? await this.audio.resume()

4 : Promise.resolve()

5 }

It should be private as we don’t want to expose it.

Add the load, play and stop methods:

1 public load = async (instrument: InstrumentName) => {

2 this.setState({ loading: true })

3

4 this.player = await Soundfont.instrument(this.audio, instrument)

5 this.setState({ loading: false, current: instrument })

6 }

7

8 public play = async (note: MidiValue) => {

9 await this.resume()

10 if (!this.player) return

Patterns in React TypeScript Applications: Making Music with React 304

11

12 const node = this.player.play(note.toString())

13 this.activeNodes = { ...this.activeNodes, [note]: node }

14 }

15

16 public stop = async (note: MidiValue) => {

17 await this.resume()

18 if (!this.activeNodes[note]) return

19

20 this.activeNodes[note]!.stop()

21 this.activeNodes = { ...this.activeNodes, [note]: null }

22 }

Define the render() method:

1 public render() {

2 const injected = {

3 loading: this.state.loading,

4 play: this.play,

5 stop: this.stop

6 } as InjectedProps

7

8 return <WrappedComponent {...(injected as TProps)} />

9 }

Here, instead of calling this.props.render() and passing an object with values and
methods like we did with render props, we render the WrappedComponent and pass
these values as props it.

Why cast as TProps when rendering WrappedComponent? Well, there is an issue¹²⁹ in
TypeScript that erases type of props when using the spread operator (...). This point
forces us to explicitly cast injected props to the TProps type.

HOCs that inject new props to a given component are called injectors. They are useful
when we have cross-cutting concerns in our app, and we don’t want to implement
the same functionality repeatedly.

¹²⁹https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046

https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046
https://github.com/Microsoft/TypeScript/issues/28938#issuecomment-450636046

Patterns in React TypeScript Applications: Making Music with React 305

For example, we now can use our withInstrument() HOC with not only a Keyboard
but with any component that expects play() and stop() props to play notes. We can
create a Trombone component or Guitar component. As long as they are connected
to withInstrument(), they know how to play sounds, and we don’t need to add this
functionality to them directly.

Finally, re-export the component from index.ts:

1 export * from "./withInstrument"

Using HOC with Keyboard

When created, we can use our HOC to enhance our Keyboard component to connect
it to Soundfont. Let’s import withInstrument and use it to create an enhanced
Keyboard:

1 import { withInstrument } from "../../adapters/Soundfont"

2 // ...

3 const WrappedKeyboard = withInstrument(Keyboard)

4

5 export const KeyboardWithInstrument = () => {

6 const AudioContext = useAudioContext()!

7 const { instrument } = useInstrument()

8

9 return (

10 <WrappedKeyboard

11 AudioContext={AudioContext}

12 instrument={instrument}

13 />

14)

15 }

Here we can see how withInstrument() is being used; it takes a Keyboard component
that requires loading, play() and stop() as props and returns a WrappedKeyboard

that requires AudioContext and optional instrument props.

Patterns in React TypeScript Applications: Making Music with React 306

This is possible because a Keyboard becomes WrappedComponent when we call
withInstrument(). Basically, WrappedKeyboard is a WithInstrument class that ren-
ders out a Keyboard with “remembered” injected props.

When we render WrappedComponent, it already has loading, play() and stop(), since
they have been injected as InjectedProps earlier. It requires ProviderProps that
were specified in Component<ProviderProps, ProviderState>.

Props flow in HOC

This is like when fn became increment and an anonymous function was “remember-
ing” it.

To see what effect the displayName has, open the inspector now, find the components
tab and click it. There we should see a component tree. It is different from the DOM
tree because it shows not the HTML elements but the React components. Among
others there should be a component Keyboard withInstrument:

Patterns in React TypeScript Applications: Making Music with React 307

Component with a display name in the components tree

Try to remove the displayName property from the HOC and see what will change in
the components tree.

Passing Refs Through

Refs¹³⁰ provide a way to access DOM nodes or React elements created in the render
method.

By default, refs aren’t passed through¹³¹, and for “true” reusability we can also

¹³⁰https://reactjs.org/docs/refs-and-the-dom.html
¹³¹https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through

https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/higher-order-components.html#refs-arent-passed-through

Patterns in React TypeScript Applications: Making Music with React 308

consider exposing¹³² a ref for our HOC. For that we can use¹³³ forwardRef() function.

The base of our HOC will still be the same with a few changes. Create a file
called withInstrumentForwardedRef.tsx inside src/adapters/Soundfont directory
and add the imports:

1 import { Component, ComponentClass, Ref, forwardRef } from "react"

2 import Soundfont, { InstrumentName, Player } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { Optional } from "../../domain/types"

5 import {

6 AudioNodesRegistry,

7 DEFAULT_INSTRUMENT

8 } from "../../domain/sound"

The public API is the same:

1 type InjectedProps = {

2 loading: boolean

3 play(note: MidiValue): Promise<void>

4 stop(note: MidiValue): Promise<void>

5 }

6

7 type ProviderProps = {

8 AudioContext: AudioContextType

9 instrument: InstrumentName

10 }

11

12 type ProviderState = {

13 loading: boolean

14 current: Optional<InstrumentName>

15 }

Declare some “runtime” types inside of withInstrument().

¹³²https://reactjs.org/docs/forwarding-refs.html
¹³³https://react-typescript-cheatsheet.netlify.app/docs/basic/getting-started/forward_and_create_ref/

https://reactjs.org/docs/forwarding-refs.html
https://react-typescript-cheatsheet.netlify.app/docs/basic/getting-started/forward_and_create_ref/
https://reactjs.org/docs/forwarding-refs.html
https://react-typescript-cheatsheet.netlify.app/docs/basic/getting-started/forward_and_create_ref/

Patterns in React TypeScript Applications: Making Music with React 309

1 export function withInstrument<

2 TProps extends InjectedProps = InjectedProps

3 >(WrappedComponent: ComponentClass<TProps>) {

4 type ComponentInstance = InstanceType<typeof WrappedComponent>

5 type WithForwardedRef = ProviderProps & {

6 forwardedRef: Ref<ComponentInstance>

7 }

8 // ...

9 }

First, we create a ComponentInstance type. It is a type¹³⁴ consisting of the instance
type of a component. We need it to pass it into Ref<> type to specify a ref of which
component it would be. Then, we put this into a WithForwardRef type which extends
ProviderProps type. At the same time, forwardedRef is a ref that we want to forward
further into an enhanced component.

Basically, the root cause of the problem is that we create a container component that
is just an intermediate element and has no real DOM elements. So, to provide access
to a DOM node, we pass a received ref to the enhanced component, which will result
in a DOM node when rendered.

Later, we declare a class WithInstrument as a Component of WithForwardRef props
and ProviderState.

1 const displayName =

2 WrappedComponent.displayName ||

3 WrappedComponent.name ||

4 "Component"

5

6 class WithInstrument extends Component<

7 WithForwardedRef,

8 ProviderState

9 > {

10 // ...

11 }

¹³⁴https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypetype

https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypetype
https://www.typescriptlang.org/docs/handbook/utility-types.html#instancetypetype

Patterns in React TypeScript Applications: Making Music with React 310

The private and public fields will be the same as before:

1 private audio: AudioContext

2 private player: Optional<Player> = null

3 private activeNodes: AudioNodesRegistry = {}

4

5 public static displayName = `withInstrument(${displayName})`

6 public static defaultProps = {

7 instrument: DEFAULT_INSTRUMENT

8 }

9

10 public state: ProviderState = {

11 loading: false,

12 current: null

13 }

The constructor:

1 constructor(props: WithForwardedRef) {

2 super(props)

3

4 const { AudioContext } = this.props

5 this.audio = new AudioContext()

6 }

…The life cycle methods:

Patterns in React TypeScript Applications: Making Music with React 311

1 public componentDidMount() {

2 const { instrument } = this.props

3 this.load(instrument)

4 }

5

6 public shouldComponentUpdate({ instrument }: ProviderProps) {

7 return this.state.current !== instrument

8 }

9

10 public componentDidUpdate({

11 instrument: prevInstrument

12 }: ProviderProps) {

13 const { instrument } = this.props

14 if (instrument && instrument !== prevInstrument)

15 this.load(instrument)

16 }

…The resume() method:

1 private resume = async () => {

2 return this.audio.state === "suspended"

3 ? await this.audio.resume()

4 : Promise.resolve()

5 }

…And the public methods will also be the same as before:

Patterns in React TypeScript Applications: Making Music with React 312

1 public load = async (instrument: InstrumentName) => {

2 this.setState({ loading: true })

3

4 this.player = await Soundfont.instrument(this.audio, instrument)

5 this.setState({ loading: false, current: instrument })

6 }

7

8 public play = async (note: MidiValue) => {

9 await this.resume()

10 if (!this.player) return

11

12 const node = this.player.play(note.toString())

13 this.activeNodes = { ...this.activeNodes, [note]: node }

14 }

15

16 public stop = async (note: MidiValue) => {

17 await this.resume()

18 if (!this.activeNodes[note]) return

19

20 this.activeNodes[note]!.stop()

21 this.activeNodes = { ...this.activeNodes, [note]: null }

22 }

In the render()method, we access forwardedRef from props and pass it as ref props
onto a WrappedComponent.

1 public render() {

2 const { forwardedRef } = this.props

3 const injected = {

4 loading: this.state.loading,

5 play: this.play,

6 stop: this.stop

7 } as InjectedProps

8

9 return (

10 <WrappedComponent

Patterns in React TypeScript Applications: Making Music with React 313

11 ref={forwardedRef}

12 {...(injected as TProps)}

13 />

14)

15 }

The rest of the class internals are the same, but we don’t return this class from a
withInstrument() function. Instead, we return a result of a forwardRef() function.

1 return forwardRef<ComponentInstance, ProviderProps>(

2 (props, ref) => <WithInstrument forwardedRef={ref} {...props} />

3)

Refs are not provided with the props. To get access to the ref object we call a special
forwardRef() function.

We provide another anonymous function that returns our WithInstrument compo-
nent as an argument for it. This function receives two arguments: props, the original
props of a component, and a ref, the ref that should be forwarded.

And that’s how we keep refs working in HOCs.

Static Composition

HOCs have another interesting use case. Imagine a situation where we don’t need
to change an instrument in runtime, and we want to specify it once. In this case,
we don’t really need the instrument property on a WrappedKeyboard component. Is
there a way to define an instrument to load before we actually start rendering a
component? Yes, there is! It is called static composition.

So far, we worked with, as they call it, dynamic composition, where arguments of
functions (or props for components) were passed dynamically in runtime. However,
we can create a HOC that “remembers” an argument and then uses it in runtime
when rendering a component. Let’s build one of those!

Again let’s determine what the signature of such a HOC would look like. Create a
file called withInstrumentStatic.tsx inside src/adapters/Soundfont and add the
imports:

Patterns in React TypeScript Applications: Making Music with React 314

1 import React, { Component, ComponentType } from "react"

2 import Soundfont, { InstrumentName, Player } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { Optional } from "../../domain/types"

5 import {

6 AudioNodesRegistry,

7 DEFAULT_INSTRUMENT

8 } from "../../domain/sound"

Then, define the props:

1 type InjectedProps = {

2 loading: boolean

3 play(note: MidiValue): Promise<void>

4 stop(note: MidiValue): Promise<void>

5 }

6

7 type ProviderProps = {

8 AudioContext: AudioContextType

9 }

10

11 type ProviderState = {

12 loading: boolean

13 current: Optional<InstrumentName>

14 }

Then, create a function withInstrumentStatic() which takes an instrument as an
argument. Our provider will load this instrument, and it won’t change throughout
the whole component life.

1 export function withInstrumentStatic<

2 TProps extends InjectedProps = InjectedProps

3 >(initialInstrument: InstrumentName = DEFAULT_INSTRUMENT) {

Then, instead of returning a class, we return another function! This function is our
original HOC which takes a WrappedComponent and returns a class WithInstrument.

Patterns in React TypeScript Applications: Making Music with React 315

1 return function enhanceComponent(

2 WrappedComponent: ComponentType<TProps>

3) {

4 const displayName =

5 WrappedComponent.displayName ||

6 WrappedComponent.name ||

7 "Component"

8

9 return class WithInstrument extends Component<

10 ProviderProps,

11 ProviderState

12 > {

Then add the missing private and public fields:

1 private audio: AudioContext

2 private player: Optional<Player> = null

3 private activeNodes: AudioNodesRegistry = {}

4

5 public static displayName = `withInstrumentStatic(${displayName})`

6 public state: ProviderState = {

7 loading: false,

8 current: null

9 }

Add the constructor and the componentDidMount():

Patterns in React TypeScript Applications: Making Music with React 316

1 constructor(props: ProviderProps) {

2 super(props)

3

4 const { AudioContext } = this.props

5 this.audio = new AudioContext()

6 }

7

8 public componentDidMount() {

9 this.load(initialInstrument)

10 }

Define the resume() method:

1 private resume = async () => {

2 return this.audio.state === "suspended"

3 ? await this.audio.resume()

4 : Promise.resolve()

5 }

Define the public methods:

1 public load = async (instrument: InstrumentName) => {

2 this.setState({ loading: true })

3

4 this.player = await Soundfont.instrument(

5 this.audio,

6 instrument

7)

8 this.setState({ loading: false, current: instrument })

9 }

10

11 public play = async (note: MidiValue) => {

12 await this.resume()

13 if (!this.player) return

14

Patterns in React TypeScript Applications: Making Music with React 317

15 const node = this.player.play(note.toString())

16 this.activeNodes = { ...this.activeNodes, [note]: node }

17 }

18

19 public stop = async (note: MidiValue) => {

20 await this.resume()

21 if (!this.activeNodes[note]) return

22

23 this.activeNodes[note]!.stop()

24 this.activeNodes = { ...this.activeNodes, [note]: null }

25 }

Define the render() method:

1 public render() {

2 const injected = {

3 loading: this.state.loading,

4 play: this.play,

5 stop: this.stop

6 } as InjectedProps

7

8 return <WrappedComponent {...(injected as TProps)} />

9 }

10 }

11 }

12 }

Re-export the withInstrumentStatic function from the index.ts file.

Okay, why would we create a function that returns a function that returns a class?..
Well, to answer this question, let’s take look at the example usecase.

Create a file called WithStaticInstrument.tsx inside src/components/Keyboard and
add the following code:

Patterns in React TypeScript Applications: Making Music with React 318

1 import { withInstrumentStatic } from "../../adapters/Soundfont/withInst\

2 rumentStatic"

3 import { useAudioContext } from "../AudioContextProvider"

4 import { Keyboard } from "../Keyboard"

5

6 // eslint-disable-next-line @typescript-eslint/no-unused-vars

7 const withGuitar = withInstrumentStatic("acoustic_guitar_steel")

8 const withPiano = withInstrumentStatic("acoustic_grand_piano")

9 const WrappedKeyboard = withPiano(Keyboard)

10

11 export const KeyboardWithInstrument = () => {

12 const AudioContext = useAudioContext()!

13 return <WrappedKeyboard AudioContext={AudioContext} />

14 }

Now, when we call the withInstrumentStatic() function, we don’t get a component
in return. We get another function that remembers an instrument that we want to
connect to. So, we can create as many functions as we want beforehand and use them
to connect components to Soundfont after!

Using Hooks with HOCs

Since HOCs are just functions that return components, they can be based on hooks.
Create a file called withInstrumentBasedOnHook.tsx inside src/adapters/Soundfont
and add the following code:

Patterns in React TypeScript Applications: Making Music with React 319

1 import { ComponentType, useEffect } from "react"

2 import { InstrumentName } from "soundfont-player"

3 import { MidiValue } from "../../domain/note"

4 import { useSoundfont } from "./useSoundfont"

5

6 type InjectedProps = {

7 loading: boolean

8 play(note: MidiValue): Promise<void>

9 stop(note: MidiValue): Promise<void>

10 }

11

12 type ProviderProps = {

13 AudioContext: AudioContextType

14 instrument?: InstrumentName

15 }

And now, let’s turn the hook component into HOC:

1 export const withInstrument = (

2 WrappedComponent: ComponentType<InjectedProps>

3) => {

4 return function WithInstrumentComponent(props: ProviderProps) {

5 const { AudioContext, instrument } = props

6 const fromHook = useSoundfont({ AudioContext })

7 const { loading, current, play, stop, load } = fromHook

8

9 useEffect(() => {

10 if (!loading && instrument !== current) load(instrument)

11 }, [load, loading, current, instrument])

12

13 return (

14 <WrappedComponent loading={loading} play={play} stop={stop} />

15)

16 }

17 }

Patterns in React TypeScript Applications: Making Music with React 320

We encapsulate sound sets’ loading inside of WithInstrumentComponent and expose
only ProviderProps to the outside. However, the logic of these components is based
upon the functionality that useSoundfont() gives us.

Conclusion

Congratulations!

We have completed our piano keyboard, which can play the sounds of many
instruments!

Most importantly, we now can solve problems with sharing logic and reducing
duplications using different techniques such as Render Props and Higher-Order
Components.

Using Redux and TypeScript
Introduction

When you work with React you usually end up with a state that is used globally
across the whole application.

One of the approaches to sharing the state across the whole component tree is using
the Context API¹³⁵. You saw an example of this approach in the first chapter. There
we used it in combinationwith the useReducer hook tomanage the global application
state.

This approach works, but it can only get you so far. In the end, you have to invent
your ownways to manage the side-effects, debug your code, and split it into modules
so it doesn’t grow into a horrible incomprehensible mess.

A better idea is to use specialized tools. One such tool for managing the global
application state is Redux.

In this chapter, we build a drawing application using Redux with TypeScript and
then we upgrade it to Redux Toolkit.

This way you will learn how to work with the raw Redux as well as the most modern
techniques for using it.

Preview The Final Result

The application for this chapter is a drawing board.

¹³⁵https://reactjs.org/docs/context.html

https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html

Using Redux and TypeScript 322

Completed application

You can pick different colors and draw lines. If you don’t like the results you can
“undo” some of the past actions. When you are satisfied with the results you can
export the image as a .png file.

A complete code example is located in code/04-redux/completed.

Unzip the archive that comes with this book and cd to the app folder.

1 cd code/04-redux/completed

When you are there, install the dependencies and launch the app:

1 yarn && yarn dev

The yarn dev command will launch the app along with the backend script.

It should also open the app in the browser. If it doesn’t, navigate to http://localhost:
3000 and open it manually.

You should see an empty canvas and a color palette.

http://localhost:3000
http://localhost:3000

Using Redux and TypeScript 323

Empty canvas

Try drawing a few lines. You can pick different colors using the palette at the bottom.

If you don’t like how some of the strokes turn out, click the Undo button. Click the
Redo button to bring them back.

To save the project, press the Save button on the File panel. You should see the project-
saving dialog.

Using Redux and TypeScript 324

Saving the project

Pick a name for your project and press the Save button.

Now you can load this project and continue drawing. The changes in history will be
preserved.

To do this press the Load button on the File panel.

Using Redux and TypeScript 325

Loading the project

You can also export your image to a file. To do this press the Export button.

Using Redux and TypeScript 326

Export to file

You should be presented with the file-saving dialog.

What is Redux?

Redux is a state management framework that is based on the idea of representing
the global state of the application as a reducer function.

So to manage the state youwould define a function that would accept two arguments:
state - for the old state, and action - the object describing the state update.

Using Redux and TypeScript 327

1 function reducer(state = "", action: Action) {

2 switch (action.type) {

3 case "SET_VALUE":

4 return action.payload

5 default:

6 return state

7 }

8 }

This reducer represents one value of type string. It handles only one type of action:
SET_VALUE.

If the received action field type is not SET_VALUE, the reducer will return the
unchanged state.

After we have the reducer, we can create the store using the redux createStore

method.

1 const store = createStore(reducer, "Initial Value")

The store provides a subscribe method that allows us to subscribe to the store
updates.

1 store.subscribe(() => {

2 const state = store.getState()

3 console.log(state)

4 })

Here we’ve passed a callback to it that will log the state value to the console.

In order to update the state we’ll need to dispatch an action:

Using Redux and TypeScript 328

1 store.dispatch({

2 type: "SET_VALUE",

3 payload: "New value"

4 })

Here we pass an object that represents the action. Every action is required to have
the type field, and optionally a payload.

Redux uses the Flux action format. Read more about it here¹³⁶

Usually, instead of creating actions in place, people define action creator functions:

1 const setValue = (value) => ({

2 type: "SET_VALUE",

3 payload: value

4 })

And this is the essence of Redux.

You can find the examplewith everything set up in the /code/04-redux/redux-example
folder.

Install the dependencies and run the script using yarn run:

1 yarn && yarn start

You should see the following output:

1 New value

Try dispatching more actions.

¹³⁶https://github.com/redux-utilities/flux-standard-action

https://github.com/redux-utilities/flux-standard-action
https://github.com/redux-utilities/flux-standard-action

Using Redux and TypeScript 329

Why Can’t We Use useReducer Instead of
Redux?

Since version 16.8, React supports Hooks. One of them, useReducer, works in a very
similar way to Redux.

In the first chapter of this book we created an application managing the
application state using a combination of useReducer and React Context
API.

If you need a refresher, you can find a useReducer example in the
/code/01-first-app/use-reducer folder.

So why do we need Redux if we have a native tool that allows us to represent the
state as a reducer as well? If we make it available across the application using the
Context API, won’t that be enough?

Redux provides a bunch of important advantages:

Browser Tools. You can use Redux DevTools¹³⁷ to debug your Redux code. It allows
us to see the list of dispatched actions, inspect the state, and even time-travel. You
can switch back and forth in the action history and see how the state looked after
each of them.

Handling Side Effects. With useReducer you have to invent your own ways to
organize the code that performs network requests. Redux provides the middleware
API¹³⁸ to handle that. Also, there are tools like Redux Thunk¹³⁹ that make this task
even easier.

Testing. As Redux is based on pure functions it is easy to test. All the tests boil down
to checking the output with the given inputs.

Patterns and Code Organization. Redux is well-studied and there are recipes for
most of the problems. There is a methodology called Ducks¹⁴⁰ that you can use to
organize the Redux code.

¹³⁷https://github.com/reduxjs/redux-devtools
¹³⁸https://redux.js.org/advanced/middleware
¹³⁹https://github.com/reduxjs/redux-thunk
¹⁴⁰https://github.com/erikras/ducks-modular-redux

https://github.com/reduxjs/redux-devtools
https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware
https://github.com/reduxjs/redux-thunk
https://github.com/erikras/ducks-modular-redux
https://github.com/reduxjs/redux-devtools
https://redux.js.org/advanced/middleware
https://github.com/reduxjs/redux-thunk
https://github.com/erikras/ducks-modular-redux

Using Redux and TypeScript 330

Initial Setup

First, let’s prepare the browser. Download Redux DevTools for your browser. There
are extensions for Chrome¹⁴¹ and Firefox¹⁴².

After you install the extension you should see the Redux DevTools button on your
browser tools panel. Try clicking this button on the page with the completed project
running. You should see this:

Redux DevTools

Create The Project

After that is done let’s create the project. Run create-react-appwith the --template
typescript:

1 npx create-react-app --template typescript redux-paint

After the generation is complete, go to the project folder and install the dependencies:

¹⁴¹https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd
¹⁴²https://addons.mozilla.org/en-US/firefox/addon/reduxdevtools/

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd
https://addons.mozilla.org/en-US/firefox/addon/reduxdevtools/
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd
https://addons.mozilla.org/en-US/firefox/addon/reduxdevtools/

Using Redux and TypeScript 331

1 yarn add redux react-redux @types/react-redux

For Redux to work with React we need to install the react-redux adapter package.

Redux is written in Typescript so you don’t have to install the additional types for it,
but we do need to install the types for react-redux.

Now let’s set up Redux in our application.

Create a new file src/rootReducer.ts and define our initial reducer there:

1 type RootState = {}

2

3 type Action = {

4 type: string

5 }

6

7 export const rootReducer = (

8 state: RootState = {},

9 action: Action

10) => {

11 return state

12 }

We temporarily define the RootState to be an empty object and the Action to have
the type field that can be any string. We’ll use those types only to make sure that
our setup works, and then we’ll define the real RootState and Action types.

The reducer is not doing much just yet. For now, it returns the initial state on any
dispatched action.

Install the redux-devtools-extension:

1 yarn add redux-devtools-extension

Create a new file src/store.ts and initialize the Redux store there.

Using Redux and TypeScript 332

1 import { rootReducer } from "./rootReducer"

2 import { devToolsEnhancer } from "redux-devtools-extension"

3 import { createStore } from "redux"

4

5 export const store = createStore(rootReducer, devToolsEnhancer({}))

Here we create and export a new store instance. We pass two arguments to it: our
reducer, from the previous step, and the Redux DevTools middleware.

Middlewares are functions that get triggered on each action dispatch.
They are used to perform side-effects: making network requests, logging,
writing data to storage. Eachmiddleware function has access to the current
action and the store and can dispatch new actions. Read more about the
middlewares in the Redux documentation.¹⁴³

Then go to src/index.tsx and import Provider from react-redux and store from
src/store.ts:

1 import { Provider } from "react-redux"

2 import { store } from "./store"

Wrap your App component into the Provider, and pass the store instance to it:

1 ReactDOM.render(

2 <React.StrictMode>

3 <Provider store={store}>

4 <App />

5 </Provider>

6 </React.StrictMode>,

7 document.getElementById("root")

8)

Now launch the app and open it in the browser. If you click on the Redux DevTools
button in the toolbar, you should see this:

¹⁴³https://redux.js.org/advanced/middleware

https://redux.js.org/advanced/middleware
https://redux.js.org/advanced/middleware

Using Redux and TypeScript 333

Redux DevTools

Redux Logger

Redux DevTools are cool, but some people, including me, prefer to have a quicker
way to observe what is happening inside their Redux application.

Install redux-logger:

1 yarn add redux-logger @types/redux-logger

Add redux-logger to the middlewares list in the store. Open src/store.ts and make
it look like this:

Using Redux and TypeScript 334

1 import { rootReducer } from "./rootReducer"

2 import { createStore, applyMiddleware } from "redux"

3 import { composeWithDevTools } from "redux-devtools-extension"

4 import { logger } from "redux-logger"

5

6 export const store = createStore(

7 rootReducer,

8 composeWithDevTools(applyMiddleware(logger))

9)

Here we use the composeWithDevToolsmethod from the redux-devtools-extension
to add it to the middlewares list.

Read more about applying middlewares to your Redux store in the Redux
Documentation¹⁴⁴

Temporarily add the following code to dispatch an action:

1 store.dispatch({type: "TEST_ACTION"})

Don’t forget to remove this line after you verify that Redux-Logger works.

Now open the browser and open the console. If everything is set up correctly you
should see this:

Redux Logger output

The Redux Logger output consists of three parts:

¹⁴⁴https://redux.js.org/advanced/middleware#the-final-approach

https://redux.js.org/advanced/middleware#the-final-approach
https://redux.js.org/advanced/middleware#the-final-approach
https://redux.js.org/advanced/middleware#the-final-approach

Using Redux and TypeScript 335

• prev state - the state before the dispatched action
• action - dispatched action
• next state - the state after the dispatched action

You can expand each of the parts to see the details.

I find it more convenient when I can see all the actions that are happening in the
application along with the other logs.

Prepare The Styles

We are going to use XP.css¹⁴⁵ by Adam Hammad¹⁴⁶ for our styles.

Install it:

1 yarn add xp.css

And import it in src/index.css:

1 @import "~xp.css/dist/XP.css";

Let’s also add icons. Copy them from the completed project folder code/04-redux/completed/src/icons.
You need to create a similar folder in your project.

Update the App layout

Open the src/App.tsx file and change the layout:

¹⁴⁵https://botoxparty.github.io/XP.css/
¹⁴⁶https://github.com/botoxparty

https://botoxparty.github.io/XP.css/
https://github.com/botoxparty
https://botoxparty.github.io/XP.css/
https://github.com/botoxparty

Using Redux and TypeScript 336

1 import React from "react"

2

3 function App() {

4 return (

5 <div className="window">

6 <div className="title-bar">

7 <div className="title-bar-text">Redux Paint</div>

8 <div className="title-bar-controls">

9 <button aria-label="Close" />

10 </div>

11 </div>

12 </div>

13)

14 }

15

16 export default App

Here we’ve added a bunch of wrapper elements to make our app look like a Window
XP window.

If you launch your app - it should look like this:

Using Redux and TypeScript 337

App with Windows XP styles

Working With Canvas

We will use the Canvas API¹⁴⁷ to handle drawing.

First of all add the following rules to the src/index.css file:

1 canvas {

2 transform: translate3d(-50%, 0, 0);

3 cursor: url(./icons/pencil.png) 0 34, auto;

4 margin: 100px 50%;

5 }

Here we defined the styles that will position the canvas element in the center of
the screen and make the cursor look like a pencil when the user hovers the canvas.

¹⁴⁷https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Using Redux and TypeScript 338

You’ll need to copy the pencil icon from the completed/src/icons folder. Create
same folder in src and copy the icon there.

Now let’s define some utility functions. We’ll need a function to set the initial styles
for the canvas, and a function to clear the canvas.

Create a new folder src/utils and inside of it a new file src/utils/canvasUtils.ts
with the following contents:

1 export const clearCanvas = (canvas: HTMLCanvasElement) => {

2 const context = canvas.getContext("2d")

3 if (!context) {

4 return

5 }

6 context.fillStyle = "white"

7 context.fillRect(0, 0, canvas.width, canvas.height)

8 }

Here we defined a function that will fill the canvas with white color. We’ll use it to
clear the canvas when we, for example, undo the strokes.

In the same file define the setCanvasSize function:

1 export const setCanvasSize = (

2 canvas: HTMLCanvasElement,

3 width: number,

4 height: number

5) => {

6 canvas.width = width * 2

7 canvas.height = height * 2

8 canvas.style.width = `${width}px`

9 canvas.style.height = `${height}px`

10 canvas.getContext("2d")?.scale(2, 2)

11 }

Here we adjust the canvas for retina screen bu setting the double pixel density.

Go to src/App.tsx and import the utility functions:

Using Redux and TypeScript 339

1 import { clearCanvas, setCanvasSize } from "./utils/canvasUtils"

We also need to import he useEffect and useRef hooks from React:

1 import React, { useRef, useEffect } from "react"

We’ll use the useRef to hold the reference to our canvas element and the useEffect
to prepare the canvas for drawing when we open the app.

Outside of the App component define the canvas size constants:

1 const WIDTH = 1024

2 const HEIGHT = 768

Now we’ll need to get and store the reference to the canvas:

1 function App() {

2 const canvasRef = useRef<HTMLCanvasElement>(null)

3 // ...

4 return (

5 <div className="window">

6 <div className="title-bar">

7 <div className="title-bar-text">Redux Paint</div>

8 <div className="title-bar-controls">

9 <button aria-label="Close" />

10 </div>

11 </div>

12 <canvas ref={canvasRef} />

13 </div>

14)

15 }

Here we create a ref object that will hold the reference to our canvas using the
useRef hook.

We need to specify the type of value we’ll store in the ref object. We know that it is
a canvas - so we pass the HTMLCanvasElement as a type variable.

Using Redux and TypeScript 340

We also need to pass null as the default value to the useRef hook. Otherwise, you’ll
get a type error stating that the ref prop of the canvas element does not accept
undefined.

You can remove the src/App.css and the src/logo.svg files, we are not
going to use them.

We have the reference to the canvas element, now we need to get the canvas context.
Let’s define a helper function that will do it for us. Right after the call to useRef hook
define a new function:

1 const getCanvasWithContext = (canvas = canvasRef.current) => {

2 return { canvas, context: canvas?.getContext("2d") }

3 }

This function will allow us to get both the canvas and it’s 2d context in one function
call.

Now let’s add the side effect that will be executed when we mound the App

component:

1 useEffect(() => {

2 const { canvas, context } = getCanvasWithContext()

3 if (!canvas || !context) {

4 return

5 }

6

7 setCanvasSize(canvas, WIDTH, HEIGHT)

8

9 context.lineJoin = "round"

10 context.lineCap = "round"

11 context.lineWidth = 5

12 context.strokeStyle = "black"

13

14 clearCanvas(canvas)

15 }, [])

Using Redux and TypeScript 341

Here we set the canvas side to the predefined values, we set the strokes style and
then we clear the canvas, preparing it for the first strokes.

Handling Canvas Events

We want to handle the following situations:

• The user pressed the mouse button
• The user moved the mouse
• The user released the mouse button
• The cursor left the canvas area

Define event handlers inside of the App component body:

1 const startDrawing = () => {}

2 const endDrawing = () => {}

3 const draw = () => {}

After you have the functiones defined pass them to the canvas element:

1 <canvas

2 onMouseDown={startDrawing}

3 onMouseUp={endDrawing}

4 onMouseOut={endDrawing}

5 onMouseMove={draw}

6 ref={canvasRef}

7 />

Now we’ll handle every press, move, or release of the mouse that happens above the
canvas element.

Define The Store Types

Create a new file src/utils/types.ts.

Inside this file let’s define the type for our state:

Using Redux and TypeScript 342

1 export type RootState = {

2 currentStroke: Stroke

3 strokes: Stroke[]

4 }

It contains three fields:

• currentStroke - an array of points corresponding to the stroke that is currently
being drawn.

• strokes - an array of already drawn strokes
• historyIndex - a number indicating how many of the strokes we want to undo.

Let’s define the Stroke type:

1 export type Stroke = {

2 points: Point[]

3 color: string

4 }

Each stroke has a color represented as a hex string and a list of points, where each
point is an object that holds the x and y coordinates.

Define the Point type:

1 export type Point = {

2 x: number

3 y: number

4 }

Points contain the vertical and horizontal coordinates.

Add Actions

Create a new file src/actions.ts and define the following types constants for
actions:

Using Redux and TypeScript 343

1 export const BEGIN_STROKE = "BEGIN_STROKE"

2 export const UPDATE_STROKE = "UPDATE_STROKE"

3 export const END_STROKE = "END_STROKE"

• BEGIN_STROKE - we’ll dispatch this action when the user presses the mouse
button. It will contain the coordinates in the payload.

• UPDATE_STROKE - this action will be dispatched when the user moves the pressed
mouse. It also contains the coordinates.

• END_STROKE - we’ll dispatch this action when the user releases the mouse.

Import the Point type from the src/utils/types.ts:

1 import { Point } from "./utils/types"

Define the Action type:

1 export type Action =

2 | {

3 type: typeof BEGIN_STROKE

4 payload: Point

5 }

6 | {

7 type: typeof UPDATE_STROKE

8 payload: Point

9 }

10 | {

11 type: typeof END_STROKE

12 }

Here we pass a Point as a payload for the BEGIN_STROKE and the UPDATE_STROKE

actions. We need to know the coordinates of the mouse when the user started the
stroke, and then we need to update the coordinates on a mouse move.

We don’t pass the coordinates with the END_STROKE action because the mouse was
moved there first.

Define the action creators for each action:

Using Redux and TypeScript 344

1 export const beginStroke = (x: number, y: number) => {

2 return { type: BEGIN_STROKE, payload: { x, y } }

3 }

4

5 export const updateStroke = (x: number, y: number) => {

6 return { type: UPDATE_STROKE, payload: { x, y } }

7 }

8

9 export const endStroke = () => {

10 return { type: END_STROKE }

11 }

Add The Reducer Logic

Go to src/rootReducer.ts. Import the RootState from src/types.d.ts and Action

types from the src/actions.ts.

1 import {

2 Action,

3 UPDATE_STROKE,

4 BEGIN_STROKE,

5 END_STROKE

6 } from "./actions"

7 import { RootState } from "./utils/types"

Then we define the initial state:

1 const initialState: RootState = {

2 currentStroke: { points: [], color: "#000" },

3 strokes: []

4 }

Remake the rootReducer to this:

Using Redux and TypeScript 345

1 export const rootReducer = (

2 state: RootState = initialState,

3 action: Action

4) => {

5 switch (action.type) {

6 // ...

7 default:

8 return state

9 }

10 }

Now let’s add the logic to process the existing actions.

We’ll start with the BEGIN_STROKE action. Add the following code inside the switch:

1 case BEGIN_STROKE: {

2 return {

3 ...state,

4 currentStroke: {

5 ...state.currentStroke,

6 points: [action.payload]

7 }

8 }

9 }

On every BEGIN_STROKE action, we set the points to be a new array with the point
from the action.payload.

Then process the UPDATE_STROKE action:

Using Redux and TypeScript 346

1 case UPDATE_STROKE: {

2 return {

3 ...state,

4 currentStroke: {

5 ...state.currentStroke,

6 points: [...state.currentStroke.points, action.payload]

7 }

8 }

9 }

If you feel a bit shaky on the three dots ... everywhere, it may be helpful
to refresh yourself on the Immutable Patterns in Redux¹⁴⁸. The basic idea
is that we’re trying to deeply update an object, without overwriting the
existing values.

Here we update the currentStroke field of our state by appending a new point from
the action.payload to it.

The last action for now is END_STROKE:

1 case END_STROKE: {

2 if (!state.currentStroke.points.length) {

3 return state

4 }

5 return {

6 ...state,

7 currentStroke: { ...state.currentStroke, points: [] },

8 strokes: [...state.strokes, state.currentStroke]

9 }

10 }

The END_STROKE action can be dispatched when the mouse leaves the canvas. It
may result in calling the END_STROKE part of the reducer to trigger before the
currentStroke has any points.

¹⁴⁸https://redux.js.org/recipes/structuring-reducers/immutable-update-patterns

https://redux.js.org/recipes/structuring-reducers/immutable-update-patterns
https://redux.js.org/recipes/structuring-reducers/immutable-update-patterns

Using Redux and TypeScript 347

To prevent unnecessary calculationswe return the unchanged state if the currentStroke.points
array is empty.

If there are any points, we append the current stroke to the list of strokes and reset
the currentStroke.points to the empty array.

Dispatch Actions

In src/App.tsx, import the useDispatch and useSelector from react-redux:

1 import { useSelector, useDispatch } from "react-redux"

Import React, we are going to use the events types from it:

1 import React, { useRef, useEffect } from "react"

Import the action types that we are going to dispatch:

1 import { beginStroke, endStroke, updateStroke } from "./actions"

We are going to need a flag that will tell us that we are currently drawing a stroke.We
know that we’ve started drawing if there is at least one point in the current stroke
points array. So we can calculate it by converting the current stroke points array
length to a boolean.

Define this flag below the getCanvasWithContext function:

1 const isDrawing = useSelector<RootState>(

2 (state) => !!state.currentStroke.points.length

3)

Here we used the useSelector hook. This hook is generic and you can provide the
state and the return value types. In our case we specified the type of the state as the
RootState. You need to import thas type:

Using Redux and TypeScript 348

1 import { RootState } from "./utils/types"

Get the dispatch function from the useDispatch - add this line after the useSelector
call:

1 const dispatch = useDispatch()

Now let’s edit the mouse press event handler. Make it dispatch the BEGIN_STROKE

action.

1 const startDrawing = ({

2 nativeEvent

3 }: React.MouseEvent<HTMLCanvasElement>) => {

4 const { offsetX, offsetY } = nativeEvent

5 dispatch(beginStroke(offsetX, offsetY))

6 }

Here we get the nativeEvent field from the event object.

React normalizes the events using the SyntheticEvent¹⁴⁹ wrapper. It is done
to improve cross-browser compatibility.

We get themouse coordinates from the offsetX and offsetY fields of the nativeEvent
and pass them with the action.

In our app we handle the mouse move event in the draw handler. Define it like this:

¹⁴⁹https://reactjs.org/docs/events.html

https://reactjs.org/docs/events.html
https://reactjs.org/docs/events.html

Using Redux and TypeScript 349

1 const draw = ({

2 nativeEvent

3 }: React.MouseEvent<HTMLCanvasElement>) => {

4 if (!isDrawing) {

5 return

6 }

7 const { offsetX, offsetY } = nativeEvent

8

9 dispatch(updateStroke(offsetX, offsetY))

10 }

To verify that the mouse is pressed we check the isDrawing flag. If the mouse
is moved while pressed, we dispatch the UPDATE_STROKE action with the updated
coordinates.

Now, we want to stop drawing when we release the button. Update the mouse up
and mouse out event handler:

1 const endDrawing = () => {

2 if (isDrawing) {

3 dispatch(endStroke())

4 }

5 }

In this function we dispatch the END_STROKE action.

The endDrawing function will also trigger when the mouse leaves the canvas area.
This is why here we also check the isDrawing flag and dispatch the endStroke action
only if we were drawing a stroke.

Draw The Current Stroke

Our app has a certain level of indirectness. Instead of updating the canvas directly in
reaction ofmouse events we dispatch Redux actions. The actions trigger state updates.
We observe the state changes and when they happen - we draw the storokes on the
canvas.

Using Redux and TypeScript 350

Update cycle

That seems quite complex, but in return we get an ability to undo the strokes.

First of all let’s define the drawStroke method in a separate module. Create a new
file src/utils/canvasUtils.ts and import Point from the types module:

1 import { Point } from "./types"

Now define and export the drawStroke method:

1 export const drawStroke = (

2 context: CanvasRenderingContext2D,

3 points: Point[],

4 color: string

5) => {

6 if (!points.length) {

7 return

8 }

9 context.strokeStyle = color

10 context.beginPath()

Using Redux and TypeScript 351

11 context.moveTo(points[0].x, points[0].y)

12 points.forEach((point) => {

13 context.lineTo(point.x, point.y)

14 context.stroke()

15 })

16 context.closePath()

17 }

This function receives the context that it will use for drawing, the list of points for
the current stroke and the stroke color. We check that the points array is not empty
and we have something to draw. Then we set the context.strokeStyle to the color
value passed through the arguments.

After that is done, we call the beginPathmethod. We create a separate path for each
stroke so that they can all have different colors.

Next, we move to the first point in the array using the moveTo method. We don’t
draw anything yet.

Then we go through the list of points and connect them with the lines using the
lineTo method. This method updates the current path but doesn’t render anything.
The actual drawing happens when we call the stroke method. It renders the outline
along the drawn line.

After we finish drawing the stroke we need to call the closePath method.

Define the currentStrokeSelector

It is a good idea to define the selectors outside of the component. This way the
component won’t be tightly coupled with the state structure and the selector will
be easy to reuse.

Open src/rootReducer.ts and define and export the currentStrokeSelector:

1 export const currentStrokeSelector = (state: RootState) =>

2 state.currentStroke

Using Redux and TypeScript 352

Update the App component

Now let’s observe the state and render the strokes on the canvas. Open src/App.tsx.
Import the currentStrokeSelector that you’ve just defined:

1 import { currentStrokeSelector } from "./rootReducer"

Define the currentStroke constant in the beginnging of the App component body:

1 const currentStroke = useSelector(currentStrokeSelector)

Now we can also update the isDrawing, we’ll calculate it using the currentStroke

constant tha we’ve just defined:

1 const isDrawing = !!currentStroke.points.length

Import the useEffect from react, and the drawStroke function from ./canvasUtils:

1 import React, { useRef, useEffect } from "react"

2 // ...

3 import { drawStroke, clearCanvas, setCanvasSize } from "./utils/canvasU\

4 tils"

Define the side-effect to handle the currentStroke updates.

Using Redux and TypeScript 353

1 useEffect(() => {

2 const { context } = getCanvasWithContext()

3 if (!context) {

4 return

5 }

6 requestAnimationFrame(() =>

7 drawStroke(context, currentStroke.points, currentStroke.color)

8)

9 }, [currentStroke])

Here we get the drawing context using the getCanvasWithContext function. Then
we call the drawStrokemethod and pass the drawing context there. We also pass the
currentStroke points and the color. At this point, you should be able to draw the
strokes. Launch your application and try to draw something.

Redux Paint Application

Using Redux and TypeScript 354

Implement Selecting Colors

Right now we can only draw black strokes. Let’s add a color panel and make it
possible to select the stroke colors.

First let’s define the styles, open the src/index.css and add the following CSS
classes:

1 .colors {

2 display: flex;

3 flex-direction: row;

4 flex-wrap: wrap;

5 width: 336px;

6 }

7

8 .color {

9 width: 24px;

10 height: 24px;

11 cursor: pointer;

12 box-shadow: inset -1px -1px #fff, inset 1px 1px grey,

13 inset -2px -2px #dfdfdf, inset 2px 2px #0a0a0a;

14 }

15

16 .colors-panel {

17 position: fixed;

18 bottom: 40px;

19 left: 50%;

20 transform: translate3d(-50%, 0, 0);

21 z-index: 10;

22 }

To be able to select the color, we need to add a new action and reducer block for it.

Open src/actions.ts and add a new action type:

Using Redux and TypeScript 355

1 export const SET_STROKE_COLOR = "SET_STROKE_COLOR"

Expand the Action type definition with this block:

1 | {

2 type: typeof SET_STROKE_COLOR

3 payload: string

4 }

5 | {

And then add a new action creator:

1 export const setStrokeColor = (color: string) => {

2 return { type: SET_STROKE_COLOR, payload: color }

3 }

After we are done with the actions go to src/rootReducer.ts and import the SET_-
STROKE_COLOR action:

1 import {

2 Action,

3 UPDATE_STROKE,

4 BEGIN_STROKE,

5 END_STROKE,

6 SET_STROKE_COLOR,

7 } from "./actions"

Add a new reducer block:

Using Redux and TypeScript 356

1 case SET_STROKE_COLOR: {

2 return {

3 ...state,

4 currentStroke: {

5 ...state.currentStroke,

6 ...{ color: action.payload }

7 }

8 }

9 }

Here we get the color value from the action.payload and update the currentStroke
with this value.

Now let’s add a color picker component.

Create a new file src/shared/ColorPanel.tsx. First we need to import React,
useDispatch, and setStrokeColor action:

1 import { useDispatch } from "react-redux"

2 import { setStrokeColor } from "../actions"

Define the list of colors:

1 const COLORS = [

2 "#000000",

3 "#808080",

4 "#c0c0c0",

5 "#ffffff",

6 // ...

7]

Here we show only a few colors from the list. Copy the full list from the file
code/04-redux/completed/src/shared/ColorPanel.tsx.

Now define the component:

Using Redux and TypeScript 357

1 export const ColorPanel = () => {

2 // ...

3 return (

4 <div className="window colors-panel">

5 <div className="title-bar">

6 <div className="title-bar-text">Colors</div>

7 </div>

8 <div className="window-body colors">

9 {COLORS.map((color: string) => (

10 <div

11 key={color}

12 onClick={() => {

13 onColorChange(color)

14 }}

15 className="color"

16 style={{ backgroundColor: color }}

17 ></div>

18))}

19 </div>

20 </div>

21)

22 }

Here, when we click on the color block we call the onColorChange function. This
function will dispatch the SET_STROKE_COLOR action.

Inside the component, get the dispatch method using useDispatch and define the
onColorChange method:

1 const dispatch = useDispatch()

2 // ...

3 const onColorChange = (color: string) => {

4 dispatch(setStrokeColor(color))

5 }

Then go to src/App.tsx and import the ColorPanel component.

Using Redux and TypeScript 358

1 import { ColorPanel } from "./shared/ColorPanel"

Update the App component layout to look like this:

1 <div className="window">

2 <div className="title-bar">

3 <div className="title-bar-text">Redux Paint</div>

4 <div className="title-bar-controls">

5 <button aria-label="Close" />

6 </div>

7 </div>

8 <ColorPanel />

9 <canvas

10 onMouseDown={startDrawing}

11 onMouseUp={endDrawing}

12 onMouseOut={endDrawing}

13 onMouseMove={draw}

14 ref={canvasRef}

15 />

16 </div>

Launch the app.

Using Redux and TypeScript 359

Picking the colors

You should now be able to select colors.

Implement Undo and Redo

Now let’s implement the undo/redo functionality. To do this will add a historyIndex
field to our state. This field will keep track of the current undo level. We’ll use it’s
value in the App component to only render the strokes that were not undone.

Update the RootState type

Open the src/utils/types.ts and update the RootState definition:

Using Redux and TypeScript 360

1 export type RootState = {

2 currentStroke: Stroke

3 strokes: Stroke[]

4 historyIndex: number

5 }

Create actions

Now let’s define the actions, open src/actions.ts and add the UNDO and REDO actions.
First define the constants for their types:

1 export const UNDO = "UNDO"

2 export const REDO = "REDO"

Update the Action type:

1 | {

2 type: typeof UNDO

3 }

4 | {

5 type: typeof REDO

6 }

Define the action creators:

1 export const undo = () => {

2 return { type: UNDO }

3 }

4 // ...

5 export const redo = () => {

6 return { type: REDO }

7 }

Using Redux and TypeScript 361

Update the reducer

Open the src/rootReducer.ts file and import the UNDO and REDO action types:

1 import {

2 Action,

3 UPDATE_STROKE,

4 BEGIN_STROKE,

5 END_STROKE,

6 SET_STROKE_COLOR,

7 UNDO,

8 REDO

9 } from "./actions"

Now let’s update the initial state:

1 const initialState: RootState = {

2 currentStroke: { points: [], color: "#000" },

3 strokes: [],

4 historyIndex: 0

5 }

Add the UNDO and REDO action handlers:

1 case UNDO: {

2 const historyIndex = Math.min(

3 state.historyIndex + 1,

4 state.strokes.length

5)

6 return { ...state, historyIndex }

7 }

8 case REDO: {

9 const historyIndex = Math.max(state.historyIndex - 1, 0)

10 return { ...state, historyIndex }

11 }

Using Redux and TypeScript 362

Here we update the historyIndex field making sure that it’s value is always bigger
than zero and smaller than the amount of drawn strokes. This way we ensure that
we don’t undo strokes that weren’t drawn yet, and also we don’t redo beyond what
was previously undone.

We’ll also need to update the END_STROKE action handler, now it will have to reset the
history index:

1 case END_STROKE: {

2 if (!state.currentStroke.points.length) {

3 return state

4 }

5 const historyIndex = state.strokes.length - state.historyIndex

6 return {

7 ...state,

8 historyIndex: 0,

9 currentStroke: { ...state.currentStroke, points: [] },

10 strokes: [

11 ...state.strokes.slice(0, historyIndex),

12 state.currentStroke

13]

14 }

15 }

This way, we avoid time-travel paradoxes. When we undo the strokes, we travel to
the past. If, while being in the past, you draw a new stroke - the past get’s altered,
which makes it impossible to return to our original version of the present. Instead
of creating a multiverse of paintings we just cut off the branch of history that was
undone.

To make it easier to access the data from our state let’s define the selectors.

Using Redux and TypeScript 363

1 export const historyIndexSelector = (state: RootState) =>

2 state.historyIndex

3 // ...

4 export const strokesSelector = (state: RootState) => state.strokes

Some people prefer to define selectors in a separate file. I find it more
useful to hold them closer to the reducer, because the reducer and selectors
are likely to change together.

Create the EditPanel component

Let’s add a panel with the Undo and Redo buttons. Open src/index.css and define
a new CSS class .edit:

1 .edit {

2 position: fixed;

3 bottom: 40px;

4 left: 30%;

5 z-index: 10;

6 }

Create a new file src/shared/EditPanel.tsx. Import React, useDispatch and the
undo/redo actions:

1 import React from "react"

2 import { useDispatch } from "react-redux"

3 import { undo, redo } from "../actions"

Then define the EditPanel component:

Using Redux and TypeScript 364

1 export const EditPanel = () => {

2 // ...

3 }

Get the dispatch function using the useDispatch hook from react-redux.

1 export const EditPanel = () => {

2 const dispatch = useDispatch()

3 // ...

4 }

Define the component layout:

1 <div className="window edit">

2 <div className="title-bar">

3 <div className="title-bar-text">Edit</div>

4 </div>

5 <div className="window-body">

6 <div className="field-row">

7 <button

8 className="button redo"

9 onClick={() => dispatch(undo())}

10 >

11 Undo

12 </button>

13 <button

14 className="button undo"

15 onClick={() => dispatch(redo())}

16 >

17 Redo

18 </button>

19 </div>

20 </div>

21 </div>

The buttons should dispatch the UNDO and REDO actions:

Using Redux and TypeScript 365

1 <button

2 className="button redo"

3 onClick={() => dispatch(undo())}

4 >

5 Undo

6 </button>

7 <button

8 className="button undo"

9 onClick={() => dispatch(redo())}

10 >

11 Redo

12 </button>

Open src/App.tsx and import the EditPanel component:

1 import { EditPanel } from "./shared/EditPanel"

Add the EditPanel to the App layout:

1 <div className="window">

2 <div className="title-bar">

3 <div className="title-bar-text">Redux Paint</div>

4 <div className="title-bar-controls">

5 <button aria-label="Close" />

6 </div>

7 </div>

8 <EditPanel />

9 <ColorPanel />

10 <canvas

11 onMouseDown={startDrawing}

12 onMouseUp={endDrawing}

13 onMouseOut={endDrawing}

14 onMouseMove={draw}

15 ref={canvasRef}

16 />

17 </div>

Using Redux and TypeScript 366

The new element should be right above the ColorPanel.

We also need to redraw the screen when we undo or redo the strokes. Each time we
dispatch the UNDO and REDO we update the historyIndex in the application state.

We’ve already defined the historyIndexSelector and the strokesSelector in the
src/rootReducer.ts file, import them:

1 import {

2 currentStrokeSelector,

3 historyIndexSelector,

4 strokesSelector

5 } from "./rootReducer"

Get the historyIndex and the strokes values, add this code in the beginning of the
App component:

1 const historyIndex = useSelector(historyIndexSelector)

2 const strokes = useSelector(strokesSelector)

Let’s add a useEffect block that will observe the historyIndex value:

1 useEffect(() => {

2 const { canvas, context } = getCanvasWithContext()

3 if (!context || !canvas) {

4 return

5 }

6 requestAnimationFrame(() => {

7 clearCanvas(canvas)

8

9 strokes

10 .slice(0, strokes.length - historyIndex)

11 .forEach((stroke) => {

12 drawStroke(context, stroke.points, stroke.color)

13 })

14 })

15 }, [historyIndex])

Using Redux and TypeScript 367

Every time the historyIndex gets updated we clear the screen and then draw only
the strokes that weren’t undone.

To clear the canvas we set the fill color to white and draw the rectangle the size of the
canvas. We already used the clearCanvas to prepare the canvas on App component
mount.

Launch your app. You should now be able to undo and redo the strokes.

Redux Paint with undo and redo

Splitting Root Reducer And Using
combineReducers

If you look at our state type you’ll see that it has three root-level fields:

• currentStroke - the stroke we are currently drawing
• strokes - the list of drawn lines
• historyIndex - the number of strokes that were undone

Using Redux and TypeScript 368

We can organize our code better if we split them into three separate reducers.

Separate The History Index

First, let’s move out the historyIndex field.

Create a new folder src/modules. Create another folder inside it, called historyIndex.

Create a new file src/modules/historyIndex/actions.ts and move the UNDO and
REDO action types and action creators from the src/actions.ts file.

1 import { Stroke } from "../../utils/types"

2

3 export const UNDO = "UNDO"

4 export const REDO = "REDO"

5 export const END_STROKE = "END_STROKE"

6

7 export type HistoryIndexAction =

8 | {

9 type: typeof UNDO

10 payload: number

11 }

12 | {

13 type: typeof REDO

14 }

15 | {

16 type: typeof END_STROKE

17 payload: { stroke: Stroke; historyIndex: number }

18 }

19

20 export const undo = (undoLimit: number) => {

21 return { type: UNDO, payload: undoLimit }

22 }

23

24 export const redo = () => {

25 return { type: REDO }

26 }

Using Redux and TypeScript 369

The UNDO action now has the payload field. We’ll pass the current amount of
strokes throught that field when we undo them. We need to do it, because now our
historyIndex reducer is separated from the other fields and it is not aware about the
amount of strokes in the drawing.

Create a new file src/modules/historyIndex/reducer.ts. Import the actions and
the RootState type:

1 import { RootState } from "../../utils/types"

2 import { HistoryIndexAction, UNDO, REDO, END_STROKE } from "./actions"

Now define the reducer with the following contents:

1 export const reducer = (

2 state: RootState["historyIndex"] = 0,

3 action: HistoryIndexAction

4) => {

5 switch (action.type) {

6 case END_STROKE: {

7 return 0

8 }

9 case UNDO: {

10 return Math.min(state + 1, action.payload)

11 }

12 case REDO: {

13 return Math.max(state - 1, 0)

14 }

15 default:

16 return state

17 }

18 }

Remove the UNDO and REDO action handlers from our root reducer.

Move the historyIndex selector to the src/modules/historyIndex/reducer.ts:

Using Redux and TypeScript 370

1 export const historyIndexSelector = (state: RootState) =>

2 state.historyIndex

These actions were dispatched from the EditPanel, lets go to src/shared/EditPanel

and update the way we import and use them:

1 import { useDispatch, useSelector } from "react-redux"

2 import { undo, redo } from "../modules/historyIndex/actions"

3 import { strokesLengthSelector } from "../modules/strokes/reducer"

Now we are going to need the undoLimit value. Add this code in the beginning of
the EditPanel body:

1 const undoLimit = useSelector(strokesLengthSelector)

Update the undo button’s onClick handler, pass the undoLimit as the undo action
payload:

1 onClick={() => dispatch(undo(undoLimit))}

Separate The Current Stroke

Create a new folder src/modules/currentStroke. Inside of it create a new file
src/modules/currentStroke/actions.ts. Import the Point and Stroke types:

1 import { Point, Stroke } from "../../utils/types"

Move the BEGIN_STROKE, UPDATE_STROKE, and SET_STROKE_COLOR types there.

Using Redux and TypeScript 371

1 export const BEGIN_STROKE = "BEGIN_STROKE"

2 export const UPDATE_STROKE = "UPDATE_STROKE"

3 export const SET_STROKE_COLOR = "SET_STROKE_COLOR"

4 export const END_STROKE = "END_STROKE"

Then move the Action type definition:

1 export type Action =

2 | {

3 type: typeof BEGIN_STROKE

4 payload: Point

5 }

6 | {

7 type: typeof UPDATE_STROKE

8 payload: Point

9 }

10 | {

11 type: typeof SET_STROKE_COLOR

12 payload: string

13 }

14 | {

15 type: typeof END_STROKE

16 payload: { stroke: Stroke; historyIndex: number }

17 }

Move the action creators from the src/actions.ts:

Using Redux and TypeScript 372

1 export const beginStroke = (x: number, y: number) => {

2 return { type: BEGIN_STROKE, payload: { x, y } }

3 }

4

5 export const updateStroke = (x: number, y: number) => {

6 return { type: UPDATE_STROKE, payload: { x, y } }

7 }

8

9 export const setStrokeColor = (color: string) => {

10 return { type: SET_STROKE_COLOR, payload: color }

11 }

12

13 export const endStroke = (historyIndex: number, stroke: Stroke) => {

14 return { type: END_STROKE, payload: { historyIndex, stroke } }

15 }

Update the action import in the src/shared/ColorPanel.tsx:

1 import { setStrokeColor } from "../modules/currentStroke/actions"

Let’s separate the currentStroke reducer. Create a new file src/modules/currentStroke/reducer.ts
and import the actions and the root state type:

1 import {

2 Action,

3 UPDATE_STROKE,

4 BEGIN_STROKE,

5 END_STROKE,

6 SET_STROKE_COLOR

7 } from "./actions"

8 import { RootState } from "../../utils/types"

Define the initial state:

Using Redux and TypeScript 373

1 const initialState: RootState["currentStroke"] = {

2 points: [],

3 color: "#000"

4 }

Move the BEGIN_STROKE, UPDATE_STROKE, SET_STROKE_COLOR, and END_STROKE action
handlers from our root reducer to this file.

1 export const reducer = (

2 state: RootState["currentStroke"] = initialState,

3 action: Action

4) => {

5 switch (action.type) {

6 case BEGIN_STROKE: {

7 return { ...state, points: [action.payload] }

8 }

9 case UPDATE_STROKE: {

10 return {

11 ...state,

12 points: [...state.points, action.payload]

13 }

14 }

15 case SET_STROKE_COLOR: {

16 return {

17 ...state,

18 color: action.payload

19 }

20 }

21 case END_STROKE: {

22 return {

23 ...state,

24 points: []

25 }

26 }

27 default:

28 return state

Using Redux and TypeScript 374

29 }

30 }

Move the currentStroke selector from src/rootReducer.ts to src/modules/currentStroke/reducer.ts.

1 export const currentStrokeSelector = (state: RootState) =>

2 state.currentStroke

Separate The Strokes List

Create a new folder src/modules/strokes and create src/modules/strokes/actions.ts
file. Define the END_STROKE action type and action creator there:

1 import { Stroke } from "../../utils/types"

2

3 export const END_STROKE = "END_STROKE"

4

5 export type Action = {

6 type: typeof END_STROKE

7 payload: { stroke: Stroke; historyIndex: number }

8 }

9

10 export const endStroke = (historyIndex: number, stroke: Stroke) => {

11 return { type: END_STROKE, payload: { historyIndex, stroke } }

12 }

We are going to process the END_STROKE action both in the historyIndex and the
stroke reducers.

The END_STROKE action payload contains the historyIndex and the current stroke
references. Just like with the historyIndex reducer, when we split it from the root
reducer we provide the values from other reducers through the actions payloads.

Create a new file src/modules/strokes/reducer.ts andmake the necessary imports:

Using Redux and TypeScript 375

1 import { RootState } from "../../utils/types"

2 import { Action, END_STROKE } from "./actions"

Add the END_STROKE action handler from our root reducer to this file.

1 export const reducer = (

2 state: RootState["strokes"] = [],

3 action: Action

4) => {

5 switch (action.type) {

6 case END_STROKE: {

7 const { historyIndex, stroke } = action.payload

8 if (!stroke.points.length) {

9 return state

10 }

11 return [...state.slice(0, state.length - historyIndex), stroke]

12 }

13 default:

14 return state

15 }

16 }

We use the stroke field from the action payload to add it to the strokes array.We slice
the previous strokes value so that when we draw a new stroke after we’ve undone a
bunch of previous strokes - we remove them from the history.

Also we don’t modify the historyIndex state anymore. We have a separate END_-

STROKE action handler in the historyIndex reducer that sets the historyIndex value
to zero there.

Move the strokes and the strokesLength selectors from src/rootReducer.ts:

Using Redux and TypeScript 376

1 export const strokesLengthSelector = (state: RootState) =>

2 state.strokes.length

3

4 export const strokesSelector = (state: RootState) => state.strokes

Update the App component

Go to the src/App.tsx and update the imports:

1 import {

2 beginStroke,

3 endStroke,

4 updateStroke

5 } from "./modules/currentStroke/actions"

6 import { strokesSelector } from "./modules/strokes/reducer"

7 import { currentStrokeSelector } from "./modules/currentStroke/reducer"

8 import { historyIndexSelector } from "./modules/historyIndex/reducer"

Update the endDrawing function to pass the historyIndex and the currentStroke to
the endStroke action creator:

1 const endDrawing = () => {

2 if (isDrawing) {

3 dispatch(endStroke(historyIndex, currentStroke))

4 }

5 }

Join The Reducers Using combineReducers

Now we can remove the src/rootReducer.ts and instead use a combination of
isolated reducers.

Using Redux and TypeScript 377

Go to src/store.ts, import combineReducers from redux, and remove the rootReducer
import.

Now instead of rootReducer we’ll pass a combined reducer to the createStore

method:

1 import { createStore, applyMiddleware, combineReducers } from "redux"

2 import { composeWithDevTools } from "redux-devtools-extension"

3 import { reducer as historyIndex } from "./modules/historyIndex/reducer"

4 import { reducer as currentStroke } from "./modules/currentStroke/reduc\

5 er"

6 import { reducer as strokes } from "./modules/strokes/reducer"

7 import { logger } from "redux-logger"

8

9 export const store = createStore(

10 combineReducers({

11 historyIndex,

12 currentStroke,

13 strokes

14 }),

15 composeWithDevTools(applyMiddleware(logger))

16)

We import our reducers separately. Thenwe pass an object with our reducers as fields
to the combineReducers method.

At this point we can also remove the src/actions.ts file as well.

Launch the application to check that it works.

Exporting An Image

Let’s allow exporting the picture to a file. To do this we’ll need to retrieve the bitmap
information from our canvas, transform it into a Blob¹⁵⁰ and then save it as a file
locally.

¹⁵⁰https://developer.mozilla.org/en-US/docs/Web/API/Blob

https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Blob

Using Redux and TypeScript 378

The file saving logic will be defined in a separate component. We will use the React
Context API to make the canvas reference available there.

Let’s define the CanvasProvider. Create a new file src/CanvasContext.tsx with the
following contents:

1 import React, {

2 createContext,

3 PropsWithChildren,

4 useRef,

5 RefObject,

6 useContext

7 } from "react"

8

9 export const CanvasContext = createContext<

10 RefObject<HTMLCanvasElement>

11 >({} as RefObject<HTMLCanvasElement>)

12

13 export const CanvasProvider = ({

14 children

15 }: PropsWithChildren<{}>) => {

16 const canvasRef = useRef<HTMLCanvasElement>(null)

17

18 return (

19 <CanvasContext.Provider value={canvasRef}>

20 {children}

21 </CanvasContext.Provider>

22)

23 }

24

25 export const useCanvas = () => useContext(CanvasContext)

This provider will store the reference to the context. Go to src/index.tsx and wrap
the component tree into the CanvasContext:

Using Redux and TypeScript 379

1 import { CanvasProvider } from "./CanvasContext"

2 // ...

3 ReactDOM.render(

4 <React.StrictMode>

5 <Provider store={store}>

6 <CanvasProvider>

7 <App />

8 </CanvasProvider>

9 </Provider>

10 </React.StrictMode>,

11 document.getElementById("root")

12)

Go to src/App.tsx, remove the useRef import and import the useCanvas hook:

1 import React, { useEffect } from "react"

2 // ...

3 import { useCanvas } from "./CanvasContext"

Change the useRef call to useCanvas:

1 const canvasRef = useCanvas()

Define the getCanvasImage

Go to src/utils/canvasUtils.ts add the getCanvasImage function:

Using Redux and TypeScript 380

1 export const getCanvasImage = (

2 canvas: HTMLCanvasElement | null

3): Promise<null | Blob> => {

4 return new Promise((resolve, reject) => {

5 if (!canvas) {

6 return reject(null)

7 }

8 canvas.toBlob(resolve)

9 })

10 }

This function resolves with the canvas contents transformed into a Blob. Later we’ll
be able to save this Blob as a file.

Create the FilePanel

The FilePanel component will contain the code that will get the binary data from
the canvas and save it into a file. To save the data into a file we’ll use the file-saver
package.

Install the file-saver and types for it:

1 yarn add file-saver @types/file-saver

After it’s done open src/index.css and add a new CSS class:

1 .file {

2 position: fixed;

3 bottom: 40px;

4 right: 20%;

5 z-index: 10;

6 }

Create a new file src/shared/FilePanel.tsx. This panel will contain the Export
button.

Make the necessary imports:

Using Redux and TypeScript 381

1 import { useCanvas } from "../CanvasContext"

2 import { saveAs } from "file-saver"

3 import { getCanvasImage } from "../utils/canvasUtils"

Define the FilePanel component:

1 export const FilePanel = () => {

2 const canvasRef = useCanvas()

3

4 const exportToFile = async () => {

5 const file = await getCanvasImage(canvasRef.current)

6 if (!file) {

7 return

8 }

9 saveAs(file, "drawing.png")

10 }

11

12 return (

13 <div className="window file">

14 <div className="title-bar">

15 <div className="title-bar-text">File</div>

16 </div>

17 <div className="window-body">

18 <div className="field-row">

19 <button className="save-button" onClick={exportToFile}>

20 Export

21 </button>

22 </div>

23 </div>

24 </div>

25)

26 }

Here we get the reference to the canvas using the useCanvas hook.

When the user clicks the buttonwe call the exportToFile function. Therewe generate

Using Redux and TypeScript 382

the Blob from the canvas using the getCanvasImage function and then we save it to
a file using the file-saver package.

Add the FilePanel to the App layout

Open the src/App.tsx and import the FilePanel:

1 import { FilePanel } from "./shared/FilePanel"

Add the FilePanel to the App layout:

1 <div className="window">

2 <div className="title-bar">

3 <div className="title-bar-text">Redux Paint</div>

4 <div className="title-bar-controls">

5 <button aria-label="Close" />

6 </div>

7 </div>

8 <EditPanel />

9 <ColorPanel />

10 <FilePanel />

11 <canvas

12 onMouseDown={startDrawing}

13 onMouseUp={endDrawing}

14 onMouseOut={endDrawing}

15 onMouseMove={draw}

16 ref={canvasRef}

17 />

18 </div>

Launch your application, draw something, and try to export it as a file.

Using Redux and TypeScript 383

Exporting an image

Using Redux Toolkit

Redux Toolkit¹⁵¹ is an official toolset for Redux development provided by the Redux
team. It simplifies the setup and adds a bunch of neat tools that simplify developing
Redux-based applications.

Let’s upgrade our application to use it.

Install Redux Toolkit:

1 yarn add @reduxjs/toolkit

Now you can remove the redux package.

¹⁵¹https://redux-toolkit.js.org/

https://redux-toolkit.js.org/
https://redux-toolkit.js.org/

Using Redux and TypeScript 384

1 yarn remove redux

Configuring The Store

The first change is how you initialize your store. Now it’s done using the configure-
Store¹⁵² method.

Open src/store.ts and remake it like this:

1 import { configureStore } from "@reduxjs/toolkit"

2 import { reducer as currentStroke } from "./modules/currentStroke/reduc\

3 er"

4 import { reducer as historyIndex } from "./modules/historyIndex/reducer"

5 import { reducer as strokes } from "./modules/strokes/reducer"

6 import logger from "redux-logger"

7

8 export const store = configureStore({

9 reducer: {

10 historyIndex,

11 strokes,

12 currentStroke

13 },

14 middleware: (getDefaultMiddleware) =>

15 getDefaultMiddleware().concat(logger)

16 })

It is expected that you’ll get TypeScript errors here, because the reducers
type signatures don’t match what redux toolkit is expecting. We’ll fix that
in the next step.

Now we don’t have to combine middleware, we can provide them as a list.

We use getDefaultMiddleware to use the defaultmiddlewares provided by redux-toolkit.

Currently, the list of returned middlewares contains the following:

¹⁵²https://redux-toolkit.js.org/api/configureStore

https://redux-toolkit.js.org/api/configureStore
https://redux-toolkit.js.org/api/configureStore
https://redux-toolkit.js.org/api/configureStore

Using Redux and TypeScript 385

• Immutability Check Middleware¹⁵³ - this middleware checks that you don’t
mutate the state in your reducers. It will throw an error if you do.

• Serializability check middleware¹⁵⁴ - it checks that your state does not contain
non-serializable data. For example, functions, symbols, Promises, and other non-
data values.

If you look at the configureStore arguments you’ll see that instead of positional
arguments where you need to remember which order they go in, it now accepts an
options object. So you specify the values by name, which decreases the chance of
error.

Fix Type Errors

TypeScript is complaining about the type signatures of the reducers, because it wants
them to accept actions with optional payloads.

The only reducer that does not cause an error here is the historyIndex reducer. And
that’s because of the REDO action, that does not have the payload property.

To fix the other reducers let’s add the AnyAction type to their action union types.

Open src/modules/currentStroke/actions.ts and add the following:

1 import { AnyAction } from "@reduxjs/toolkit"

2 // ...

3 export type Action =

4 | AnyAction

5 | {

6 type: typeof BEGIN_STROKE

7 payload: Point

8 }

9 | {

10 type: typeof UPDATE_STROKE

11 payload: Point

¹⁵³https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/immutabilityMiddleware.md
¹⁵⁴https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/serializabilityMiddleware.md

https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/immutabilityMiddleware.md
https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/serializabilityMiddleware.md
https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/immutabilityMiddleware.md
https://github.com/reduxjs/redux-toolkit/blob/master/docs/api/serializabilityMiddleware.md

Using Redux and TypeScript 386

12 }

13 | {

14 type: typeof SET_STROKE_COLOR

15 payload: string

16 }

17 | {

18 type: typeof END_STROKE

19 payload: { stroke: Stroke; historyIndex: number }

20 }

Do the same with the src/modules/strokes/actions.ts:

1 import { AnyAction } from "@reduxjs/toolkit"

2 // ...

3 export type Action =

4 | AnyAction

5 | {

6 type: typeof END_STROKE

7 payload: { stroke: Stroke; historyIndex: number }

8 }

Using createAction

Right now we define a type constant and an action creator for each action in our
project.

Redux Toolkit provides the createAction¹⁵⁵ method that simplifies it.

When you use createAction you only need to provide the action type string to it.
The resulting action creator will set whatever arguments you pass to it as the action
payload.

In Typescript we need to specify the form of payload in advance - this is why we set
the payload type as a generic argument value.

¹⁵⁵https://redux-toolkit.js.org/api/createAction

https://redux-toolkit.js.org/api/createAction
https://redux-toolkit.js.org/api/createAction

Using Redux and TypeScript 387

We are going to start with the endStroke action, it is going to be used by multiple re-
ducers sowe’ll define it in a sharedmodule. Create a new src/modules/sharedActions.ts

with the following contents:

1 import { AnyAction, createAction } from "@reduxjs/toolkit"

2 import { Stroke } from "../utils/types"

3

4 export type SharedAction = AnyAction | ReturnType<typeof endStroke>

5

6 export const endStroke = createAction<{

7 stroke: Stroke

8 historyIndex: number

9 }>("endStroke")

We define the SharedAction type as a union with the AnyAction from redux-toolkit

so that later they are compatible with reducers created using redux-toolkit.

Go to src/modules/historyIndex/actions.ts and make it look like this:

1 import { AnyAction, createAction } from "@reduxjs/toolkit"

2

3 export type Action =

4 | AnyAction

5 | ReturnType<typeof undo>

6 | ReturnType<typeof redo>

7

8 export const undo = createAction<number>("UNDO")

9

10 export const redo = createAction("REDO")

Don’t forget to update the historyIndex reducer. Update the imports:

1 import { Action, undo, redo } from "./actions"

2 import { endStroke } from "../sharedActions"

Update the reducer action argument type:

Using Redux and TypeScript 388

1 export const reducer = (

2 state: RootState["historyIndex"] = 0,

3 action: Action

4) => {

5 // ...

6 }

Remake the reducer to use the generated actions as action types:

1 switch (action.type) {

2 case endStroke.toString(): {

3 return 0

4 }

5 case undo.toString(): {

6 return Math.min(state + 1, action.payload)

7 }

8 case redo.toString(): {

9 return Math.max(state - 1, 0)

10 }

11 default:

12 return state

13 }

Then go to src/modules/currentStroke/actions.ts, update it to use the createAction
method:

1 import { AnyAction, createAction } from "@reduxjs/toolkit"

2 import { Point } from "../../utils/types"

3

4 export type Action =

5 | AnyAction

6 | ReturnType<typeof beginStroke>

7 | ReturnType<typeof updateStroke>

8 | ReturnType<typeof setStrokeColor>

9

Using Redux and TypeScript 389

10 export const beginStroke = createAction<Point>("BEGIN_STROKE")

11

12 export const updateStroke = createAction<Point>("UPDATE_STROKE")

13

14 export const setStrokeColor = createAction<string>("SET_STROKE_COLOR")

Update the currentStroke reducer file, start with the imports:

1 import {

2 Action,

3 updateStroke,

4 beginStroke,

5 setStrokeColor

6 } from "./actions"

7 import { endStroke } from "../sharedActions"

8 import { RootState } from "../../utils/types"

Remake the switch/case to use the generated actions:

1 case beginStroke.toString(): {

2 return { ...state, points: [action.payload] }

3 }

4 case updateStroke.toString(): {

5 return {

6 ...state,

7 points: [...state.points, action.payload]

8 }

9 }

10 case setStrokeColor.toString(): {

11 return {

12 ...state,

13 color: action.payload

14 }

15 }

16 case endStroke.toString(): {

Using Redux and TypeScript 390

17 return {

18 ...state,

19 points: []

20 }

21 }

After it’s done open the src/modules/strokes/reducer.ts and import the endStroke
and SharedAction from the sharedActions module:

1 import { endStroke, SharedAction } from "../sharedActions"

Set the action argument type in the reducer to SharedAction:

1 export const reducer = (

2 state: RootState["strokes"] = [],

3 action: SharedAction

4) => {

5 // ...

6 }

Update the body of the reducer to use the imported action creator:

1 export const reducer = (

2 state: RootState["strokes"] = [],

3 action: SharedAction

4) => {

5 switch (action.type) {

6 case endStroke.toString(): {

7 // ...

8 }

9 // ...

10 }

11 }

Using Redux and TypeScript 391

Update the App component

Open the src/App.tsx and import the endStroke action creator from the sharedActions
module:

1 import { endStroke } from "./modules/sharedActions"

Update the canvas event handlers. The action creators signarutes have changed so
now we need to pass the arguments a bit differently.

In the startDrawing we now pass an object with x and y fields to the beginStroke

action creator:

1 const startDrawing = ({

2 nativeEvent

3 }: React.MouseEvent<HTMLCanvasElement>) => {

4 const { offsetX, offsetY } = nativeEvent

5 dispatch(beginStroke({ x: offsetX, y: offsetY }))

6 }

Same happens with the updateStroke action creator in the draw function:

1 const draw = ({

2 nativeEvent

3 }: React.MouseEvent<HTMLCanvasElement>) => {

4 if (!isDrawing) {

5 return

6 }

7 const { offsetX, offsetY } = nativeEvent

8

9 dispatch(updateStroke({ x: offsetX, y: offsetY }))

10 }

The endStroke action creator now accepts an object with historyIndex and stroke

fields:

Using Redux and TypeScript 392

1 const endDrawing = () => {

2 if (isDrawing) {

3 dispatch(endStroke({ historyIndex, stroke: currentStroke }))

4 }

5 }

Using createReducer

Now let’s update our reducers. For this, the Redux Toolkit provides the createReducer
method.

The main difference you get when using it is that now you can mutate the state,
instead of always returning the new value.

This is achieved by using the Immer¹⁵⁶ library internally.

CurrentStroke Reducer

Let’s remake the currentStroke reducer first. Go to the src/modules/currentStroke/reducer.ts
and import createReducer from @reduxjs/toolkit:

1 import { createReducer } from "@reduxjs/toolkit"

We won’t need the Action type, so you can remove it from the imports:

1 import { beginStroke, setStrokeColor, updateStroke } from "./actions"

Now update the reducer to look like this:

¹⁵⁶https://immerjs.github.io/immer/docs/introduction

https://immerjs.github.io/immer/docs/introduction
https://immerjs.github.io/immer/docs/introduction

Using Redux and TypeScript 393

1 export const reducer = createReducer(initialState, (builder) => {

2 builder.addCase(beginStroke, (state, action) => {

3 state.points = [action.payload]

4 })

5 builder.addCase(updateStroke, (state, action) => {

6 state.points.push(action.payload)

7 })

8 builder.addCase(setStrokeColor, (state, action) => {

9 state.color = action.payload

10 })

11 builder.addCase(endStroke, (state) => {

12 state.points = []

13 })

14 })

createReducer accepts two arguments, the initial state and the callback.

The passed callback receives an instance of ActionReducerMapBuilder object. It has
a method addCase that we use do add action handlers.

This is the recommended way to add reducer cases in Typescript.

Now instead of returning a new state with an updated points array when we begin
or update the stroke, we mutate the points array.

Strokes Reducer

Open src/modules/strokes/reducer.ts and rewrite the code to use createReducer:

Using Redux and TypeScript 394

1 import { endStroke } from "../sharedActions"

2 import { RootState } from "../../utils/types"

3 import { createReducer } from "@reduxjs/toolkit"

4

5 const initialStrokes: RootState["strokes"] = []

6

7 export const reducer = createReducer(initialStrokes, (builder) => {

8 builder.addCase(endStroke, (state, action) => {

9 const { historyIndex, stroke } = action.payload

10 if (historyIndex === 0) {

11 state.push(stroke)

12 } else {

13 state.splice(-historyIndex, historyIndex, stroke)

14 }

15 })

16 })

17

18 export const strokesLengthSelector = (state: RootState) =>

19 state.strokes.length

20

21 export const strokesSelector = (state: RootState) => state.strokes

Here we need to add only one case that will handle the END_STROKE action.

If historyIndex is 0 we add the stroke that we just finished to the array of strokes.
Otherwise, we override the number of strokes equal to the historyIndex value and
add the new stroke to the end.

Note that we’ll also have to react to this action in the historyAction reducer. We’ll
need to set it to 0 when the stroke is ended.

HistoryIndex Reducer

Go to src/modules/historyIndex/reducer.ts and rewrite it to createReducer:

Using Redux and TypeScript 395

1 import { endStroke } from "../sharedActions"

2 import { redo, undo } from "./actions"

3 import { createReducer } from "@reduxjs/toolkit"

4 import { RootState } from "../../utils/types"

5

6 const initialState: RootState["historyIndex"] = 0

7

8 export const reducer = createReducer(initialState, (builder) => {

9 builder.addCase(undo, (state, action) => {

10 return Math.min(state + 1, action.payload)

11 })

12 builder.addCase(redo, (state) => {

13 return Math.max(state - 1, 0)

14 })

15 builder.addCase(endStroke, () => {

16 return 0

17 })

18 })

19

20 export const historyIndexSelector = (state: RootState) =>

21 state.historyIndex

Note that here we return a new value instead of updating it like in other reducers.
That’s because of Immer. You can’t re-define the whole state. If you need to do this,
you have to return a new value instead.

In other reducers, we were updating the individual fields of the state. In this case, you
can just mutate the state and Immer will internally generate the new state, based on
the mutations you’ve made.

But when a state is a number, like in historyIndex reducer, and to update it you
would override it with a new value, then we return a new value instead.

Read more about the pitfalls of using Immer in the Immer Documenta-
tion.¹⁵⁷

Launch the application and make sure it works.
¹⁵⁷https://immerjs.github.io/immer/docs/pitfalls

https://immerjs.github.io/immer/docs/pitfalls
https://immerjs.github.io/immer/docs/pitfalls
https://immerjs.github.io/immer/docs/pitfalls

Using Redux and TypeScript 396

Using Slices

Currently, we create actions and reducer handles for them separately.

Wemigrated to createAction and createReducer functions that made our codemore
compact. But we can move even further.

Redux provides a createSlice function that automatically generates action creators
based on the reducer handles you have.

Let’s rewrite our reducers to slices.

HistoryIndex Slice

Go to src/modules/historyIndex/reducer.ts, rename it as slice.ts and import
createSlice and PayloadAction from redux-toolkit:

1 import { createSlice, PayloadAction } from "@reduxjs/toolkit"

We’ll also need the RootState type and the endStroke shared action:

1 import { RootState } from "../../utils/types"

2 import { endStroke } from "../sharedActions"

Now remake the reducer into slice:

1 export const historyIndex = createSlice({

2 name: "historyIndex",

3 initialState: 0,

4 reducers: {

5 undo: (state, action: PayloadAction<number>) => {

6 return Math.min(state + 1, action.payload)

7 },

8 redo: (state) => {

9 return Math.max(state - 1, 0)

10 }

Using Redux and TypeScript 397

11 },

12 extraReducers: (builder) => {

13 builder.addCase(endStroke, () => {

14 return 0

15 })

16 }

17 })

Here we pass an options object to createSlice. It needs to have the following fields:

• name - the name of the slice. It will be used as a prefix for all the generated
actions of this slice

• initialState - the initial state value
• reducers - reducers that will be used to generate actions
• extraReducers - reducers that need to react on shared actions

Our slice has historyIndex as its name. It also has two action handlers - undo and
redo. This means that it will generate two actions:

• historyIndex/undo - this action will have a number payload. We need it to
limit the number of undos to the length of the strokes array.

• historyIndex/redo - this action won’t have any payload.

We also need to handle the END_STROKE action to reset the historyIndex to 0.

As the END_STROKE action is shared, we defined it in the extraReducers:

1 extraReducers: (builder) => {

2 builder.addCase(endStroke, () => {

3 return 0

4 })

5 }

Export the reducer, actions and the selector from the slice:

Using Redux and TypeScript 398

1 export default historyIndex.reducer

2

3 export const { undo, redo } = historyIndex.actions

4

5 export const historyIndexSelector = (state: RootState) =>

6 state.historyIndex

Remove the src/modules/historyIndex/actions.ts file.

Now update the src/store.ts file to use the historyIndex slice:

1 import historyIndex from "./modules/historyIndex/slice"

Launch the app, draw a few strokes, and press the undo and redo buttons.

Look at the redux-logger output. You should see the generated actions there.

Note how the actions now are composed of the slice name combined with the reducer
case name.

Strokes Slice

Go to src/modules/strokes/reducer.ts and rename it slice.ts.

Make the necessary imports:

1 import { createSlice } from "@reduxjs/toolkit"

2 import { RootState } from "../../utils/types"

3 import { endStroke } from "../sharedActions"

Define the initial state:

1 const initialState: RootState["strokes"] = []

Our initial state is just an empty array. We must provide the correct type manually.
This type will be used by Redux Toolkit to infer the type of your slice state.

Define the slice:

Using Redux and TypeScript 399

1 const strokes = createSlice({

2 name: "strokes",

3 initialState,

4 reducers: {},

5 extraReducers: (builder) => {

6 builder.addCase(endStroke, (state, action) => {

7 const { historyIndex, stroke } = action.payload

8 if (historyIndex === 0) {

9 state.push(stroke)

10 } else {

11 state.splice(-historyIndex, historyIndex, stroke)

12 }

13 })

14 }

15 })

This slice doesn’t have any linked actions. The only action it handles is the shared
END_STROKE.

Export the reducer and selectors:

1 export default strokes.reducer

2

3 export const strokesLengthSelector = (state: RootState) =>

4 state.strokes.length

5

6 export const strokesSelector = (state: RootState) => state.strokes

CurrentStroke Slice

Open src/modules/currentStroke/reducer.ts. Let’s remake it to slice as well.
Rename the file to slice.ts and remake the imports:

Using Redux and TypeScript 400

1 import { endStroke } from "../sharedActions"

2 import { createSlice, PayloadAction } from "@reduxjs/toolkit"

3 import { RootState, Point } from "../../utils/types"

Then define the initial state:

1 const initialState: RootState["currentStroke"] = {

2 points: [],

3 color: "#000"

4 }

Now let’s remake the reducer into a slice:

1 const slice = createSlice({

2 name: "currentStroke",

3 initialState,

4 reducers: {

5 beginStroke: (state, action: PayloadAction<Point>) => {

6 state.points = [action.payload]

7 },

8 updateStroke: (state, action: PayloadAction<Point>) => {

9 state.points.push(action.payload)

10 },

11 setStrokeColor: (state, action: PayloadAction<string>) => {

12 state.color = action.payload

13 }

14 },

15 extraReducers: (builder) => {

16 builder.addCase(endStroke, (state) => {

17 state.points = []

18 })

19 }

20 })

This slice has three handlers that will generate actions:

Using Redux and TypeScript 401

• currentStroke/beginStroke - this action will have the payload of type Point
• currentStroke/updateStroke - will also hold a Point as a payload
• currentStroke/updateColor - there we’ll pass a string representing the stroke
color in its payload.

We also handle the END_STROKE shared action:

1 extraReducers: (builder) => {

2 builder.addCase(endStroke, (state) => {

3 state.points = []

4 })

5 }

In this extra reducer, we reset the currentStroke points array.

Export the reducer, actions and selector:

1 export const currentStroke = slice.reducer

2

3 export const { beginStroke, updateStroke, setStrokeColor } =

4 slice.actions

5

6 export const currentStrokeSelector = (state: RootState) =>

7 state.currentStroke

Now the actions are generated by the slice, so you can remove the src/modules/currentStroke/actions.ts.

Remake The Imports

Go to src/store.ts. Remake the remaining imports to slices:

Using Redux and TypeScript 402

1 import { currentStroke } from "./modules/currentStroke/slice"

2 // ...

3 import strokes from "./modules/strokes/slice"

Update the sharedActions module, open the src/modules/sharedActions.ts and
make it look like this:

1 import { createAction } from "@reduxjs/toolkit"

2 import { Stroke } from "../utils/types"

3

4 export const endStroke = createAction<{

5 stroke: Stroke

6 historyIndex: number

7 }>("endStroke")

We don’t need to import the AnyAction from redux-toolkit and we don’t need to
export our own SharedAction type.

Go to src/App.tsx and update the action imports there:

1 import {

2 beginStroke,

3 updateStroke

4 } from "./modules/currentStroke/slice"

5 // ...

6 import { strokesSelector } from "./modules/strokes/slice"

7 import { currentStrokeSelector } from "./modules/currentStroke/slice"

8 import { historyIndexSelector } from "./modules/historyIndex/slice"

Update the action and selector imports in the src/EditPanel.tsx:

1 import { undo, redo } from "../modules/historyIndex/slice"

2 import { strokesLengthSelector } from "../modules/strokes/slice"

Same in the src/ColorPanel.tsx:

Using Redux and TypeScript 403

1 import { setStrokeColor } from "../modules/currentStroke/slice"

Now our application uses slices - congratulations! Launch the app and verify that
everything works.

Add Modal Windows

Now let’s add a modal window that will allow us to save the projects.

To keep the state of this window we’ll create a new slice.

Create a new file src/modules/modals/slice.ts.

Make the imports:

1 import { createSlice, PayloadAction } from "@reduxjs/toolkit"

2 import { RootState } from "../../utils/types"

Define the ModalState type:

1 export type ModalState = {

2 isShown: boolean

3 modalName: string | null

4 }

Then define the initial state with this type:

1 const initialState: ModalState = {

2 isShown: true,

3 modalName: null

4 }

Now we can define the slice:

Using Redux and TypeScript 404

1 const slice = createSlice({

2 name: "modal",

3 initialState,

4 reducers: {

5 show: (state, action: PayloadAction<string>) => {

6 state.isShown = true

7 state.modalName = action.payload

8 },

9 hide: (state) => {

10 state.isShown = true

11 state.modalName = null

12 }

13 }

14 })

This slice handles two actions:

• show - this slice has a string payload that holds the name of the window we
want to show.

• hide - this action signals that we want to hide all the windows

Export the reducer, actions and selectors:

1 export const modalVisible = slice.reducer

2

3 export const { show, hide } = slice.actions

4

5 export const modalVisibleSelector = (state: RootState) =>

6 state.modalVisible

7

8 export const modalNameSelector = (state: RootState) =>

9 state.modalVisible.modalName

Go to src/store.ts and import the new reducer:

Using Redux and TypeScript 405

1 import { modalVisible } from "./modules/modals/slice"

Add the reducer to the combined store:

1 export const store = configureStore({

2 reducer: {

3 historyIndex,

4 strokes,

5 currentStroke,

6 modalVisible

7 },

8 middleware: (getDefaultMiddleware) =>

9 getDefaultMiddleware().concat(logger)

10 })

Update the types

Open the src/utils/types.ts and add the ModalState to the RootState:

1 import { ModalState } from "../modules/modals/slice"

2 // ...

3 export type RootState = {

4 currentStroke: Stroke

5 strokes: Stroke[]

6 historyIndex: number

7 modalVisible: ModalState

8 }

Add The Modal Manager Component

In this section we’ll define the visual part of the modal management system.

Using Redux and TypeScript 406

Define the modal windows

Open src/index.css and add a new CSS class .modal-panel:

1 .modal-panel {

2 position: fixed;

3 top: 50%;

4 left: 50%;

5 transform: translate3d(-50%, -50%, 0);

6 z-index: 10;

7 }

Will use it for both modal windows.

Create a new file src/ProjectSaveModal.tsx, later we’ll use it to save our projects,
for now it will only contain the basic layout:

1 import { useDispatch } from "react-redux"

2 import { hide } from "./modules/modals/slice"

3

4 export const ProjectSaveModal = () => {

5 const dispatch = useDispatch()

6

7 return (

8 <div className="window modal-panel">

9 <div className="title-bar">

10 <div className="title-bar-text">Save</div>

11 </div>

12 <div className="window-body">

13 <div className="field-row">

14 <button onClick={() => dispatch(hide())}>Cancel</button>

15 </div>

16 </div>

17 </div>

18)

19 }

Using Redux and TypeScript 407

As you can see it is mostly just layout code. It also contains a Cancel button that
allows to close the modal.

Let’s create the ProjectsModal component. Later we’ll use it to load the project
from the server. For now it will only contain some basic layout, just like the
ProjectSaveModal.

Create a new file src/ProjectsModal.tsx with the following code:

1 import { useDispatch } from "react-redux"

2 import { hide } from "./modules/modals/slice"

3

4 export const ProjectsModal = () => {

5 const dispatch = useDispatch()

6

7 return (

8 <div className="window modal-panel">

9 <div className="title-bar">

10 <div className="title-bar-text">Load Project</div>

11 <div className="title-bar-controls">

12 <button

13 aria-label="Close"

14 onClick={() => dispatch(hide())}

15 />

16 </div>

17 </div>

18 <div className="projects-container">Projects List</div>

19 </div>

20)

21 }

Define the ModalLayercomponent

Let’s define a component to rendermodal windows. Create a new file src/ModalLayer.tsx
with the following content:

Using Redux and TypeScript 408

1 import React from "react"

2 import { useSelector } from "react-redux"

3 import { ProjectsModal } from "./ProjectsModal"

4 import { ProjectSaveModal } from "./ProjectSaveModal"

5 import { modalNameSelector } from "./modules/modals/slice"

6

7 export const ModalLayer = () => {

8 const modalName = useSelector(modalNameSelector)

9

10 switch (modalName) {

11 case "PROJECTS_MODAL": {

12 return <ProjectsModal />

13 }

14 case "PROJECTS_SAVE_MODAL": {

15 return <ProjectSaveModal />

16 }

17 default:

18 return null

19 }

20 }

Here we use the modalNameSelector to get the current modal name from our slice.
Then we show different window components depending on modalName value.

You can see that we render ProjectsModal and ProjectsSaveModal windows. We’ll
define them in a moment.

Render the ModalLayer

Go to src/App.tsx import and render the ModalLayer

Using Redux and TypeScript 409

1 import { ModalLayer } from "./ModalLayer"

2 // ...

3 <div className="window">

4 <div className="title-bar">

5 <div className="title-bar-text">Redux Paint</div>

6 <div className="title-bar-controls">

7 <button aria-label="Close" />

8 </div>

9 </div>

10 <EditPanel />

11 <ColorPanel />

12 <FilePanel />

13 <ModalLayer />

14 <canvas

15 onMouseDown={startDrawing}

16 onMouseUp={endDrawing}

17 onMouseOut={endDrawing}

18 onMouseMove={draw}

19 ref={canvasRef}

20 />

21 </div>

Add Save and Load buttons

Now let’s add Save and Load buttons to the FilePanel and we should be good to
go. Both buttons will dispatch the show action with the name of the modal that we
want to open. Let’s import the useDispatch hook and the show action creator. Open
src/shared/FilePanel and add the following imports:

1 import { useDispatch } from "react-redux"

2 import { show } from "../modules/modals/slice"

Now let’s get the dispatch method, add this code in the beginning of the FilePanel
component body:

Using Redux and TypeScript 410

1 const dispatch = useDispatch()

Add the buttons to the layout:

1 <div className="window file">

2 <div className="title-bar">

3 <div className="title-bar-text">File</div>

4 </div>

5 <div className="window-body">

6 <div className="field-row">

7 <button className="save-button" onClick={exportToFile}>

8 Export

9 </button>

10 <button

11 className="save-button"

12 onClick={() => {

13 dispatch(show("PROJECTS_SAVE_MODAL"))

14 }}

15 >

16 Save

17 </button>

18 <button

19 className="save-button"

20 onClick={() => {

21 dispatch(show("PROJECTS_MODAL"))

22 }}

23 >

24 Load

25 </button>

26 </div>

27 </div>

28 </div>

Both buttons have inline onClick handlers that dispatch the show actions with
corresponding action payload.

Launch your app, and make sure you can open the modal windows.

Using Redux and TypeScript 411

Prepare The Server

Copy the server from code/04-redux/completed/server to your application root
folder.

You’ll also need to install a few dependencies for it to work:

1 yarn add --dev concurrently@5.1.0 \

2 cors@2.8.5 \

3 express@4.17.1 \

4 lowdb@1.0.0 nanoid@3.1.9 \

5 ts-node@8.9.0

We install all of them as dev dependencies so they don’t end up in the application
bundle.

Install the types for them as well:

1 yarn add --dev @types/cors@2.8.6\

2 @types/express@4.17.6\

3 @types/lowdb@1.0.9

Now open package.json and add two new launch scripts:

1 "start:server": "ts-node -O '{\"module\": \"commonjs\"}' ./server/index\

2 .ts",

3 "dev": "concurrently --kill-others \"npm run start:server\" \"npm run s\

4 tart\""

• start:server will launch the server only
• dev will launch the app and the server together

If your application is already running, you can run the server in a separate console
tab:

Using Redux and TypeScript 412

1 yarn start:server

I recommend stopping your app if it’s running and relaunching it using the dev script:

1 yarn dev

Save The Project Using Thunks

At this point we can save our drawings as .png files. In this section we’ll make it
possible to save the project to the server. It will be possible to load them later and
continue drawing them.

We will learn how to perform side effect in Redux based applications using thunks.

Define the API module

We are going to perform a server request, let’s define an API module. Create a new
file src/modules/strokes/api.ts and define the newProject function there:

1 import { Stroke } from "../../utils/types"

2

3 export const newProject = (

4 name: string,

5 strokes: Stroke[],

6 image: string

7) =>

8 fetch("http://localhost:4000/projects/new", {

9 method: "POST",

10 headers: {

11 Accept: "application/json",

12 "Content-Type": "application/json"

13 },

14 body: JSON.stringify({

Using Redux and TypeScript 413

15 name,

16 strokes,

17 image

18 })

19 }).then((res) => res.json())

This function will perform a POST request to our server and send the strokes list
representing our project, project name and project thumbnail.

The fact that we send the whole strokes array to the backend will allow us to use
undo/redo functionality immediately after we load the project.

Handle saving the project

Saving the project is considered a side effect, and the official way to handle side-
effects in Redux Toolkit are Thunks¹⁵⁸.

Think of them as special kind of action creators. Instead of returning an object with
type and payload, they return an async function that will perform the side-effect.

Open src/store.ts and define the type for our thunk, to do this you’ll need to import
ThunkAction, Action and RootState types:

1 import { configureStore, ThunkAction, Action } from "@reduxjs/toolkit"

2 // ...

3 import { RootState } from "./utils/types"

4 // ...

5 export type AppThunk = ThunkAction<

6 void,

7 RootState,

8 unknown,

9 Action<string>

10 >

Open the src/modules/strokes/slice.ts and import the createAsyncThunkmethod:

¹⁵⁸https://github.com/reduxjs/redux-thunk

https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk

Using Redux and TypeScript 414

1 import { createSlice, createAsyncThunk } from "@reduxjs/toolkit"

We’ll also need to import the newProject method frow the api module:

1 import { newProject } from "./api"

Now define the saveProject thunk:

1 type SaveProjectArg = {

2 projectName: string

3 thumbnail: string

4 }

5 // ...

6 export const saveProject = createAsyncThunk(

7 "SAVE_PROJECT",

8 async (

9 { projectName, thumbnail }: SaveProjectArg,

10 { getState }

11) => {

12 try {

13 const response = await newProject(

14 projectName,

15 (getState() as RootState)?.strokes,

16 thumbnail

17)

18 console.log(response)

19 } catch (err) {

20 console.log(err)

21 }

22 }

23)

Here we defined a thunk as a function that receives the project name and thunk
through the arguments and then gets the strokes array from the state.

Using Redux and TypeScript 415

Thunks can have access to the whole state and also can dispatch other ac-
tions. In this section we are not going to cover the advanced functionality
of Redux Toolkit thunks.

This thunk will make a POST request to our backend and send the project name, the
list of strokes, and a generated thumbnail for this project.

Define the getBase64Thumbnail function

We are going to save each project with a small thumbnail image, this image will be
stored on the backend as a Base64 string. Let’s greate a helper function to do this.

Create a new file src/utils/scaler.ts with the following contents:

1 type ScalerArgs = {

2 file: Blob

3 scale: number

4 }

5

6 export function getBase64Thumbnail({

7 file,

8 scale = 0.1

9 }: ScalerArgs): Promise<string> {

10 return new Promise((res, rej) => {

11 const reader = new FileReader()

12 reader.readAsDataURL(file)

13 reader.onload = (e) => {

14 const img = new Image()

15 img.onload = () => {

16 const el = document.createElement("canvas")

17 let w = (el.width = img.width * scale)

18 let h = (el.height = img.height * scale)

19 const ctx = el.getContext("2d")

20 if (!ctx) {

21 return

Using Redux and TypeScript 416

22 }

23 ctx.drawImage(img, 0, 0, w, h)

24 return res(el.toDataURL())

25 }

26 reader.onerror = (e) => {

27 rej(e.toString())

28 }

29 img.src = e?.target?.result as string

30 }

31 })

32 }

This function accepts a file of type Blob and a number by which it will scale the
image, by default it will make it ten times smaller.

Inside of this function we draw the image on another canvas element that it invisible
to the user. This is where we change the size of the image.

After the image is scaled we transform it into a Base64 string using the toDataURL

method and then resolve the promise with this value.

Update the ProjectSaveModal

Open the src/ProjectSaveModal.tsx and add new imports:

1 import { useState, ChangeEvent } from "react"

2 // ...

3 import { getCanvasImage } from "./utils/canvasUtils"

4 import { useCanvas } from "./CanvasContext"

5 import { getBase64Thumbnail } from "./utils/scaler"

6 import { saveProject } from "./modules/strokes/slice"

Get the canvasRef using the useCanvas hook:

Using Redux and TypeScript 417

1 const canvasRef = useCanvas()

Update the component layout, well add an input and a Save button:

1 <div className="window modal-panel">

2 <div className="title-bar">

3 <div className="title-bar-text">Save</div>

4 </div>

5 <div className="window-body">

6 <div className="field-row-stacked">

7 <label htmlFor="projectName">Project name</label>

8 <input

9 id="projectName"

10 onChange={onProjectNameChange}

11 type="text"

12 />

13 </div>

14 <div className="field-row">

15 <button onClick={onProjectSave}>Save</button>

16 <button onClick={() => dispatch(hide())}>Cancel</button>

17 </div>

18 </div>

19 </div>

Here the input element triggers an onChange event - we handle it using the
onProjectNameChange function. Inside of this function we update the projectName

state variable. Define the state and this function in the component body:

1 const [projectName, setProjectName] = useState("")

2 // ...

3 const onProjectNameChange = (e: ChangeEvent<HTMLInputElement>) => {

4 setProjectName(e.target.value)

5 }

When the user clicks the Save button we call the onProjectSave handler. Let’s define
it:

Using Redux and TypeScript 418

1 const onProjectSave = async () => {

2 const file = await getCanvasImage(canvasRef.current)

3 if (!file) {

4 return

5 }

6 const thumbnail = await getBase64Thumbnail({ file, scale: 0.1 })

7 dispatch(saveProject({ projectName, thumbnail }))

8 setProjectName("")

9 dispatch(hide())

10 }

Here we get the current bitmap data from the canvas, generate a thumbnail from
it and dispatch a saveProject action with the project name and the generated
thumbnail.

After it’s done we reset the projectName value and close the modal window.

Launch your app and try to save your drawing to the backend.

Saving the project

Using Redux and TypeScript 419

Use this cURL to check that the project was saved:

1 curl http://localhost:4000/pictures

You can also just copy and paste this url into the browser window. It will return the
list of projects. You should see your project data there.

Load The Project

In this section will make it possible to load the projects from the server.

Update the types

Open src/utils/types.ts and define a Project type there:

1 export type Project = {

2 image: string

3 name: string

4 id: string

5 }

Update the RootState as well, now it will have to contain a projectsList field:

1 export type RootState = {

2 currentStroke: Stroke

3 strokes: Stroke[]

4 historyIndex: number

5 modalVisible: ModalState

6 projectsList: {

7 error?: string

8 pending: boolean

9 projects: Project[]

10 }

11 }

Using Redux and TypeScript 420

This field will contain the projects list that we’ll get from the server and fields for
the loading and error states.

Define the API module

All our project-loading logic will reside in a separate module. Create a new folder
src/modules/projectsList.

Now let’s define the API module. Create the src/modules/projectsList/api.ts file
and define the fetchProjectsList function:

1 export const fetchProjectsList = () => {

2 return fetch("http://localhost:4000/projects").then((res) =>

3 res.json()

4)

5 }

This function will fetch the data from the backend and return it as a JSON object.

Create a projectsList slice

Create a new file src/modules/projectList/slice.ts and add these imports there:

1 import { createSlice, createAsyncThunk } from "@reduxjs/toolkit"

2 import { RootState } from "../../utils/types"

3 import { fetchProjectsList } from "./api"

Define the initial state:

Using Redux and TypeScript 421

1 const initialState: RootState["projectsList"] = {

2 error: undefined,

3 pending: false,

4 projects: []

5 }

Define the slice:

1 const slice = createSlice({

2 name: "projectsList",

3 initialState,

4 reducers: {},

5 extraReducers: (builder) => {

6 builder.addCase(getProjectsList.pending, (state) => {

7 state.pending = true

8 })

9 builder.addCase(getProjectsList.fulfilled, (state, action) => {

10 state.pending = false

11 state.projects = action.payload

12 state.error = undefined

13 })

14 builder.addCase(getProjectsList.rejected, (state) => {

15 state.pending = false

16 state.error = "Something went wrong"

17 })

18 }

19 })

Here we define two reducers, one to handle successful data fetching, and another to
handle errors.

Export the reducer and the selectors:

Using Redux and TypeScript 422

1 export const projectsList = slice.reducer

2

3 export const projectsListSelector = (state: RootState) =>

4 state.projectsList.projects

5 export const projectsListPendingSelector = (state: RootState) =>

6 state.projectsList.pending

7 export const projectsListErrorSelector = (state: RootState) =>

8 state.projectsList.error

Add the reducer to the store:

1 import { configureStore, ThunkAction, Action } from "@reduxjs/toolkit"

2 import { currentStroke } from "./modules/currentStroke/slice"

3 import { modalVisible } from "./modules/modals/slice"

4 import { projectsList } from "./modules/projectsList/slice"

5 import historyIndex from "./modules/historyIndex/slice"

6 import strokes from "./modules/strokes/slice"

7 import logger from "redux-logger"

8 import { RootState } from "./utils/types"

9

10 export const store = configureStore({

11 reducer: {

12 historyIndex,

13 strokes,

14 currentStroke,

15 modalVisible,

16 projectsList

17 },

18 middleware: (getDefaultMiddleware) =>

19 getDefaultMiddleware().concat(logger)

20 })

21

22 export type AppThunk = ThunkAction<

23 void,

24 RootState,

25 unknown,

Using Redux and TypeScript 423

26 Action<string>

27 >

Nowwe can define the thunk thatwill fetch the projects list. Open src/modules/projectsList/slice.ts
and add the following there:

1 export const getProjectsList = createAsyncThunk(

2 "GET_PROJECTS_LIST",

3 async () => {

4 return fetchProjectsList()

5 }

6)

Herewe call the api and then if we get the data, dispatch it through the getProjectListSuccess
action.

Now let’s define the selector. In the same file define this function:

1 export const projectsList = slice.reducer

Load the selected project

To load the selected project let’s first define anAPI function. Open src/modules/strokes/api.ts
and add a new function there:

1 export const getProject = (projectId: string) => {

2 return fetch(`http://localhost:4000/projects/${projectId}`).then(

3 (res) => res.json()

4)

5 }

Nowwe need to define the loadProject thunk, we’ll do it in the src/modules/strokes/slice.ts:

Using Redux and TypeScript 424

1 import { getProject, newProject } from "./api"

2 // ...

3 export const loadProject = createAsyncThunk(

4 "LOAD_PROJECT",

5 async (projectId: string) => {

6 try {

7 const { project } = await getProject(projectId)

8 return project.strokes

9 } catch (err) {

10 console.log(err)

11 }

12 }

13)

Here we use the getProject API method to load the project data.

Note that our loadProject returns the value that it gets from the server. This is
a neat feature of Redux Toolkit thunks. When you return the data - the thunk
authomatically dispatches it using a generated action. Actually it dispatches an
automatic action in three cases:

• loadProject.pending - You’ve started loading data
• loadProject.fulfilled - You got the data
• loadProject.rejected - There was an error

Add a new case to the slice to handle the loadProject.fulfilled action:

1 builder.addCase(loadProject.fulfilled, (state, action) => {

2 return action.payload

3 })

Show the list of projects

Now let’s present the user with the list of loaded projects.

Define the styles for the project cards. Open src/index.css and add the following
CSS classes:

Using Redux and TypeScript 425

1 .projects-container {

2 overflow: auto;

3 max-width: 600px;

4 height: 400px;

5 display: flex;

6 flex-direction: row;

7 flex-wrap: wrap;

8 justify-content: flex-start;

9 padding: 0 10px;

10 width: 600px;

11 }

12

13 .project-card {

14 width: 100px;

15 height: 100px;

16 margin: 20px;

17 cursor: pointer;

18 text-align: center;

19 }

20

21 .project-card img {

22 width: 100px;

23 height: 100px;

24 margin-bottom: 10px;

25 }

Now let’s update the ProjectsModal component. Open src/ProjectsModal.tsx and
make these imports:

Using Redux and TypeScript 426

1 import React, { useEffect } from "react"

2 import { useDispatch, useSelector } from "react-redux"

3 import { hide } from "./modules/modals/slice"

4 import {

5 getProjectsList,

6 projectsListSelector

7 } from "./modules/projectsList/slice"

8 import { loadProject } from "./modules/strokes/slice"

Add the projectsListSelector to the ProjectsModal component body:

1 const projectsList = useSelector(projectsListSelector)

Now define the useEffect with the following contents before the layout:

1 useEffect(() => {

2 dispatch(getProjectsList())

3 }, [])

Here we dispatch the fetchProjectsList thunk. It will get the list of projects from
the backend and then save the value to the store.

Define the onLoadProject event handler:

1 const onLoadProject = (projectId: string) => {

2 dispatch(loadProject(projectId))

3 dispatch(hide())

4 }

We’ll call this method when the user clicks on the project. Inside of this method we
dispatch an action that loads the selected project and then we close the modal.

Now let’s update the layout, add this code below the div with .title-bar class:

Using Redux and TypeScript 427

1 <div className="projects-container">

2 {(projectsList || []).map((project) => {

3 return (

4 <div

5 key={project.id}

6 onClick={() => onLoadProject(project.id)}

7 className="project-card"

8 >

9

10 <div>{project.name}</div>

11 </div>

12)

13 })}

14 </div>

Update the App component

We need to add a small change to on of the App component’s useEffect blocks. Find
the useEffect that redraws the strokes when the historyIndex changes and add the
strokes to the dependencies array:

1 }, [historyIndex, strokes])

Launch the app and verify that you can save and load the projects.

Using Redux and TypeScript 428

Loading the project

Congratulations! You have a fully functional Redux+Typescript app!

Static Site Generation and
Server-Side Rendering Using
Next.js
Introduction

So far, we have been creating single-page applications¹⁵⁹ (SPA). A single-page
application does not reload the whole page. Instead, it fetches new data and re-
renders only parts of the page that need to be updated. All this happens on the same
page, hence the name “single-page application”.

There is a caveat in this flow, though. If all the data fetching and re-rendering only
happens in a user’s browser, we can’t make all pages in our application detectable by
search engines. The vast majority of search robots won’t wait until the real content
of an application appears. Instead, they will read the content of the HTML we serve
them at the start, which is almost empty.

This is not acceptable for an application that hugely relies on its content, such as a
blog platform or a news site. This is where pre-rendering¹⁶⁰ comes in.

What We’re Going to Build

To understand the advantages of pre-rendering, wewill create a news site application.
We will grab the news and images from the BBC website¹⁶¹ and create an application
that will have pre-rendered pages with content on them.

¹⁵⁹https://en.wikipedia.org/wiki/Single-page_application
¹⁶⁰https://nextjs.org/docs/basic-features/pages#pre-rendering
¹⁶¹https://www.bbc.com

https://en.wikipedia.org/wiki/Single-page_application
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://www.bbc.com/
https://en.wikipedia.org/wiki/Single-page_application
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://www.bbc.com/

Static Site Generation and Server-Side Rendering Using Next.js 430

We will statically generate the front page and the post categories pages and render
the individual post pages on the server. We will also use Redux to create a comment
form that will be hydrated the when used on client.

The main page will look like this:

A completed news site

A post page will look like this:

Static Site Generation and Server-Side Rendering Using Next.js 431

A post page of the application

The completed application code is located in code/05-next-ssg/completed.

Unzip the archive and cd to the application folder:

1 cd code/05-next-ssg/completed

Once there, install dependencies and launch the application:

1 yarn && yarn dev

The application should now open in the browser. If it didn’t, navigate to http:
//localhost:3000 to open it manually.

Pre-Rendering

As we said earlier, serving empty pages is not acceptable for an application that
hugely relies on its content. What we want to do is pre-render pages of our

http://localhost:3000
http://localhost:3000

Static Site Generation and Server-Side Rendering Using Next.js 432

application so that they are served with content.

There are 2 major ways to pre-render pages: server-side rendering and static site
generation.

Server-side rendering

When server-side rendering¹⁶² (SSR) is used, the server renders real HTML for every
page request it gets. In our application, the server would render HTML for each post
page, section page, etc.

SSR doesn’t require us to store each page as an HTML file on the server. Instead, we
can use middleware that fetches real data from a backend API, renders a page that
we want to send as a response, fills it with data fetched earlier, and sends the whole
HTML to the client.

Each page comes with the minimal necessary JavaScript code. When a page is loaded
by the browser, its JavaScript code runs and makes the page interactive. This process,
known as hydration¹⁶³, resurrects a previously “frozen” application.

Static site generation

Static site generation¹⁶⁴ (SSG) involves generating HTML once, at build time. Tech-
nically this means we will have all the real HTML files for each page.

SSG makes responses faster since it doesn’t need to render every page every time.
However, it is hard to use SSG in some cases. Basically, we should ask ourselves:
“Can we pre-render this page ahead of a user’s request?” If the answer is yes, then
we should choose SSG.

We will use both SSG and SSR. We will explore the differences between them a bit
later.
¹⁶²https://nextjs.org/docs/basic-features/pages#server-side-rendering
¹⁶³https://nextjs.org/docs/basic-features/pages#pre-rendering
¹⁶⁴https://nextjs.org/docs/basic-features/pages#static-generation-recommended

https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://nextjs.org/docs/basic-features/pages#static-generation-recommended
https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#pre-rendering
https://nextjs.org/docs/basic-features/pages#static-generation-recommended

Static Site Generation and Server-Side Rendering Using Next.js 433

Next.js

We’re going to use Next.js¹⁶⁵ (a.k.a. Next), a framework for creating React applica-
tions.

We chose Next because it has a clean API and provides all the features we’re going to
need for our purposes, including SSG. In addition, it comes with great documentation
and tutorials

Setting Up a Project

Next has a set of instructions¹⁶⁶ for getting started, we will walk through the process
of setting up the project manually.

Create news-site directory that will contain our project:

1 mkdir news-site

Inside of it create 2 directories:

• pageswhere Next will search for pages¹⁶⁷ of our application (we will talk about
pages in detail later).

• public for static resources¹⁶⁸ like images, stylesheets, etc.

1 cd news-site

2 mkdir pages

3 mkdir public

Initialize the project and install the dependencies:

¹⁶⁵https://github.com/zeit/next.js/
¹⁶⁶https://nextjs.org/docs/getting-started
¹⁶⁷https://nextjs.org/docs/basic-features/pages
¹⁶⁸https://nextjs.org/docs/basic-features/static-file-serving

https://github.com/zeit/next.js/
https://nextjs.org/docs/getting-started
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/static-file-serving
https://github.com/zeit/next.js/
https://nextjs.org/docs/getting-started
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/static-file-serving

Static Site Generation and Server-Side Rendering Using Next.js 434

1 yarn init -y

2 yarn add next react react-dom

Once the project is initialized, add the following scripts to the scripts section in the
package.json file:

1 "scripts": {

2 "dev": "next",

3 "build": "next build",

4 "start": "next start"

5 },

Here’s what these scripts will do:

• dev will run a development environment, we’ll use it most frequently.
• build will build our application and generate rendered pages.
• start this script starts applications on production servers. We won’t use it in
this chapter

Adding TypeScript

By default, Next uses JavaScript. To integrate TypeScript, we need to performa
additional steps.

Add a few more development dependencies:

1 yarn add --dev typescript @types/react @types/node

Create an empty tsconfig.json file in the project root:

1 touch tsconfig.json

Next will add the configuration to it automatically when we run:

Static Site Generation and Server-Side Rendering Using Next.js 435

1 yarn dev

This command should open the application in the browser. If it didn’t, navigate to
http://localhost:3000 and open it manually.

Creating A First Page

When opened in the browser, the application will show error 404:

“Not found” error shown by default

This is fine. Next renders error 404 because we haven’t created any pages yet. Time
to fix this!

A page¹⁶⁹ in Next is a React Component exported from a .js, .jsx, .ts, or .tsx file
in the pages directory. This is why we have created that directory — to populate it

¹⁶⁹https://nextjs.org/docs/basic-features/pages

http://localhost:3000
https://nextjs.org/docs/basic-features/pages
https://nextjs.org/docs/basic-features/pages

Static Site Generation and Server-Side Rendering Using Next.js 436

with page components. We can think of them as of containers that are associated
with specific URLs.

In Next, routing is based on the file structure inside of the pages directory. For
example, pages/index.tsx will be rendered when the user requests the main page
of the site, and pages/contacts.tsx will be associated with /contacts.

To create our first page, let’s create a new file, pages/index.tsx, and export a React
component from it:

1 import React from "react"

2 import Head from "next/head"

3

4 export default function Front() {

5 return (

6 <>

7 <Head>

8 <title>Front page of the Internet</title>

9 </Head>

10 <main>Hello world from Next!</main>

11 </>

12)

13 }

We use a default export here. That’s Next requirement for the page components.

Another interesting thing is the Head component from next/head. This component
injects everything we pass it as children to the head element of an HTML page. In
our case, we only pass the title element with the page title. We can also put there
meta, link, and script tags if necessary.

As soon as the file has been created, Next should automatically refresh the browser
and show a new page that says “Hello world from Next!”.

Basic Application Layout

At this point, we want to create a basic application layout with header, footer, and
main content blocks. Let’s start with the Center component. It is a styled component

Static Site Generation and Server-Side Rendering Using Next.js 437

that does only one thing: aligns itself at the center of a page.

For styles, we want to use styled-components, install this package:

1 yarn add styled-components @types/styled-components

After installing this package, we can start using it in our code.

Create a new folder components, inside of it, create a folder called Center and there
create a file called style.ts:

1 import styled from "styled-components"

2

3 export const Center = styled.div`

4 max-width: 1000px;

5 padding: 0 20px;

6 margin: auto;

7

8 @media (max-width: 800px) {

9 max-width: 520px;

10 padding: 0 15px;

11 }

12 `

We will use this component to center content in many other places.

Add the index file:

1 export * from "./style"

Header component

Inside the components folder, create a folder called Header and there create a file
called Header.tsx:

Static Site Generation and Server-Side Rendering Using Next.js 438

1 import Link from "next/link"

2 import { Center } from "../Center"

3 import { Container, Logo } from "./style"

4

5 export const Header = () => {

6 return (

7 <Container>

8 <Center>

9 <Logo>

10 <Link href="/">

11 <a>What's Next?!

12 </Link>

13 </Logo>

14 </Center>

15 </Container>

16)

17 }

We declare the Header component with a few dependencies, such as the Head

component and style.ts.

We want to create a Container for our Header component that will stick to the top
of the page and contain all the component’s content:

1 import styled from "styled-components"

2

3 export const Container = styled.header`

4 position: fixed;

5 top: 0;

6 left: 0;

7 right: 0;

8

9 height: 50px;

10 padding: 7px 0;

11

12 background-color: white;

Static Site Generation and Server-Side Rendering Using Next.js 439

13 box-shadow: 0 1px 1px rgba(0, 0, 0, 0.2);

14 `

Then, we create a Logo, which is a styled h1 element. It uses props to get access to a
theme, which we will cover a bit later in this section:

1 export const Logo = styled.h1`

2 font-size: 1.6rem;

3 font-family: ${(p) => p.theme.fonts.accent};

4

5 a {

6 text-decoration: none;

7 color: black;

8 }

9

10 a:hover {

11 color: ${(p) => p.theme.colors.pink};

12 }

13 `

Add the index file:

1 export * from "./Header"

Next’s Link component

The next dependency we use in Header is the Link component¹⁷⁰ imported from
next/link. This component enables client-side transition between routes of our
application — basically, between pages¹⁷¹.

Note the structure of the Link we have created. At the top level, we use the Link

component and provide a href attribute to it, and inside we use an a element to
wrap link contents.

¹⁷⁰https://nextjs.org/docs/api-reference/next/link
¹⁷¹https://nextjs.org/docs/routing/introduction

https://nextjs.org/docs/api-reference/next/link
https://nextjs.org/docs/routing/introduction
https://nextjs.org/docs/api-reference/next/link
https://nextjs.org/docs/routing/introduction

Static Site Generation and Server-Side Rendering Using Next.js 440

Link requires exactly one element to be passed as a child. When we are unable to
pass an a element for some reason, we can use other elements or components and
force¹⁷² Link to pass the href prop further. This will be useful later when we use
styled links.

Footer Component

Finally, we create a Footer component to be placed at the bottom of our application’s
pages:

1 import { Center } from "../Center"

2 import { Container } from "./style"

3

4 export const Footer = () => {

5 const currentYear = new Date().getFullYear()

6

7 return (

8 <Container>

9 <Center>

10 Newline.co {currentYear}

11 </Center>

12 </Container>

13)

14 }

And the styles for it:

¹⁷²https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag

https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag
https://nextjs.org/docs/api-reference/next/link#if-the-child-is-a-custom-component-that-wraps-an-a-tag

Static Site Generation and Server-Side Rendering Using Next.js 441

1 import styled from "styled-components"

2

3 export const Container = styled.footer`

4 text-align: center;

5 border-top: 1px solid rgba(0, 0, 0, 0.1);

6 padding: 15px;

7 height: 50px;

8 `

The footer will display the current year and a link to Newline.co.

We use an a element instead of the Link component, because Link is only used
for navigation between application routes. If you try to use it for links to external
resources, Next will throw an error.

Add the index file:

1 export * from "./Footer"

Custom Document Component

We have created global styles and a theme, but if we look closely at the theme, we
can find that the accent font uses the "Permanent Marker" font family. This is not
the kind of font that every device has, so we need to include it.

We can use Google Fonts to get this font, but first, we need to decide where to put a
link element that would reference a stylesheet with this font. We could include it in
MyApp, but with Next, you could use a custom Document component¹⁷³ instead.

Next’s Document component not only encapsulates html and body declarations
but can also include initial props¹⁷⁴ for expressing asynchronous server-rendering
data requirements. In our case, initial props would be the styles used across the
application.

¹⁷³https://nextjs.org/docs/advanced-features/custom-document
¹⁷⁴https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object

https://nextjs.org/docs/advanced-features/custom-document
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://nextjs.org/docs/advanced-features/custom-document
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object

Static Site Generation and Server-Side Rendering Using Next.js 442

Why not simply render styled components as we usually do? That’s a tricky question:
since we want to create an application that is rendered on the server and then gets
“hydrated” on the client, we make sure that the page markup on the server and on
the client is equivalent. Otherwise, we would get an error notifying us that some
properties are not the same. That includes the styles and class names, and that is
exactly where a custom Document component can help us.

It is sometimes difficult to decide what component to use. To see the difference
between App and Document, let’s compare them:

App Document
Shared logic and layout Yes Not recommended¹⁷⁵
Global styles Yes Not recommended
Renders on… Client and server Server
Event handlers like
onClick

Will work Won’t work

Dev server needs to
restart after change

Yes Yes

Styled components
sheet collection

No Yes¹⁷⁶

Global middleware Page level only Application level,
request level

In addition, a custom getInitialProps() function in App will disable Automatic
Static Optimization in pages that don’t use static generation. Meanwhile, a custom
getInitialProps() in Document is not called during client-side transitions and when
a page is statically optimized.

Let’s now create a blueprint for a custom Document component. We need to import
ServerStyleSheet from styled-components to help us collect all styles to be sent to
the client. We also import a bunch of entities from next/document that we will cover
in detail later. For now, we’ll focus on Document.

¹⁷⁵https://nextjs.org/docs/advanced-features/custom-document#caveats
¹⁷⁶https://github.com/vercel/next.js/tree/master/with-styled-components

https://nextjs.org/docs/advanced-features/custom-document#caveats
https://github.com/vercel/next.js/tree/master/with-styled-components
https://nextjs.org/docs/advanced-features/custom-document#caveats
https://github.com/vercel/next.js/tree/master/with-styled-components

Static Site Generation and Server-Side Rendering Using Next.js 443

1 import React from "react"

2 import { ServerStyleSheet } from "styled-components"

3 import Document, {

4 Html,

5 Head,

6 Main,

7 NextScript,

8 DocumentContext

9 } from "next/document"

10

11 export default class MyDocument extends Document {

12 // ...

13 }

We create a component called MyDocument that extends Next’s Document component,
and then define the render() method inside:

1 render() {

2 return (

3 <Html>

4 <Head>

5 <meta

6 name="description"

7 content="The Next generation of a news feed"

8 />

9 <link

10 href="https://fonts.googleapis.com/css2?family=Permanent+Ma\

11 rker&display=swap"

12 rel="stylesheet"

13 />

14

15 {this.props.styles}

16 </Head>

17

18 <body>

19 <Main />

Static Site Generation and Server-Side Rendering Using Next.js 444

20 <NextScript />

21 </body>

22 </Html>

23)

24 }

We don’t use the html element - instead, we use the Html component imported from
next/document. This is because Html, Head, Main and NextScript are required for the
page to be properly rendered. Html is the root element, Main is a component that
will render pages, and NextScript is a service component required for Next to work
correctly.

Inside Head we create a meta element with description and a link element with a
link to fonts from Google Fonts. (If we needed links to other external resources, we
would add them here as well.) Then, we render this.props.styles — these are the
styles collected using ServerStyleSheet. We collect them in the getInitialProps()
method:

1 static async getInitialProps(ctx: DocumentContext) {

2 const sheet = new ServerStyleSheet()

3 const originalRenderPage = ctx.renderPage

4

5 try {

6 ctx.renderPage = () =>

7 originalRenderPage({

8 enhanceApp: (App) => (props) =>

9 sheet.collectStyles(<App {...props} />)

10 })

11

12 const initialProps = await Document.getInitialProps(ctx)

13

14 return {

15 ...initialProps,

16 styles: (

17 <>

18 {initialProps.styles}

Static Site Generation and Server-Side Rendering Using Next.js 445

19 {sheet.getStyleElement()}

20 </>

21)

22 }

23 } finally {

24 sheet.seal()

25 }

26 }

Because this method is static, it can be called on the class instead of a class
instance: Document.getInitialProps(). Note that it takes Next’s DocumentContext
as an argument. This object contains a lot of useful information¹⁷⁷, such as pathname
for page URL, req for request, res for response, as well as error object err to represent
any errors that occurred during rendering.

We extend the initial props with our styles prop to make it available in the
render() method. We create sheet, an instance of the ServerStyleSheet class
that helps collect styles from the whole application. Next, we “remember” the
ctx.renderPage() method in a constant called originalRenderPage to override the
original ctx.renderPage() method inside the try-finally clause.

When overriding it, we use the sheet.collectStyles()¹⁷⁸ method and pass the
whole rendered application as an argument. This collects all styles that we will later
be able to extract by calling sheet.getStyleElement().

We then save the original initialProps by calling Document.getInitialProps(). We
call it as a static method, which explains why we had to make our own component’s
getInitialProps() method static as well.

As a result, this method returns an object that contains all original initialProps plus
a styles prop. The styles prop holds a component with style elements representing
all styles that need to be sent along with page markup.

In the browser, this should look like a single style element filled with application
styles:

¹⁷⁷https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
¹⁷⁸https://styled-components.com/docs/advanced#example

https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://styled-components.com/docs/advanced#example
https://nextjs.org/docs/api-reference/data-fetching/getInitialProps#context-object
https://styled-components.com/docs/advanced#example

Static Site Generation and Server-Side Rendering Using Next.js 446

Final collected styles

In the finally clause we call the sheet.seal() method to make sure that the sheet
object is available for garbage collection¹⁷⁹.

Application Theme

Now it is time to create a theme for our application! Create a new file /shared/theme.ts
with the following imports:

1 import { createGlobalStyle, ThemeProps } from "styled-components"

First of all, we declare an object called theme with fonts and colors that we’re going
to use:

¹⁷⁹https://styled-components.com/docs/advanced#example

https://styled-components.com/docs/advanced#example
https://styled-components.com/docs/advanced#example

Static Site Generation and Server-Side Rendering Using Next.js 447

1 export const theme = {

2 fonts: {

3 basic: "Helvetica, sans-serif",

4 accent: '"Permanent Marker", cursive'

5 },

6 colors: {

7 orange: "#f4ae40",

8 blue: "#387af5",

9 pink: "#eb57a3"

10 // Credits: https://colors.lol/fou.

11 }

12 }

Then we create global styles for all pages. To do this, we declare a new type
MainThemeProps that will be used in the generic function createGlobalStyle() in
the next line:

1 export type MainThemeProps = ThemeProps<typeof theme>

2 export const GlobalStyle = createGlobalStyle<MainThemeProps>`

Then we create basic global styles for body, such as headings, links, and the .main

block:

1 export type MainThemeProps = ThemeProps<typeof theme>

2 export const GlobalStyle = createGlobalStyle<MainThemeProps>`

3 body {

4 margin: 0;

5 font-family: ${({ theme }) => theme.fonts.basic};

6 -webkit-font-smoothing: antialiased;

7 -moz-osx-font-smoothing: grayscale;

8 }

9

10 *,

11 *::after,

12 *::before { box-sizing: border-box; }

Static Site Generation and Server-Side Rendering Using Next.js 448

13

14 h1, h2, h3, h4, h5, h6 { margin: 0; }

15 a { color: ${({ theme }) => theme.colors.blue} }

16 a:hover { color: ${({ theme }) => theme.colors.pink} }

17

18 .main {

19 padding: 70px 0 20px;

20 min-height: calc(100vh - 50px);

21 }

22 `

We use this GlobalStyle component in MyApp to inject styles into pages.

From now on, we will focus on components and integration with Next rather
than styles. You can find all styles in the source code alongside the corresponding
components.

Custom App Component

Now that we have created all the components we need, let’s use them in our
application’s layout.

What if we just include these components in pages/index.tsx? This would work,
but then we would have to include them into every new page we’re going to create.
In addition to inconvenience, this would violate the DRY principle (Don’t Repeat
Yourself).

For this problem, Next has a solution. We can create a wrapper component for every
page that Next is going to render. This component is called App¹⁸⁰.

Next uses the App component to initialize pages. We can override it and control page
initialization, which lets us:

• Persist layout between page changes
• Keep the state when navigating pages
• Inject additional data into pages

¹⁸⁰https://nextjs.org/docs/advanced-features/custom-app

https://nextjs.org/docs/advanced-features/custom-app
https://nextjs.org/docs/advanced-features/custom-app

Static Site Generation and Server-Side Rendering Using Next.js 449

• Add global CSS

Let’s create this component and see how we can use it in our application.

1 import React from "react"

2 import Head from "next/head"

3 import { ThemeProvider } from "styled-components"

4

5 import { Header } from "../components/Header"

6 import { Footer } from "../components/Footer"

7 import { Center } from "../components/Center"

8 import { GlobalStyle, theme } from "../shared/theme"

• Head from next/head to override page title.
• ThemeProvider from styled-components to use a theme (we will create a theme
under shared/theme in a minute).

• All the components we created earlier.

Following the imports, we create a component called MyApp and export it. Next will
inject two props for us:

• The Component prop is the active page. When we navigate between routes,
Component will change to the new page.

• pageProps is an object with the initial props that were preloaded for a page.

We render Component inside and pass pageProps to it using the spread syntax. In
other words, we render the current page and pass all the props that it requires. For
example, when we create a category page, pageProps will contain posts to render on
that page.

We use Head and title to set a default page title, and Header and Footer to create a
layout. Finally, we wrap all of this in ThemeProvider to make sure that every styled
component has access to the theme.

Static Site Generation and Server-Side Rendering Using Next.js 450

1 export default function MyApp({ Component, pageProps }) {

2 return (

3 <ThemeProvider theme={theme}>

4 <GlobalStyle theme={theme} />

5 <Head>

6 <title>What's Next?!</title>

7 </Head>

8

9 <Header />

10 <main className="main">

11 <Center>

12 <Component {...pageProps} />

13 </Center>

14 </main>

15 <Footer />

16 </ThemeProvider>

17)

18 }

Front Page

We have now prepared everything to create our first page.

Single post

We’ll begin by creating a component to render the news posts. This component will
display a full post preview consisting of an image, a title, and a short text description.
Let’s define styles for this component, create a new file components/Post/PostCardStyle.ts
with the following content:

Static Site Generation and Server-Side Rendering Using Next.js 451

1 import styled from "styled-components"

2

3 export const Card = styled.a`

4 border-radius: 6px;

5 overflow: hidden;

6 background-color: #fff;

7 box-shadow: 0 0 0 1px rgba(0, 0, 0, 0.035),

8 0 4px 25px rgba(0, 0, 0, 0.07);

9 color: black;

10 text-decoration: none;

11 transition: all 0.2s;

12

13 &:hover {

14 color: black;

15 box-shadow: 0 0 0 1px rgba(0, 0, 0, 0.035),

16 0 6px 35px rgba(0, 0, 0, 0.2);

17 transform: translateY(-2px);

18 }

19 `

20

21 export const Figure = styled.figure`

22 padding: 56% 0 0;

23 margin: 0;

24 max-width: 100%;

25 position: relative;

26 overflow: hidden;

27 border-radius: 6px 6px 0 0;

28

29 img {

30 max-width: 100%;

31 position: absolute;

32 top: 0;

33 left: 0;

34 }

35 `

36

Static Site Generation and Server-Side Rendering Using Next.js 452

37 export const Title = styled.h3`

38 margin: 10px 20px;

39 font-size: 1.4rem;

40 `

41

42 export const Excerpt = styled.div`

43 margin: 0 20px 20px;

44

45 & > * {

46 margin: 0 0 10px;

47 }

48 `

Create a new file components/Post/PostCard.tsx:

1 import Link from "next/link"

2 import { Card, Figure, Title, Excerpt } from "./PostCardStyle"

3

4 export const PostCard = () => {

5 return (

6 <Link href="/post/example" passHref>

7 <Card>

8 <Figure>

9

10 </Figure>

11 <Title>Post title!</Title>

12 <Excerpt>

13 <p>

14 Lorem ipsum dolor sit amet, consectetur adipiscing elit,

15 sed do eiusmod tempor incididunt ut labore et dolore magna

16 aliqua.

17 </p>

18 </Excerpt>

19 </Card>

20 </Link>

Static Site Generation and Server-Side Rendering Using Next.js 453

21)

22 }

A couple of interesting things here.

First, the passHref prop passed to Link tells Next to push the href prop further to
the child of Link. This is because we pass a Card to the Link instead of an a element.
Card is a styled a element, so it is treated by Link not as an a, but something else.
Without this prop, an a element doesn’t get the href attribute.

Then, we define href prop on Link to tell Next what page to redirect to.

In earlier versions of Next (before 10), we needed to define as prop as well as href.
Previously, when working with dynamic routes¹⁸¹ in Next, we would use “[]” to
specify the dynamic part of a route. In our case, it would be [id]. The href was the
name of the page in the pages directory. And the as was the URL that will be shown
in the browser.

Also, the as prop was required for Next to determine which pages were to pre-render
at build time. Therefore it was possible to miss pre-rendering of some pages when
using dynamic segments in href. For example, in Next 9 this was okay:

1 <Link href="/posts/[id]" as={`/posts/${post.id}`} />

…and this wasn’t:

1 // this would break pre-rendering of that page

2 <Link href={`/posts/${post.id}`} />

Since Next 10 there is no need¹⁸² to specify the as prop anymore. So we can safely
use just href in our Card component.

The src="/image1.jpg" on the img element is a path for an image from our public
directory. By default, Next serves everything from public and makes it accessible
right from the / path. If we want to render an image, we use the src prop with a
path to an image relative to the public folder’s root.

¹⁸¹https://nextjs.org/docs/routing/dynamic-routes
¹⁸²https://nextjs.org/blog/next-10#automatic-resolving-of-href

https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/blog/next-10#automatic-resolving-of-href
https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/blog/next-10#automatic-resolving-of-href

Static Site Generation and Server-Side Rendering Using Next.js 454

Later in this chapter we will optimize images with the next/image compo-
nent that was introduced in the Next 10.

Define an index module that will export everything from the Post:

1 export * from "./PostCard"

News section

Now let’s create a component that will group the news posts into a section. First let’s
define the styles in the new file components/Section/style.ts:

1 import styled from "styled-components"

2

3 export const Grid = styled.div`

4 display: flex;

5 flex-wrap: wrap;

6 justify-content: space-between;

7

8 &:after {

9 content: "";

10 flex: auto;

11 }

12

13 &:after,

14 & > * {

15 width: calc(33% - 10px);

16 margin-bottom: 20px;

17 }

18

19 @media (max-width: 800px) {

20 &:after,

21 & > * {

22 width: 100%;

Static Site Generation and Server-Side Rendering Using Next.js 455

23 }

24 }

25 `

26

27 export const Title = styled.h2`

28 font-size: 2.8rem;

29 line-height: 1.1;

30 margin: 10px 0 15px;

31

32 @media (max-width: 800px) {

33 font-size: 2rem;

34 }

35 `

36

37 export const MoreLink = styled.a`

38 margin: -20px 0 30px;

39 display: inline-block;

40 vertical-align: top;

41 `

For now, the Section component’s props only require a title. We will change this
later.

1 import { PostCard } from "../Post"

2 import { Grid, Title } from "./style"

3

4 type SectionProps = {

5 title: string

6 }

A Section itself will contain a Title and a Grid with a bunch of Post cards inside.
The cards are hardcoded for now:

Static Site Generation and Server-Side Rendering Using Next.js 456

1 export const Section = ({ title }: SectionProps) => {

2 return (

3 <section>

4 <Title>{title}</Title>

5 <Grid>

6 <PostCard />

7 <PostCard />

8 <PostCard />

9 </Grid>

10 </section>

11)

12 }

In this project, we’re not using FunctionComponent<> type since none of our compo-
nents, except pages, accept children as a prop, and the FunctionComponent<> type
internally allows to pass children. To make sure that we don’t accidentally pass
any we will use another notation: the colon after function argument ({ title }:

SectionProps).

The Grid component is a styled component that uses display: flex to line up the
content inside. The :after pseudo-element is required to prevent elements in the last
row from wrong positioning¹⁸³:

1 import styled from "styled-components"

2

3 export const Grid = styled.div`

4 display: flex;

5 flex-wrap: wrap;

6 justify-content: space-between;

7

8 &:after {

9 content: "";

10 flex: auto;

11 }

12

¹⁸³https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid

https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid
https://stackoverflow.com/questions/18744164/flex-box-align-last-row-to-grid

Static Site Generation and Server-Side Rendering Using Next.js 457

13 &:after,

14 & > * {

15 width: calc(33% - 10px);

16 margin-bottom: 20px;

17 }

We also use @media to define adaptive styles for our grid:

1 @media (max-width: 800px) {

2 &:after,

3 & > * {

4 width: 100%;

5 }

6 }

Define an index module that will export everything from the Section:

1 export * from "./Section"

News feed

Now create a Feed component. Our Feedwill contain 3 sections with post cards inside.
These sections will represent news categories: science, technology, and arts.

1 import { Section } from "../Section"

2

3 export const Feed = () => {

4 return (

5 <>

6 <Section title="Science" />

7 <Section title="Technology" />

8 <Section title="Arts" />

9 </>

10)

11 }

Define the index module:

Static Site Generation and Server-Side Rendering Using Next.js 458

1 export * from "./Feed"

Update the Front component

Let’s update our Front component. Import the Feed and add it to the main element:

1 import { Feed } from "../components/Feed"

2 // ...

3 <main>

4 <Feed />

5 </main>

On the main page, you should now see 3 Section components that each contain 3
Post cards. However, if we click on any of the Post cards, we will see the default 404
page. Before we create a post page, let’s create a custom 404 page.

Page 404

To create a custom 404 page¹⁸⁴, we need to create a file called 404.tsx.

We define styles for our 404 page:

1 import styled from "styled-components"

2

3 const Container = styled.div`

4 display: flex;

5 flex-wrap: wrap;

6 justify-content: center;

7 align-items: center;

8 text-align: center;

9 `

10

¹⁸⁴https://nextjs.org/docs/advanced-features/custom-error-page

https://nextjs.org/docs/advanced-features/custom-error-page
https://nextjs.org/docs/advanced-features/custom-error-page

Static Site Generation and Server-Side Rendering Using Next.js 459

11 const Main = styled.h2`

12 font-size: 10rem;

13 line-height: 11rem;

14 font-family: ${(p) => p.theme.fonts.accent};

15 width: 100%;

16 `

17

18 const Description = styled.div`

19 width: 100%;

20 `

We keep them in the same file because Next requires all pages to contain a default
export for a component that is a page. This means we cannot create a directory 404

with a file 404/style.ts and extract styles in that file. Doing so would result in an
error when we build our project:

Build error occurred Error: Build optimization failed: found pages without
a React Component as default export in pages/404/style

See https://err.sh/zeit/next.js/page-without-valid-component formore info.

We could extract styles into some form of shared code, but since they’re fairly
compact, we will keep them around to have everything about this page in one place.

Create a component NotFound and make it a default export:

1 const NotFound = () => {

2 return (

3 <Container>

4 <Main>404</Main>

5 <Description>Oops! The page not found!</Description>

6 </Container>

7)

8 }

9

10 export default NotFound

https://err.sh/zeit/next.js/page-without-valid-component

Static Site Generation and Server-Side Rendering Using Next.js 460

Post Page Template

In our first take on this page, we won’t render any content. Instead, we will ensure
that we can get an ID of a post to load it from the server later.

To create a page that is responsible for a path with dynamic route segment¹⁸⁵, we
should add brackets to the page’s file name.

In our case, a new file will be called [id].tsx and located in the pages/post directory:

1 import { useRouter } from "next/router"

2

3 const Post = () => {

4 const { pathname, query } = useRouter()

5

6 return (

7 <div>

8 Pathname: {pathname};

9 Post Id: {query.id}.

10 </div>

11)

12 }

13

14 export default Post

There’s nothing special in this file so far. It uses the useRouter() hook¹⁸⁶ though, so
let’s see what it does.

useRouter() is a hook that provides access to the router object¹⁸⁷ that contains 2
useful values:

• pathname is the current route. This is the path of the page in the pages directory.
• query is a query string parsed to the object. It contains the id of the current
post that we will later use for loading data.

¹⁸⁵https://nextjs.org/docs/routing/dynamic-routes
¹⁸⁶https://nextjs.org/docs/api-reference/next/router#userouter
¹⁸⁷https://nextjs.org/docs/api-reference/next/router#router-object

https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/docs/api-reference/next/router#userouter
https://nextjs.org/docs/api-reference/next/router#router-object
https://nextjs.org/docs/routing/dynamic-routes
https://nextjs.org/docs/api-reference/next/router#userouter
https://nextjs.org/docs/api-reference/next/router#router-object

Static Site Generation and Server-Side Rendering Using Next.js 461

Backend API Server

Before we continue, let’s recall how our static site should work.

We have a bunch of pages that we want to pre-render. Pre-rendering should occur
once at build time, and then generated pages should be sent as responses to requests.

In order to be able to generate these pages, we need data to inject in them. We can
get this data in various ways:

• From the file system (for example, from .md files)
• Directly from a remote database
• From a backend server’s API

Next has a great example¹⁸⁸ that shows how to work with the file system. However,
we will create a backend server and fetch data from its API.

Let’s install the required dependencies:

1 yarn add body-parser concurrently cors express node-fetch ts-node

Now let’s update our scripts section:

1 "scripts": {

2 "build": "next build",

3 "start": "next start",

4 "serve": "ts-node -O '{\"module\": \"commonjs\"}' ./server/index.ts",

5 "dev": "concurrently --kill-others \"yarn serve\" \"next\""

6 },

Server setup

We’ve added a new script, serve, that sets up a server and updates the dev script to
run serve and next at the same time. The serve script will run a Node.js server using
a file called server/index.ts. Let’s create it:
¹⁸⁸https://nextjs.org/docs/basic-features/data-fetching#simple-example

https://nextjs.org/docs/basic-features/data-fetching#simple-example
https://nextjs.org/docs/basic-features/data-fetching#simple-example

Static Site Generation and Server-Side Rendering Using Next.js 462

1 import express from "express"

2 import cors from "cors"

3 import bodyParser from "body-parser"

4

5 const categories = require("./categories.json")

6 const posts = require("./posts.json")

7 const app = express()

8

9 app.use(cors())

10 app.use(bodyParser.json())

In this file, we import both data and all the packages we’re going to use. We could
use a database such asMongoDB, but for the sake of simplicity wewill read data right
from JSON files. You can find these files in the 05-next-ssg/05.13-backend-api-server/server
directory.

We use the cors package to enable sending requests to the server from a different
localhost port. We also use body-parser to simplify parsing data from request bodies
later on.

Post data and type

We are going to use predefined JSON files for our data. We’ll use the posts.json file
to store the data for our posts and the categories.json to store the list of category
names. You can find these files in the 05-next-ssg/completed/server directory.
Copy them to your project server directory.

The categories.json should look like this:

1 ["Science", "Technology", "Arts"]

Let’s take a quick look at posts.json to see what kind of structure a single post will
have. A post is an object with an ID, metadata, text content, and an image:

Static Site Generation and Server-Side Rendering Using Next.js 463

1 {

2 "id": 1,

3 "title": "Post title",

4 "date": "2020-04-23",

5 "category": "Technology",

6 "source": "Link to original post or source",

7 "image": "Link to image",

8 "lead": "Lead paragraph",

9 "content": "Text content of this post"

10 }

11 ...

With that in mind, let’s design a TypeScript type representing a post, which we will
later use in client and server code. We create a file called types.ts in the shared

directory:

1 export type UriString = string

2 export type UniqueString = string

3 export type EntityId = number | UniqueString

4

5 export type Category = "Technology" | "Science" | "Arts"

6 export type DateIsoString = string

Inside this file, we create a union type Category. We also create a few common type
aliases (UriString, UniqueString, EntityId and DateIsoString) to make types more
expressive in describing the intent of our code. We then use all these types to describe
the Post type:

Static Site Generation and Server-Side Rendering Using Next.js 464

1 export type Post = {

2 id: EntityId

3 date: DateIsoString

4 category: Category

5 title: string

6 lead: string

7 content: string

8 image: UriString

9 source: UriString

10 }

API endpoints

We now want to create API endpoints to make data accessible via GET requests:

1 const port = 4000

2

3 app.get("/posts", (_, res) => {

4 return res.json(posts)

5 })

6

7 app.get("/categories", (_, res) => {

8 return res.json(categories)

9 })

10

11 app.listen(port, () =>

12 console.log(`DB is running on http://localhost:${port}!`)

13)

We set up port 4000 for this server and create 2 endpoints: /posts and /categories.
When a client sends a request to http://localhost:4000/posts, it will get the list of
posts as a response. Same goes for /categories: a request sent to http://localhost:4000/categories
results in a response with the list of categories.

Static Site Generation and Server-Side Rendering Using Next.js 465

Frontend API Client

Now that we have created a server API, we can create a frontend client for that API.
Let’s create a new directory, api, with 2 files in it: config.ts and summary.ts.

config.ts will contain configuration settings for our requests. The baseUrl setting
will help us reduce duplication across our request functions:

1 export const config = {

2 baseUrl: "http://localhost:4000"

3 }

summary.ts will contain functions for fetching data for the main page from our
server:

1 import fetch from "node-fetch"

2 import { Post, Category } from "../shared/types"

3 import { config } from "./config"

4

5 export async function fetchPosts(): Promise<Post[]> {

6 const res = await fetch(`${config.baseUrl}/posts`)

7 return await res.json() as Promise<Post[]>

8 }

9

10 export async function fetchCategories(): Promise<Category[]> {

11 const res = await fetch(`${config.baseUrl}/categories`)

12 return await res.json() as Promise<Category[]>

13 }

When Next builds a project, it runs outside of the browser environment, where it
does not have access to the fetch() function. The node-fetch package provides the
fetch() function in the Node environment.

Then there are two async functions that both return Promise objects:

• fetchPosts() requests /posts and returns a promise of Post[].

Static Site Generation and Server-Side Rendering Using Next.js 466

• fetchCategories() requests /categories and returns a promise of Category[].

We will use these functions to fetch and pre-fetch data for the main page.

Updating The Main Page

Now that functions for data fetching are ready, we can use them to fetch data on the
main page.

Make the imports:

1 import { Post, Category } from "../shared/types"

2 import { Feed } from "../components/Feed"

3 import { fetchPosts, fetchCategories } from "../api/summary"

Add the posts and categories as props:

1 type FrontProps = {

2 posts: Post[]

3 categories: Category[]

4 }

Use this new type for the Front component props:

1 export default function Front({ posts, categories }: FrontProps) {

2 return (

3 <>

4 <Head>

5 <title>Front page of the Internet</title>

6 </Head>

7

8 <main>

9 <Feed posts={posts} categories={categories} />

10 </main>

11 </>

12)

13 }

Static Site Generation and Server-Side Rendering Using Next.js 467

We also change the Feed component’s API to make it accept posts and categories as
props. Before we update it, let’s take a look at how we can pre-render this page.

Fetching data

Next has a concept of static props¹⁸⁹ that are injected to a page component at build
time. In our case, categories and posts for the main page will be represented as static
props.

In order to tell Next that wewant to fetch some data and pre-render a page, we export
an async function called getStaticProps():

1 export async function getStaticProps() {

2 const categories = await fetchCategories()

3 const posts = await fetchPosts()

4 return { props: { posts, categories } }

5 }

This function makes 2 requests to our backend API: fetchCategories() fetches
categories for the main page, and fetchPosts() fetches posts. Then, we return an
object with props that contain categories and posts.

This object is going to be injected as Front component’s props, making them available
inside the component. We should be aware that getStaticProps() only runs on the
server side. It will never run on the client and won’t even be included in a bundle for
the browser.

Updating Feed

It is now time to update the Feed component, since we want to pass the props from
the Front page.

¹⁸⁹https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation

https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation

Static Site Generation and Server-Side Rendering Using Next.js 468

1 import { Post, Category } from "../../shared/types"

2 // ...

3 type FeedProps = {

4 posts: Post[]

5 categories: Category[]

6 }

We start by declaring an type called FeedProps and accessing the props inside the
component:

1 import { Section } from "../Section"

2 // ...

3 export const Feed = ({ posts, categories }: FeedProps) => {

4 return (

5 <>

6 {categories.map((currentCategory) => {

7 const inSection = posts.filter(

8 (post) => post.category === currentCategory

9)

10

11 return (

12 <Section

13 key={currentCategory}

14 title={currentCategory}

15 posts={inSection}

16 />

17)

18 })}

19 </>

20)

21 }

Then we iterate over each category and filter posts for it. Finally, we render a Section
for each category and pass title and posts for this category as props.

Static Site Generation and Server-Side Rendering Using Next.js 469

Updating Section

The Section component needs to be updated as well.

We start by declaring a SectionProps type and accessing the props inside the
component:

1 import { Post } from "../../shared/types"

2 // ...

3

4 type SectionProps = {

5 title: string

6 posts: Post[]

7 }

Then we render Title and Grid with Post cards inside:

1 import { PostCard } from "../Post"

2 import { Grid, Title } from "./style"

3 // ...

4 export const Section = ({ title, posts }: SectionProps) => {

5 return (

6 <section>

7 <Title>{title}</Title>

8 <Grid>

9 {posts.map((post) => (

10 <PostCard key={post.id} post={post} />

11))}

12 </Grid>

13 </section>

14)

15 }

Updating Post card

Update the Post card component. Open the components/Post/PostCard.tsx, update
the imports and the props type:

Static Site Generation and Server-Side Rendering Using Next.js 470

1 import Link from "next/link"

2 import { Post } from "../../shared/types"

3 import { Card, Figure, Title, Excerpt } from "./PostCardStyle"

4

5 type PostCardProps = {

6 post: Post

7 }

We declare a new type PostProps with one field, post.

Update the component layout:

1 export const PostCard = ({ post }: PostCardProps) => {

2 return (

3 <Link href={`/post/${post.id}`} passHref>

4 <Card>

5 <Figure>

6

7 </Figure>

8 <Title>{post.title}</Title>

9 <Excerpt>{post.lead}</Excerpt>

10 </Card>

11 </Link>

12)

13 }

Here we render a Link with 2 props:

• href specifies the path to our post/[id].tsx page.
• passHref forces Next to pass href further to a child component.

We also render an image, a title and lead text from the post.

Run yarn dev and see the result!

Static Site Generation and Server-Side Rendering Using Next.js 471

Statically generated front page

As we can see, the front page displays categories fetched from the server. Each
category contains a list of posts for that category that was also fetched from our
backend API.

Pre-Render Post Page

Post API

First, we need to create an API endpoint to get data for a single post. Open
server/index and import the Post type:

1 import { Post } from "../shared/types"

Then define a new server endpoint to get a single post:

Static Site Generation and Server-Side Rendering Using Next.js 472

1 app.get("/posts/:id", (req, res) => {

2 const wantedId = String(req.params.id)

3 const post = posts.find(({ id }: Post) => String(id) === wantedId)

4 return res.json(post)

5 })

A new endpoint, /posts/:id, extracts the id of a requested post, searches for the post
with this id in the list of all posts, and returns what it found.

Define the function to fetch that data. Create api/post.ts with the following code:

1 import fetch from "node-fetch"

2 import { Post, EntityId } from "../shared/types"

3 import { config } from "./config"

4

5 export async function fetchPost(id: EntityId): Promise<Post> {

6 const res = await fetch(`${config.baseUrl}/posts/${id}`)

7 return await res.json()

8 }

This fetchPost() function takes an EntityId of a post and returns a Promise of a
Post. That’s it!

Static props and static paths on the post page

Since the Post component will accept data via props, we want to declare a props
type:

Static Site Generation and Server-Side Rendering Using Next.js 473

1 import { GetStaticProps } from "next"

2 import { useRouter } from "next/router"

3 import { fetchPost } from "../../api/post"

4 import { Post as PostType } from "../../shared/types"

5 import { Loader } from "../../components/Loader"

6 import { postPaths as paths } from "../../shared/staticPaths"

7 import { PostBody } from "../../components/Post/PostBody"

8

9 type PostProps = {

10 post: PostType

11 }

As this page is also going to be pre-rendered, we create the getStaticProps()

function:

1 export const getStaticProps: GetStaticProps<PostProps> = async ({

2 params

3 }) => {

4 if (typeof params.id !== "string") throw new Error("Unexpected id")

5 const post = await fetchPost(params.id)

6 return { props: { post } }

7 }

We check if params.id is a string because this field can also be an array of strings.

We import GetStaticProps from next to declare this function’s arguments types and
the returned result.

We pass a context object¹⁹⁰ as an argument to this function. It contains the params
object with route parameters for pages that use dynamic routes. Since our page has
a dynamic segment ([id]), this object has an id property with a value equal to the
id of the current post, which we will use to fetch data.

¹⁹⁰https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation

https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticprops-static-generation

Static Site Generation and Server-Side Rendering Using Next.js 474

Static paths

There is another exported function, getStaticPaths(). This function determines¹⁹¹
which paths should be rendered to HTML at build time:

1 export async function getStaticPaths() {

2 return { paths, fallback: true }

3 }

This function returns an object with 2 fields: fallback and paths.

fallback is set to true. When it’s false, any paths not returned by getStaticPaths()
will result in a 404 page. When true, Next returns the “fallback” version of these
paths.

In our case, the router.isFallback property is used to render the Loader component
(which we’ll discuss later). When a user requests a page that is not yet rendered but
has a “fallback”, they see a Loader. Meanwhile in the background, Next statically
generates HTML and JSON for the requested path. As soon as the browser receives
HTML and JSON, the “fallback” page is replaced with a real rendered page.

The second property is paths. This is the list of paths that should be rendered at build
time. In our case, we take them from the shared/staticPaths.ts file:

1 import { EntityId } from "./types"

2

3 type PostStaticParams = {

4 id: EntityId

5 }

6

7 type PostStaticPath = {

8 params: PostStaticParams

9 }

10

11 const staticPostsIdList: EntityId[] = [1, 2, 3, 4, 5, 6, 7, 8, 9]

12

¹⁹¹https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation

https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation
https://nextjs.org/docs/basic-features/data-fetching#getstaticpaths-static-generation

Static Site Generation and Server-Side Rendering Using Next.js 475

13 export const postPaths: PostStaticPath[] = staticPostsIdList.map(

14 (id) => ({

15 params: { id: String(id) }

16 })

17)

In this file, we generate a list of objects that follow the structure {params: { id:

post.id }} for each post. This is our way of telling Next the IDs of posts that it
should pre-render.

Let’s now complete our Post page component:

1 const Post = ({ post }: PostProps) => {

2 const router = useRouter()

3

4 if (router.isFallback) return <Loader />

5 return <PostBody post={post} />

6 }

7

8 export default Post

We use the useRouter() hook to access the router object. We then check if
router.isFallback is true. If so, it means that this post hasn’t been pre-rendered,
and we render the Loader component. Otherwise, we render the PostBody compo-
nent.

Loader component

The Loader component simply displays a message that says Loading...:

Static Site Generation and Server-Side Rendering Using Next.js 476

1 import { Container } from "./style"

2

3 export const Loader = () => {

4 return <Container>Loading...</Container>

5 }

And the styles for it:

1 import styled from "styled-components"

2

3 export const Container = styled.div`

4 font-family: ${(p) => p.theme.fonts.accent};

5 `

Don’t forget to define the index.ts file:

1 export * from "./Loader"

PostBody component

To render the whole post, we’ll create a PostBody component. Let’s begin with styles
for it. Create a new file components/Post/PostBodyStyle.ts:

1 import styled from "styled-components"

2

3 export const Title = styled.h2`

4 font-size: 2.8rem;

5 line-height: 1.2;

6 margin: 10px 0 20px;

7

8 @media (max-width: 800px) {

9 font-size: 1.8rem;

10 margin: 15px 0;

11 }

Static Site Generation and Server-Side Rendering Using Next.js 477

12 `

13

14 export const Figure = styled.figure`

15 padding: 35% 0 0;

16 margin: 0 0 30px;

17 max-width: 100%;

18 position: relative;

19 overflow: hidden;

20 border-radius: 6px;

21

22 img {

23 width: 100%;

24 height: 100%;

25 position: absolute;

26 top: 0;

27 object-fit: cover;

28 object-position: center;

29 }

30

31 @media (max-width: 800px) {

32 margin-bottom: 20px;

33 }

34 `

35

36 export const Content = styled.div`

37 font-size: 1.25rem;

38 line-height: 1.4;

39 max-width: 800px;

40 `

41

42 export const Meta = styled.footer`

43 color: ${(p) => p.theme.colors.gray};

44

45 & > * {

46 margin-right: 0.3em;

47 }

Static Site Generation and Server-Side Rendering Using Next.js 478

48 `

that takes post as a prop:

1 import Link from "next/link"

2 import { Post } from "../../shared/types"

3 import { Title, Figure, Content, Meta } from "./PostBodyStyle"

4

5 type PostBodyProps = {

6 post: Post

7 }

The component returns a block that starts with the main post info:

1 export const PostBody = ({ post }: PostBodyProps) => {

2 return (

3 <div>

4 <Title>{post.title}</Title>

5 <Figure>

6

7 </Figure>

8

9 <Content dangerouslySetInnerHTML={{ __html: post.content }} />

…and proceeds with post metadata:

Static Site Generation and Server-Side Rendering Using Next.js 479

1 <Meta>

2 {post.date}

3 ·

4 <Link href={`/category/${post.category}`}>

5 <a>{post.category}

6 </Link>

7 ·

8 Source

9 </Meta>

10 </div>

11)

12 }

For simplicity, we use dangerouslySetInnerHTML in the Content component. Since
our posts have HTML markup in their content fields, we render them right away.
In a real-world application, we should consider text preprocessing to avoid XSS and
other security vulnerabilities.

Among other things, Meta contains a link to the category page. This is the page we’re
going to create next. For now, let’s run yarn dev to see what a post page looks like:

Static Site Generation and Server-Side Rendering Using Next.js 480

Statically generated post page

It’s working!

Category Page

The last thing to do before our application is ready is create a category page. It will
contain a list of posts from a given category. Again, we will start with API.

Category API

Let’s create a new endpoint at /categories/:id. We use id as category identifier and
search for posts that have the category field with the same value:

Static Site Generation and Server-Side Rendering Using Next.js 481

1 app.get("/categories/:id", (req, res) => {

2 const { id } = req.params

3 const found = posts.filter(({ category }: Post) => category === id)

4 const categoryPosts = [...found, ...found, ...found]

5 return res.json(categoryPosts)

6 })

Then we repeat the list of found posts 3 times, just to make it look longer than it
really is. In a real-world API, we would instead make a request to a database and
pull a list of category posts from there.

Now we need to create a function for fetching category data. Create a new file
api/category.ts with the following contents:

1 import fetch from "node-fetch"

2 import { Post, EntityId } from "../shared/types"

3 import { config } from "./config"

4

5 export async function fetchPosts(

6 categoryId: EntityId

7): Promise<Post[]> {

8 const url = `${config.baseUrl}/categories/${categoryId}`

9 const res = await fetch(url)

10 return await res.json()

11 }

The function fetchPosts() takes a category identifier EntityId and returns a
Promise of Post[].

Define the staticPaths for the category page. Open shared/staticPaths.ts and
add the following imports:

1 import { EntityId, Category } from "./types"

Define the CategoryStaticParams and CategoryStaticPath types:

Static Site Generation and Server-Side Rendering Using Next.js 482

1 type CategoryStaticParams = {

2 id: Category

3 }

4

5 type CategoryStaticPath = {

6 params: CategoryStaticParams

7 }

Category page component

Next we want to create the Category page component. First of all, let’s design props
for it. The Category component should take a list of Post items as the posts prop:

1 import { GetStaticProps } from "next"

2 import { useRouter } from "next/router"

3 import { Post } from "../../shared/types"

4 import { fetchPosts } from "../../api/category"

5 import { Section } from "../../components/Section"

6 import { Loader } from "../../components/Loader"

7 import { categoryPaths as paths } from "../../shared/staticPaths"

8

9 type CategoryProps = {

10 posts: Post[]

11 }

Since we want this page to be pre-rendered as well, we create a getStaticProps()

function. Inside we call fetchPosts() and return a props object with the posts

property:

Static Site Generation and Server-Side Rendering Using Next.js 483

1 export const getStaticProps: GetStaticProps<CategoryProps> = async ({

2 params

3 }) => {

4 if (typeof params.id !== "string") throw new Error("Unexpected id")

5 const posts = await fetchPosts(params.id)

6 return { props: { posts } }

7 }

Wealsowant to create a getStaticPaths() function to go alongwith getStaticProps().
Again, we set fallback to true to make sure that pages don’t return 404 when they
are not pre-rendered:

1 export async function getStaticPaths() {

2 return { paths, fallback: true }

3 }

Static paths for this page will be a list of objects with {params: { id: category }}. By
default, we choose to pre-render 3 categories that are specified in categoriesToPreRender:

1 const categoriesToPreRender: Category[] = [

2 "Science",

3 "Technology",

4 "Arts"

5]

6

7 export const categoryPaths: CategoryStaticPath[] =

8 categoriesToPreRender.map((category) => ({

9 params: { id: category }

10 }))

Finally, if the page is not pre-rendered, we display the Loader component. Otherwise,
a Section gets rendered:

Static Site Generation and Server-Side Rendering Using Next.js 484

1 const Category = ({ posts }: CategoryProps) => {

2 const router = useRouter()

3

4 if (router.isFallback) return <Loader />

5 return <Section posts={posts} title={String(router.query.id)} />

6 }

7

8 export default Category

Updating Section

We currently use our Section component both on the main page and on the category
page. The main page only contains 3 post cards per section. Let’s create a link that
says “More in this section” on the main page to refer the user to the section page.

First, let’s update SectionProps and append an optional isCompact field that will
define whether the “More” link should be rendered:

1 import Link from "next/link"

2 import { Post } from "../../shared/types"

3 import { PostCard } from "../Post"

4 import { Grid, Title, MoreLink } from "./style"

5

6 type SectionProps = {

7 title: string

8 posts: Post[]

9 isCompact?: boolean

10 }

Here’s how we access this prop:

Static Site Generation and Server-Side Rendering Using Next.js 485

1 export const Section = ({

2 title,

3 posts,

4 isCompact = false

5 }: SectionProps) => {

Then we conditionally render a Link component that leads to a given category:

1 return (

2 <section>

3 <Title>{title}</Title>

4 <Grid>

5 {posts.map((post) => (

6 <PostCard key={post.id} post={post} />

7))}

8 </Grid>

9

10 {isCompact && (

11 <Link href={`/category/${title}`} passHref>

12 <MoreLink>More in {title}</MoreLink>

13 </Link>

14)}

15 </section>

16)

Once again we use passHref to force the Link component to pass href further down
to MoreLink, which is a styled link:

1 export const MoreLink = styled.a`

2 margin: -20px 0 30px;

3 display: inline-block;

4 vertical-align: top;

5 `

When isCompact is not true, we shouldn’t see this link. We’ll handle it later though
- for now, we need to update Feed to enable rendering this link on the main page:

Static Site Generation and Server-Side Rendering Using Next.js 486

1 return (

2 <>

3 {categories.map((currentCategory) => {

4 const inSection = posts.filter(

5 (post) => post.category === currentCategory

6)

7

8 return (

9 <Section

10 key={currentCategory}

11 title={currentCategory}

12 posts={inSection}

13 />

14)

15 })}

16 </>

17)

18 }

We append the isCompact prop to Section components inside map(). As a result, all
sections in Feed will now render MoreLink and provide access to category pages.

Adding Breadcrumbs

The last thing we would like to show to our users is breadcrumbs on post pages.
Breadcrumbs is a component that contains a “link path” from the main page to the
current page. In our case, it will show links to the main page and to the category that
the current post belongs to.

Let’s create the Breacrumbs component. Create a new folder components/Breadcrumbs.
Inside of this folder create the styles.ts file. We’ll need only one styled component
for breadcrumbs, the Container:

Static Site Generation and Server-Side Rendering Using Next.js 487

1 import styled from "styled-components"

2

3 export const Container = styled.nav`

4 & > * {

5 margin-right: 0.3em;

6 }

7 `

It is going to be a styled nav element.

Now create a new file component/Breadcrumbs/Breadcrumbs.tsx. Start with the
BreadcrumbsProps type, and getting access to the post prop:

1 import Link from "next/link"

2 import { Post } from "../../shared/types"

3 import { Container } from "./style"

4

5 type BreadcrumbsProps = {

6 post: Post

7 }

Then we render a Container (a styled nav element) that contains a couple of links:

1 export const Breadcrumbs = ({ post }: BreadcrumbsProps) => {

2 return (

3 <Container>

4 <Link href="/">

5 <a>Front

6 </Link>

7 �

8 <Link href={`/category/${post.category}`}>

9 <a>{post.category}

10 </Link>

11 </Container>

12)

13 }

Static Site Generation and Server-Side Rendering Using Next.js 488

Open the components/Post/PostBody.tsx file and import the breadcrumbs compo-
nent:

1 import { Breadcrumbs } from "../../components/Breadcrumbs"

Finally, we render Breadcrumbs in the PostBody component right above the post title:

1 <div>

2 <Breadcrumbs post={post} />

3 <Title>{post.title}</Title>

Now let’s make the component accessible outsiede of themodule. Create an index.ts
file inside of the components/Breadcrumbs directory:

1 export * from "./Breadcrumbs"

Comments and Server-Side Rendering

So far we have been working with content that can be pre-fetched and rendered in
advance at build time. What if we wanted to use some dynamic content on our pages,
such as comments?

First of all, we wouldn’t be able to use static site generation anymore, because users
can write comments after we build our site, and we would not be able to display
them. This is where server-side rendering (SSR) comes in.

Updates on each request

As we recall, with SSR pages get updated on each request¹⁹². This is exactly what we
need for our comments to be rendered and updated.

We will still get rendered HTML from our server, but this HTML won’t include
comments at build time. Instead, comments will be rendered “live” at request time
on the server.
¹⁹²https://nextjs.org/docs/basic-features/pages#server-side-rendering

https://nextjs.org/docs/basic-features/pages#server-side-rendering
https://nextjs.org/docs/basic-features/pages#server-side-rendering

Static Site Generation and Server-Side Rendering Using Next.js 489

Comments backend API

Let’s create a mock API for our comments. The comment data structure will look
like this:

1 {

2 "id": 13,

3 "author": "Theodore Roosevelt",

4 "content": "Believe you can and you're halfway there.",

5 "time": "1 hour ago",

6 "post": 7

7 }

This object contains:

• id, the comment ID.
• author, the name of the author of the comment.
• content, comment text.
• time, a string with relative time. In a real API it would be a timestamp or ISO
string, but for our example, a simple string works fine.

• post, the ID of a post that this comment is written for.

You can copy the server/comments.json file from the completed folder. Put this file
in the server folder of your project.

We’ll need a helper function that will return a list of comments for a given post ID.

1 const found = posts.filter(

2 ({ category: id }: Post) => id === req.params.id

3)

Back in server/index.ts, we create another endpoint that returns comments for a
given post:

Static Site Generation and Server-Side Rendering Using Next.js 490

1 app.get("/comments/:post", (req, res) => {

2 const postId = Number(req.params.post)

3 const found = comments.filter(({ post }) => post === postId)

4 return res.json(found)

5 })

We get a post ID from a URL and filter through the comments array that we import
above:

1 const comments = require("./comments.json")

Comment type

Now that the server API is ready, let’s create client code. First of all, we want to
describe comments in TypeScript terms. To do this, we create a new type in types.ts

called Comment:

1 export type Person = string

2 export type RelativeTime = string

3 export type Comment = {

4 id: EntityId

5 author: Person

6 content: string

7 time: RelativeTime

8 post: EntityId

9 }

It defines the comment data structure in terms of types and uses 2 new types:

• Person is just a string in our example, but it could be a more complex data
structure.

• RelativeTime, again, is just a string in our example.

Go to api/comments/fetch.ts and add the imports:

Static Site Generation and Server-Side Rendering Using Next.js 491

1 import fetch from "node-fetch"

2 import { Comment, EntityId } from "../../shared/types"

3 import { config } from "../config"

Now we can create the fetchComments() function that takes postId as an argument
and returns a Promise<Comment[]>:

1 export async function fetchComments(

2 postId: EntityId

3): Promise<Comment[]> {

4 const res = await fetch(`${config.baseUrl}/comments/${postId}`)

5 return await res.json()

6 }

Components to render comments

Let’s create components to render our comments on a page. We will need 3 of them:

• Comment for a single comment.
• CommentForm to enable users to post new comments.
• Comments as a container that will wrap the two components above.

Component for a single comment

The Comment component will take a comment as a prop. Its markup will include the
author’s name, comment text, and creation date.

Add imports:

Static Site Generation and Server-Side Rendering Using Next.js 492

1 import React from "react"

2 import { Comment as CommentType } from "../../shared/types"

3 import { Container, Author, Body, Meta } from "./style"

4

5 type CommentProps = {

6 comment: CommentType

7 }

…then define the component:

1 export const Comment: React.FC<CommentProps> = ({ comment }) => {

2 return (

3 <Container>

4 <Author>{comment.author}</Author>

5 <Body>{comment.content}</Body>

6 <Meta>{comment.time}</Meta>

7 </Container>

8)

9 }

Here’s the code that we will use to style our comments:

1 import styled from "styled-components"

2

3 export const Container = styled.article`

4 padding: 10px 0;

5 `

6

7 export const Author = styled.h4`

8 display: block;

9 font-size: 1rem;

10 `

11 export const Body = styled.p`

12 margin: 0;

13 `

Static Site Generation and Server-Side Rendering Using Next.js 493

14

15 export const Meta = styled.footer`

16 color: ${(p) => p.theme.colors.gray};

17 font-size: 0.8em;

18 `

Don’t forget to create an index.ts file in the components/Comment directory and
export the Comment component from there:

1 export * from "./Comment"

Comment form

To provide a form for our users to send comments, we’ll create a CommentForm

component. Let’s start with the styles for this component. Create a new folder
components/CommentForm and inside of it create a file style.ts with the following
code:

1 import styled from "styled-components"

2

3 export const Form = styled.form`

4 input,

5 textarea {

6 display: block;

7 width: 100%;

8 border: 1px solid rgba(0, 0, 0, 0.1);

9 box-shadow: none;

10 resize: none;

11 font-size: 1em;

12 padding: 5px;

13 border-radius: 2px;

14 margin: 10px 0;

15 }

16

Static Site Generation and Server-Side Rendering Using Next.js 494

17 button {

18 border: 0;

19 font-size: 1rem;

20 padding: 8px 20px;

21 border-radius: 6px;

22 background-color: #fff;

23 box-shadow: 0 0 0 1px rgba(0, 0, 0, 0.035),

24 0 4px 25px rgba(0, 0, 0, 0.07);

25 transition: all 0.2s;

26 cursor: pointer;

27

28 &:hover {

29 box-shadow: 0 0 0 1px rgba(0, 0, 0, 0.035),

30 0 6px 35px rgba(0, 0, 0, 0.2);

31 }

32 }

33 `

Now let’s create the CommentForm component. Create a new file components/CommentForm/CommentForm.tsx,
add the imports and define the props type:

1 import React, { useState, FormEvent } from "react"

2 import { EntityId } from "../../shared/types"

3 import { Form } from "./style"

4 import { submitComment } from "../../api/comments/submit"

5

6 type CommentFormProps = {

7 post: EntityId

8 }

We pass it a prop with post ID, which will later help us figure out which post this
form should be attached to.

Inside CommentForm we create 3 fields for the local state: loading, name and value:

• name is the author’s name.

Static Site Generation and Server-Side Rendering Using Next.js 495

• value is comment text.
• loading is a flag that is true if a comment is currently being submitted.

1 export const CommentForm: React.FC<CommentFormProps> = ({ post }) => {

2 const [loading, setLoading] = useState<boolean>(false)

3 const [value, setValue] = useState<string>("")

4 const [name, setName] = useState<string>("")

5 // ...

6 }

This component returns a form element with input and textarea elements inside:

1 return (

2 <Form onSubmit={submit}>

3 <h3>Your comment</h3>

4 <input

5 type="text"

6 name="name"

7 value={name}

8 placeholder="Your name"

9 onChange={(e) => setName(e.target.value)}

10 required

11 />

12 <textarea

13 name="comment"

14 value={value}

15 placeholder="What do you think?"

16 onChange={(e) => setValue(e.target.value)}

17 required

18 />

19 {loading ? Submitting... : <button>Submit</button>}

20 </Form>

21)

We also create an async function that should be called when the form is submitted.
Here’s what this function does:

Static Site Generation and Server-Side Rendering Using Next.js 496

• It disables the default HTTP form submission behaviorwith e.preventDefault().
• It sets loading to true, which replaces the Submit button with a label that says
“Submitting…”

• It calls submitComment().
• After receiving a response from the server, it checks if the response status is 201
(which means that something was created), and if so, it refreshes the page to
get fresh comments.

1 async function submit(e: FormEvent<HTMLFormElement>) {

2 e.preventDefault()

3 setLoading(true)

4

5 const { status } = await submitComment(post, name, value)

6 setLoading(false)

7

8 if (status === 201) {

9 location.hash = "comments"

10 location.reload()

11 }

12 }

Later we’ll make reloading the page unnecessary.

Create a new file components/CommentForm/index.ts and export the CommentForm

component from there:

1 export * from "./CommentForm"

API for Adding Comments

Our function submitComment() looks like this:

Static Site Generation and Server-Side Rendering Using Next.js 497

1 import { EntityId, Person } from "../../shared/types"

2 import { config } from "../config"

3

4 export async function submitComment(

5 postId: EntityId,

6 name: Person,

7 comment: string

8): Promise<Response> {

9 return await fetch(`${config.baseUrl}/posts/${postId}/comments`, {

10 method: "POST",

11 headers: { "Content-Type": "application/json;charset=utf-8" },

12 body: JSON.stringify({ name, comment })

13 })

14 }

It takes postId, name and comment, creates an object, converts it to a string using
JSON.stringify(), and sends it to the server. We include postId in the URL of an
endpoint that we send a request to.

On the backend, we create a new comment object and respond with status 201. Right
now the code for creating a comment looks more like a mock than real code. In a
real-world API, we would save the comment to a database. However, in our example
we keep the comments array in memory and push() a new value to it when we submit
a comment:

1 app.post("/posts/:id/comments", (req, res) => {

2 const postId = Number(req.params.id)

3 comments.push({

4 id: comments.length + 1,

5 author: req.body.name,

6 content: req.body.comment,

7 post: postId,

8 time: "Less than a minute ago"

9 })

10 return res.sendStatus(201)

11 })

Static Site Generation and Server-Side Rendering Using Next.js 498

Adding comments to a page

To inject comments to a page, we want to create a wrapper for the comments section.
Let’s create a new component, Comments.

For starters, we create the CommentsProps type where the comments field defines an
array of comments to render, and the post field contains the current post ID:

1 import { Comment as CommentType, EntityId } from "../../shared/types"

2 import { Comment } from "../Comment/Comment"

3 import { Container, List, Item } from "./style"

4 import { CommentForm } from "../CommentForm"

5

6 type CommentsProps = {

7 post: EntityId

8 comments: CommentType[]

9 }

Then we create the Comments component itself. It renders each comment as an item
of a list and adds a form under this list:

1 export const Comments = ({ post, comments }: CommentsProps) => {

2 return (

3 <Container id="comments">

4 <h3>Comments</h3>

5 <List>

6 {comments.map((comment) => (

7 <Item key={comment.id}>

8 <Comment comment={comment} />

9 </Item>

10))}

11 </List>

12 <CommentForm post={post} />

13 </Container>

14)

15 }

Static Site Generation and Server-Side Rendering Using Next.js 499

This is how we style this component:

1 import styled from "styled-components"

2

3 export const Container = styled.section`

4 margin: 1.5rem 0;

5 `

6

7 export const List = styled.ul`

8 margin: 0;

9 padding: 0;

10 list-style: none;

11 margin-bottom: 20px;

12 `

13

14 export const Item = styled.li`

15 list-style: none;

16 border-bottom: 1px solid rgba(0, 0, 0, 0.1);

17 `

Just like with the other components we also create the index.ts file:

1 export * from "./Comments"

We are now ready to add the comments section to a page. We change the PostProps
type for the post page to include the comments field:

1 type PostProps = {

2 post: PostType

3 comments: Comment[]

4 }

Then we change the component itself to render the Comments component. We access
the comments prop and pass it over to Comments:

Static Site Generation and Server-Side Rendering Using Next.js 500

1 const Post = ({ post, comments }: PostProps) => {

2 const router = useRouter()

3

4 if (router.isFallback) return <Loader />

5 return (

6 <>

7 <PostBody post={post} />

8 <Comments comments={comments} post={post.id} />

9 </>

10)

11 }

12

13 export default Post

We add the id prop to make sure that when a user submits a comment, their browser
scrolls right to the comments section after reload.

The last thing to do is update this statically generated page to use server-side
rendering.

Updating a statically generated page to use
server-side rendering

In order to enable server-side rendering for a page, we need to export¹⁹³ a getServerSideProps()
function.

Create the getServerSideProps() function that returns the GetServerSideProps

type. Inside, we fetch the current post and invoke fetchComments():

¹⁹³https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering

https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering
https://nextjs.org/docs/basic-features/data-fetching#getserversideprops-server-side-rendering

Static Site Generation and Server-Side Rendering Using Next.js 501

1 export const getServerSideProps: GetServerSideProps<PostProps> =

2 async ({ params }) => {

3 if (typeof params.id !== "string")

4 throw new Error("Unexpected id")

5 const post = await fetchPost(params.id)

6 const comments = await fetchComments(params.id)

7 return { props: { post, comments } }

8 }

We cannot¹⁹⁴ use it along with the getStaticPaths() function, so remove the
getStaticPaths().

Comments will now be fetched on every page request and no data will be missing.

Update the imports in the pages/post/[id].tsx file. First of all, we import the
GetServerSideProps type from next:

1 import { GetServerSideProps } from "next"

Then we import the fetchComments function from the api/comments module:

1 import { fetchComments } from "../../api/comments/fetch"

Import the Comment type from shared/types and the Comment component:

1 import { Post as PostType, Comment } from "../../shared/types"

2 // ...

3 import { Comments } from "../../components/Comments"

Connecting Redux

The post page currently reloads when a user submits a comment. Let’s try to make it
work without reloading. In order to do this, we need some kind of store on the client.
For this purpose, we will use Redux.

¹⁹⁴https://nextjs.org/docs/basic-features/data-fetching#use-together-with-getstaticprops

https://nextjs.org/docs/basic-features/data-fetching#use-together-with-getstaticprops
https://nextjs.org/docs/basic-features/data-fetching#use-together-with-getstaticprops

Static Site Generation and Server-Side Rendering Using Next.js 502

There is a package¹⁹⁵ called next-redux-wrapper that will help us connect Redux
with Next easier.

First, let’s add all the required packages:

1 yarn add next-redux-wrapper react-redux @types/react-redux

Wedon’t add redux itself because it is included in dependencies for next-redux-wrapper.
However, it requires¹⁹⁶ react-redux as peer dependency, so we’ll install it separately.

Configuring a store

Let’s take a look at the store/index.ts file:

1 import { Store, createStore, combineReducers } from "redux"

2 import { MakeStore, createWrapper } from "next-redux-wrapper"

3 import { comments, CommentsState } from "./comments"

4 import { post, PostState } from "./post"

5

6 export type State = {

7 post: PostState

8 comments: CommentsState

9 }

10

11 const combinedReducer = combineReducers({ post, comments })

12 const makeStore: MakeStore<Store<State>> = () =>

13 createStore(combinedReducer)

14

15 export const store = createWrapper<Store<State>>(makeStore, {

16 debug: true

17 })

First of all, there is a State type that defines the structure of our future state. In our
case, since only the post page is dynamic, we will only need a store for comments and
the current post.
¹⁹⁵https://github.com/kirill-konshin/next-redux-wrapper
¹⁹⁶https://github.com/kirill-konshin/next-redux-wrapper#installation

https://github.com/kirill-konshin/next-redux-wrapper
https://github.com/kirill-konshin/next-redux-wrapper#installation
https://github.com/kirill-konshin/next-redux-wrapper
https://github.com/kirill-konshin/next-redux-wrapper#installation

Static Site Generation and Server-Side Rendering Using Next.js 503

PostState is typed as Optional<Post> and defined in store/post.ts. It is optional
because when we later use it in a reducer and the default state doesn’t correspond to
any post yet, we will define it as null:

1 export type PostState = Optional<Post>

We need an Optional type, so let’s create it:

1 export type Optional<TEntity> = TEntity | null

CommentsState is an array of Comment items from store/comments.ts:

1 export type CommentsState = Comment[]

Then there is a combinedReducer that contains definitions for post and comments

reducers. We will cover them in a minute.

The makeStore() is a function that creates a Redux store. The MakeStore type will
help the createWrapper() function create a wrapper that we will be able to use with
our components.

Actions for comments

Let’s define types for our reducer and actions for the comments state:

1 import { AnyAction } from "redux"

2 import { HYDRATE } from "next-redux-wrapper"

3 import { Comment } from "../shared/types"

4 import { HydrateAction } from "./hydrate"

5

6 export const UPDATE_COMMENTS_ACTION = "UPDATE_COMMENTS"

7

8 export interface UpdateCommentsAction extends AnyAction {

9 type: typeof UPDATE_COMMENTS_ACTION

10 comments: Comment[]

Static Site Generation and Server-Side Rendering Using Next.js 504

11 }

12

13 export type CommentsState = Comment[]

14

15 type CommentsAction = HydrateAction | UpdateCommentsAction

We create the UpdateCommentsAction interface that extends AnyAction from redux.
We set the type field to be of type of the UPDATE_COMMENTS_ACTION constant. The
second field in this action is comments, which is an array of Comment.

We use an interface and not a type even though an action is not a “public
API”. This is because we need to extend the AnyAction and interfaces are
better at extension than types. They are better at merging fields than types
and extending an interface is faster than using a union. In this project,
when extending AnyAction we will always use interfaces.

A union type for actions, CommentsAction, contains either UpdateCommentsAction or
HydrateAction, which is defined in store/hydrate.ts:

1 import { AnyAction } from "redux"

2 import { HYDRATE } from "next-redux-wrapper"

3

4 export interface HydrateAction extends AnyAction {

5 type: typeof HYDRATE

6 }

This action has a type of HYDRATE that is imported from the next-redux-wrapper

package. This is a special action that must be used¹⁹⁷ in order to properly reconcile
the hydrated state on top of the existing state.

Each reducer must have a handler for this action. This is because every time a
user opens a page that has a getServerSideProps() function, the HYDRATE action
is dispatched.

Reducer for comments

With that in mind, let’s create our comments() reducer:
¹⁹⁷https://github.com/kirill-konshin/next-redux-wrapper#usage

https://github.com/kirill-konshin/next-redux-wrapper#usage
https://github.com/kirill-konshin/next-redux-wrapper#usage

Static Site Generation and Server-Side Rendering Using Next.js 505

1 export const comments = (

2 state: CommentsState = [],

3 action: CommentsAction

4) => {

5 switch (action.type) {

6 case HYDRATE:

7 return action.payload?.comments ?? []

8 case UPDATE_COMMENTS_ACTION:

9 return action.comments

10 default:

11 return state

12 }

13 }

Inside the HYDRATE case we see the familiar optional chaining¹⁹⁸ operator ?, but after
it there is another operator: ??. This is the nullish coalescing¹⁹⁹ operator.

When the whole expression action.payload?.comments is null or undefined, nullish
coalescing will tell TypeScript to use the fallback value, which is an empty array.

In our case, because we need to load new comments for a new post, it’s fine
to simply replace the entire old state with a fresh state when hydration occurs.
However, sometimes you can’t get away with full refresh. Instead, you should
consider comparing states and merging them²⁰⁰.

The second case handles UpdateCommentsAction calls. It replaces existing comments
with those in the payload.

As the default value for the state, we provide an empty array.

Reducer for posts

Next, let’s create the post() reducer:

¹⁹⁸https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#optional-chaining
¹⁹⁹https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#nullish-coalescing
²⁰⁰https://github.com/kirill-konshin/next-redux-wrapper#state-reconciliation-during-hydration

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#optional-chaining
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#nullish-coalescing
https://github.com/kirill-konshin/next-redux-wrapper#state-reconciliation-during-hydration
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#optional-chaining
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html#nullish-coalescing
https://github.com/kirill-konshin/next-redux-wrapper#state-reconciliation-during-hydration

Static Site Generation and Server-Side Rendering Using Next.js 506

1 import { AnyAction } from "redux"

2 import { HYDRATE } from "next-redux-wrapper"

3 import { Post, Optional } from "../shared/types"

4 import { HydrateAction } from "./hydrate"

5

6 export const UPDATE_POST_ACTION = "UPDATE_POST"

7

8 export interface UpdatePostAction extends AnyAction {

9 type: typeof UPDATE_POST_ACTION

10 post: Post

11 }

12

13 export type PostState = Optional<Post>

14

15 type PostAction = HydrateAction | UpdatePostAction

The UpdatePostAction interface extends AnyAction, defines the type field to be of
type UPDATE_POST_ACTION and post to be of type Post. The PostAction union is either
HydrateAction or UpdatePostAction.

This reducer provides cases for two actions: HYDRATE and UPDATE_POST_ACTION. When
hydration occurs, we either take the post from action.payload or set the state to
null. We also provide null as the default value for the state — this is what we needed
the Optional<> type for.

1 export const post = (state: PostState = null, action: PostAction) => {

2 switch (action.type) {

3 case HYDRATE:

4 return action.payload?.post ?? null

5 case UPDATE_POST_ACTION:

6 return action.post

7 default:

8 return state

9 }

10 }

Static Site Generation and Server-Side Rendering Using Next.js 507

If the action type is UpdatePostAction, we replace the current value with the new
one to render a freshly loaded post.

Changing the custom application component

Now that our store is ready, we can connect it to Next’s _app. First of all, we don’t
default export the MyApp() function anymore. Instead, we default export a wrapped
version of it:

1 export default store.withRedux(MyApp)

This store is the wrapper that we have created earlier:

1 import { store } from "../store"

In next-redux-wrapper 6.x we needed to define the MyApp.getInitialProps() static
method. Starting from 7.x we must not extend MyApp²⁰¹ as we’ll be opted out of
Automatic Static Optimization²⁰². Nowwe use a regular function component instead.

1 function MyApp({ Component, pageProps }) {

2 return (

3 <ThemeProvider theme={theme}>

4 <GlobalStyle theme={theme} />

5 <Head>

6 <title>What's Next?!</title>

7 </Head>

8

9 <Header />

10 <main className="main">

11 <Center>

12 <Component {...pageProps} />

13 </Center>

14 </main>

²⁰¹https://github.com/kirill-konshin/next-redux-wrapper#usage
²⁰²https://nextjs.org/docs/messages/opt-out-auto-static-optimization

https://github.com/kirill-konshin/next-redux-wrapper#usage
https://nextjs.org/docs/messages/opt-out-auto-static-optimization
https://github.com/kirill-konshin/next-redux-wrapper#usage
https://nextjs.org/docs/messages/opt-out-auto-static-optimization

Static Site Generation and Server-Side Rendering Using Next.js 508

15 <Footer />

16 </ThemeProvider>

17)

18 }

19

20 export default store.withRedux(MyApp)

Updating the post page

Now we need to update the post page. Since we want to store comments and post
data in the Redux store, we need to connect this page to the store.

We’re going to use the useSelector() hook from react-redux package to access the
store.

1 import React from "react"

2 import { NextPage } from "next"

3 import { useSelector } from "react-redux"

4 import { Loader } from "../../components/Loader"

5 import { PostBody } from "../../components/Post/PostBody"

6 import { Comments } from "../../components/Comments"

7

8 import { fetchPost } from "../../api/post"

9 import { fetchComments } from "../../api/comments/fetch"

10 import { State, store } from "../../store"

11 import { PostState, UPDATE_POST_ACTION } from "../../store/post"

12 import {

13 CommentsState,

14 UPDATE_COMMENTS_ACTION

15 } from "../../store/comments"

The whole page component will look like this:

Static Site Generation and Server-Side Rendering Using Next.js 509

1 const Post: NextPage = () => {

2 const post = useSelector<State, PostState>(({ post }) => post)

3 const comments = useSelector<State, CommentsState>(

4 ({ comments }) => comments

5)

6

7 if (!post) return <Loader />

8 return (

9 <>

10 <PostBody post={post} />

11 <Comments comments={comments} post={post.id} />

12 </>

13)

14 }

15

16 export default Post

We access the state, destructure it into post and comments objects, and pass them
further as props. Since post data can be null, we render the Loader component when
there’s no post to display yet.

If we start our project right now, it won’t work because Next doesn’t know what
data to inject into the store and how to do it on request. We need to use our store
wrapper to modify the getServerSideProps() function:

1 export const getServerSideProps = store.getServerSideProps(

2 (store) =>

3 async ({ params }) => {

4 if (typeof params.id !== "string") {

5 throw new Error("Unexpected id")

6 }

7

8 const comments = await fetchComments(params.id)

9 const post = await fetchPost(params.id)

10

11 store.dispatch({ type: UPDATE_POST_ACTION, post })

Static Site Generation and Server-Side Rendering Using Next.js 510

12 store.dispatch({ type: UPDATE_COMMENTS_ACTION, comments })

13

14 return null

15 }

16)

Here we use the store.getServerSideProps() function that takes a callback which
is a higher order function. Inside the callback, we fetch the required data and pass it
into the store. The basic idea is the same: we define what data needs to be pre-fetched
and rendered on response, but instead of passing it in Post component’s props, we
dispatch() actions that update our store with this data.

The Post component doesn’t take any props at all. It gets all the data from the store
using the useSelector() hook. Since it doesn’t accept any props anymore we can
safely return null from the getServerSideProps callback.

Making the comment form work without reloads

To make the comment form work without page reloads, we need to dispatch() some
action that will update the store instead of reloading a page.

When we submit a comment to the server, we want to get the data to refresh the
comments section on the page. Let’s modify our server response: instead of status
201, it should return the list of comments for the current post.

In canonical REST APIs POST requests should return 201 and an ID of the
created entity. By returning the whole list of comments instead, we make
our response less canonical but more convenient for us to work with.

We need to update the return statement in the post() method in server/index.ts.
We will return all comments for the post with a given postId:

Static Site Generation and Server-Side Rendering Using Next.js 511

1 app.post("/posts/:id/comments", (req, res) => {

2 const postId = Number(req.params.id)

3 comments.push({

4 id: comments.length + 1,

5 author: req.body.name,

6 content: req.body.comment,

7 post: postId,

8 time: "Less than a minute ago"

9 })

10 return res.json(comments.filter(({ post }) => post === postId))

11 })

Go to the CommentForm component and add the imports:

1 import { useDispatch } from "react-redux"

2 // ...

3 import { UPDATE_COMMENTS_ACTION } from "../../store/comments"

4 import { Form } from "./style"

In the CommentForm component we use the useDispatch() hook to get access to the
dispatch() function. This dispatch() is going to be used to dispatch actions as soon
as a request is completed:

1 const dispatch = useDispatch()

2

3 async function submit(e: FormEvent<HTMLFormElement>) {

4 e.preventDefault()

5 setLoading(true)

6

7 const response = await submitComment(post, name, value)

8 const comments = await response.json()

9 setLoading(false)

10 setValue("")

11 setName("")

12

Static Site Generation and Server-Side Rendering Using Next.js 512

13 if (response.status === 200) {

14 dispatch({ type: UPDATE_COMMENTS_ACTION, comments })

15 }

16 }

17

18 return (

We access all comments from the server’s response. We then use setValue() and
setName() to clear the form, and if the request has succeeded, we dispatch UPDATE_-

COMMENTS_ACTION with the list of comments as a payload. This updates the comments
store and re-renders the comments section on the page.

The form itself stays the same.

Optimizing Images

Okay, our app is already in a good shape! However, we can even make it better by
using optimized images. Next 10 introduced a next/image component²⁰³ that can
make it so much easier to create adaptive images and convert them into more light-
weight formats on the fly! Let’s try using it.

In our app, we have 2 components that render images: PostCard and PostBody. The
first one renders a preview image in a posts list, the second one renders the main
post image on the post page. We will use different strategies for optimizing both and
explain them along the way.

Let’s start with PostBody component. The first thing to do is to import Next image
component:

1 import Link from "next/link"

2 import Image from "next/image"

3 import { Post } from "../../shared/types"

4 import { Breadcrumbs } from "../../components/Breadcrumbs"

5 import { Title, Figure, Content, Meta } from "./PostBodyStyle"

Then, we can replace the old img tag with the new Image component:

²⁰³https://nextjs.org/docs/api-reference/next/image

https://nextjs.org/docs/api-reference/next/image
https://nextjs.org/docs/api-reference/next/image

Static Site Generation and Server-Side Rendering Using Next.js 513

1 <Figure>

2 <Image

3 alt={post.title}

4 src={post.image}

5 loading="lazy"

6 layout="responsive"

7 objectFit="cover"

8 objectPosition="center"

9 width={960}

10 height={340}

11 />

12 </Figure>

For this component to work, we need to provide a couple of required props:

• alt, an alternative text to show when the browser cannot find an image;
• src, the default source URL for an image;
• width and height, the default size for an image.

Don’t worry about width and height, our image will be responsive. We need them
for 2 reasons. First of all, they will help Next automatically figure out the aspect ratio
of an image. We won’t need to use the padding-top trick anymore!

Second, the width and height props reduce cumulative layout shift, because they
allocate the place for an image on a page. When the image is loaded it doesn’t push
the content underneath down.

There are some other props we’re passing for the Image component as well. Let’s
review them:

• loading, tells the browser how to load an image. When it is set to lazy the
browser will wait until the image is in the viewport and load only then.

• layout, tells Next how to scale an image when the viewport size changes. We
set it to responsive to make the image adapt to the size of its container when
it changes.

• objectFit and objectPosition, basically, aliases for CSS properties we used
earlier.

Static Site Generation and Server-Side Rendering Using Next.js 514

We can also use the fixed layout to fix image sizes or intrinsic to make
an image only scale down.

The image is ready, now let’s clean up styles a bit. We don’t need the image styles
anymore because Next will handle them for us, so we can safely remove img styles
from the PostBodyStyle.ts:

1 export const Figure = styled.figure`

2 margin: 0 0 30px;

3 max-width: 100%;

4 position: relative;

5 overflow: hidden;

6 border-radius: 6px;

7

8 @media (max-width: 800px) {

9 margin-bottom: 20px;

10 }

11 `

Before we run our dev server and see what Next will output, we need to set up a
configuration file²⁰⁴. Create a file called next.config.js in the root of the project
directory and add this configuration:

1 module.exports = {

2 images: {

3 domains: ["ichef.bbci.co.uk"],

4 deviceSizes: [320, 640, 860, 1000]

5 }

6 }

This config contains the images field that sets up how Next will handle our images.
The domains array specifies what external domains are allowed to load images from.
By default, Next won’t let us load an image from external domains.

²⁰⁴https://nextjs.org/docs/api-reference/next.config.js/introduction

https://nextjs.org/docs/api-reference/next.config.js/introduction
https://nextjs.org/docs/api-reference/next.config.js/introduction

Static Site Generation and Server-Side Rendering Using Next.js 515

The deviceSizes property tells Next what breakpoints we’re going to consider in the
app layout. These breakpoints define how to scale images and what images for the
browser to load.

By default, Next uses [640, 750, 828, 1080, 1200, 1920, 2048, 3840]—that’s a
lot of breakpoints! For each of them Next creates an image with the corresponding
size. So when the deviseSizes is not set Next generates 8 different variants for
each image. In some cases, 8 variants for each image is too many. In our app, we
use 4 different breakpoints because we don’t need extra-large images since the app
container’s max-width is 1000px.

For intrinsic and fixed image layouts we should use imageSizes instead
of deviceSizes.

After it’s done, we can finally start our server and see what Next produces as a result.
If we now inspect the image’s HTML we will see that Next wrapped it with a div

that uses padding to imitate the aspect-ratio of the image inside. The image itself
now has an srcset attribute with a bunch of URLs:

1 srcset="

2 /_next/image?url=image-name&w=320&q=75 320w,

3 /_next/image?url=image-name&w=640&q=75 640w,

4 /_next/image?url=image-name&w=860&q=75 860w

5 /_next/image?url=image-name&w=1000&q=75 1000w

6 "

These URLs specify all the possible images that the browser can download. The cool
thing is the browser knows what image is best to load in a given situation. It will
make a decision based on the network quality, device viewport size, screen pixel
ratio, and other factors to choose the best option.

Another cool thing is that Next will automatically serve modern image formats like
webp if the browser supports them. If we inspect an image from the Sources tab we
can see that loaded image has image/webp format. And all of this with no extra work!

Static Site Generation and Server-Side Rendering Using Next.js 516

Loaded image is in webp format

Wait a minute? If the browser makes a decision based on srcset how can we change
it? What if we want to load a smaller image when the viewport is bigger? We can do
it as well! Let’s update our card preview images and see how we can control them.

Telling Browser What Images to Load

Let’s again start with imports and use the Image component:

1 import Link from "next/link"

2 import Image from "next/image"

3 import { Post } from "../../shared/types"

4 import { Card, Figure, Title, Excerpt } from "./PostCardStyle"

Then replace the old img with the new component:

Static Site Generation and Server-Side Rendering Using Next.js 517

1 <Figure>

2 <Image

3 alt={post.title}

4 src={post.image}

5 loading="lazy"

6 layout="responsive"

7 objectFit="cover"

8 objectPosition="center"

9 width={320}

10 height={180}

11 sizes="(min-width: 1000px) 320px, 100vw"

12 />

13 </Figure>

The basics are the same. We all the properties we used with images in PostBody but
this time we add another prop called sizes.

The sizes prop is a way for us to talk to the browser and tell it that we already
know what image is the best option for a given viewport. Let’s review its value to
understand how it works:

1 sizes="(min-width: 1000px) 320px, 100vw"

The string contains 2 records divided by a comma. The first one contains a media-
query and a number, the last one contains only a number. The media-query specifies
the viewport constraint as it does in CSS. The following number is the width of an
image that best fits.

Herewemean that whenever the viewport is bigger than 1000pxwewant the browser
to load an image with a width of 320px. Why? Because our preview card is about
300px wide itself at this point and we don’t need a 1600px wide image.

Otherwise, load whatever suits the whole viewport width. Why? Because when the
viewport is less than 1000px our layout becomes a column where a card takes 100%
of the container’s width.

The order of sizes records matters. The browser will take only the first
matching media-query and use it. That’s why the default value should be
last.

Static Site Generation and Server-Side Rendering Using Next.js 518

Now we only need to clean up our styles and remove old img styles from the
PostCardStyle.ts:

1 export const Figure = styled.figure`

2 margin: 0;

3 max-width: 100%;

4 position: relative;

5 overflow: hidden;

6 border-radius: 6px 6px 0 0;

7 `

Building Project

Now it is finally time to build our project. If we run it right now, we won’t see any
build artifacts in the project directory. That’s because Next puts artifacts in the .next
directory by default.

Next offers an option to export generated code²⁰⁵ to the out directory via next export.
But we want to make build the build destination directory.

The next/image works only with a next application live-running on a
server²⁰⁶ via next start. If we want to export our app as a static site
we need to either specify a loader²⁰⁷ that will process images or to replace
next/image with another component. For brevity, in this step, we will use
standard img tags for images as we did in step 8.

To do that, we create next.config.js, a configuration file²⁰⁸ for the Next framework.
A configuration option that defines a custom build directory²⁰⁹ is called distDir.
Let’s set build as the value for that option:

²⁰⁵https://nextjs.org/docs/advanced-features/static-html-export
²⁰⁶https://github.com/vercel/next.js/issues/18356
²⁰⁷https://nextjs.org/docs/basic-features/image-optimization#loader
²⁰⁸https://nextjs.org/docs/api-reference/next.config.js/introduction
²⁰⁹(https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory)

https://nextjs.org/docs/advanced-features/static-html-export
https://github.com/vercel/next.js/issues/18356
https://github.com/vercel/next.js/issues/18356
https://nextjs.org/docs/basic-features/image-optimization#loader
https://nextjs.org/docs/api-reference/next.config.js/introduction
(https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory)
https://nextjs.org/docs/advanced-features/static-html-export
https://github.com/vercel/next.js/issues/18356
https://nextjs.org/docs/basic-features/image-optimization#loader
https://nextjs.org/docs/api-reference/next.config.js/introduction
(https://nextjs.org/docs/api-reference/next.config.js/setting-a-custom-build-directory)

Static Site Generation and Server-Side Rendering Using Next.js 519

1 module.exports = {

2 images: {

3 domains: ["ichef.bbci.co.uk"],

4 deviceSizes: [320, 640, 860, 1000]

5 },

6 distDir: 'build'

7 }

We can now run yarn serve to set up a backend server in one terminal window, and
yarn build in another. As soon as the project is built, you will see a bunch of files
in the build directory.

The BUILD_ID file contains a hash of the current build. This hash is the name of the
directory inside build/server/pages that contains current build artifacts such as
page HTML and JSON.

Pages that can be statically generated (such as Section and Front) all have .html

files associated with them. In contrast, pages that can only be rendered on the server
(Post) only have .js files.

Deploying Project

In the previous section, we set up a custom build directory. It is usually used for
deploying statically generated pages to a server.

With Next though, the easiest way to deploy the application is to deploy on Vercel²¹⁰.
It is a platform for SSR and SSG sites made with modern frontend frameworks.

The coolest thing with Vercel is that they provide a way to host API and the frontend
in the same project so we won’t need a separate server. Also, Vercel is optimized for
use with Next.

Let’s now update the project a bit and deploy it on Vercel to see how convenient this
is.
²¹⁰https://vercel.com/docs

https://vercel.com/docs
https://vercel.com/docs

Static Site Generation and Server-Side Rendering Using Next.js 520

Remaking API

Now our project has a separate server in the server folder. With Vercel, we will
no longer need it because we can use serverless functions²¹¹. To create a serverless
function we need to use Next’s API routes²¹².

Serverless functions here are a wrapper on the file system or a 3-rd party server.
Conceptually these API routes are very similar to what we did in the server directory.
The difference is that with API routes we need to change the routing model.

Previously we used Express to define routes and handlers for them. With Next’s API
routes, we need to create the api directory inside pages and use directories and files
to define routes—just like with ordinary Next pages.

Create an api folder inside pages and define our “Hello world” controller:

1 import type { NextApiRequest, NextApiResponse } from "next"

2

3 export default function hello(

4 req: NextApiRequest,

5 res: NextApiResponse

6) {

7 res.status(200).json({ hello: "World" })

8 }

Just like with regular Next pages, we export the function from the module. But this
time instead of a page we export an API controller that takes 2 arguments: request
and response.

request is an instance of http.IncomingMessage²¹³ with pre-built middlewares²¹⁴. It
is conveniently typed with the NextApiRequest type.

response is a http.ServerResponse²¹⁵ with Next response helpers²¹⁶. It is typed with
the NextApiResponse type.

²¹¹https://vercel.com/docs/serverless-functions/introduction#deploying-serverless-functions
²¹²https://nextjs.org/docs/api-routes/introduction
²¹³https://nodejs.org/api/http.html#http_class_http_incomingmessage
²¹⁴https://nextjs.org/docs/api-routes/api-middlewares
²¹⁵https://nodejs.org/api/http.html#http_class_http_serverresponse
²¹⁶https://nextjs.org/docs/api-routes/response-helpers

https://vercel.com/docs/serverless-functions/introduction#deploying-serverless-functions
https://nextjs.org/docs/api-routes/introduction
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nextjs.org/docs/api-routes/api-middlewares
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nextjs.org/docs/api-routes/response-helpers
https://vercel.com/docs/serverless-functions/introduction#deploying-serverless-functions
https://nextjs.org/docs/api-routes/introduction
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nextjs.org/docs/api-routes/api-middlewares
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nextjs.org/docs/api-routes/response-helpers

Static Site Generation and Server-Side Rendering Using Next.js 521

By default, API routes handle GET requests. So, if we now go to http://localhost:3000/api²¹⁷
in the browser, we should see the API response:

1 {"hello":"World"}

We made our first API controller! Now remove the pages/api/index.ts and let’s
rebuild all our existing APIs using API routes.

Remaking Posts

Let’s start with remaking posts APIs. We will have 2 endpoints:

• /api/posts for getting the list of all the posts;
• /api/posts/[id] for getting a particular post by its ID.

We put the first handler in pages/api/posts/index.ts so that Next can understand
what route this module is responsible for.

1 import type { NextApiRequest, NextApiResponse } from "next"

2 import type { Post } from "../../../shared/types"

3 import postsSource from "../../../server/posts.json"

4

5 export default function postsHandler(

6 req: NextApiRequest,

7 res: NextApiResponse<Post[]>

8) {

9 const posts = postsSource as Post[]

10 return res.status(200).json(posts)

11 }

Inside, we import the posts list from posts.json just aswe did before. The postsHandler
controller will respond with this list.

²¹⁷http://localhost:3000/api/

http://localhost:3000/api/
http://localhost:3000/api/

Static Site Generation and Server-Side Rendering Using Next.js 522

The NextApiResponse type is generic, so we can explicitly define what type the re-
sponsewill have. In our case the response is a list of posts, sowe use NextApiResponse<Post[]>
as the response type.

If we now go to http://localhost:3000/api/posts, we get the response with all of the
comments we have in the file:

API response with a list of all the posts

Okay, getting the list of posts was pretty straightforward. But what if we need to
define a dynamic route? The second controller that takes a particular post is exactly
this case.

To respond with a particular post, we need to know what ID is requested. For this,
Next offers the same model as with pages—we can use dynamic API routes²¹⁸.

The pattern for a dynamic route is the same as for dynamic pages. We use square
brackets to define a dynamic route and the argument name for it.

²¹⁸https://nextjs.org/docs/api-routes/dynamic-api-routes

http://localhost:3000/api/posts
https://nextjs.org/docs/api-routes/dynamic-api-routes
https://nextjs.org/docs/api-routes/dynamic-api-routes

Static Site Generation and Server-Side Rendering Using Next.js 523

For our post controller, we can create file pages/api/posts/[id].ts. It will mean
that whenever we request the /api/post/42 endpoint the controller will handle the
request and the request will have id parameter with value a equal to 42.

1 import type { NextApiRequest, NextApiResponse } from "next"

2 import type { Post } from "../../../shared/types"

3 import postsSource from "../../../server/posts.json"

4

5 export default function postHandler(

6 req: NextApiRequest,

7 res: NextApiResponse<Post>

8) {

9 const posts = postsSource as Post[]

10 const wantedId = String(req.query.id)

11 const post = posts.find(({ id }: Post) => String(id) === wantedId)

12 return res.status(200).json(post)

13 }

The functionality of the controller is the same as we had earlier with Express
controllers. We take the id from the request, find the post with the same ID in the
data, and return it.

Now if we request http://localhost:3000/api/posts/4 we will get the data for this post.

Remaking Categories

For categories we will also have 2 endpoints:

• /api/categories/ for getting the list of categories;
• /api/categories/[id] for getting posts for the category.

The first one will import the data from a file and return it as the response:

http://localhost:3000/api/posts/4

Static Site Generation and Server-Side Rendering Using Next.js 524

1 import type { NextApiRequest, NextApiResponse } from "next"

2 import type { Category } from "../../../shared/types"

3 import categoriesSource from "../../../server/categories.json"

4

5 export default function categoriesHandler(

6 req: NextApiRequest,

7 res: NextApiResponse<Category[]>

8) {

9 const categories = categoriesSource as Category[]

10 return res.status(200).json(categories)

11 }

We also will type the response with NextApiResponse<Category[]> so that the
returned data would be typed with the Category[] type.

The second one will take the category ID, filter posts with this category, and return
the list of these posts:

1 import type { NextApiRequest, NextApiResponse } from "next"

2 import type { Post } from "../../../shared/types"

3 import postsSource from "../../../server/posts.json"

4

5 export default function categoryHandler(

6 req: NextApiRequest,

7 res: NextApiResponse<Post[]>

8) {

9 const posts = postsSource as Post[]

10 const found = posts.filter(

11 ({ category: id }: Post) => id === req.query.id

12)

13 const categoryPosts = [...found, ...found, ...found]

14 return res.status(200).json(categoryPosts)

15 }

The response for this controller we will type as NextApiResponse<Post[]>.

Static Site Generation and Server-Side Rendering Using Next.js 525

Remaking Comments

The only APIs left are the comments. We will need only 1 endpoint for working with
comments but it will handle 2 different methods: GET and POST.

• GET /api/comments/[postID] for getting the comments for a given post;
• POST /api/comments/[postID] for submitting a comment for a given post.

Let’s start with getting comments for a post. We will write a commentsForPost

function. This function will filter the comments for a given post and return them
as the result:

1 import path from "path"

2 import { writeFile } from "fs/promises"

3

4 import type { NextApiRequest, NextApiResponse } from "next"

5 import type { Comment, EntityId } from "../../../shared/types"

6 import commentsSource from "../../../server/comments.json"

7

8 const comments = commentsSource as Comment[]

9

10 function commentsForPost(postId: EntityId) {

11 return comments.filter(({ post }) => post === postId)

12 }

To handle the POST request we will have to check the request method. Let’s try doing
this using switch. We will check the req.method and handle differently each case:

Static Site Generation and Server-Side Rendering Using Next.js 526

1 export default function commentsHandler(

2 req: NextApiRequest,

3 res: NextApiResponse

4) {

5 const postId = Number(req.query.id)

6

7 switch (req.method) {

8 case "GET": {

9 return res.status(200).json(commentsForPost(postId))

10 }

11 case "POST": {

12 comments.push({

13 id: comments.length + 1,

14 author: req.body.name,

15 content: req.body.comment,

16 post: postId,

17 time: "Less than a minute ago"

18 })

19

20 writeFile(

21 path.resolve(process.cwd(), "server/comments.json"),

22 JSON.stringify(comments)

23)

24

25 return res.json(commentsForPost(postId))

26 }

27 default:

28 return res.status(404)

29 }

30 }

Wemove the previous functionality into the GET case. In the POST case, we create a
new comment from the request data and push it to the list of comments. Optionally,
we can update the JSON file. As a result, return the updated list of comments for the
given post.

In the default case we return the 404 status if the request method doesn’t match

Static Site Generation and Server-Side Rendering Using Next.js 527

expected. We could return any other status, for example, 403 to say that this method
is forbidden.

Creating Client Requests

Now, when the server APIs are ready, we can create the module for client requests.
We need a couple of functions to call our API routes from the client. These functions
we will need in pages’ code to get data for pre-render pages.

Let’s start with a request function which will send GET requests to the API and
fetch data. Create a request/index.ts file and add the following code:

1 import { UriString, EntityId, Person, Post } from "../shared/types"

2 import { config } from "./config"

3

4 const { baseUrl } = config

5

6 async function request<TResponse>(url: UriString) {

7 const response = await fetch(`${baseUrl}/${url}`)

8 const data = (await response.json()) as TResponse

9 return data

10 }

The request function will take an endpoint URL and send a request to that URL. It
will also parse the result as JSON and return the response data typedwith a TResponse
generic argument.

The baseUrl is the root URL for our API routes which we will create in a moment.
Create a new file request/config.ts and add the code:

Static Site Generation and Server-Side Rendering Using Next.js 528

1 const IS_PRODUCTION = process.env.NODE_ENV === "production"

2

3 const protocol = IS_PRODUCTION ? "https" : "http"

4 const host = process.env.NEXT_PUBLIC_VERCEL_URL || "localhost:3000"

5

6 export const config = {

7 baseUrl: `${protocol}://${host}/api`

8 }

It is considered a good practice to separate the configs from the code. At the end of
this chapter, we will also see why it is useful.

The second function we’re going to need is a post function. It will take the data and
send POST requests to the API. Let’s add this function in the index file:

1 async function post<TPayload>(url: UriString, data: TPayload) {

2 return fetch(`${baseUrl}/${url}`, {

3 method: "POST",

4 headers: { "Content-Type": "application/json;charset=utf-8" },

5 body: JSON.stringify(data)

6 })

7 }

Create the wrappers for the requests that our app will use:

• list of posts
• a particular post;
• categories list
• list of posts for a category;
• comments for a post
• submitting a comment.

Static Site Generation and Server-Side Rendering Using Next.js 529

1 export const fetchPosts = () => request("posts")

2 export const fetchPost = (id: EntityId) => request(`posts/${id}`)

3

4 export const fetchCategories = () => request("categories")

5 export const fetchCategory = (categoryId: EntityId) =>

6 request<Post[]>(`categories/${categoryId}`)

7

8 export const fetchComments = (postId: EntityId) =>

9 request(`comments/${postId}`)

10

11 export const submitComment = (

12 postId: EntityId,

13 name: Person,

14 comment: string

15) => post(`comments/${postId}`, { name, comment })

Now we can use these functions in pages to fetch the data for pre-rendering.

Updating Pages

When the client requests are ready we can replace the old request functions with
them. This will allow us to remove the old API, use API routes, and deploy the project
to Vercel using serverless functions.

Let’s review what pages use any APIs and what we need to replace:

• main page fetches categories and posts;
• post page fetches the post and its comments;
• post page also can submit a new comment for the post;
• category page loads the posts for the category.

We will have to replace all the imports to the request functions on these pages. Also,
it is important that serverless functions don’t support static export²¹⁹ so we will also
need to replace getStaticProps with getServerSideProps.

²¹⁹https://nextjs.org/docs/api-routes/introduction#caveats

https://nextjs.org/docs/api-routes/introduction#caveats
https://nextjs.org/docs/api-routes/introduction#caveats

Static Site Generation and Server-Side Rendering Using Next.js 530

Updating Main Page

On the main page we need to replace the old imports from api/summarywith the new
one:

1 import { fetchPosts, fetchCategories } from "../request"

And use getServerSideProps instead of old getStaticProps:

1 export async function getServerSideProps() {

2 const categories = await fetchCategories()

3 const posts = await fetchPosts()

4 return { props: { posts, categories } }

5 }

Updating Category Page

On the category page, we also replace the old import from api/category with new
request import and define getServerSideProps:

1 import type { GetServerSideProps } from "next"

2 import { useRouter } from "next/router"

3 import { Post } from "../../shared/types"

4 import { fetchCategory } from "../../request"

5 import { Section } from "../../components/Section"

6 import { Loader } from "../../components/Loader"

7

8 type CategoryProps = {

9 posts: Post[]

10 }

11

12 export const getServerSideProps: GetServerSideProps<CategoryProps> =

13 async ({ params }) => {

14 if (typeof params.id !== "string")

Static Site Generation and Server-Side Rendering Using Next.js 531

15 throw new Error("Unexpected id")

16 const posts = await fetchCategory(params.id)

17 return { props: { posts } }

18 }

19

20 const Category = ({ posts }: CategoryProps) => {

21 const router = useRouter()

22

23 if (router.isFallback) return <Loader />

24 return <Section posts={posts} title={String(router.query.id)} />

25 }

26

27 export default Category

The rest of the code stays the same because we kept the request functions’ signature
and updated them only under the hood.

Updating Post Page

On the post page, we replace the imports from api/post and api/commentswith new
request imports:

1 import React from "react"

2 import { NextPage } from "next"

3 import { useSelector } from "react-redux"

4 import { Loader } from "../../components/Loader"

5 import { PostBody } from "../../components/Post/PostBody"

6 import { Comments } from "../../components/Comments"

7

8 import { fetchPost, fetchComments } from "../../request"

9 import { State, store } from "../../store"

10 import { PostState, UPDATE_POST_ACTION } from "../../store/post"

11 import {

12 CommentsState,

13 UPDATE_COMMENTS_ACTION

Static Site Generation and Server-Side Rendering Using Next.js 532

14 } from "../../store/comments"

15

16 export const getServerSideProps = store.getServerSideProps(

17 (store) =>

18 async ({ params }) => {

19 if (typeof params.id !== "string")

20 throw new Error("Unexpected id")

21

22 const comments = await fetchComments(params.id)

23 const post = await fetchPost(params.id)

24

25 store.dispatch({ type: UPDATE_POST_ACTION, post })

26 store.dispatch({ type: UPDATE_COMMENTS_ACTION, comments })

27

28 return null

29 }

30)

31

32 const Post: NextPage = () => {

33 const post = useSelector<State, PostState>(({ post }) => post)

34 const comments = useSelector<State, CommentsState>(

35 ({ comments }) => comments

36)

37

38 if (!post) return <Loader />

39 return (

40 <>

41 <PostBody post={post} />

42 <Comments comments={comments} post={post.id} />

43 </>

44)

45 }

46

47 export default Post

And that’s it! Sine this page already uses getServerSideProps because of the Redux

Static Site Generation and Server-Side Rendering Using Next.js 533

store the rest of the code in this file stays the same.

However, we also need to update the comment form to submit comments to the
correct endpoint.

In the CommentForm component, we need to replace imports from api/comments with
the new one:

1 import { submitComment } from "../../request"

The rest of the code also stays the same. Now if we run the project and open it in the
browser it should work as before.

Cleaning Up

Whenwemigrated to the API routes, we can safely delete obsolete code. For example,
we don’t need api directory, shared/staticPaths.ts, server/index.ts anymore.

Also, we don’t need server packages, so we can safely remove:

• body-parser

• concurrently

• cors

• express

• node-fetch

• ts-node

Clean up the scripts section in the package.json:

1 "scripts": {

2 "build": "next build",

3 "start": "next start",

4 "dev": "next"

5 },

Now, let’s deploy the project!

Static Site Generation and Server-Side Rendering Using Next.js 534

Deployment with Serverless Functions

Now the project is almost ready to be deployed on Vercel. We’re going to have to
push it to a repository on GitHub or GitLab, define some environment variables for
API configuration, and we’re ready to go!

Let’s start with checking the next.config.js. This config should contain the images
field that sets up how Next will handle our images. And the deviceSizes property
tells Next what breakpoints we’re going to consider in the app layout.

1 module.exports = {

2 images: {

3 domains: ["ichef.bbci.co.uk"],

4 deviceSizes: [320, 640, 860, 1000]

5 },

6 distDir: 'build'

7 }

Then, we need to update our request/config.ts file. Right now it contains only a
declaration for localhost. When deployed, the app won’t be able to call API by that
URL. We need to inject the real API URL in the config. For this, we’re going to use
environment variables²²⁰.

By default, Next and Vercel don’t expose env variables to the client code for security
reasons. But we can explicitly tell them to inject a variable into the client code using
the NEXT_PUBLIC_ prefix.

There is also a whole bunch of environment variables that Vercel exposes automat-
ically²²¹ for us. Among those variables is VERCEL_URL (or NEXT_PUBLIC_VERCEL_URL
for the client) that contains the real deployment URL.

We will use this variable to set up configs for our client requests module. Let’s update
the configs:

²²⁰https://vercel.com/docs/projects/environment-variables
²²¹https://vercel.com/docs/projects/environment-variables#system-environment-variables

https://vercel.com/docs/projects/environment-variables
https://vercel.com/docs/projects/environment-variables#system-environment-variables
https://vercel.com/docs/projects/environment-variables#system-environment-variables
https://vercel.com/docs/projects/environment-variables
https://vercel.com/docs/projects/environment-variables#system-environment-variables

Static Site Generation and Server-Side Rendering Using Next.js 535

1 const IS_PRODUCTION = process.env.NODE_ENV === "production"

2

3 const protocol = IS_PRODUCTION ? "https" : "http"

4 const host = process.env.NEXT_PUBLIC_VERCEL_URL || "localhost:3000"

5

6 export const config = {

7 baseUrl: `${protocol}://${host}/api`

8 }

Okay, now when deployed, the app will send requests to the real app URL and reach
the API endpoints. But this code won’t run locally because there is no NEXT_PUBLIC_-
VERCEL_URL.

To solve this we can declare this variable by using .env.local file. Let’s create this
file in the project root and add the variable:

1 NEXT_PUBLIC_VERCEL_URL = "localhost:3000"

We’re going to need to restart the Next dev server to see any changes. If we run the
project again we’ll see an error:

Certificate error on localhost

That’s because we didn’t set up HTTPS on localhost. Let’s replace https with http

on the local development server in the configs:

Static Site Generation and Server-Side Rendering Using Next.js 536

1 const IS_PRODUCTION = process.env.NODE_ENV === "production"

2

3 const protocol = IS_PRODUCTION ? "https" : "http"

4 const host = process.env.NEXT_PUBLIC_VERCEL_URL || "localhost:3000"

5

6 export const config = {

7 baseUrl: `${protocol}://${host}/api`

8 }

Here, we check if we’re in production. If so, we use https and env variables exposed
from the deployment platform. If not, we use http and variables from the .env.local
file loaded by Next for development.

Now we can push this project to a repo on GitHub or GitLab and deploy it on Vercel.

Pushing to GitHub

As an example of a remote repository, we will use GitHub. Sign up or log in to your
account on GitHub and create a new repository for this project.

Create a new repo on GitHub

You will be navigated to the “New Repo” page. Add a name and a description for
this project (e.g. “next-new-site”). You can keep the repo public or make it private, it
won’t affect the deployment. Optionally, you can add a Readme file or a .gitignore
file.

Static Site Generation and Server-Side Rendering Using Next.js 537

Repo details

When everything is set up hit the “Create Repo” button.

After the repository is created, push the source code to it. Be careful and don’t forget
to add .env.local to the .gitignore to avoid leaking variables to the repo!

Static Site Generation and Server-Side Rendering Using Next.js 538

Deploying to Vercel

When the source code is pushed to the repo, go to vercel.com²²² and create an account
there. If you already have an account login.

Once you’ve logged in, you will be navigated to the Dashboard. Here you will see a
“New Project” button. Click on it.

Below you will see an “Import Git Repository” block. There you can select the remote
repo from which to build and deploy the project. Find your created repo with this
project and click “Import”.

Import project from GitHub

²²²https://vercel.com/

https://vercel.com/
https://vercel.com/

Static Site Generation and Server-Side Rendering Using Next.js 539

On the “New Project” page you might be asked about creating a team. You can skip
this part.

Skip creating a team

In the “Configure Project” section, make sure that the selected “Framework Preset”
is “Next.js”.

Static Site Generation and Server-Side Rendering Using Next.js 540

Configure project

You can also set up different build command and output settings if you need. This is
done in the “Build and Output Settings” section:

Static Site Generation and Server-Side Rendering Using Next.js 541

Build settings

By default, they use Next presets and are configured to run the application as it
suggested by Next. In the majority of cases, we won’t need to change them.

They are useful when, for example, the app should be built using multiple steps or
different commands than npm run build. Also, we can set up the output directory
which is useful for complex deployment systems.

In our case, we can safely keep them default.

You also can set up environment variables in the section below:

Static Site Generation and Server-Side Rendering Using Next.js 542

Environment variables

In our case, we use only the system environment variables²²³ which are exposed
automatically. So we don’t need to specify anything else.

When the project is configured, hit the “Deploy” button.

After a few minutes, Vercel will tell you that the project is successfully deployed and
will give you a link to the deployment.

²²³https://vercel.com/docs/projects/environment-variables#system-environment-variables

https://vercel.com/docs/projects/environment-variables#system-environment-variables
https://vercel.com/docs/projects/environment-variables#system-environment-variables

Static Site Generation and Server-Side Rendering Using Next.js 543

Deployed project

Now, on the dashboard, you can see the freshly deployed project. Click on it and hit
the “View Deployment” button. You will be navigated to the production deployment
of your project.

Deploying Stages

Sometimes you need to create a non-production deployment, for testing, presenting
changes. With Vercel, it is also possible to deploy tests, stages, and pre-production
environments.

To deploy a non-production environment we need to create a new branch in the repo
from which the project is deployed:

Static Site Generation and Server-Side Rendering Using Next.js 544

Create a new branch in the project’s repo

Check out to this branch and add some changes. For example, add the following text
on the main page:

1 import React from "react"

2 import Head from "next/head"

3 import { Post, Category } from "../shared/types"

4 import { Feed } from "../components/Feed"

5 import { fetchPosts, fetchCategories } from "../request"

6

7 type FrontProps = {

8 posts: Post[]

9 categories: Category[]

10 }

11

12 export async function getServerSideProps() {

13 const categories = await fetchCategories()

Static Site Generation and Server-Side Rendering Using Next.js 545

14 const posts = await fetchPosts()

15 return { props: { posts, categories } }

16 }

17

18 export default function Front({ posts, categories }: FrontProps) {

19 return (

20 <>

21 <Head>

22 <title>Front page of the Internet</title>

23 </Head>

24

25 <main>

26 <Feed posts={posts} categories={categories} />

27 </main>

28 </>

29)

30 }

Commit and push the changes to the remote repo.

In the “Deployments” section of the Vercel dashboard, youwill see a new deployment
for this branch.

Stage deployment

When it’s built and deployed you will see a link to this stage. This link is unique for
the commit you just made. Click on it and you will be navigated to the stage with
the changes:

Static Site Generation and Server-Side Rendering Using Next.js 546

Working stage

Summary

In this chapter, we have learned how to create applications using the Next.js
framework and use static site generation to pre-render pages.

We connected the app to the Redux store and learned how to optimize images using
built in Next components.

Finally we deployed the application on Vercel using API routes and serverless
functions.

GraphQL, React, and TypeScript
Introduction

In this chapter, we’ll learn how to use GraphQL with TypeScript.

GraphQL is a query language that allows you to exactly specify which fields of data
you want to get from the backend.

Let’s say you work with a Pokemon API and you want to fetch information about a
pokemon.

You would send a query containing the fields you are interested in:

1 query {

2 pokemon(name: "Pikachu") {

3 id

4 number

5 name

6 }

7 }

The response would contain an object with data for the fields you have requested:

GraphQL, React, and TypeScript 548

1 {

2 "data": {

3 "pokemon": {

4 "id": "UG9rZW1vbjowMjU=",

5 "number": "025",

6 "name": "Pikachu"

7 }

8 }

9 }

To use GraphQL, you need to support it both in the backend and the frontend of your
application.

For the frontend, there’s a bunch of libraries available, and all of them have React
bindings:

• Relay²²⁴ is a library by Facebook released alongside GraphQL. It has a steep
learning curve, and you may need some time to learn it.

• Apollo²²⁵ is a platform that provides client libraries for all popular web frame-
works and mobile platforms. It is popular and has an easy-to-learn API. We will
use it in this chapter.

• URQL²²⁶ is a GraphQL library by Formidable Labs that also has a nice and easy-
to-learn API.

All these libraries provide wrappers to make GraphQL requests. You can also perform
GraphQL requests manually: after all, GraphQL is based on HTTP.

For example, try to run this cURL script in the terminal:

²²⁴https://relay.dev/
²²⁵https://www.apollographql.com/
²²⁶https://formidable.com/open-source/urql/

https://relay.dev/
https://www.apollographql.com/
https://formidable.com/open-source/urql/
https://relay.dev/
https://www.apollographql.com/
https://formidable.com/open-source/urql/

GraphQL, React, and TypeScript 549

1 curl 'https://graphql-pokemon2.vercel.app/?' \

2 -H 'content-type: application/json' \

3 --request POST \

4 --data '{"query":"query { pokemon(name: \"Pikachu\") { id number name\

5 } }","variables":null}' \

The server will respond with a JSON formatted object:

1 {"data":{"pokemon":{"id":"UG9rZW1vbjowMjU=","number":"025","name":"Pika\

2 chu"}}}

Most GraphQL server implementations also provide a schema explorer.

For example, when you launch the Apollo GraphQL server, you’ll have the __graphql
endpoint with the following interface:

Apollo GraphQL schema explorer

Here you can enter a query on the left, press the Execute button, and see the result
in the right pane.

This feature allows you to easily explore any provided GraphQL schema.

GraphQL, React, and TypeScript 550

If you want to play with the Pokemon API, you can do it here²²⁷.

Is GraphQL better than REST?

REST (REpresentational State Transfer) is an architectural style that defines a set of
conventions and constraints that allow you to write an organized and manageable
API.

REST was described by Roy Fielding, a computer scientist who presented the
principles of REST in his Ph.D. dissertation²²⁸ in 2000.

Here are the key characteristics of a REST API:

• Client-server architecture²²⁹. User interface concerns should be separated from
data storage concerns to improve user interface portability across multiple
platforms.

• Statelessness²³⁰. A stateless server does not persist any information about API
users.

• Cacheability²³¹. REST API responses must define themselves as cacheable or
non-cacheable to prevent clients from providing inappropriate data in future
requests.

• Layered system²³². If a proxy or load balancer sits between the client and the
server, connections between them shouldn’t be affected and the client shouldn’t
know whether or not it’s connected to the end server.

• Uniform interface²³³. There should be a way of interacting with a given server
that is uniform across application types (such as a website or a mobile app). The
main guideline is that each individual resource has to be identified on requests.

When you create a REST API, you define HTTP endpoints for each of your resources.
For example, if you want to allow to create, read, update and delete users in your
application, you would create the following endpoints:

²²⁷https://graphql-pokemon2.vercel.app/?
²²⁸https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
²²⁹https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_2
²³⁰https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
²³¹https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_4
²³²https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_6
²³³https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5

https://graphql-pokemon2.vercel.app/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_2
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_4
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_6
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5
https://graphql-pokemon2.vercel.app/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_2
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_4
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_6
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5

GraphQL, React, and TypeScript 551

1 GET http://api.example/users // Get all users

2 POST http://api.example/users // Create a new user

3 GET http://api.example/users/:id // Get user by ID

4 PUT http://api.example/users/:id // Update user by ID

5 DELETE http://api.example/users/:id // Delete user by ID

If users in your application have repositories, then you would have to create a set of
endpoints to work with them as well:

1 GET http://api.example/users/:id/repositories

2 // Get repositories for a given user ID

It also means that when you need to fetch both users and their repositories, you have
two options:

• Create another endpoint that would return users and their repositories.
• Make two successive calls to the API to first fetch the users and then their
repositories.

As you can see, this approach creates overhead, and you have to write more code to
extend your API.

This is why in 2015 Facebook started developing GraphQL²³⁴.

GraphQL allows the client to specify what data it needs to get from the server.

When you use GraphQL, you need to:

• Define the complete schema on the backend.
• Implement special functions called resolvers that will fill the schema with data.

This approach allows you to make fewer assumptions about the client’s needs. You
don’t have to define additional endpoints when your client needs more data.

It also fixes the problem of over-fetching. Your client can specify if it needs additional
data right in a query.

²³⁴https://engineering.fb.com/core-data/graphql-a-data-query-language/

https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://engineering.fb.com/core-data/graphql-a-data-query-language/

GraphQL, React, and TypeScript 552

In general, GraphQL requires less work to define a decent API, and it is easier to
maintain.

Many services currently provide GraphQL versions of their APIs, including:

• Facebook
• Instagram
• GitHub

What are we building?

In this chapter, we’ll create a GitHub GraphQL client that will run in the terminal. It
will allow the user to see the list of their repositories, issues, and pull requests.

The application will have a graphical UI made using the curses library.

On the main screen, we’ll display information about the currently logged-in user:

Main screen

We’ll have a navigation bar at the top with the list of resources that you can perform
operations with:

GraphQL, React, and TypeScript 553

• Repositories
• Issues
• Pull Requests

You’ll be able to switch between screens by pressing keys on the keyboard. For
example, you’ll be able to open the Issues tab by pressing i:

Issues screen

You will be presented with a window giving you two options:

• Press c to create a new issue.
• Press l to see the list of existing issues.

If you press c, the application will open a form to enter a title and description for a
new issue. Every issue belongs to a specific repository, so you’ll also have to specify
a repository name:

GraphQL, React, and TypeScript 554

Create Issue screen

If you press l, you will see the list of available issues. You’ll be able to select an issue
using the mouse, arrow keys, or Vim-style using j and k keys. After selecting an issue,
you’ll be able to press Enter or click on it to open the browser and navigate to the
selected issue:

GraphQL, React, and TypeScript 555

List Issues screen

You’ll be able to manage pull requests and repositories in a similar manner.

GitHub requires authentication to make API calls. In our application, we’ll be using
the OAuth 2 authentication flow.

When you launch the application for the first time, it will open the browser and
display the GitHub authentication page:

GraphQL, React, and TypeScript 556

GitHub authentication screen

After you authenticate, the application will store an authentication token and won’t
require you to repeat this process unless you remove the token from key storage.

The key storage is specific to the operating system you use:

• Keychain on Mac.
• Credential Vault on Windows.
• Secret Service API/libsecret on Linux.

Authenticate in GitHub and Preview The Final
Result

Authenticating in GitHub

The first thing we need to do to be able to use the GitHub API is authenticate.

To communicate with the GraphQL server we’ll need an OAuth token with the right
scopes. We will follow the web application flow²³⁵.

²³⁵https://docs.github.com/en/developers/apps/authorizing-oauth-apps#web-application-flow

https://docs.github.com/en/developers/apps/authorizing-oauth-apps#web-application-flow
https://docs.github.com/en/developers/apps/authorizing-oauth-apps#web-application-flow

GraphQL, React, and TypeScript 557

To enable the web authentication flow in our application, we need to get the client_-
id and client_secret. To do this go to your GitHub profile and generate a new key.

Click on your avatar in the top right corner, and then click the Settings link:

Profile dropdown

From the Settings page, go to Developer Settings:

GraphQL, React, and TypeScript 558

Developer settings

From Developer settings, select OAuth Apps:

OAuth applications

Once there, click New OAuth App:

GraphQL, React, and TypeScript 559

New OAuth App

Now enter the info about your application:

New application form

Pick a name for your application and specify any homepage URL.

We specify the return URL to be http://localhost:3000. After the user agrees to
give us access to the API, GitHub will redirect us to this URL with the authorization
token, and we’ll need to store the token in the keychain.

GraphQL, React, and TypeScript 560

Application keys

Now we can construct the URL and start writing authentication code.

Save the CLIENT_ID and CLIENT_SECRET somewhere safe:

Previewing the final result

The complete code example can be found in code/06-graphql/completed.

Unzip the archive that comes with this book and cd to the application folder:

1 cd code/06-graphql/completed

Open the .env file in the root and add the keys from the previous step:

1 CLIENT_ID=af3e6d7f80518e8d23e6

2 CLIENT_SECRET=dcc2fd666649a9169fce3d8e3b9088ba995cfd0b

Install dependencies and launch the application:

1 yarn && yarn start

It will open a browser window where you’ll need to log in to GitHub and authorize
the application to get access to your GitHub resources.

As soon as you’ve done this, you can try to create issues, pull requests, or repositories.

GraphQL, React, and TypeScript 561

Setting up the project

Unlike the projects in previous chapters, this project runs in the terminal instead of
the browser.

It will be a Node.js application that we’ll write in TypeScript.We’ll use a customReact
renderer called react-blessed to be able to render text-based GUI in the terminal.

To start, let’s create a new folder for the project. We’ll call it github-client:

1 mkdir github-client

2 cd github-client

Open the new folder and run npm init to generate package.json:

1 npm init -y

Running TypeScript in the console

There are two major ways to run TypeScript in the console:

• Precompile TypeScript using tsc or babel.
• Use a TypeScript runtime like Deno, ts-node or babel-node.

We will use babel-node for development because it is easier to set up.

First let’s install the dependencies:

1 yarn add @apollo/client@3.4.8 \

2 react@17.0.2 react-blessed@0.7.2 react-devtools@4.8.0 \

3 react-router@5.2.0 open@7.0.4 keytar@6.0.1 blessed@0.1.81 \

4 cross-fetch@3.0.5 dotenv@8.2.0 form-data@4.0.0

Wow, that’s a lot of packages. Here’s what they do:

GraphQL, React, and TypeScript 562

• @apollo/client will allow us to perform the GraphQL queries
• react, react-blessed and blessed will render the UI in the Terminal
• react-router to navigate between screens
• open allows to open webpages in the browser, we’ll need it to implement
authentication

• keytar will let us store the keys in the system keychain
• form-data is needed to perform an auth request to GitHub
• dotenv will allow us to load the configuration from the .env file
• cross-fetch is a polyfill that will add the fetch method to the node environ-
ment

Then we install the dev dependencies:

1 yarn add --dev @babel/core@7.10.4 @babel/node@7.10.4 \

2 @babel/preset-env@7.10.4 @babel/preset-react@7.10.4 \

3 @babel/preset-typescript@7.10.4 @babel/register@7.10.4 \

4 babel-plugin-transform-class-properties@6.24.1 \

5 msw@0.35.0 react-devtools@4.8.0

react-blessed and react-router don’t include type definitions, so we’ll install them
separately:

1 yarn add @types/react-blessed@0.3.2 @types/react-router@5.1.8

Alright, now add the start script that will launch babel-nodewith inspector enabled.
We’ll need it to be able to use the debugger and see logs in the console:

1 "scripts": {

2 "start": "babel-node --inspect src/index.tsx --extensions \".js,.ts\

3 ,.jsx,.tsx,\""

4 },

Here we pass the --inspector parameter to enable the debugger.

GraphQL, React, and TypeScript 563

Add the .env file

In the root of your project create a .env file with the keys that you got in the previous
step.

1 CLIENT_ID=af3e6d7f80518e8d23e6

2 CLIENT_SECRET=dcc2fd666649a9169fce3d8e3b9088ba995cfd0b

Running the application

Create an src folder. Here we’ll define our first component. Create a new file,
src/App.tsx, with the following code:

1 import React from "react"

2

3 export const App = () => {

4 return (

5 <blessed-box

6 style={{

7 bg: "#0000ff"

8 }}

9 >

10 Hello React-Blessed

11 </blessed-box>

12)

13 }

Now we need to mount our App component. Create a new file src/index.tsx and
add the necessary imports:

GraphQL, React, and TypeScript 564

1 import React from "react"

2 import blessed from "blessed"

3 import { render } from "react-blessed"

4 import * as dotenv from "dotenv"

5 import { App } from "./App"

6 import { MemoryRouter } from "react-router"

Next we’ll switch the default console namespace to the console provided by the
inspector module. We do this to avoid logging directly to the standard output, as
we use it to render the text based UI:

1 global.console = require("inspector").console

Then load environment variables from the .env file:

1 dotenv.config()

Initialize the screen by calling blessed.screen():

1 const screen = blessed.screen({

2 autoPadding: true,

3 smartCSR: true,

4 sendFocus: true,

5 title: "Github Manager",

6 cursor: {

7 color: "black",

8 shape: "underline",

9 artificial: true,

10 blink: true

11 }

12 })

Add key press event listeners to be able to exit the application:

GraphQL, React, and TypeScript 565

1 screen.key(["q", "C-c"], () => process.exit(0))

We want to close the application when the user presses q or a combination of Ctrl
with letter c.

Now render the component tree:

1 render(

2 <MemoryRouter>

3 <App />

4 </MemoryRouter>,

5 screen

6)

As you remember we defined the start script in our package.json. This script runs
our app using the babel-node. To be able to use babel-node we need to set up Babel
properly.

Create a new file .babelrc with the following contents:

1 {

2 "presets": ["@babel/preset-env", "@babel/preset-typescript", "@babel/\

3 preset-react"],

4 "plugins": ["transform-class-properties"]

5 }

Make sure that you can launch the application, run yarn start.

Get the auth code

Define the HTML page

Create a file src/auth/auth.html with the following contents:

GraphQL, React, and TypeScript 566

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <meta http-equiv="X-UA-Compatible" content="IE=edge">

6 <meta name="viewport" content="width=device-width, initial-scale=1.0">

7 <title>You are authenticated</title>

8 </head>

9 <body>

10 <h1>You are logged in</h1>

11 <p>Now you can go back to the command line.</p>

12 </body>

13 </html>

This page will let the user know if they got authenticated.

Define the getCode

Create a new file, src/auth/getCode.ts, and add an import block inside:

1 import http from "http"

2 import fs from "fs"

3 import "cross-fetch/polyfill"

4 import fetch from "cross-fetch"

5 import open from "open"

6 import * as url from "url"

7 import * as keytar from "keytar"

8 const FormData = require("form-data")

Define the PORT constant. We’ll need it to run a server that will handle our return
URL after GitHub authentication:

1 const PORT = 3000

Define the getCode() function:

GraphQL, React, and TypeScript 567

1 export const getCode = (): Promise<string> => {

2 return new Promise((resolve) => {

3 // ...

4 })

5 }

Here we create an async function that returns a Promise. We pass a callback to the
promise constructor, where we can use the resolve function to return the code we’ll
get from GitHub.

Inside of the promise callback we load an html file that we’ll show on the return page,
and after it’s loaded we launch an HTTP server that will serve the return URL for
GitHub:

1 fs.readFile("./src/auth/auth.html", (err, html) => {

2 console.log(err)

3 http

4 .createServer(async (req, res) => {

5 if (!req.url) {

6 return

7 }

8 // ...

9 })

10 .listen(PORT)

11 })

Inside the createServer callback we get the code from the return url and render the
HTML page that we’ve loaded:

1 const { code } = url.parse(req.url, true).query

2

3 res.writeHead(200, { "Content-Type": "text/html" })

4 res.write(html)

5 res.end()

Now we need to get the access_token. To do it we’ll send a POST request with
FormData. We send the code along with CLIENT_ID and CLIENT_SECRET to GitHub’s
login endpoint:

GraphQL, React, and TypeScript 568

1 const data = new FormData()

2 data.append("client_id", process.env.CLIENT_ID!)

3 data.append("client_secret", process.env.CLIENT_SECRET!)

4 data.append("code", code)

5 data.append("state", "abc")

6 data.append("redirect_uri", "http://localhost:3000")

7

8 const { access_token } = await fetch(

9 "https://github.com/login/oauth/access_token",

10 {

11 method: "POST",

12 body: data,

13 headers: {

14 Accept: "application/json"

15 }

16 }

17).then((res) => res.json())

Here we create a FormData and append the following values to it:

• client_id: the client ID we received from GitHub for our GitHub App.
• client_secret: the client secret we received from GitHub for our GitHub App.
• code: the code we received as a response on our return URL.
• state: a random string we provided when starting authentication.
• redirect_url: a URL to direct the user to after authentication.

Then we call the fetch() method with the form data and set the Accept header to
application/json.

Now we have the access_token, let’s save it in the system storage using keytar:

GraphQL, React, and TypeScript 569

1 await keytar.setPassword(

2 "github",

3 process.env.CLIENT_ID!,

4 access_token

5)

keytar automatically detects what key storages are available in the system. On
macOS it will use the Keychain Access app.

After access_token is stored we resolve the promise with it.

1 resolve(access_token)

Now we need to initiate the authentication. This process happens on the frontend so
we need to open the url in the browser. After the code that launches the server, add
the following:

1 open(

2 `https://github.com/login/oauth/authorize?client_id=${process.env.CLI\

3 ENT_ID}&scope=user%20read:org%20public_repo%20admin:enterprise&state=ab\

4 c`

5)

Here we’ve constructed a url that opens the authorize page and requests a bunch
of permisions for our app. We want to be able to fetch user data and create new
repositories, issues and pull requests.

Auth Flow Link

In this section we will define an authorization flow link.

Create a new file src/auth/authFlowLink.ts with the following imports:

GraphQL, React, and TypeScript 570

1 import { setContext } from "@apollo/client/link/context"

2 import { onError } from "@apollo/client/link/error"

3 import { getCode } from "./getCode"

4 import { ServerError } from "@apollo/client"

5 import * as keytar from "keytar"

6 import { RetryLink } from "@apollo/client/link/retry"

7 import { HttpLink, from } from "@apollo/client"

Then we define the GITHUB_BASE_URL, this is where we are going to make all our
requests:

1 const GITHUB_BASE_URL = "https://api.github.com/graphql"

Now we can define the base HTTP link, it will be responsible for actually making
the requests:

1 const httpLink = new HttpLink({ uri: GITHUB_BASE_URL })

We are going to preserve the token in memory, lets define variables to do this:

1 // cached storage for the user token

2 let token: string | null

3 let tokenInvalid = false

Define the token middleware. It will return the cached token, otherwise if the cached
token does not exist it will return the token stored in the system keychain or get and
return a new one.

GraphQL, React, and TypeScript 571

1 const withToken = setContext(async (_, { headers = {} }) => {

2 if (token) return { token }

3

4 if (tokenInvalid) {

5 token = await getCode()

6 tokenInvalid = false

7 } else {

8 token =

9 (await keytar.getPassword("github", process.env.CLIENT_ID!)) ||

10 (await getCode())

11 }

12

13 return { token }

14 })

Define a withAuthBearermiddleware, it will add an authorization header with the
Bearer token to all the requests:

1 const withAuthBearer = setContext(

2 async (_, { headers = {}, token }) => {

3 return {

4 headers: {

5 ...headers,

6 authorization: `Bearer ${token}`

7 }

8 }

9 }

10)

Define a middleware that will reset the token when we receive a server error:

GraphQL, React, and TypeScript 572

1 const resetToken = onError(({ networkError }) => {

2 if ((networkError as ServerError)?.statusCode === 401 && !!token) {

3 token = null

4 tokenInvalid = true

5 }

6 })

We’ll also need a retry link that will retry the whole flow if the previous attempt
fails:

1 const retry = new RetryLink({

2 delay: {

3 initial: 300,

4 max: Infinity,

5 jitter: true

6 }

7 })

Now let’s combine all of the links into the authFlowLink and export it:

1 export const authFlowLink = from([

2 retry,

3 resetToken,

4 withToken,

5 withAuthBearer,

6 httpLink

7])

Authentication context

Inside the src/auth folder, create a new file called ClientProvider.tsx and add the
imports:

GraphQL, React, and TypeScript 573

1 import React, { FC, PropsWithChildren } from "react"

2 import {

3 ApolloProvider,

4 ApolloClient,

5 InMemoryCache

6 } from "@apollo/client"

7 import { authFlowLink } from "./authFlowLink"

Define the ClientProvider component:

1 export const ClientProvider: FC<PropsWithChildren<{}>> = ({

2 children

3 }) => {

4 const client = new ApolloClient({

5 cache: new InMemoryCache(),

6 link: authFlowLink

7 })

8

9 return <ApolloProvider client={client}>{children}</ApolloProvider>

10 }

Here we initialize an Apollo client with the authFlowLink that we defined in the
previous chapter. Then we pass the client to the ApolloProvider.

Now wrap our applcation into the ClientProvider. Open src/index.tsx and import
ClientProvider:

1 import { ClientProvider } from "./auth/ClientProvider"

Wrap the application into ClientProvider:

GraphQL, React, and TypeScript 574

1 render(

2 <MemoryRouter>

3 <ClientProvider>

4 <App />

5 </ClientProvider>

6 </MemoryRouter>,

7 screen

8)

Now run the application:

1 yarn start

The app should launch successfully.

GraphQL queries. Getting user data

Let’s make our first query.

Create a new file, src/WelcomeWindow.tsx, that we’ll use to define the WelcomeWindow
component

In this component, we want to load the currently authenticated user’s data and
display it in a window.

First, add the necessary imports:

1 import React from "react"

2 import { useQuery, gql } from "@apollo/client"

Then define a constant for the user info query:

GraphQL, React, and TypeScript 575

1 const GET_USER_INFO = gql`

2 query getUserInfo {

3 viewer {

4 name

5 bio

6 }

7 }

8 `

If you go to GitHub API documentation²³⁶, you’ll see that this query returns an object
with the viewer field that contains subfields with user data. We’ll use two of these
subfields: name and bio. Let’s define a type for this query:

1 type UserInfo = {

2 viewer: {

3 name: string

4 bio: string

5 }

6 }

Now let’s define the actual component:

1 export const WelcomeWindow = () => {

2 const { loading, data } = useQuery<UserInfo>(GET_USER_INFO)

3

4 return <>{loading ? "Loading..." : JSON.stringify(data)}</>

5 }

Here we use the useQuery hook to perform the query. This hook will make a request
immediately after the component mounts:

When we call useQuery(), three variables are returned:

• isLoading is a boolean flag that shows if we are still waiting for a response
from the server.

²³⁶https://docs.github.com/en/graphql

https://docs.github.com/en/graphql
https://docs.github.com/en/graphql

GraphQL, React, and TypeScript 576

• data is our data. You can provide a type argument to the useQuery() hook to
specify the type of the data.

• error: if something goes wrong, this object will contain information about the
error.

We show a loader while isLoading is true, and when loading completes, we show
values from the data object.

For now, we just render parsed JSON of the data that we got from the GitHub API.

Open src/App.tsx and render the WelcomeWindow component:

1 import React from "react"

2 import { WelcomeWindow } from "./WelcomeWindow"

3

4 export const App = () => {

5 return (

6 <blessed-box

7 style={{

8 bg: "#0000ff"

9 }}

10 >

11 <WelcomeWindow />

12 </blessed-box>

13)

14 }

Now launch the application and make sure that data is displayed:

1 yarn start

As we are not authenticated yet the FlowLinkwill try to get the authentication token.
You should see the following page in your browser:

GraphQL, React, and TypeScript 577

Authentication page

Click the Authorize button, and then return to the command line.

You should see something like this:

Getting user data from GitHub

If everything is OK, we can start adding a proper layout.

Adding helper components

Before we implement the main functionality we’ll add the following helper compo-
nents:

GraphQL, React, and TypeScript 578

• Button.tsx
• List.tsx
• Field.tsx
• Form.tsx
• Panel.tsx
• Text.tsx
• TextBox.tsx

All of them will go into the src/shared folder.

Define the Button component

Here we first import React:

1 import React from "react"

Then we define the props type for the button:

1 type ButtonProps = {

2 children: string

3 } & any

Define and export the Button component itself:

1 export const Button = ({ children, ...rest }: ButtonProps) => {

2 return (

3 <blessed-button

4 content={`< ${children} >`}

5 mouse

6 focused

7 height={1}

8 width={children.length + 4}

9 align="center"

10 left="center"

GraphQL, React, and TypeScript 579

11 bottom={1}

12 bg="blue"

13 fg="white"

14 {...rest}

15 />

16)

17 }

Define the List component

1 import React, { FC, forwardRef } from "react"

2

3 type ListItem = {

4 content: string

5 }

6

7 type ListProps = {

8 top?: string | number

9 left?: string | number

10 right?: string | number

11 bottom?: string | number

12 height?: string | number

13 width?: string | number

14 onAction?(item: ListItem): void

15 items: string[]

16 }

17

18 export const List = forwardRef<any, ListProps>(

19 ({ onAction, items, ...rest }, ref) => {

20 return (

21 <blessed-list

22 ref={ref}

23 onAction={onAction}

24 focused

GraphQL, React, and TypeScript 580

25 mouse

26 keys

27 vi

28 items={items}

29 style={{

30 bg: "white",

31 fg: "black",

32 selected: {

33 bg: "blue",

34 fg: "white"

35 },

36 border: {

37 type: "line"

38 }

39 }}

40 {...rest}

41 />

42)

43 }

44)

Define the Text component

1 import React from "react"

2

3 type TextProps = {

4 children: string

5 } & any

6

7 export const Text = ({ children, ...rest }: TextProps) => {

8 return (

9 <blessed-text

10 width={children.length}

11 content={children}

GraphQL, React, and TypeScript 581

12 style={{

13 bg: "white",

14 fg: "black"

15 }}

16 {...rest}

17 />

18)

19 }

Define the TextBox component

Make the imports:

1 import React, { FC } from "react"

Define the props type:

1 type TextBoxProps = {

2 top?: string | number

3 bottom?: string | number

4 left?: string | number

5 onSubmit(): void

6 }

Define and export the TextBox component:

GraphQL, React, and TypeScript 582

1 export const TextBox: FC<TextBoxProps> = ({ onSubmit, ...rest }) => {

2 return (

3 <blessed-textbox

4 height={1}

5 style={{

6 bg: "white",

7 fg: "black"

8 }}

9 keys

10 inputOnFocus

11 mouse

12 onSubmit={onSubmit}

13 {...rest}

14 />

15)

16 }

Define the Panel component

If you’ve launched the application from the example folder, you saw that it rendered
a window, a.k.a. panel, on each screen. Let’s define a component for it.

Create a new file, src/shared/Panel.tsx, and add the necessary imports:

1 import React, { PropsWithChildren, FC } from "react"

2 import { forwardRef } from "react"

Then define a type for the Panel component’s props:

GraphQL, React, and TypeScript 583

1 type PanelProps = {

2 top?: number | string

3 left?: number | string

4 right?: number | string

5 bottom?: number | string

6 width?: number | string

7 height?: number | string

8 }

Define the Panel component:

1 export const Panel = forwardRef<any, PropsWithChildren<PanelProps>>(

2 ({ children, ...rest }, ref) => {

3 return (

4 <blessed-box

5 ref={ref}

6 focused

7 mouse

8 shadow

9 border={{

10 type: "line"

11 }}

12 keys

13 align="center"

14 style={{

15 bg: "white",

16 shadow: true,

17 border: {

18 bg: "white",

19 fg: "black"

20 },

21 label: {

22 bg: "white",

23 fg: "black"

24 }

25 }}

GraphQL, React, and TypeScript 584

26 {...rest}

27 >

28 {children}

29 </blessed-box>

30)

31 }

32)

Form helper components

Create a new file, src/shared/Form.tsx, and add these imports:

1 import React, {

2 PropsWithChildren,

3 FC,

4 ReactNode,

5 useRef

6 } from "react"

Define the types for our form:

1 export type FormValues = {

2 textbox: string[]

3 }

4 // ...

5 type FormProps = {

6 onSubmit(values: FormValues): void

7 children(triggerSubmit: () => void): ReactNode

8 }

Here we define children to be a function. We need to do this to be able to send
the triggerSubmit() function to form children. Unfortunately, react-blessed does
not trigger a form’s onSubmit() automatically when its inputs are submitted, which
forces us to use this little hack.

Define the Form component:

GraphQL, React, and TypeScript 585

1 export const Form: FC<FormProps> = ({ children, onSubmit }) => {

2 const form = useRef<any>()

3

4 const triggerSubmit = () => {

5 form.current.submit()

6 }

7

8 React.useEffect(() => {

9 setTimeout(() => {

10 form.current.focus()

11 }, 0)

12 }, [])

13

14 return (

15 <blessed-form

16 top={3}

17 keys

18 focused

19 ref={form}

20 style={{

21 bg: "white"

22 }}

23 onSubmit={onSubmit}

24 >

25 {children(triggerSubmit)}

26 </blessed-form>

27)

28 }

• We define the triggerSubmit() function that will call the submit()method on
our form when triggered.

• We define useEffect() to automatically focus the form when the component
is mounted.

• In the Form layout, we render the children() function and pass triggerSubmit()
as an argument.

GraphQL, React, and TypeScript 586

Now define the Field component. Create a new file called src/shared/Field.tsx

and add imports:

1 import React from "react"

2 import { FC } from "react"

3 import { TextBox } from "./TextBox"

4 import { Text } from "./Text"

Then define a type for the component’s props:

1 type FieldProps = {

2 label: string

3 top?: number | string

4 onSubmit(): void

5 }

• label will be displayed in front of input.
• top represents an offset from the top.
• onSubmit() is an input submit handler that triggers on pressing the Enter key.

Define the Field component:

1 export const Field: FC<FieldProps> = ({ label, top, onSubmit }) => {

2 return (

3 <>

4 <Text top={top}>{label}</Text>

5 <TextBox top={top} left={label.length} onSubmit={onSubmit} />

6 </>

7)

8 }

In this component, we render a label and a text box. We’ll have a lot of these in our
forms, so it’s better to have them as a reusable component.

GraphQL, React, and TypeScript 587

Informationbal message components

In our resource related components, we’ll need to show error and success messages
to the users.

Entity error component

For example when the user tries to create a new pull request, repository or issue
and the server returns an error, we’ll need to show an error message. Let’s define a
component for this. Create a new file src/shared/NewEntityError.tsx and add the
following code:

1 import React, { useRef, useEffect } from "react"

2 import { Panel } from "./Panel"

3 import { Text } from "./Text"

4 import { Button } from "./Button"

5

6 type NewEntityErrorProps = {

7 onClose(): void

8 error: Error

9 }

10

11 export const NewEntityError = ({

12 onClose,

13 error

14 }: NewEntityErrorProps) => {

15 // ...

16 }

This component will accept an error message and render it. It will also accept an
onClose() function that will be called when the user clicks on the close button or
press enter.

Define the component body:

GraphQL, React, and TypeScript 588

1 const ref = useRef<any>()

2

3 useEffect(() => {

4 ref.current.key("enter", onClose)

5 return () => {

6 ref.current.unkey("enter", onClose)

7 }

8 }, [])

9

10 return (

11 <Panel ref={ref} top="25%" left="center" height={10}>

12 <Text left="center">An error occured</Text>

13 <Text left="center" top={3}>

14 {error.message}

15 </Text>

16

17 <Button left="center" bottom={1} onPress={onClose}>

18 Enter:OK

19 </Button>

20 </Panel>

21)

Here we render the layout and listen to keyboard events in the useEffect() hook.

Entity success component

When the user successfully creates a new entity, we’ll need to show a successmessage.
Let’s define a component for this. Create a new file src/shared/NewEntitySuccess.tsx
and add the following code:

GraphQL, React, and TypeScript 589

1 import open from "open"

2 import React, { useRef, useEffect, useCallback } from "react"

3 import { Panel } from "./Panel"

4 import { Text } from "./Text"

5 import { Button } from "./Button"

6 import { debounce } from "../utils/debounce"

7

8 type NewEntitySuccessProps = {

9 url: string

10 title: string

11 onClose(): void

12 }

13

14 export const NewEntitySuccess = ({

15 url,

16 title,

17 onClose

18 }: NewEntitySuccessProps) => {

19 // ...

20 }

This component will allow the user to open the entity in the browser. This is why we
import the open function. Just like with the error component we’ll accept the onClose
callback. We’ll also accept the entity’s URL.

Add this to the component body:

1 const ref = useRef<any>()

2

3 const openUrl = useCallback(

4 debounce(() => open(url), 100),

5 [url]

6)

7

8 useEffect(() => {

9 // ...

GraphQL, React, and TypeScript 590

10 }, [])

11

12 return (

13 <Panel ref={ref} top="25%" left="center" height={10}>

14 <Text left="center">{title}</Text>

15

16 <Button left="center" bottom={3} onPress={openUrl}>

17 o: Open in the browser

18 </Button>

19 <Button left="center" bottom={1} onPress={onClose}>

20 Enter: Ok

21 </Button>

22 </Panel>

23)

What is left is to define the useEffect where we’ll subscribe to keyboard events and
call the onClose and openUrl functions:

1 useEffect(() => {

2 ref.current.key("enter", onClose)

3 ref.current.key("o", openUrl)

4

5 return () => {

6 ref.current.unkey("enter", onClose)

7 ref.current.unkey("o", openUrl)

8 }

9 }, [])

That’s it, we are ready to continue with the next step and define the WelcomeWindow
component.

Defining the WelcomeWindow layout

Go to src/WelcomeWindow.tsx and add the Text and Panel components:

GraphQL, React, and TypeScript 591

1 import { Text } from "./shared/Text"

2 import { Panel } from "./shared/Panel"

Edit the WelcomeWindow layout:

1 return (

2 <Panel height={12} left="center" top="25%">

3 <Text left="center">Welcome to Github Manager</Text>

4 {loading ? (

5 <Text top={3}>Loading...</Text>

6) : (

7 <>

8 <Text top={3}>{`Name: ${data?.viewer.name}`}</Text>

9 <Text top={5} width={50}>{`Bio: ${data?.viewer.bio}`}</Text>

10 </>

11)}

12 </Panel>

13)

Now if you launch the application again, you should see this:

GraphQL, React, and TypeScript 592

Main screen

Getting GitHub GraphQL schema

We have just written our first query, but we had to provide types for it manually.

In fact, type information is already available in the GraphQL schema, and we just
need to extract it to use with TypeScript.

To extract type information, we first need to obtain the full GraphQL schema
definition.

The Apollo CLI allows to do this. Let’s install it as a dev dependency:

1 yarn add --dev apollo

If you get an error about Ineffective mark-compacts near heap limit...

try to run this command instead: yarn add --dev --max_old_space_-

size=8196 apollo. Read more about this here²³⁷.
²³⁷https://stackoverflow.com/questions/53230823/fatal-error-ineffective-mark-compacts-near-heap-limit-allocation-

failed-javas

https://stackoverflow.com/questions/53230823/fatal-error-ineffective-mark-compacts-near-heap-limit-allocation-failed-javas
https://stackoverflow.com/questions/53230823/fatal-error-ineffective-mark-compacts-near-heap-limit-allocation-failed-javas
https://stackoverflow.com/questions/53230823/fatal-error-ineffective-mark-compacts-near-heap-limit-allocation-failed-javas

GraphQL, React, and TypeScript 593

The request that we are going to make requires authentication so we’ll need to get
the Bearer token. Lucky for us we already have it, because we made an authenticated
request to retrieve user data.

Run the following command to get the authentication token:

1 node -e "require('dotenv').config(); \

2 require('keytar')\

3 .getPassword('github', process.env.CLIENT_ID)\

4 .then(console.log)"

This command will only work if you’ve already run the application and
made an authenticated request to GitHub API.

Now run the following command in the terminal:

1 yarn run apollo schema:download \

2 --header="Authorization: Bearer <token>" \

3 --endpoint=https://api.github.com/graphql \

4 graphql-schema.json

Change the <token> to your token that you got from the previous com-
mand.

This script will download the schema and save it to a JSON file.

Generating types

We can now generate TypeScript types from the downloaded schema.

Apollo provides a special CLI utility to get TypeScript types from a GraphQL schema.
Run it like this:

GraphQL, React, and TypeScript 594

1 yarn run apollo codegen:generate \

2 --localSchemaFile=graphql-schema.json \

3 --target=typescript \

4 --tagName=gql \

5 --addTypename \

6 --globalTypesFile=src/types/graphql-global-types.ts \

7 types

We pass the following options to the codegen script:

• localSchemaFile - the json file that we created on the previous step
• target - the target language for the types
• tagName - the template literal that will contain the queries
• addTypename - will add the __typename to your queries
• globalTypesFile - will override the default types file path. The default one is
globalTypes.d.ts

If everything goes fine, you should see output similar to this:

Types generated successfully

The script that we just ran created a new folder src/types. If you open the folder,
you’ll see type definitions for the getUserInfo() query. This file has the linters
disabled and explicitly states that it is generated automatically and should not be
edited:

1 /* tslint:disable */

2 /* eslint-disable */

3 // @generated

4 // This file was automatically generated and should not be edited.

If you look at the contents you’ll see that it exports the types for our query:

GraphQL, React, and TypeScript 595

1 // ==

2 // GraphQL query operation: getUserInfo

3 // ==

4

5 export interface getUserInfo_viewer {

6 __typename: "User"

7 /**

8 * The user's public profile name.

9 */

10 name: string | null

11 /**

12 * The user's public profile bio.

13 */

14 bio: string | null

15 }

16

17 export interface getUserInfo {

18 /**

19 * The currently authenticated user.

20 */

21 viewer: getUserInfo_viewer

22 }

From now on, every time we write new GraphQL queries or mutations, we’ll run
this code generator to get types for those queries.

Let’s now update our code to use the automatically generated types instead of our
custom types.

Remove the UserInfo type, open src/WelcomeWindow.tsx and import the generated
types:

1 import { getUserInfo } from "./types/getUserInfo"

Change the call to useQuery() to this:

GraphQL, React, and TypeScript 596

1 const { loading, data } = useQuery<getUserInfo>(GET_USER_INFO)

Adding routing

Right now we only have one window that greets the user and shows profile
information.

We want to let the user navigate between different pages. To do this, we’ll use the
react-router library.

Define the resource screens

Create three new folders, one for each resource type. Create an index.ts file and the
component file inside each folder. The resulting file structure should look like this:

• src
– /Issues

* index.ts * Issues.tsx
– /Repositories

* index.ts * Repositories.tsx
– /PullRequests

* index.ts * PullRequests.tsx

Inside each index.ts file, export everything from the corresponding component file.
For example, src/Issues/index.ts should look like this:

1 export * from "./Issues"

Define and export the component from the component file. For issues it is going to
be src/Issues/Issues.tsx and it’s will look like this:

GraphQL, React, and TypeScript 597

1 import React from "react"

2 import { Panel } from "../shared/Panel"

3 import { Text } from "../shared/Text"

4

5 export const Issues = () => {

6 return (

7 <Panel height={10} top="25%" left="center">

8 <Text>Issues</Text>

9 </Panel>

10)

11 }

Repeat for each of the remaining resources.

Define the routing scheme

Go to src/App.tsx and add the following imports:

1 import { Issues } from "./Issues"

2 import { Repositories } from "./Repositories"

3 import { PullRequests } from "./PullRequests"

4 import { Switch, Route } from "react-router"

We’ll use Switch and Route to define routing, and the useHistory() hook to navigate
between pages.

Define a Switch with routes inside the blessed-box element:

GraphQL, React, and TypeScript 598

1 <Switch>

2 <Route exact path="/" component={WelcomeWindow} />

3 <Route path="/issues" component={Issues} />

4 <Route path="/repositories" component={Repositories} />

5 <Route path="/pull-requests" component={PullRequests} />

6 </Switch>

Here we define routes for three more pages: repositories, issues, and pull requests.

Implement navigation

Now we can define the navigation panel using a component called blessed-listbar.
It allows you to render a list of options with associated keys. When the user presses
a key, it triggers the associated callback.

Define the debounce function

Before we implement the navigation component we’ll have to define debounce

function. There is a bug in react-blessed that causes the keyboard and mouse event
callbacks to be executed multiple times. This can cause problems with navigation.

To prevent this bug from happening we’ll wrap our callbacks into the debounce

function. This function will limit the amount of calls per time unit. For example we’ll
be able to say that the navitgation should happen only once per 100 milliseconds.

Create a new file src/utils/debounce.ts with the following contents:

GraphQL, React, and TypeScript 599

1 export function debounce<T extends unknown[], U>(

2 callback: (...args: T) => PromiseLike<U> | U,

3 wait: number

4) {

5 let timer: ReturnType<typeof setTimeout>

6

7 return (...args: T): Promise<U> => {

8 clearTimeout(timer)

9 return new Promise((resolve) => {

10 timer = setTimeout(() => resolve(callback(...args)), wait)

11 })

12 }

13 }

In this function we set a new timer every time the wrapped function is called.

Define the Header

Create a new folder src/Header and define an index.ts file there:

1 export * from "./Header"

Create the Header.tsx in the same folder and make the following imports:

1 import React, { useCallback } from "react"

2 import { useHistory, useLocation } from "react-router"

3 import { debounce } from "../utils/debounce"

Define and export the Header component:

GraphQL, React, and TypeScript 600

1 export const Header = () => {

2 // ...

3 }

Inside of the component get the history and location objects using the hooks from
react-router:

1 const history = useHistory()

2 const location = useLocation()

Define the navigation callbacks:

1 const goToIssues = useCallback(

2 debounce(() => history.push("/issues"), 100),

3 []

4)

5

6 const goToRepositories = useCallback(

7 debounce(() => history.push("/repositories"), 100),

8 []

9)

10

11 const goToPRs = useCallback(

12 debounce(() => history.push("/pull-requests"), 100),

13 []

14)

15

16 const goToRoot = useCallback(

17 debounce(() => history.push("/"), 100),

18 []

19)

Here we define four callbacks, one for each page, including the home page. Since we
are using the react-router library, we can take advantage of the history object to
perform navigation programmatically.

Render the layout, we are going to use the blessed-listbar component:

GraphQL, React, and TypeScript 601

1 return (

2 <blessed-listbar

3 height={1}

4 items={{

5 Quit: {

6 keys: "q"

7 },

8 Issues: {

9 keys: "i",

10 callback: goToIssues

11 },

12 Repositories: {

13 keys: "r",

14 callback: goToRepositories

15 },

16 "Pull Requests": {

17 keys: "p",

18 callback: goToPRs

19 },

20 ...(location.pathname !== "/" && {

21 "Back to main screen": {

22 keys: "b",

23 callback: goToRoot

24 }

25 })

26 }}

27 style={{

28 bg: "grey",

29 height: 1

30 }}

31 />

32)

This component accepts a config object with the navigation items. We use the
location to render the Back to main screen button conditionally.

GraphQL, React, and TypeScript 602

Render the Header

Go to src/App.tsx and import the Header component:

1 import { Header } from "./Header"

Render the Header above the Switch element:

1 return (

2 <blessed-box

3 style={{

4 bg: "#0000ff"

5 }}

6 >

7 <Header />

8 <Switch>

9 <Route exact path="/" component={WelcomeWindow} />

10 <Route path="/issues" component={Issues} />

11 <Route path="/repositories" component={Repositories} />

12 <Route path="/pull-requests" component={PullRequests} />

13 </Switch>

14 </blessed-box>

15)

Launch the application and make sure you can navigate between pages:

Navigation bar

Try pressing assigned keys to see if navigation works.

GraphQL, React, and TypeScript 603

Repositories main component

In our application, the user should be able to list their existing repositories and create
new repositories. We’ll achieve this by defining these three components:

• RepositoriesMain will show links to two other routes.
• NewRepository will contain a form to create new repositories.
• RepositoriesList will show a scrollable list of existing repositories.

Let’s start with the main component for repositories.

Create a new file, src/Repositories/RepositoriesMain.tsx, and add import state-
ments:

1 import React from "react"

2 import { useHistory, useRouteMatch } from "react-router"

3 import { useRef } from "react"

4 import { Panel } from "../shared/Panel"

5 import { Button } from "../shared/Button"

6 import { Text } from "../shared/Text"

Then define the actual component with the following layout:

1 export const RepositoriesMain = () => {

2 // ...

3 const ref = useRef<any>()

4 // ...

5 return (

6 <Panel ref={ref} height={11} top="25%" left="center">

7 <Text left="center">Repositories</Text>

8 <Text top={2} left="center">

9 Click on the button or press the corresponding key.

10 </Text>

11

12 <Button left="center" bottom={3}>

GraphQL, React, and TypeScript 604

13 l:List Repositories

14 </Button>

15

16 <Button left="center" bottom={1}>

17 c:Create New Repository

18 </Button>

19 </Panel>

20)

21 }

Here we display instructions on navigating to other pages. We also get the reference
to the panel. We’ll use the ref to attach the scheen specific event listeners. Add this
code before the layout:

1 const history = useHistory()

2 const match = useRouteMatch()

3 // ...

4 React.useEffect(() => {

5 ref.current.key("c", () => history.push(`${match.url}/new`))

6 ref.current.key("l", () => history.push(`${match.url}/list`))

7 }, [])

Here we listen to keyboard events. If the user presses c we navigate to the repo
creation screen, and if the user presses l we go to the repos list.

Import the main component into src/Repositories/Repositories.tsx:

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { RepositoriesMain } from "./RepositoriesMain"

Define the NewRepository and RepositoriesList components stubs:

GraphQL, React, and TypeScript 605

1 const NewRepository = () => <>New Repository</>

2 const RepositoriesList = () => <>List Repositories</>

Update the Repositories component layout:

1 export const Repositories = () => {

2 const match = useRouteMatch()

3

4 return (

5 <Switch>

6 <Route exact path={match.path} component={RepositoriesMain} />

7 <Route path={`${match.path}/new`} component={NewRepository} />

8 <Route

9 path={`${match.path}/list`}

10 component={RepositoriesList}

11 />

12 </Switch>

13)

14 }

Getting the list of repositories

In this section we’ll define a component that will render the list of repositories.
Create a new file, src/Repositories/RepositoriesList.tsx, and add the following
imports:

GraphQL, React, and TypeScript 606

1 import React, { useRef } from "react"

2 import { Panel } from "../shared/Panel"

3 import { useEffect } from "react"

4 import open from "open"

5 import { useQuery, gql } from "@apollo/client"

6 import { List } from "../shared/List"

7 import { Text } from "../shared/Text"

Let’s define a query that will fetch the list of available repositories:

1 const LIST_REPOSITORIES = gql`

2 query listRepositories {

3 viewer {

4 repositories(first: 100) {

5 nodes {

6 name

7 url

8 }

9 }

10 }

11 }

12 `

Define the RepositoriesList component:

1 export const RepositoriesList = () => {

2 // ...

3 }

This component will perform a GraphQL query to fetch the repositories, so we need
to generate the type for it. Run this script in the project root:

GraphQL, React, and TypeScript 607

1 yarn run apollo codegen:generate \

2 --localSchemaFile=graphql-schema.json \

3 --target=typescript \

4 --tagName=gql \

5 --addTypename \

6 --globalTypesFile=src/types/graphql-global-types.ts \

7 types

After running the generator you should have a new folder src/Repositories/types.

Go back to the src/Repositories/RepositoriesList.tsx and import the generated
types:

1 import { listRepositories } from "./types/listRepositories"

Inside the component call the useQuery() hook with the query that we’ve defined:

1 const { loading, error, data } =

2 useQuery<listRepositories>(LIST_REPOSITORIES)

Here we provide the types generated from the query and get the data, error and the
loading flag.

Get the repos list from the data:

1 const repos = data?.viewer.repositories.nodes

Use the useQuery return values to render the component layout. First we need to
process the loading state:

GraphQL, React, and TypeScript 608

1 if (loading) {

2 return (

3 <Panel height={10} top="25%" left="center">

4 <Text left="center">Loading...</Text>

5 </Panel>

6)

7 }

If we get an error - we need to render the error message:

1 if (error) {

2 return <>Error: {JSON.stringify(error)}</>

3 }

If we got the data successfully we render the blessed-list component:

1 return (

2 <Panel height={10} top="25%" left="center">

3 <Text left="center">List Repositories</Text>

4

5 <List

6 // ...

7 top={2}

8 onAction={(el) =>

9 open(

10 repos?.find((repo) => repo?.name === el.content)?.url ||

11 ""

12)

13 }

14 items={repos?.map((repo) => repo?.name || "") || []}

15 />

16 </Panel>

17)

When we open this screen we want to focus on the list automatically, so that the
user won’t have to make an extra click before selecting the repo in the list. Define
the listRef and pass it to the list element:

GraphQL, React, and TypeScript 609

1 const listRef = useRef<any>()

2 // ...

3 <List

4 ref={listRef}

5 // ...

6 />

Add a useEffect() call before the layout:

1 useEffect(() => {

2 listRef?.current?.focus()

3 }, [data])

Here we call the list element focus method after we mount the component.

Open src/Repositories/Repositories.tsx and change it to use the real RepositoriesList
component:

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { RepositoriesMain } from "./RepositoriesMain"

4 import { RepositoriesList } from "./RepositoriesList"

5

6 const NewRepository = () => <>New Repository</>

7

8 export const Repositories = () => {

9 const match = useRouteMatch()

10

11 return (

12 <Switch>

13 <Route exact path={match.path} component={RepositoriesMain} />

14 <Route path={`${match.path}/new`} component={NewRepository} />

15 <Route

16 path={`${match.path}/list`}

17 component={RepositoriesList}

18 />

GraphQL, React, and TypeScript 610

19 </Switch>

20)

21 }

Run the application to make sure it works:

1 yarn start

Here you might get a data merge error. To fix it we will set the merge strategy for
the User model.

Open src/auth/ClientProvider.tsx and add the following code:

1 const cache = new InMemoryCache({

2 typePolicies: {

3 User: {

4 merge: true

5 }

6 }

7 })

Here we define the merge policy for the User model. This way when we fetch the
new data from GitHub - Apollo will try to merge the user data instead of overriding
it.

Add the cache argument to the ApolloClient:

1 children

2 }) => {

3 const client = new ApolloClient({

4 cache,

Launch the app again and try to get the list of repositories. What you see should look
like this:

GraphQL, React, and TypeScript 611

List of repositories

GraphQL mutations. Creating repositories

So far we’ve only been fetching data. It’s time to write our first mutation to create
new repositories.

Create a new file, src/Repositories/NewRepository.tsx, and add these imports:

1 import React, { useState } from "react"

2 import { useMutation, gql } from "@apollo/client"

3 import { Field } from "../shared/Field"

4 import { Text } from "../shared/Text"

5 import { Button } from "../shared/Button"

6 import { Form, FormValues } from "../shared/Form"

7 import { Panel } from "../shared/Panel"

8 import { NewEntitySuccess } from "../shared/NewEntitySuccess"

9 import { NewEntityError } from "../shared/NewEntityError"

Then let’s define the actual mutation:

GraphQL, React, and TypeScript 612

1 const CREATE_REPOSITORY = gql`

2 mutation createNewRepository(

3 $name: String!

4 $description: String!

5 $visibility: RepositoryVisibility!

6) {

7 createRepository(

8 input: {

9 name: $name

10 description: $description

11 visibility: $visibility

12 }

13) {

14 repository {

15 name

16 url

17 id

18 }

19 }

20 }

21 `

Now we can run the code generator to get types:

1 yarn run apollo codegen:generate \

2 --localSchemaFile=graphql-schema.json \

3 --target=typescript \

4 --tagName=gql \

5 --addTypename \

6 --globalTypesFile=src/types/graphql-global-types.ts \

7 types

Import the generated types:

GraphQL, React, and TypeScript 613

1 import {

2 createNewRepository_createRepository_repository,

3 createNewRepository,

4 createNewRepositoryVariables

5 } from "./types/createNewRepository"

6 import { RepositoryVisibility } from "../types/graphql-global-types"

Next, define the NewRepository component:

1 export const NewRepository = () => {

2 // ...

3 const onSubmit = async (values: FormValues) => {

4 const [name, description] = values.textbox

5 // ...

6 }

7 // ...

8 return (

9 <Panel top="25%" left="center" height={12}>

10 <Text left="center">New repository</Text>

11 <Form onSubmit={onSubmit}>

12 {(triggerSubmit) => {

13 return (

14 <>

15 <Field

16 top={0}

17 label="Name: "

18 onSubmit={triggerSubmit}

19 />

20 <Field

21 top={1}

22 label="Description: "

23 onSubmit={triggerSubmit}

24 />

25 </>

26)

27 }}

GraphQL, React, and TypeScript 614

28 </Form>

29 // ...

30 </Panel>

31)

32 }

Add hint regarding the use of the Tab button and the submit button belown the form:

1 <Text left="center" bottom={3}>

2 Tab: Next Field

3 </Text>

4 <Button left="center" bottom={1} onPress={onSubmit}>

5 Enter: Submit

6 </Button>

Here we have a form and an onSubmit() handler that for now just extracts the name
and description values from the form inputs.

To use the mutation, add this code to the beginning of the component:

1 const [createrepository] = useMutation<

2 createNewRepository,

3 createNewRepositoryVariables

4 >(CREATE_REPOSITORY)

Herewe’re using the useMutation() hook from react-apollo to get the createRepository
function. Let’s call the createrepository()mutation inside the onSubmit() callback:

GraphQL, React, and TypeScript 615

1 const onSubmit = async (values: FormValues) => {

2 const [name, description] = values.textbox

3

4 try {

5 const result = await createrepository({

6 variables: {

7 name,

8 description,

9 visibility: RepositoryVisibility.PUBLIC

10 }

11 })

12 // ...

13 } catch (error) {

14 // ...

15 }

16 }

Make sure that onSubmit() is an async function.

Since we provide automatically generated types to createrepository(), we’ll be
getting correct data in return. We get type suggestions when we pass variables to it:

Type suggestions

Now that we have received result from the mutation, we want to store it in a state.
Define the repository state:

1 const [repository, setRepository] =

2 useState<createNewRepository_createRepository_repository | null>()

Save result from the mutation call using this state:

GraphQL, React, and TypeScript 616

1 const onSubmit = async (values: FormValues) => {

2 const [name, description] = values.textbox

3

4 try {

5 const result = await createrepository({

6 variables: {

7 name,

8 description,

9 visibility: RepositoryVisibility.PUBLIC

10 }

11 })

12

13 setRepository(result.data?.createRepository?.repository)

14 } catch (error) {

15 // ...

16 }

17 }

We also need to handle errors. Define the error state:

1 const [error, setError] = useState<Error | null>()

Update the onSubmit callback to handle the error state:

1 const onSubmit = async (values: FormValues) => {

2 const [name, description] = values.textbox

3

4 try {

5 const result = await createrepository({

6 variables: {

7 name,

8 description,

9 visibility: RepositoryVisibility.PUBLIC

10 }

11 })

GraphQL, React, and TypeScript 617

12

13 setRepository(result.data?.createRepository?.repository)

14 } catch (error) {

15 setError(error)

16 }

17 }

Now let’s handle the success and the error states in the component layout.

Add an early return and render the success screen in case a repository is already in
the state:

1 if (repository) {

2 return (

3 <NewEntitySuccess

4 title="New repository created"

5 url={repository.url}

6 onClose={() => setRepository(null)}

7 />

8)

9 }

To handle the error add another early return and render the error screen:

1 if (error) {

2 return (

3 <NewEntityError error={error} onClose={() => setError(null)} />

4)

5 }

Our component is ready, now go to src/Repositories/Repositories.tsx and
import the real NewRepository component:

1 import { NewRepository } from "./NewRepository"

GraphQL, React, and TypeScript 618

Remove the stubbed out NewRepository component and launch the application to see
if everything works:

Create repository form

Try to create a new repository and navigate to it.

Getting the repository ID

Before we move on to other resources, we will create a shared query that will get the
ID of the repository by its name. We’ll use this id to get or create the issues and pull
requests for the given repository.

Create a new file, src/queries/getRepository.ts, with the following code:

GraphQL, React, and TypeScript 619

1 import { gql } from "@apollo/client"

2

3 export const GET_REPOSITORY = gql`

4 query getRepository($owner: String!, $name: String!) {

5 repository(owner: $owner, name: $name) {

6 id

7 }

8 }

9 `

Here we want to find the repository by the owner and name. In the query we specify
that we want only the id field.

Run the code generator to get types for the query:

1 yarn run apollo codegen:generate\

2 --localSchemaFile=graphql-schema.json\

3 --target=typescript\

4 --tagName=gql\

5 --addTypename\

6 --globalTypesFile=src/types/graphql-global-types.ts\

7 types

Make sure that you have the src/queries/types folder with types for this query.

Working with GitHub issues

We can now start working on GitHub issues. Issues are basically discussions bound
to specific repositories. Let’s define the navigation component first. Create a new file,
src/Issues/IssuesMain.tsx, and start with adding imports:

GraphQL, React, and TypeScript 620

1 import React from "react"

2 import { useHistory, useRouteMatch } from "react-router"

3 import { useRef } from "react"

4 import { Panel } from "../shared/Panel"

5 import { Button } from "../shared/Button"

6 import { Text } from "../shared/Text"

Then define the IssuesMain component with the following layout:

1 export const IssuesMain = () => {

2 // ...

3 const ref = useRef<any>()

4 // ...

5 return (

6 <Panel ref={ref} height={11} top="25%" left="center">

7 <Text left="center">Issues</Text>

8 <Text top={2} left="center">

9 Click on the button or press the corresponding key.

10 </Text>

11

12 <Button left="center" bottom={3}>

13 l:List Issues

14 </Button>

15

16 <Button left="center" bottom={1}>

17 c:Create New Issue

18 </Button>

19 </Panel>

20)

21 }

This component displays instructions on navigating to other pages. It also has a
reference to the panel, which enables us to have screen-specific event listeners. To
add the event listeners add the following code before the layout:

GraphQL, React, and TypeScript 621

1 const history = useHistory()

2 const match = useRouteMatch()

3 // ...

4 React.useEffect(() => {

5 const goToNew = () => history.push(`${match.url}/new`)

6 const goToList = () => history.push(`${match.url}/list`)

7

8 ref.current.key("c", goToNew)

9 ref.current.key("l", goToList)

10 return () => {

11 ref.current.unkey("c", goToNew)

12 ref.current.unkey("l", goToList)

13 }

14 }, [])

Go back to src/Issues/Issues.tsx and remake it to look like this:

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { IssuesMain } from "./IssuesMain"

4

5 const NewIssue = () => <>New Issue</>

6 const IssuesList = () => <>Issues List</>

7

8 export const Issues = () => {

9 const match = useRouteMatch()

10

11 return (

12 <Switch>

13 <Route exact path={match.path} component={IssuesMain} />

14 <Route path={`${match.path}/new`} component={NewIssue} />

15 <Route path={`${match.path}/list`} component={IssuesList} />

16 </Switch>

17)

18 }

GraphQL, React, and TypeScript 622

Getting the list of issues

Create a new file called src/Issues/IssuesList.tsx and start by adding imports:

1 import React, { useRef } from "react"

2 import { Panel } from "../shared/Panel"

3 import { useEffect } from "react"

4 import open from "open"

5 import { useQuery, gql } from "@apollo/client"

6 import { List } from "../shared/List"

7 import { Text } from "../shared/Text"

Now let’s define a query:

1 const LIST_ISSUES = gql`

2 query listIssues {

3 viewer {

4 issues(first: 100) {

5 nodes {

6 title

7 url

8 }

9 }

10 }

11 }

12 `

Run the code generator to get types for the new query:

GraphQL, React, and TypeScript 623

1 yarn run apollo codegen:generate\

2 --localSchemaFile=graphql-schema.json\

3 --target=typescript\

4 --tagName=gql\

5 --addTypename\

6 --globalTypesFile=src/types/graphql-global-types.ts\

7 types

After you have the types, you can import them in the src/Issues/IssuesList.tsx

file:

1 import { listIssues } from "./types/listIssues"

Now define the actual component:

1 export const IssuesList = () => {

2 const listRef = useRef<any>()

3 const { loading, error, data } = useQuery<listIssues>(LIST_ISSUES)

4 const issues = data?.viewer.issues.nodes

5 // ...

6 return (

7 <Panel height={10} top="25%" left="center">

8 <blessed-text

9 left="center"

10 bg="white"

11 fg="black"

12 content="List Issues"

13 />

14 <List

15 ref={listRef}

16 top={2}

17 onAction={(el) =>

18 open(

19 issues?.find((issue) => issue?.title === el.content)

20 ?.url || ""

GraphQL, React, and TypeScript 624

21)

22 }

23 items={issues?.map((issue) => issue?.title || "") || []}

24 />

25 </Panel>

26)

27 }

Here we call useQuery() to get data, just like we did to get the list of repositories.
Then we pass the issues array to the List component.

Define a useEffect that will trigger the focus method on the list element when the
component is mounted:

1 useEffect(() => {

2 listRef?.current?.focus()

3 }, [data])

Define the early returns for the loading and error states:

1 if (loading) {

2 return (

3 <Panel height={10} top="25%" left="center">

4 <Text left="center">Loading...</Text>

5 </Panel>

6)

7 }

8

9 if (error) {

10 return <>Error: {JSON.stringify(error)}</>

11 }

Open the src/Issues/Issues.ts and remake it to use the real IssuesList compo-
nent:

GraphQL, React, and TypeScript 625

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { IssuesMain } from "./IssuesMain"

4 import { IssuesList } from "./IssuesList"

5

6 const NewIssue = () => <>New Issue</>

7

8 export const Issues = () => {

9 const match = useRouteMatch()

10

11 return (

12 <Switch>

13 <Route exact path={match.path} component={IssuesMain} />

14 <Route path={`${match.path}/new`} component={NewIssue} />

15 <Route path={`${match.path}/list`} component={IssuesList} />

16 </Switch>

17)

18 }

Launch the application and make sure you can get the list of issues:

GraphQL, React, and TypeScript 626

List issues screen

You should also be able to open a selected issue in the browser.

Creating an issue

Create a new file, src/Issues/NewIssue.tsx, and add imports:

1 import React, { useState } from "react"

2 import { useApolloClient, useMutation, gql } from "@apollo/client"

3 import { Field } from "../shared/Field"

4 import { Form, FormValues } from "../shared/Form"

5 import { NewEntitySuccess } from "../shared/NewEntitySuccess"

6 import { NewEntityError } from "../shared/NewEntityError"

7 import { Panel } from "../shared/Panel"

8 import { Button } from "../shared/Button"

9 import { Text } from "../shared/Text"

Now let’s define the mutation:

GraphQL, React, and TypeScript 627

1 const CREATE_ISSUE = gql`

2 mutation createNewIssue(

3 $title: String!

4 $body: String

5 $repository: ID!

6) {

7 createIssue(

8 input: { title: $title, body: $body, repositoryId: $repository }

9) {

10 issue {

11 title

12 url

13 }

14 }

15 }

16 `

This mutation accepts the repository id that we defined in one of the previous
sections.

Generate the types for the mutation

Run the code generator to get types for this query:

1 yarn run apollo codegen:generate\

2 --localSchemaFile=graphql-schema.json\

3 --target=typescript\

4 --tagName=gql\

5 --addTypename\

6 --globalTypesFile=src/types/graphql-global-types.ts\

7 types

Import the generated types, along the GET_REPOSITORY query and types:

GraphQL, React, and TypeScript 628

1 import {

2 createNewIssue,

3 createNewIssueVariables,

4 createNewIssue_createIssue_issue

5 } from "./types/createNewIssue"

6 import { GET_REPOSITORY } from "../queries/getRepository"

7 import {

8 getRepository,

9 getRepositoryVariables

10 } from "../queries/types/getRepository"

Define the component

Now we can define the NewIssue component itself:

1 export const NewIssue = () => {

2 // ...

3 const [createIssue] = useMutation<

4 createNewIssue,

5 createNewIssueVariables

6 >(CREATE_ISSUE)

7 // ...

8 const onSubmit = async (values: FormValues) => {

9 const [repo, title, body] = values.textbox

10 const [owner, name] = repo.split("/")

11 // ...

12 }

13 // ...

14 }

The NewIssue component will have the onSubmit() handler that will get input values
from the form. In this component it will be significantly more complex than a similar
function in the NewRepository component. We’ll have to tackle it step by step. Before
we can work on this function let’s define the component layout.

GraphQL, React, and TypeScript 629

Just like in the NewRepository component we’ll need to handle the success and error
states. Define them using the useState hook:

1 const [error, setError] = useState<Error | null>()

2 const [issue, setIssue] =

3 useState<createNewIssue_createIssue_issue | null>()

Define the layout

Define the layout of the NewIssue component:

1 return (

2 <Panel top="25%" left="center" height={12}>

3 <Text left="center">New Issue</Text>

4 <Form onSubmit={onSubmit}>

5 {(triggerSubmit) => {

6 return (

7 <>

8 <Field

9 top={0}

10 label="Repo: "

11 onSubmit={triggerSubmit}

12 />

13 <Field

14 top={1}

15 label="Title: "

16 onSubmit={triggerSubmit}

17 />

18 <Field

19 top={2}

20 label="Body: "

21 onSubmit={triggerSubmit}

22 />

23 </>

GraphQL, React, and TypeScript 630

24)

25 }}

26 </Form>

27 <Text left="center" bottom={3}>

28 Tab: Next Field

29 </Text>

30 <Button left="center" bottom={1} onPress={onSubmit}>

31 Enter: Submit

32 </Button>

33 </Panel>

34)

It will contain a form with 3 input fields:

• Repository name: we use this value to get the repository ID. When creating a
new issue, repository ID is a mandatory field.

• Issue title: this is also a mandatory field.
• Issue description: an optional field that you can use to provide additional
information about the new issue.

Create a new issue on form submit

Let’s get back to the onSubmit function. We’ve implemented a similar function in
the NewRepository component. This time we will have to run a query to get the
repository ID before we can run the createIssue.

Previously we’ve only used queries through the hooks, but now we’ll need to run the
query inside of a callback function. It is doable using the Apollo client reference.

Get a reference to the Apollo client using the useApolloClient() hook. Add this code
somewhere in beginning of the component body:

1 const client = useApolloClient()

Using the client we can perform the query directly. Add the following code to the
onSubmit() handler:

GraphQL, React, and TypeScript 631

1 if (!owner || !name) {

2 setError(

3 new Error(

4 "Repository name should have <owner>/<name> format."

5)

6)

7 return

8 }

9

10 const { data } = await client.query<

11 getRepository,

12 getRepositoryVariables

13 >({

14 query: GET_REPOSITORY,

15 variables: {

16 owner,

17 name

18 }

19 })

Here wemake sure that the owner and the name fields are not empty. If they are empty
we’ll display an error message. Then we manually perform a query to get the ID of
the repository by its name.

Now we might have the repository ID, but we need to verify that. Add the following
check:

1 if (!data || !data.repository) {

2 return

3 }

If we don’t get the repository field in the response, we just return from the callback.
Otherwise we can continue.

Now we want to perform the mutation:

GraphQL, React, and TypeScript 632

1 try {

2 const result = await createIssue({

3 variables: {

4 title,

5 body,

6 repository: data.repository.id

7 }

8 })

9

10 setIssue(result.data?.createIssue?.issue)

11 } catch (e) {

12 setError(e)

13 }

We wrap the call in a try/catch block to handle errors. In any case we store the result
or the error in a designated state.

Render the success and error results

Now we want to check if we have issue in the state, and if so, render the success
screen. Add the following code right before the layout:

1 if (issue) {

2 return (

3 <NewEntitySuccess

4 title="New issue created"

5 url={issue.url}

6 onClose={() => setIssue(null)}

7 />

8)

9 }

If we get an error, we’ll render the error message. Add an early return block for this
case:

GraphQL, React, and TypeScript 633

1 if (error) {

2 return (

3 <NewEntityError error={error} onClose={() => setError(null)} />

4)

5 }

Render the NewIssue component

Then go to src/Issues/Issues.tsx and and remake it to use the real NewIssue
component:

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { IssuesMain } from "./IssuesMain"

4 import { IssuesList } from "./IssuesList"

5 import { NewIssue } from "./NewIssue"

6

7 export const Issues = () => {

8 const match = useRouteMatch()

9

10 return (

11 <Switch>

12 <Route exact path={match.path} component={IssuesMain} />

13 <Route path={`${match.path}/new`} component={NewIssue} />

14 <Route path={`${match.path}/list`} component={IssuesList} />

15 </Switch>

16)

17 }

Now launch the application and make sure everything works:

GraphQL, React, and TypeScript 634

New Issue screen

Working with GitHub pull requests

Pull requests are very similar to issues as they are also bound to specific repositories.
In this section we’ll define the routing.

Define themain component for pull requests. Create a new file, src/PullRequests/PullRequestsMain.tsx,
and add imports:

1 import React, { useEffect, useCallback } from "react"

2 import { useHistory, useRouteMatch } from "react-router"

3 import { useRef } from "react"

4 import { Panel } from "../shared/Panel"

5 import { debounce } from "../utils/debounce"

6 import { Button } from "../shared/Button"

7 import { Text } from "../shared/Text"

Then define the actual component with the following layout:

GraphQL, React, and TypeScript 635

1 export const PullRequestsMain = () => {

2 const history = useHistory()

3 const match = useRouteMatch()

4 const ref = useRef<any>()

5 // ...

6 return (

7 <Panel ref={ref} height={11} top="25%" left="center">

8 <Text left="center">Pull Requests</Text>

9 <Text top={2} left="center">

10 Click on the button or press the corresponding key.

11 </Text>

12

13 <Button left="center" bottom={3} onPress={goToList}>

14 l:List Pull Requests

15 </Button>

16

17 <Button left="center" bottom={1} onPress={goToNew}>

18 c:Create new Pull Request

19 </Button>

20 </Panel>

21)

22 }

Here we display instructions on navigating to other pages. We also get a reference
to the panel, enabling us to have screen-specific event listeners. Define the goToList
and goToNew handlers:

GraphQL, React, and TypeScript 636

1 const goToNew = useCallback(

2 debounce(() => history.push(`${match.url}/new`), 100),

3 []

4)

5

6 const goToList = useCallback(

7 debounce(() => history.push(`${match.url}/list`), 100),

8 []

9)

Define the useEffect where we’ll subscribe to keyboard events:

1 useEffect(() => {

2 ref.current.key("c", goToNew)

3 ref.current.key("l", goToList)

4 return () => {

5 ref.current.unkey("c", goToNew)

6 ref.current.unkey("l", goToList)

7 }

8 }, [])

Don’t forget to unsubscribe in the cleanup function.

Define the routing

Open the src/PullRequests/PullRequests.tsx, and add the routing:

GraphQL, React, and TypeScript 637

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { PullRequestsMain } from "./PullRequestsMain"

4

5 const NewPullRequest = () => <>New PullRequest</>

6 const ListPullRequests = () => <>List</>

7

8 export const PullRequests = () => {

9 const match = useRouteMatch()

10

11 return (

12 <Switch>

13 <Route exact path={match.path} component={PullRequestsMain} />

14 <Route path={`${match.path}/new`} component={NewPullRequest} />

15 <Route

16 path={`${match.path}/list`}

17 component={ListPullRequests}

18 />

19 </Switch>

20)

21 }

Getting the list of pull requests

Create a new file, src/PullRequests/ListPullRequests.tsx, with the following
imports:

GraphQL, React, and TypeScript 638

1 import React, { useRef } from "react"

2 import { Panel } from "../shared/Panel"

3 import { useEffect } from "react"

4 import open from "open"

5 import { useQuery, gql } from "@apollo/client"

6 import { List } from "../shared/List"

7 import { Text } from "../shared/Text"

Next, define a query:

1 const LIST_PULL_REQUESTS = gql`

2 query listPullRequests {

3 viewer {

4 pullRequests(first: 100) {

5 nodes {

6 title

7 url

8 }

9 }

10 }

11 }

12 `

Run the code generator to get types:

1 yarn run apollo codegen:generate\

2 --localSchemaFile=graphql-schema.json\

3 --target=typescript --tagName=gql\

4 --addTypename\

5 --globalTypesFile=src/types/graphql-global-types.ts\

6 types

Import the generated type and define the ListPullRequests component:

GraphQL, React, and TypeScript 639

1 import { listPullRequests } from "./types/listPullRequests"

2 // ...

3 export const ListPullRequests = () => {

4 const { loading, error, data } = useQuery<listPullRequests>(

5 LIST_PULL_REQUESTS

6)

7 // ...

8 }

Render the ListPullRequests component layout. First let’s handle the loading and
error states, add early returns for them:

1 if (loading) {

2 return (

3 <Panel height={10} top="25%" left="center">

4 <Text left="center">Loading...</Text>

5 </Panel>

6)

7 }

8

9 if (error) {

10 return <>Error: {JSON.stringify(error)}</>

11 }

Then add the normal layout:

1 const listRef = useRef<any>()

2 // ...

3 const pullRequests = data?.viewer.pullRequests.nodes

4 // ...

5 return (

6 <Panel height={10} top="25%" left="center">

7 <Text left="center">List Pull Requests</Text>

8

9 <List

GraphQL, React, and TypeScript 640

10 ref={listRef}

11 top={2}

12 onAction={(el) =>

13 open(

14 pullRequests?.find(

15 (pullRequest) => pullRequest?.title === el.content

16)?.url || ""

17)

18 }

19 items={

20 pullRequests?.map(

21 (pullRequest) => pullRequest?.title || ""

22) || []

23 }

24 />

25 </Panel>

26)

We create listRef and pass it to the List element. Define a useEffect that will
trigger the focus() method on this ref when we get the data.

1 useEffect(() => {

2 listRef.current?.focus()

3 }, [data])

We don’t do it on component mount because at that point component might be in
the loading state.

Update the root pull requests component

Open the src/PullRequests/PullRequests.tsx and import the ListPullRequests

component:

GraphQL, React, and TypeScript 641

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { PullRequestsMain } from "./PullRequestsMain"

4 import { ListPullRequests } from "./ListPullRequests"

5

6 const NewPullRequest = () => <>New PullRequest</>

7

8 export const PullRequests = () => {

9 const match = useRouteMatch()

10

11 return (

12 <Switch>

13 <Route exact path={match.path} component={PullRequestsMain} />

14 <Route path={`${match.path}/new`} component={NewPullRequest} />

15 <Route

16 path={`${match.path}/list`}

17 component={ListPullRequests}

18 />

19 </Switch>

20)

21 }

Run the application again and verify that you can see the list of pull requests and
you can open the pull request in the browser.

GraphQL, React, and TypeScript 642

List of pull requests

Creating a new pull request

Create a new file, src/PullRequests/NewPullRequest.tsx, and add the following
imports:

1 import React, { useState } from "react"

2 import { useApolloClient, useMutation, gql } from "@apollo/client"

3 import { Field } from "../shared/Field"

4 import { Form, FormValues } from "../shared/Form"

5 import { NewEntitySuccess } from "../shared/NewEntitySuccess"

6 import { NewEntityError } from "../shared/NewEntityError"

7 import { Panel } from "../shared/Panel"

8 import { Text } from "../shared/Text"

9 import { Button } from "../shared/Button"

10 import {

11 getRepository,

12 getRepositoryVariables

GraphQL, React, and TypeScript 643

13 } from "../queries/types/getRepository"

14 import { GET_REPOSITORY } from "../queries/getRepository"

Now define a GraphQL query to create a pull request:

1 const CREATE_PULL_REQUEST = gql`

2 mutation createNewPullRequest(

3 $baseRefName: String!

4 $headRefName: String!

5 $body: String

6 $title: String!

7 $repositoryId: ID!

8) {

9 createPullRequest(

10 input: {

11 title: $title

12 body: $body

13 repositoryId: $repositoryId

14 baseRefName: $baseRefName

15 headRefName: $headRefName

16 }

17) {

18 pullRequest {

19 title

20 url

21 }

22 }

23 }

24 `

Run the code generator to generate types:

GraphQL, React, and TypeScript 644

1 yarn run apollo codegen:generate\

2 --localSchemaFile=graphql-schema.json\

3 --target=typescript\

4 --tagName=gql\

5 --addTypename\

6 --globalTypesFile=src/types/graphql-global-types.ts\

7 types

Import the generated types:

1 import {

2 createNewPullRequest,

3 createNewPullRequestVariables,

4 createNewPullRequest_createPullRequest_pullRequest

5 } from "./types/createNewPullRequest"

Now define the NewPullRequest component:

1 export const NewPullRequest = () => {

2 // ...

3 return (

4 <Panel top="25%" left="center" height={14}>

5 <Text left="center">New Pull Request</Text>

6 // ...

7 </Panel>

8)

9 }

For nowwe’ll just render a Panelwith a Title. Later we’ll add a form that will collect
the data for the pull request.

Let’s start with the component state where we’ll store the error and the created pull
request:

GraphQL, React, and TypeScript 645

1 const [error, setError] = useState<Error | null>()

2 const [pullRequest, setPullRequest] =

3 useState<createNewPullRequest_createPullRequest_pullRequest | null>()

After that define the creatPullRequest mutation:

1 const [createPullRequest] = useMutation<

2 createNewPullRequest,

3 createNewPullRequestVariables

4 >(CREATE_PULL_REQUEST)

In this component we’ll need to query the repository id before we can create a new
pull request. We’ll perform the query inside of the form submit callback, so we’ll
need the apollo client instance. Define it:

1 const client = useApolloClient()

Now define the onSubmit function that we’ll pass to the form:

1 const onSubmit = async (values: FormValues) => {

2 // ...

3 }

Inside of this function define a try/catch block. If at any point during the process
of creating a new pull request we’ll get an error - we’ll store the it in the component
state.

1 try {

2 // ...

3 } catch (e) {

4 setError(e)

5 }

Now inside the try block we get the values from the form and make sure that we can
get the owner and the name of the repository:

GraphQL, React, and TypeScript 646

1 const [repo, title, body, baseRefName, headRefName] =

2 values.textbox

3 const [owner, name] = repo.split("/")

4

5 if (!owner || !name) {

6 setError(

7 new Error(

8 "Repository name should have <owner>/<name> format."

9)

10)

11 return

12 }

Here we get following values to create a pull request:

• repository name in owner/repo-name format. We’ll use it to get the repository
id.

• the title and the body of the pull request
• base reference name (usually the main branch)
• head reference name (usually a feature branch)

After we have those values we can query the repository id:

1 const { data } = await client.query<

2 getRepository,

3 getRepositoryVariables

4 >({

5 query: GET_REPOSITORY,

6 variables: {

7 owner,

8 name

9 }

10 })

We’re almost there, now create the pull request. Call the createPullRequest muta-
tion:

GraphQL, React, and TypeScript 647

1 const result = await createPullRequest({

2 variables: {

3 title,

4 body,

5 repositoryId: data.repository.id,

6 baseRefName,

7 headRefName

8 }

9 })

Store the pullRequest from in the component state:

1 setPullRequest(result.data?.createPullRequest?.pullRequest)

Let’s show the success and error screens. Add this code right after onSubmit handler:

1 if (error) {

2 return (

3 <NewEntityError error={error} onClose={() => setError(null)} />

4)

5 }

6

7 if (pullRequest) {

8 return (

9 <NewEntitySuccess

10 title="New pull request created"

11 url={pullRequest.url}

12 onClose={() => setPullRequest(null)}

13 />

14)

15 }

Define the form

Now add the form to the component:

GraphQL, React, and TypeScript 648

1 <Form onSubmit={onSubmit}>

2 {(triggerSubmit) => {

3 return (

4 <>

5 <Field

6 top={0}

7 label="Repo: "

8 onSubmit={triggerSubmit}

9 />

10 <Field

11 top={1}

12 label="Title: "

13 onSubmit={triggerSubmit}

14 />

15 <Field

16 top={2}

17 label="Body: "

18 onSubmit={triggerSubmit}

19 />

20 <Field

21 top={3}

22 label="Base: "

23 onSubmit={triggerSubmit}

24 />

25 <Field

26 top={4}

27 label="Head: "

28 onSubmit={triggerSubmit}

29 />

30 </>

31)

32 }}

33 </Form>

We’ve already discussed what values do we need to create a pull request. Here we
defined the form fields to get them.

GraphQL, React, and TypeScript 649

Add the navigation instructions

Add the instructions on how to select the field and how to submit the form. Add this
block right after the Form element in the layout:

1 <Text left="center" bottom={3}>

2 Tab: Next Field

3 </Text>

4 <Button left="center" bottom={1} onPress={onSubmit}>

5 Enter: Submit

6 </Button>

Use the component

Then open src/PullRequests/PullRequests.tsx and use the real NewPullRequest
component instead of a stub:

1 import React from "react"

2 import { Route, Switch, useRouteMatch } from "react-router"

3 import { PullRequestsMain } from "./PullRequestsMain"

4 import { ListPullRequests } from "./ListPullRequests"

5 import { NewPullRequest } from "./NewPullRequest"

6

7 export const PullRequests = () => {

8 const match = useRouteMatch()

9

10 return (

11 <Switch>

12 <Route exact path={match.path} component={PullRequestsMain} />

13 <Route path={`${match.path}/new`} component={NewPullRequest} />

14 <Route

15 path={`${match.path}/list`}

16 component={ListPullRequests}

GraphQL, React, and TypeScript 650

17 />

18 </Switch>

19)

20 }

Run the application and make sure you can create pull requests like this:

Creating a pull request

Summary

In this chapter, we’ve learned to combine GraphQL with TypeScript. It is a great duo
because GraphQL allows us to preserve type information while communicating with
the backend.

A great advantage of using GraphQL on your backend is that you can provide the
full schema definition to your clients, just like GitHub does.

Another great benefit of using GraphQL is that you can generate types from a
GraphQL schema. It makes using queries and mutations super easy, as the editor
can provide code completion suggestions based on the actual schema.

GraphQL, React, and TypeScript 651

I hope you liked working on this fun project, and good luck in your next endeavors!

Appendix

Changelog
Revision r12 (31-12-2021)

• Added a code example for each chapter
• Fixed numerous typos
• Fixed the code examples

Revision r11 (26-03-2021)

• Updated the react-dnd package in the first chapter
• Introduced Immer for state management in the first chapter
• Fixed typos and missing links
• Replaced interfaces with types
• Added a section about optimizing images in the fifth chapter

Revision r10 (03-03-2021)

• Improved HOC explanation in the first chapter
• Expanded Class and Function components explanations

Revision r9 (26-02-2021)

• Fixed missing code issues in the first chapter
• Fixed some confusing wording

Revision r8 (17-02-2021)

• Fixed grammatical errors and typos

Changelog 654

Revision r7 (01-12-2020)

• Fixed typos in the first chapter and the book intro
• Added a link to react-scripts/package.json on GitHub

Revision r6 (01-12-2020)

• Fixed the order of steps in the Testing chapter

Revision r5 (10-11-2020)

• Updated the first chapter to the last version of create-react-app
• Added a requested feature in trello-clone to submit new items by pressing
“Enter”

• Made all the data updates in the trello-clone immutable
• Fixed typos and code errors

Revision r4 (26-08-2020)

• Added GraphQL chapter
• Fixed typos and code errors
• Updated react-dnd packages

Revision 3p (07-30-2020)

• Added Redux with Typescript chapter
• Fixed various typos and grammar

Revision 2p (06-08-2020)

• Added information on SSR with Next.js
• Fixed various typos and grammar

Changelog 655

Revision 1p (05-20-2020)

First “Early Draft” Release

	Table of Contents
	Introduction
	How To Get The Most Out Of This Book
	What is TypeScript
	Why Use TypeScript With React
	A Necessary Word Of Caution

	Your First React and TypeScript Application: Building Trello with Drag and Drop
	Introduction
	What Are We Building?
	Prerequisites
	Preview The Final Result
	How to Bootstrap React + TypeScript App Automatically
	App Layout. React + TypeScript Basics
	Remove The Clutter
	Add Global Styles
	How To Style React Elements
	Using Separate CSS Files
	Passing CSS Rules Through Style Property
	Using External Styling Libraries
	Prepare Styled Components
	Install styled-components. Working with @types packages
	Break the UI into components
	Render Everything Together
	Create Column Components
	How to define props
	How to accept children prop
	Create Card Components
	Render everything together
	Component For Adding New Items
	Styles For The Button
	Create AddNewItem Component. Using State
	Adding New Lists
	Adding New Tasks
	NewItemForm component
	Styles For The Form
	Create NewItemForm component
	Automatically focus on input
	Create the useFocus hook
	Use the useFocus hook
	Submit on enter
	Add Global State And Business Logic. Using the useReducer
	Using the useReducer
	Implement Global State
	Hardcode the data
	Define the Context
	Define the Context provider
	Define the business logic
	Create Actions
	Define the appStateReducer
	Adding Lists
	Adding Tasks
	Provide Dispatch Through The Context
	Dispatching Actions
	Moving Items
	Define the moveItem helper function
	Handling the MOVE_LIST action
	Add Drag and Drop (Install React DnD)
	Define The Type For Dragging
	Store The Dragged Item In The State
	Define The useItemDrag Hook
	Drag Column
	Hide The Dragged Item
	Styles For DragPreviewContainer
	Implement The Custom Dragging Preview
	Move The Dragged Item Preview
	Hide The Default Drag Preview
	Drag Cards
	Update CustomDragLayer
	Update The Reducer
	Drag the Card To an Empty Column
	Saving State On Backend. How To Make Network Requests
	Loading The Data

	How to Test Your Applications: Testing a Digital Goods Store
	Introduction
	Get familiar with the application
	Initial Setup
	Writing Tests
	Testing the App component
	Mocking Components
	Jest helper to test navigation
	Global Helper With TypeScript
	Testing navigation
	Shared Components
	Header
	CartWidget
	Loader Component
	Home Page
	ProductCard Component
	Cart page
	Cart component
	Checkout Page
	CheckoutList component
	Testing The Form
	Testing The FormField
	Order summary page
	Testing React Hooks
	Testing useProducts
	Testing useCart
	Congratulations

	Patterns in React TypeScript Applications: Making Music with React
	Introduction
	What We're Going to Build
	What We're Going to Use
	First Steps and Basic Application Layout
	Logo component
	Combining Components
	A Bit of a Music Theory
	Third Party API and Browser API
	Patterns
	Adapter or Provider Pattern
	Creating a Keyboard
	Single Key on a Keyboard
	Styles for the Key
	Define the Key component
	Create the Keyboard component
	Update the Main component
	Adapter Hook
	Soundfont Adapter
	Connecting to a Keyboard
	Mapping Real Keys to Virtual
	Instruments List
	Instrument Selector
	Render Props
	What is a render prop
	Pros and Cons
	Creating Render Props With Functional Components
	Creating Render Props With Classes
	Higher-Order Components
	Higher-Order Functions
	Define a HOC
	When to Use
	Pros and Cons
	Caveats
	Instrument adapter as a Higher-Order Component
	Using HOC with Keyboard
	Passing Refs Through
	Static Composition
	Using Hooks with HOCs
	Conclusion

	Using Redux and TypeScript
	Introduction
	Preview The Final Result
	What is Redux?
	Why Can't We Use useReducer Instead of Redux?
	Initial Setup
	Redux Logger
	Prepare The Styles
	Update the App layout
	Working With Canvas
	Handling Canvas Events
	Define The Store Types
	Add Actions
	Add The Reducer Logic
	Dispatch Actions
	Draw The Current Stroke
	Define the currentStrokeSelector
	Update the App component
	Implement Selecting Colors
	Implement Undo and Redo
	Update the RootState type
	Create actions
	Update the reducer
	Create the EditPanel component
	Splitting Root Reducer And Using combineReducers
	Update the App component
	Join The Reducers Using combineReducers
	Exporting An Image
	Define the getCanvasImage
	Create the FilePanel
	Add the FilePanel to the App layout
	Using Redux Toolkit
	Configuring The Store
	Fix Type Errors
	Using createAction
	Update the App component
	Using createReducer
	Using Slices
	Remake The Imports
	Add Modal Windows
	Update the types
	Add The Modal Manager Component
	Define the modal windows
	Define the ModalLayercomponent
	Render the ModalLayer
	Add Save and Load buttons
	Prepare The Server
	Save The Project Using Thunks
	Define the API module
	Handle saving the project
	Define the getBase64Thumbnail function
	Update the ProjectSaveModal
	Load The Project
	Update the types
	Define the API module
	Create a projectsList slice
	Load the selected project
	Show the list of projects
	Update the App component

	Static Site Generation and Server-Side Rendering Using Next.js
	Introduction
	What We're Going to Build
	Pre-Rendering
	Next.js
	Setting Up a Project
	Creating A First Page
	Basic Application Layout
	Footer Component
	Custom Document Component
	Application Theme
	Custom App Component
	Front Page
	Update the Front component
	Page 404
	Post Page Template
	Backend API Server
	Frontend API Client
	Updating The Main Page
	Pre-Render Post Page
	Post API
	Category Page
	Category API
	Adding Breadcrumbs
	Comments and Server-Side Rendering
	Components to render comments
	API for Adding Comments
	Adding comments to a page
	Updating a statically generated page to use server-side rendering
	Connecting Redux
	Optimizing Images
	Building Project
	Deploying Project
	Remaking API
	Creating Client Requests
	Updating Pages
	Deployment with Serverless Functions
	Summary

	GraphQL, React, and TypeScript
	Introduction
	Is GraphQL better than REST?
	What are we building?
	Authenticate in GitHub and Preview The Final Result
	Authenticating in GitHub
	Previewing the final result
	Setting up the project
	Running TypeScript in the console
	Add the .env file
	Running the application
	Get the auth code
	Define the HTML page
	Define the getCode
	Auth Flow Link
	Authentication context
	GraphQL queries. Getting user data
	Adding helper components
	Define the Button component
	Define the List component
	Define the Text component
	Define the TextBox component
	Define the Panel component
	Form helper components
	Informationbal message components
	Defining the WelcomeWindow layout
	Getting GitHub GraphQL schema
	Generating types
	Adding routing
	Define the resource screens
	Define the routing scheme
	Implement navigation
	Define the debounce function
	Define the Header
	Render the Header
	Repositories main component
	Getting the list of repositories
	GraphQL mutations. Creating repositories
	Getting the repository ID
	Working with GitHub issues
	Getting the list of issues
	Creating an issue
	Generate the types for the mutation
	Define the component
	Define the layout
	Create a new issue on form submit
	Render the success and error results
	Render the NewIssue component
	Working with GitHub pull requests
	Define the routing
	Getting the list of pull requests
	Update the root pull requests component
	Creating a new pull request
	Define the form
	Add the navigation instructions
	Use the component
	Summary

	Appendix
	Changelog
	Revision r12 (31-12-2021)
	Revision r11 (26-03-2021)
	Revision r10 (03-03-2021)
	Revision r9 (26-02-2021)
	Revision r8 (17-02-2021)
	Revision r7 (01-12-2020)
	Revision r6 (01-12-2020)
	Revision r5 (10-11-2020)
	Revision r4 (26-08-2020)
	Revision 3p (07-30-2020)
	Revision 2p (06-08-2020)
	Revision 1p (05-20-2020)

